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Estimates for practical quantum cryptography

Norbert Lütkenhaus
Helsinki Institute of Physics, PL 9, FIN-00014 Helsingin yliopisto, Finland

~Received 3 June 1998!

In this paper I present a protocol for quantum cryptography which is secure against attacks on individual
signals. It is based on the Bennett-Brassard protocol of 1984. The security proof is complete as far as the use
of single photons as signal states is concerned. Emphasis is placed on the practicability of the resulting
protocol. For each run of the quantum key distribution the security statement gives the probability of a
successful key generation and the probability for an eavesdropper’s knowledge, measured as change in Shan-
non entropy, to be below a specified maximal value.@S1050-2947~99!05305-6#

PACS number~s!: 03.67.Dd, 03.65.Bz, 42.79.Sz
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I. INTRODUCTION

Quantum cryptography is a technique for generating
distributing cryptographic keys in which the secrecy of t
keys is guaranteed by quantum mechanics. The first s
scheme was proposed by Bennett and Brassard in 1984~the
BB84 protocol! @1#. Sender and receiver~conventionally
called Alice and Bob! use a quantum channel, which is go
erned by the laws of quantum mechanics, and a class
channel which is postulated to have the property that
classical message sent will be faithfully received. The cl
sical channel will also transmit faithfully a copy of the me
sage to any eavesdropper, Eve. Along the quantum chan
sequence of signals is sent chosen at random from two p
of orthogonal quantum states. Each such pair spans the s
Hilbert space. For example, the signals can be realized
polarized photons: one pair uses horizontal and vertical
ear polarization (1), while the other uses linear polarizatio
rotated by 45° (3). Bob at random uses one of two me
surements, each performing projection measurements on
basis1 or 3. The sifted key@2# consists of the subset o
signals where the bases of signal and measurement coin
leading to deterministic results. This subset can be found
exchange of classical information without revealing the s
nals themselves. Any attempt by an eavesdropper to ob
information about the signals leads to a nonzero expe
error rate in the sifted key, and makes it likely that Alice a
Bob can detect the presence of the eavesdropper by com
ing a subset of the sifted key over the public channel
Alice and Bob find no errors, they conclude~within the sta-
tistical bounds of error detection! that no eavesdropper wa
active. They then translate the sifted key into a sequenc
zeros and ones which can be used, for example, as a
time pad in secure communication.

Several quantum cryptography experiments have b
performed. In the experimental setup noise is always pre
leading to a bit error rate of, typically, 1 –5 % errors in t
sifted key @3–6#. Alice and Bob cannot even in principl
distinguish between a noisy quantum channel and the si
ture of an eavesdropper activity. The protocol of the k
distribution therefore has to be amended by two steps.
first is thereconciliation~or error correction! step, leading to
a key, shared by Alice and Bob. The second step deals
the situation that the eavesdropper now has to be assum
PRA 591050-2947/99/59~5!/3301~19!/$15.00
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be in the possession of at least some knowledge abou
reconciled string. For example, if one collects some pa
bits of randomly chosen subsets of the reconciled string a
new key, then the Shannon information of an eavesdrop
on that new, shorter key can be brought arbitrarily close
zero by control of the number of parity bits contributin
towards it. This technique is the generalized privacy am
fication procedure by Bennettet al. @7#.

The final measure of knowledge about the key used in
paper is that of change of Shannon entropy. If we assign
each potential keyx an a-priori probability p(x), then the
Shannon entropy of this distribution is defined as

S@p~x!#52(
x

p~x!log2p~x!. ~1!

The knowledge Eve obtains on the key may be denoted bk,
and leads to ana posteriori probability distributionp(xuk).
The difference between the Shannon entropy of thea priori
anda posterioriprobability distributions is a good measu
of Eve’s knowledge:

DS~k!5S@p~x!#2S@p~xuk!#. ~2!

For short, we will callDS(k) the entropy change. We re-
cover the Shannon information as the expected value of
difference as

I S5^DS~k!&5(
k

p~k!DS~k!, ~3!

where Eve’s knowledgek occurs with probabilityp(k). If
we are able to give a bound onDS(k) for a specific run of the
quantum key distribution experiment, then this is a stron
statement than a bound on the Shannon information:
guarantee not only security on average but make a statem
on a specific key, as required for secure communication.

The challenge for the theory of quantum cryptography
to provide a statement like the following one: If one findse
errors in a sifted key of lengthnsif , then, after error correc
tion under an exchange ofNrec bits of redundant information
a new key of lengthnfin can be distilled on which, with
probability 12a, a potential eavesdropper achieves an
3301 ©1999 The American Physical Society
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3302 PRA 59NORBERT LÜTKENHAUS
tropy change of less thanD tol . HereD tol has to be chosen in
view of the application for which the secret key is used. It
not necessary that each realization of a sifted key leads
secret key; the realization may be rejected with some pr
ability b. In this case Alice and Bob abort the attempt a
start anew.

The final goal is to provide a security statement, tak
into account the real experimental situation. For example
real channel exists which fulfills the axiom of faithfulnes
There is the danger that an eavesdropper can separate
and Bob, and replace the public channel by two chann
one from Alice to Eve and another one from Eve to Bob.
this separate world scenario Eve could learn to know the
key without causing errors. She could establish differ
keys with Alice and Bob, and then effectively transfer t
messages from Alice to Bob. This problem can be overco
by authentication@19#. This technique makes it possible fo
a receiver of a message to verify that the message was in
sent by the presumed sender. It requires that sender an
ceiver share some secret knowledge beforehand. It shou
noted that it is not necessary to authenticate all individ
messages sent along the public channel. It is sufficien
authenticate some essential steps, including the final key
indicated below. In the presented protocol, successful
thentication verifies at the same time that no errors rema
after the key reconciliation. The need to share a secret
beforehand to accomplish authentication reduces this sch
from a quantum key distribution system to a quantum k
growing system: from a short secret key we grow a lon
secret key. On the other hand, since one needs to sha
secret key beforehand, one can use part of it to control
flow of side information to Eve during the stage of key re
onciliation in a new way. By side information we mean a
classical information about the reconciled key leaking to
eavesdropper during the reconciliation.

Another problem is that in a real application we cann
effectively create single-photon states. Recent developm
by Law and Kimble@8# promised such sources, but prese
day experiments use dim coherent states, that is, cohe
pulses with an expected photon number of typically 1/10
signal. The component of a signal containing two or mo
photon states, however, poses problems. It is known tha
eavesdropper can, by the use of a quantum nondemol
measurement~QND! of the total photon number and a spli
ting of signals, learn with certainty all signals containin
more than one photon without causing any errors in
sifted key. If Eve can get hold of an ideal quantum chann
this will lead to the existence of a maximum value of loss
the channel which can be tolerated@9,10#. It is not known at
present whether this QND attack, possibly combined w
attacks on the remaining single photons, is the optimal
tack, but it is certainly rather strong.

The eavesdropper is restricted in her power to interf
with the quantum signals only by quantum mechanics. In
most general scenario, she can entangle the signals w
probe of arbitrary dimensions, wait until all classical info
mation is transmitted over the public channel, and then m
a measurement on the auxiliary system to extract as m
information as possible about the key. Many papers, so
have dealt only with single-photon signals. At present th
exists an important claim of a security proof in this scena
a
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by Mayers@11#. However, the protocol proposed there is,
to now, far less efficient than the one proposed here. O
security proofs extend to a fairly wide class of eavesdropp
attacks, the coherent attacks@12#.

In this paper I will give a solution to a restricted problem
The restriction consists of four points.

~i! The eavesdropper attacks each signal individually;
coherent or collective attackstake place.

~ii ! The signal states consist, indeed, of two pairs of
thogonal single-photon states, so that two states drawn f
different pairs have an overlap probability of1

2 .
~iii ! Bob uses detectors of identical detection efficienci
~iv! The initial key shared by Alice and Bob is secret,

that the eavesdropper has negligible information about
Using the part of the key grown in a previous quantum k
growing session is assumed to be safe in this sense.

Within these assumptions I give a procedure that le
with somea priori probability b to a key shared by Alice
and Bob. If successful, the key is secure in the sense
with probability (12a) any potential eavesdropper achiev
an entropy change of less thanD tol . In contrast to all other
work on this subject, this procedure takes into account t
the eavesdropper does not necessarily transmit single
tons to the receiver; she might use multiphoton signals
manipulate Bob’s detectors. The procedure presented
might not be optimal, but it is certifiable safe within the fo
restrictions mentioned above.

It should be pointed out that coherent eavesdropping
tacks are at present beyond our experimental capability.
ice and Bob can increase the difficulty of the task of coher
or collective eavesdropping attacks by using random tim
for their signals~although here one has to be wary of th
error rate of the key! or by delaying their classical commu
nication, thereby forcing Eve to store her auxiliary pro
system coherently for longer time. There is an important d
ference between the threat of growing computer pow
against classical encryption techniques, and the grow
power of experimental skills in the attack on quantum k
distribution: while it is possible to decode today’s messa
with tomorrow’s computer in classical cryptography, yo
cannot use tomorrow’s experimental skills in eavesdropp
on a photon sent and detected today. It therefore seems
fectly legal to put some technological restrictions on t
eavesdropper. This might be, for example, a restriction
attacks on individual system, or even a restriction to un
layed measurements. For the use of dim coherent states
might be tempted to disallow Eve to use perfect quant
channels, and to give her a minimum amount of damping
her quantum channel. The ultimate goal, however, should
to beable to cope without those restrictions.

The structure of the paper is as follows. In Sec. II
present the complete protocol on which the security anal
is based. Then, in Sec. III, I discuss in more detail the va
ous elements contributing to the protocol. The heart of
security analysis is presented in Sec. IV, before I summa
the efficiency and security of the protocol in Sec. V.

II. HOW TO DO QUANTUM KEY GROWING

The protocol presented here is a suitable combination
the Bennett-Brassard protocol, reconciliation techniques,
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authentication methods. I make use of the fact that Alice
Bob have to share some secret key beforehand. Instea
seeing that as a drawback, I make use of it to simplify
control of the side-information flow during the classical da
exchange. Side information might leak to Eve in the form
parity bits, exchanged between Alice and Bob during rec
ciliation, or in the form of knowledge that a specific bit wa
received correctly or incorrectly by Bob. The side inform
tion could be taken care of during the privacy amplificati
step using the results of Ref.@13#. Here for clarity I present a
method to avoid any such side information which correla
Eve’s information about different bits~as parity bits do
which are typically used in reconciliation! by using secret
bits to encode some of the classical communication.

The notation of the variables is guided by the idea thatnx
denotes numbers of bits, especially key length at vari
stages;Nx denotes numbers of secure bits used in differ
steps of the protocol;b i denote probabilities of failing to
establish a shared key;a i denotes failure probabilities criti
cal to the safety of an established key; andg denotes the
probability that Alice and Bob, unknown to themselves,
not even share a key. Quantitiesx̄ or ^x& denote expected
values of the quantityx. The protocol steps and the
achievements are as follows.

~1! Alice sends a sufficient number of signals to Bob
generate a sifted key of lengthnsif .

~2! Bob notifies Alice in which time slot he received
signal.

~3! Alice and Bob make a ‘‘time stamp,’’ allowing them
to make sure that the previous step has been completed
fore they begin the next step. This can be done, for exam
by taking the time of synchronized clocks after step~2!, and
to include this time into the authentication procedure.

~4! Alice sends the bases used for the signals marke
the second step to Bob.

~5! Bob compares this information with his measur
ments, and announces to Alice the elements of the gen
ized sifted key of lengthnsif . The generalized sifted key i
formed by two groups of signals. The first is the sifted key
the BB84 protocol formed by all those signals which B
can unambiguously interpret as a deterministic measurem
result of a single-photon signal state. The second group c
sists of those signals which are ambiguous, as they cann
thought of as triggered by single-photon signals. If two
Bob’s detectors~for example monitoring orthogonal mode!
are triggered, then this is an example of an ambiguous sig
The number of these ambiguous signals is denoted bynD .
The announcement of this step has to be included into
authentication.

~6! Reconciliation: Alice sends, in total,Nrec encoded
parity-check bits over the classical channel to Bob as a
reconciliation. Bob uses these bits to correct or to discard
errors. During this step he will learn the actual number
errorsnerr. The probability that an error remains in the sifte
key is given byb1. Depending on the reconciliation schem
Eve learns nothing in this step, or knows the position of
errors, or knows that Bob received all the remaining b
correctly.

~7! From the observed number of errorsnerr and of am-
biguous nonvacuum resultsnD , Bob can conclude, using
theorem by Hoeffding, that the expected disturbance m
d
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sure ē5^(nerr1wDnD)/n sif& is, with probability 12a1, be-

low a suitable chosen upper boundēmax. With probability
12b2 they find a value fora1 which allows them to con-
tinue this protocol successfully. HerewD is a weight factor
fixed later on.

~8! Given the upper bound on the disturbance rateēmax,
Alice and Bob shorten the key by a fractiont during privacy
amplification, such that the Shannon information on that fi
key is belowI. The shortening is accomplished using a ha
function @19# chosen at random. To make a statement ab
the entropy changeDS(k) Eve achieved for this particula
transmission, they observe that this change is with proba
ity 12a2 less thanD tol . The probabilitya2 can be esti-
mated bya2,I /D tol .

~9! In the last step Alice chooses at random a suita
hash function, which she transmits encrypted to Bob us
Naut/2 secret bits. Then she hashes her new key with
function, the time from step~3!, and the string of bases from
step~5! into a short sequence, called theauthentication tag.
The tag is sent to Bob, who compares it with the hash
version of his key. If no error was left after the error corre
tion, the tags coincide.This step is repeated with the role
Alice and Bob interchanged. If Bob detects an error rate
high to allow him to proceed with the protocol, he does n
forward the correct authentication to Alice. The probabil
that Eve could have guessed the secret bits used by Alic
by Bob to encode their hashed message is given bya3. The
probability that a discrepancy between the two versions
the key remains undetected is denoted byg.

The probability of detected failureis b with b,b11b2,
and this failure does not compromise the security. In the c
of success Alice and Bob can now say that, at worst, wit
probability of undetected failure~failure of security! of a
~with a,a11a21a3), the eavesdropper can achieve an e
tropy change for the final key which is larger thanD tol . The
remaining probabilityg describes the probability that Alice
and Bob do not detect that they do not even share a key

Note that the final authentication is made symmetric,
that no exchange of information over the success of that
is necessary. Otherwise a party not comparing the authe
cation tags could regard the key as safe in a separate-w
scenario. More explanation about the authentication pro
dure can be found in Sec. III E. The classical informati
becoming available to Eve during the creation of the sif
key will be taken care of in the calculations of Sec. IV.

The public channel is now used for the following task
~a! creation of the sifted key, where Eve learns which sign
reached Bob and from which signal set each signal was c
sen; ~b! transmission of encrypted parity check bits, o
which Eve learns nothing;~c! for bidirectional reconciliation
methods, feedback concerning the success of parity bit c
parisons~see Sec. III!; ~d! for reconciliation methods which
discard errors, the location of bits discarded from the key;~e!
announcement of the hash function chosen in this partic
realization; and~f! transmission of the encrypted hash fun
tion for authentication and of the unencrypted authenticat
tags.

The main subject of this paper is to give the fractiont by
which the key has to be shortened to match the secu
target as a function of the upper bound on the disturba
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3304 PRA 59NORBERT LÜTKENHAUS
ēmax. The estimation has to take care of all informati
available to Eve by a combination of measurements on
quantum channel and classical information overheard on
public channel. This classical information depends on
reconciliation procedure used. The nature of this informat
might allow Eve to separate the signals into subsets of
nals, for example those being formed by the signals wh
are correctly~incorrectly! received by Bob, and to treat them
differently.

The knowledge of the specific hash function is of no u
to Eve in the construction of her measurement on the sign
This is a result of the assumption that Eve attacks each si
individually, and that the knowledge of the hash functio
tells Eve only whether a specific bit will count toward th
parity bit of a signal subset or not. She will only learn ho
important each individual bit is to her. If the bit is not use
then it is too late to change the interaction with that bit
avoid unnecessary errors, since the damage by interac
has been done long before. If it is used, then Eve intend
obtain the best possible knowledge about it anyway. T
situation might be different for scenarios which allow coh
ent attacks.

III. ELEMENTS OF THE QUANTUM KEY
GROWING PROTOCOL

In this section I explain in more detail the steps of t
quantum key growing protocol. Special attention is given
the security failure probabilitiesa i , limiting the security
confidence of an established shared key, and to the fa
probabilitiesb i , limiting the capability to establish a share
key.

A. Generation of the generalized sifted key

Elements of the generalized sifted key are signals wh
either can be unambiguously interpreted as being determ
istically detected, given the knowledge of the polarizati
basis, or which trigger more than one detector. We think
detection setups where detectors monitor one relevant m
each. Due to loss it is possible to find no photon in a
mode. Since Eve might use multiphoton signals, we may
photons in different monitored modes simultaneously, le
ing to ambiguous signals since more than one detector g
a click. Detection of several photons inonemode, however,
is deemed to be an unambiguous result.~See further discus
sion in Sec. IV B.! In practice we will not be able to distin
guish between one or several photons triggering the dete
The length of the sifted key accumulated in that way is k
fixed to be of lengthnsif .

B. Reconciliation

For the reconciliation we have to distinguish two ma
classes of procedures: one class corrects the errors usin
dundant information, and the other class discards errors
locating error-free subsections of the sifted key. The clas
error-correcting reconciliation can be divided into two fu
ther subclasses: one subclass uses only unidirectional in
mation flow from Alice to Bob, while the second subcla
uses an interactive protocol with bidirectional informati
flow.
e
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The difference between the three approaches with res
to our protocol shows up in the number of secret bits th
need to reconcile the string, the length of the reconci
string, and the probability of success of reconciliation. F
experimental realization one should also think of the pra
cal implementation. For example, interactive protocols
very efficient to implement@14#. To illustrate the difference I
give examples for the error correction protocols.

The benchmark for efficiency of error correction is th
Shannon limit. It gives the minimum number of bits whic
have to be revealed about the correct version of a key
reconcile a version which is subjected to an error ratee. This
limit is achieved for large keys, and the error correcti
probability then approaches unity. The Shannon limit
given in terms of the amount of Shannon informationI S(e)
contained in the version of the key affected by the error r
e. For a binary channel, as relevant in our case, this is gi
by

I S~e!511e log2e1~12e!log2~12e!. ~4!

The minimum number of bits needed, on average, to cor
a key of lengthn affected by the error ratee is then given by

nmin5n$12I S~e!%. ~5!

As mentioned above, perfect error correction is achieva
only for n→`.

1. Linear codes for error correction

Linear codes are a well-established technique which
be viewed in a standard approach as attaching to eachk-bit
signal a number ofn2k bits of linearly independent parity
check bits, making it in total an-bit signal. The receiver gets
a noisy version of thisn-bit signal, and can now in a well
defined procedure find the most likelyk-bit signal. Linear
codes which will safely return the correctk-bit signal if up to
f of the n bits were flipped by the noisy channel are deno
by @n,k,d# codes~with d52 f 11). If the signal is affected
by more errors, then these will be corrected with less th
unit probability.

This technique can be used for error correction. Alice a
Bob partition their sifted key into blocks of sizek. For each
block Alice computes the extran2k parity bits, encodes
them with secret bits and sends them via the classical ch
nel to Bob. Bob then corrects his block according to t
standard error correction technique. This procedure could
improved, since the@n,k,d# codes are designed to cope wi
the situation that even the parity bits might be affected
noise. One can partly take advantage of the situation
these bits are transmitted correctly. However, nonoptim
performance is not a security hazard.

The search for an optimal linear code is beyond the sc
of this paper. To illustrate the problem I present as a spec
example the code@512,422,21#. It uses 90 redundant parit
bits to protect a block of 422 bits against ten errors. So h
does this linear code perform if we use it to reconcile a str
of nsif510 128 bits which are affected by an error rate
1%? It can be shown that this string will be reconciled w
a probability of 12b150.908 at an expense ofNrec52160
secret bits. The practical implementation of a code as long
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this one is, however, rather problematic from the point
view of computational resources. In comparison, in
Shannon limit we need to use 819 bits for this task.

2. Interactive error correction

An interactive error correction code was presented
Brassard and Salvail in Ref.@14#. This code is reported to
correct a key with an error rate of 1% and lengthnsif
510 000 at an average expense ofNrec5933 bits. No num-
bers forb1 are given, but in several tries no remaining err
was found. This protocol operates acceptable close to
Shannon limit, which tells us that we need at least 808 bit
correct the key.

3. Situation after reconciliation

After reconciliation Alice and Bob share with probabilit
12b1 the same key. The eavesdropper gathered some in
mation from measurements on the quantum channel. The
formation she gained from listening to the public chan
now puts her into different positions depending on the r
onciliation protocol. In case errors are discarded, she kn
that all remaining bits in the reconciled string were receiv
correctly by Bob during the quantum transmission. If a u
directional error correction protocol is used, then listening
the public channel during reconciliation does not give E
any extra hints. The interactive error correction protoc
however, leaks some information to Eve about the posit
of bits which were received incorrectly by Bob during th
quantum protocol. We will have to take this into accou
later on. There we take the view that Eve knows the po
tions of all errors exactly.

A difference between correcting and discarding errors
that, naturally, discarding errors will lead to a shorter rec
ciled string of lengthnrec,nsif , while the length of the key
does not change during error correction so thatnrec5nsif .
Common to all schemes is that Alice and Bob know t
precise number of errors which occurred~provided the rec-
onciliation worked!. When they discard parts of the sifte
key they can open up the discarded bits, and learn the
the actual number of errors~although in this case an add
tional problem of authentication arises!, and when they cor-
rect errors Bob knows the number of bit flips he perform
during error correction. This is just the number of errors
the sifted key. Contrary to common belief, it is therefore n
necessary to sacrifice elements of the sifted key by pu
comparison to determine or estimate the number of occu
errors.

C. Privacy amplification and the Shannon information
on final key

In previous work it has been shown that for typical err
rates in an experimental setup the eavesdropper could g
on average, a non-negligible amount of Shannon informa
on the reconciled key@15,16#. This means that we cannot us
it as a secret key right away. Classical coding theory show
way to distill a final secret key from the reconciled key
the method of privacy amplification@7#. As a practical
implementation of the hashing involved, the secret key
obtained by takingnfin parity bits of randomly chosen sub
sets of thenrec bits of the reconciled string. The choice of th
f
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random subsets is made only at that instance, and cha
for each repetition of the key growing protocol. This sho
ening of the key to enhance the security of the final key
common to all other approaches that deal with the securit
quantum cryptography, for example, by Mayers@11# or Bi-
hamet al. @12#. However, it differs the way to determine th
fraction t by which the key has to be shortened. In the ca
of individual eavesdropping attacks we can go via the co
sion probability as described below@7#. When we consider
joint or collective attacks it is not possible to take this a
proach due to correlation between the signals, which po
bly allows Eve to gain an advantage by delaying her m
surement until she learns to know the specific parity b
entering the final key.

In the first step we give the main formulas of privac
amplification and introduce the parametert1( ē). This pa-
rameter indicates the fraction by which the key has to
shortened, such that theexpectedeavesdropping information
on the final key is less than one bit of Shannon informati
It is given as a function of Eve’s acquiredcollision probabil-
ity. Any additional bit by which the key is shortened leads
an exponential decrease of that expected Shannon info
tion.

We denote byz the final key of lengthnfin , by x the
reconciled key of lengthnrec, and by y the accumulated
knowledge of the eavesdropper due to her interaction w
the signals and the overheard classical communication
the public channel. We keep separately thehash function g
which, for example, describes the subsets whose parity
form the final key. This hash function is part of Eve’s know
edge in each realization. Eve’s knowledge is expressed
probability distributionp(zug,y), that is the probability thatz
is the key given Eve’s measurement results and side in
mation on the key. In a trivial extension of the starting equ
tion of Ref. @7#, we find that the Shannon informationĨ ,
averaged over the hash functions, is bounded by

I[^ Ĩ &g<nfin1 log2^pc
z~g,y!&y,g , ~6!

with the collision probability on the final key defined a
pc

z(g,y)5(zp
2(zug,y). The collision probabilitŷ pc

z(g,y)&g

on the final key, averaged with respect tog, is bounded by
the collision probabilitypc

x(y)5(xp
2(xuy) on the reconciled

key as

^pc
z~g,y!&g,22nfin@2nfinpc

x~y!11#. ~7!

This can be trivially extended to an inequality fo
^pc

z(g,y)&y,g resulting in

^pc~g,y!&g,y,22nfin@2nfin^pc
x~y!&y11#. ~8!

This allows us to give the estimate

I< log2@2nfin^pc
x~y!&y11#, ~9!

bounding the eavesdropper’s expected Shannon informa
by her expected collision probability on the sifted key a
the length of the final key.

We can reformulate estimate~9! by introducing the frac-
tion, t1. If we shorten the reconciled key by this fractio
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then Eve’s expected Shannon information is just one bit
the whole final key. Therefore, we find

t1511
1

nrec
log2^pc

x~y!&y . ~10!

We introduce the security parameternS as the number of bits
by which the final key is shorter than prescribed by the fr
tion t1. This security parameternS is implicitly defined by

nfin5~12t1!nrec2nS . ~11!

With the definitions oft1 andnS , we then find@7#

I< log2~22nS11!'
22nS

ln 2
. ~12!

From this relation we see that the total amount of Ev
expected Shannon information on the final key decreases
ponentially with the security parameternS . The main part of
this paper will be to estimatêpc

x(y)&y for various scenarios

as a function of the expected disturbance rateē to estimate
t1, and with that to estimateI as a functionē.

D. From expected quantities to specific quantities

In Sec. III C we showed that once we know the expec
disturbance rateē and the functional dependence oft1( ē),
we can estimate the eavesdropper’s Shannon informatiI
on the final key in dependence ofnS via Eq. ~12!. In this
section we now show how to link the observed error rate
the expected error rate and how to estimate the entr
changeDS in a single run from the expected Shannon info
mation I.

1. From the measured error rate to the expected error rate

Alice and Bob establish a generalized sifted key of len
nsif . During reconciliation of the sifted key Bob learns th
actual number of errorsnerr of unambiguous signals, while
he already knows the numbernD of ambiguous signals. Ou
definition of disturbance here is

e5
nerr1wDnD

nrec
, ~13!

with wD as an adjustable weight parameter for ambigu
signals to be chosen in a suitable way. In Sec. IV G we w
present a model for which we can choosewD5 1

2 . In the case
of error correction we have to correct even the ambigu
signals to keep the numbernsif fixed, and to keep control o
the disturbance. The reason is we need to formulate a m
sure of disturbance per element of the reconciliated k
which is bounded. This is possible for a correction of t
errors. In the case of discarding errors the number of er
and ambiguous results per remaining bit is unbounded,
we fail to be able to give a bound onē from the measured
values.

Therefore, we restrict ourselves to the case of correc
errors where we find the lengthnrec of the reconciled string
to be equal to the lengthnsif of the generalized sifted key. In
this situation the measured disturbance is given byemeas
n

-

s
x-

d
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d

5(nerr1wDnD)/nsif . Sincensif is kept fixed, the expected
disturbance is given byē5^nerr1wDnD&/nsif . From the
measured valueemeas we estimate the average disturban
parameterē.

To make the role ofē clear, it should be pointed out tha
any given eavesdropping strategy will lead to an expec
error probabilityē, while the actually caused and observ
error rate can be much lower for an individual run of t
protocol. For example, think of an intercept-resend proto
as in Ref.@10# where Eve has her lucky day and measur
by chance, all signals in the appropriate bases. This is
very likely, but the treatment presented here takes care
this possibility.

In an application of a theorem by Hoeffding@17#, which
was already used in Ref.@12#, we find an estimate of the
number ^nerr1wDnD& from the actually measured numbe
nerr1wDnD for a total number ofnsif signals as

^nerr1wDnD&,nerr1wDnD1nsifd, ~14!

with probability

~12a1!.12 exp~22nsifd
2!, ~15!

as long aswD<1. ForwD>1 we have to replace Eq.~15! by
(12a1).12 exp(22nsifd

2/wD
2 ). This means that we can

give a bound on the expected disturbance parameterē from
the observed quantitiesnD and nerr within a certain confi-
dence limit. To give a numeric example, we choosewD5 1

2

~see Sec. IV G!, and refer to the situation reported by Ma
rand and Townsend@3#. There an experiment is presente
which can create a sifted key of lengthnsif51.431023n
from an exchange ofn quantum signals at an error rate
1.2% with a negligible amount of ambiguous signals. Th
the choice ofd50.038 and a sampling withn5107 leads to
a reconciled key of lengthnsif51.43104 with a value of
a1'10218. This is the probability that the expected distu
bance parameterē in a typical realization of the key transfe
is less than a maximal value ofēmax50.05. The valueēmax
will be used in privacy amplification. An eye has to be ke
on the sampling time. With the experiment described in R
@3# it will take about 10 s to establish the sifted key. A
example for smaller samples is the choice ofn5105 andd
50.4, which leads for the same system to a reconciled ke
lengthnsif5140 anda1'10219 and ēmax50.412. The prob-
ability b2 to fail to achieve a satisfactory level of confiden
at this stage is in most cases negligible in comparison to
failure of reconciliation. It should be noted that these nu
bers give a rough guidance only, since the experiment d
not use single-photon signals.

2. Expected information and information in specific realization

We still need to link the change of Shannon entropyDS
on the final key in anindividual realization of the protocol
with a given probability to the Shannon informationI, that is
over the average over many realizations. The key is thou
of as unsafe if the eavesdropper achieves an entropy ch
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larger thanD tol in a specific realization. This happens at mo
with probability a2 which is bounded implicitly by I
.a2D tol , leading to

a2,
I

D tol
5

log2~22nS11!

D tol
'

22nS

D tol ln 2
. ~16!

Thus the knowledge of an estimate forI and the prescription
of an acceptable value ofD tol gives us the probability 1
2a2 of secrecy of the key.

E. Authentication

The tools of the previous sections allow Alice and Bob
construct a common secret key, provided that their class
channel is faithful. Since channels with that property,
such, do not exist, we need to authenticate the procedu
make sure that Alice and Bob actuallyshare the new key.
Authentication can protect at the same time against er
which survived the reconciliation step and against an ea
dropping attack with a ‘‘separate world’’ approach.

It is essential to make sure that Eve has no influence
the choice of bits entering the generalized sifted key exce
ing the power to manipulate the quantum channel. The tim
stamp step~3! in the protocol assures us that there is no po
in Eve faking the public discussion up to that point, since s
gained no additional information about the signals so
especially no information about the polarization basis.

The following sequence of bases for the successful
ceived signals sent from Alice and Bob does not need to
authenticated as well, since Eve cannot bar correspon
signals from the sifted key without knowing Bob’s measu
ments as well. However, the message describing which
finally form the generalized sifted key needs to be authe
cated since Eve is now in the position to bar signals from
sifted key she shares with Alice by manipulation of the co
tents of the message@18#.

The subsequent reconciliation protocol need not to be
thenticated if we authenticate the final key. The reason
this is that the previous steps fixed the reconciled key as
generalized sifted key in Alice’s version. If Eve tampers w
the reconciliation protocol, then Bob will fail to correct h
key so that it becomes equal to Alice’s key. Authenticati
of the final key will therefore be sufficient to protect again
tampering with the public channel in this step. It doubles
the same time to protect against incomplete reconciliatio

To summarize, we need to authenticate the string ide
fying the elements of the sifted key within the received s
nals, the time stamp, and the final key. The length of t
string is roughlym'2nsif . The authentication is done in th
following way, which is based on the authentication proc
dure of Wegman and Carter@19#.

Alice chooses a hash-function of approximate len
Naut/254t ln m, and sends it encrypted to Bob. Both evalua
the hashed version of the message, the tag, of lengtht. Alice
sends the tag via the public channel to Bob. If the tags co
cide, then this step is repeated with the role of Alice and B
interchanged. With this symmetric scheme we make sure
neither Alice nor Bob can be coaxed into a position wh
they think that authentication succeeded when it in f
t
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failed. The probability that Eve could fake the authenticati
is given by

a3522t11. ~17!

This is at the same time the probability that two distinct fin
keys lead to the same hashed key. Any remaining error in
final key will therefore lead with probability 12a3 to a fail-
ure of the authentication.

IV. EXPECTED COLLISION PROBABILITY
AND EXPECTED ERROR RATE

This section represents the major input of physics to
quantum key growing protocol. The aim is to put an upp
bound on the expected average collision probability Eve
tains on the reconciliated key as a function of an aver
disturbance rate her eavesdropping strategy inflicted on
signals. This is done for two methods of reconciliation, c
recting or deleting errors. The result will allow us to giv
values for the parametert1( ē).

A. Collision probability on individual signal

The collision probability on the reconciled key is define
by

pc
x~y!5(

x
p2~xuy!. ~18!

We assume that the signal sent by Alice are statistically
dependent of each other, and that Eve interacts with
performs measurements on each bit individually. Furth
more, we avoid side information which correlates signals
the use of secret bits in the reconciliation step. Therefore,
conditional probability functionp(xuy), wherex is the key
given Eve’s knowledgey, factorizes into a product of prob
abilities for each signal. With that the expected collisi
probability factorizes as well into a product of the expect
collision probability for each bit. We denote bypc

x the ex-
pected collision probability on one bit, so that

^pc
x~g,y!&y5~pc

x!nrec.

Furthermore, we denote by the indexaP$1,3% the two
conjugate bases~e.g., horizontal or vertical polarization fo
single photons! used to encode the signals, byCP$0,1% the
logical values, and byk the possible outcomes of Eve’s me
surement. This leads to an expression of the expected c
sion probability, at this stage, as

pc
x5 (

k,C,a

p2~Ca ,ka!

p~ka!
. ~19!

For the parametert1, describing the shortening of the ke
during privacy amplification from Eq.~10!, we find

t15 log2~2pc
x!. ~20!
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B. Eve’s interaction and detection description

The action of the eavesdropper can be described b
completely positive map@20,21# acting on the signal densit
matricesr as

r̃5(
k

AkrAk
† , ~21!

where we can associate this interaction with a measurem
by Eve of aprobability operator measure~POM! formed by
the operatorsFk5Ak

†Ak . The operatorsAk are arbitrary op-
erators mapping the Hilbert space of the signals to an a
trary Hilbert space. The only restriction is that(kAk

†Ak gives
the identity operator of the signal Hilbert space. The pro
ability for occurrence of outcomek is then given byp(k)
5 Tr(rFk). The action of Bob’s detectors can be describ
by a POM on the resulting Hilbert space after Eve’s inter
tion. Since the detection POM elements and the signal d
sity operators can be represented by real matrices, we
assume the operatorsAk to be represented by real matrices
well.

This does not limit the generality of the approach, sin
the outcome corresponding to an operatorAk5Ak

re1 iAk
im ,

with real operatorsAk
re andAk

im , is triggered with probability
Tr(rAk

re†Ak
re)1Tr(rAk

im†Ak
im) and the outcome probabilitie

for Bob’s detection, corresponding to POM elementF if out-
comek of Eve’s measurement is being triggered, is given
Tr(Ak

rerAk
re†F)1Tr(Ak

rerAk
re†F). Since no cross-terms mix

ing Ak
re and Ak

im occur, this means that using the two re
operatorsAk

re and Ak
im , instead ofAk5Ak

re1 iAk
im , will not

change the outcome probabilities of Bob’s detectors but
fines Eve’s measurement.

Two typical detection setups are shown in Fig. 1. T
active version consists of a polarization analyzer~two detec-
tors monitoring each an output of a polarizing beam splitt!
and a phase shifter which effectively changes the polar
tion basis of the subsequent measurement. Here one act
has to choose the polarization basis of the measurement.
passive device uses two polarization analyzers, one for e
basis, and uses a beam splitter to split the incoming sig
the two polarization analyzers are used with equal proba
ity for detection.

One can represent the detectors by beam splitters c
bined with ideal detectors@22#. Then the beam-splitters ca
be thought to be responsible for the finite efficiency. Sin
all detectors are assumed to be equal, the losses of all d
tors involved can be attributed to a single-loss beam split
which is then thought of as being part of the transmiss
channel rather than being part of the detection unit.

We can use the idea of ideal detectors which meas
each a POM with two elements, the projection operator o
the vacuum~no ‘‘click’’ ! and the projection on the Foc
subspaces with at least one photon~‘‘click’’ !. The POM of
the active and the passive setup then contains the elem
Fvac, F01

, F11
, F03

, F13
, andFD . These are projection

onto the vacuum,Fvac, onto states with at least one photo
in one of the four signal polarizations and none in the othe
therefore leading to an unambiguous resultFCa

, and onto the
rest of the Hilbert space; that is, onto all states containin
least one photon in the signal polarization and at least on
a
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an orthogonal modeFD . The first POM outcome manifest
itself in no detector click at all, the following four give pre
cisely one detector click, and the last one gives rise to at le
two detectors being triggered. If we denote byun,m&a the
state which hasn photons in one mode andm photons in the
orthogonal polarization mode with respect to the polarizat
basisa, use the abbreviationE(0) for the projector onto the
vacuum andECa

(n) for the projector onto the state withn pho-

tons in the polarization mode corresponding toCa , then the
POM of detection unit~a! is given by

Fvac5E~0!,

FCa
5 1

2 (
n51

`

ECa

~n! , ~22!

FD5 1
2 (

n,m51

`

un,m&1^n,mu1 1
2 (

n,m51

`

un,m&3^n,mu.

On the other hand, the passive detection scheme~b! is
more susceptible to signals containing more than one pho
It is described by the POM

Fvac5E~0!,

FIG. 1. ~a! Active device: Bob’s two detectors each consist o
polarizing beam splitter and an ideal detector. The polarizing be
splitter discriminates the two orthogonal linear polarized mod
Using a polarization shifter the polarization basis can be change
desired. Detector efficiencies are modeled by a beam splitter w
represents the loss, and which is thought of as being part of
eavesdropper’s strategy. This beam splitter can be seen as pa
the quantum channel.~b! Passive device: Here one uses two det
tion modules as presented in~a!, one for each polarization basis
The central beam splitter takes the task to ‘‘switch’’ between
two polarization analyzers.
~23!
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FCa
5 (

n51

` S 1

2D n

ECa

~n! ,

FD5 (
n51

` H F1

2
2S 1

2D nG(
C,a

EC,a
~n! J

1
1

2 (
n,m51

`

un,m&1^n,mu1
1

2 (
n,m51

`

un,m&3^n,mu.

The next idea concerns all detection setups where all
ments of the POM commute with the projectionsEn onto the
subspaces of total photon numbern. In that case we find tha
Bob’s measurement on the final signal gives outcomi
P$vac,Ca ,D% with probability

PBob~ i !ª TrS (
k

AkrAk
†Fi D 5 TrS (

k,n
EnAkrAk

†EnFi D .

We can now replace the set ofAk’s by the setAn,kªEnAk
which still describes Eve’s measurement but for which e
element maps the Hilbert space of the signals to a Hilb
space with a fixed photon number. Eve will now associat
POM element of her measurement with each suchAn,k ,
thereby refining her POM and leading to an increase of
knowledge. For short, we again writeAk for this set, for
which now the property is assumed that the signal arriving
Bob’s detection unit is an eigenstate of the total photon nu
ber operator. We can divide the index setK of k into subsets
K (n), so that for eachkPK (n) the operatorAk maps the one-
photon Hilbert space of the signal into then-photon space.
This is useful to distinguish contributions of signals wi
different photon number.

We still have to discuss how to represent a delayed m
surement in this picture. A delayed measurement is p
formed in such a way that Eve brings an auxiliary syst
into contact with the signal, so that they evolve togeth
under a controlled unitary evolution. Then the signal is m
sured by Bob while Eve delays the measurement of her a
iliary system until she has received all classical informat
exchanged over the public channel. Having this knowled
she picks the optimal measurement to be performed on
auxiliary system. Classical information useful to Eve is
formation that allows her to divide the signals into subs
which should experience different treatment. In our situat
this information is represented by the polarization basis
the signal and, for bidirectional error correction, by t
knowledge whether the signal was received correctly
Bob. We therefore have to assume, for example, that E
delayed measurement is characterized by the set of oper
Ak with kPK, giving rise to Eve’s POMFk5Ak

†Ak , and
which are applied to the signals from the seta5‘‘ 1’’ and a
second setBk8 with k8PK8, resulting in the POMFk8

8

5Bk8
† Bk8 , which are applied to the signals from the seta

5 ‘‘ 3 ’ ’ . Of course, these two sets of operators cannot
chosen arbitrarily. The complete positive map has to be id
tical for all density matricesr, that is

r̃5 (
kPK

AkrAk
†5 (

k8PK8
Bk8rBk8

† . ~24!
e-
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Moreover, this equality holds even for non-Hermitian mat
ces r. We can combine this result with the partition in
n-photon subspaces. Then we find that even the stron
statement

(
kPK~n!

AkrAk
†5 (

k8PK8~n!
Bk8rBk8

† ~25!

holds. Before we go on to the derivation of the relation b
tween average disturbance and average collision probab
I would like to point out that this treatment takes into a
count the rich structure of modes supported by optical fibe
and the fact that detectors monitor a multitude of modes.
long as the detection POM commutes with the projector o
the actually used signal mode, which is usually the case,
can separate the action ofAk with respect to the photon
number in a similar way.

C. Separation into n-photon contributions

In this section we are going to present the disturba
measuree and the collision probabilitypc

x as sums over con
tributions with different definite photon numbern arriving at
Bob’s detector unit. We start from the definition of the di
turbancee. To allow some comparison between correcti
and discarding errors, we present a unified definition wh
defines, even for discarded errors, a disturbance measur
bit of the reconciled key. This definition is given by

e5
nerr1wDnD

nrec
. ~26!

Herenerr is the number of errors in the sifted key,nD is the
number of ambiguous results occurring, andnrec is the num-
ber of bits in the reconciled string. The weight parameterwD
for ambiguous signals will be fixed later on. If we keep t
size of the reconciled key fixed, then the expectation value
e is described by

ē5
perr1wDpD

prec
, ~27!

whereperr, pD , andprec are the absolute probabilities that
signal will, respectively, enter the sifted key as error, cau
an ambiguous result, or become an element of the reconc
key. As mentioned above, it should be noted that no estim
of ē from measured data can be easily presented in the
of discarded errors. We separate the contributions from
different photon number signals as

ē5(
n

prec
~n!

p rec

perr
~n!1wDpD

~n!

prec
~n!

5(
n

prec
~n!

prec
ē ~n! ~28!

where we have implicitly defined

ē ~n!5
perr

~n!1wDpD
~n!

prec
~n!

~29!

as then-photon contribution toward the disturbance measu
Now pX

(n) are the conditional probabilities that a signal h
propertyX while being transfered as ann-photon signal be-
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tween Eve and Bob. The total disturbance is given as s
over then-photon contribution weighted by the relative pro
ability that a signal arriving as ann-photon signal at Bob’s
detector will enter the reconciled key.

If we discard errors, then we find for the relevant pro
abilities ~with C̄ as the complement to the binary valueC)

perr
~n!5 1

4 (
kPK~n!

C,a,

Tr~AkrCa
Ak

†FC̄a

~n!
!, ~30!

prec
~n!5 1

4 (
kPK~n!

C,a,

Tr~AkrCa
Ak

†FCa

~n! !, ~31!

pD
~n!5 1

4 (
kPK~n!

C,a,

Tr~AkrCa
Ak

†FD
~n!!. ~32!

If we correct errors, then the probability for a signal to en
the reconciled key differs from Eq.~31! and is, instead, given
by

prec
~n!5 1

4 (
kPK~n!

C,a,C8

Tr~AkrC
a8
Ak

†FCa

~n! !5 1
4 (

kPK~n!

C,a

Tr~AkAk
†FCa

~n! !.

~33!
-
am

i

iv
m

-

r

The collision probability is split into contributions related
fixed photon numbers arriving at Bob’s detector in the sa
manner as the disturbance measure, to give

pc
x5 (

n51

` prec
~n!

prec
pc

~n! , ~34!

with

pc
~n!
ª (

kPK~n!,C,a

1

prec
~n!

p2~Ca ,ka!

p~ka!
.

The basic idea is now to estimate the one-photon contr
tions to these quantities, and then to choosewD in such a
way that the optimal eavesdropping strategy will necessa
employ only one-photon signals. To achieve this we will u
the fact that multiphoton signals lead unavoidably to a
biguous signals, that ispD

(n)Þ0 for n.2, when using the
passive detection option.

D. One-photon contribution for discarded errors

We use the description of the general eavesdropping s
egy to calculate the one-photon contributions. We find, w
the help of the identityFCa

(1)5 1
2 rCa

,

pc
~1!5

1

8 (
kPK~1!

1

prec
~1! H Tr2~Akr01

Ak
†r01

!1Tr2~Akr11
Ak

†r11
!

Tr~Akr01
Ak

†r01
!1Tr~Akr11

Ak
†r11

!
J

1
1

8 (
k8PK8~1!

1

prec
~1! H Tr2~Bk8r03

Bk8
† r03

!1Tr2~Bk8r13
Bk8

† r13
!

Tr~Bk8r03
Bk8

† r03
!1Tr~Bk8r13

Bk8
† r13

!
J , ~35!
om
each
ibe
but
tors

ro-
and with the relation betweenprec
(1) and ē (1) from Eq. ~29!,

andp sif
(1)5perr

(1)1prec
(1) , we find

prec
~1!5

psif
~1!

11 ē ~1!
, ~36!

together with the quantities

prec
~1!5 1

8 (
kPK~1!

C,a

$Tr~AkrCa
Ak

†rCa
!%, ~37!

psif
~1!5 1

4 (
kPK~1!

Tr~AkAk
†!. ~38!

Equations~35!–~38! form the basis for the following calcu
lations. To start with, we decrease the number of free par
eters to a handful of real parameters, so that we can optim
Eve’s strategy to give an upper bound onpc

(1) as a function

of ē (1). To do so, we take a new look at the complete posit
-
ze

e

mapping~21!. We define four vectorsA00, A10, A01, and
A11, with the componentskPK (1) given by

AC,C8
k

5^C1uAkuC18 &. ~39!

These vectors are formed by the transition amplitudes fr
the signal states to the one-photon detection states for
different measurement outcome. They effectively descr
not only the complete channel between Alice and Bob
also the complete eavesdropping strategy. With these vec
we can simplify the notation of the expectation values int
ducing vector products

(
kPK~1!

Tr~AkrC1
Ak

†rC
18

!5AC,C8AC,C85uAC,C8u
2.

Similarly, we can define vectorsB00, B10, B01, andB11 and
vectors B̃00, B̃10, B̃01, and B̃11, with elements for k8
PK8(1):

BC,C8
k8 5^C1uBk8uC18 &, ~40!
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B̃C,C8
k8 5^C3uBk8uC38 &. ~41!

These vectors are not independent. They are related by
identities

B̃005
1
2 ~B002B102B011B11!,

B̃015
1
2 ~B002B101B012B11!,

~42!

B̃105
1
2 ~B001B102B012B11!,

B̃115
1
2 ~B001B101B011B11!.

The advantage of this description is that the value of a
scalar product of the vectorsBC,C8 remains unchanged if th
BC,C8’s are replaced byAC,C8’s, since Eq.~25! guarantees
that

BC,C8Bf,f85AC,C8Af,f8 . ~43!

The idea is now to estimate and reformulate Eqs.~35!–~38!
in such a way that the new set of equations involve only
four vectors A00, A10, A01, and A11 and the quantities
ē (1), psif

(1), andprec
(1) . As a first step we find, from Eq.~35!,

pc
~1!5

1

8prec
~1! (

kPK~1!

~A00
k !41~A11

k !4

~A00
k !21~A11

k !2

1
1

8prec
~1! (

k8PK8~1!

~B̃00
k8!41~B̃11

k8!4

~B̃00
k8!21~B̃11

k8!2
, ~44!

while Eq. ~36! remains unchanged:

prec
~1!5

psif
~1!

11 ē ~1!
. ~45!

The definitions ofprec
(1) and ē (1) simplify to

prec
~1!5 1

8 ~ uA00u21uA11u21uB̃00u21uB̃11u2!, ~46!

psif
~1!5 1

4 ~ uA00u21uA11u21uA01u21uA10u2!. ~47!
he

y

e

Next we use the Cauchy inequality as shown in Appendix
to estimatepc

(1) by an expression involving only scalar prod
ucts of the basic vectors. With use of the definition ofprec

(1) ,
this results in the expression

pc
~1!<12

1

4prec

~A00A11!
2

uA00u21uA11u2
2

1

4prec

~B̃00B̃11!
2

uB̃00u21uB̃11u2
.

~48!

We find that there are actually only a few real quantities le
These areuA00u and uA11u, the anglef00

11 betweenA00 and

A11, uA01u21uA10u2, uA011A10u2, psif and, finally,ē (1). The
normalization factorprec

(1) can be immediately eliminated. A
shown in Appendix B, we can optimizepc

(1) and find the
result

pc
~1!<H 1

2 @114ē ~1!24~ ē~1!!2# for ē ~1!< 1
2

1 for ē ~1!> 1
2 .

~49!

To compare this result with other results we introduce
error ratee in the sifted key ase5perr

(1)/psif
(1) @so that ē (1)

5e/(12e) and we find

pc
~1!<

112e27e2

2~12e!2
. ~50!

This upper bound was given before in Refs.@23,24# for the
case when Eve performed nondelayed measurements.
cently Slutsky and co-workers@25,26# found that this bound
holds even for the delayed case. My formulation of th
proof shows that this bound is valid not only for the on
photon contribution but can be extended to include the
Hilbert space of optical fibers and detectors accessible to
in real experiments.

From Refs.@23,24,26# we know that this bound is sharp
since the eavesdropping strategy achieving this bound
given explicitly. It is a translucent attack. An important pro
erty of this bound is that for a disturbance rate ofē (1)5 1

2 ~or
error ratee5 1

3 ) the eavesdropping attempt is so success
that each bit of the sifted key originating from this part of t
eavesdropping strategy is known with unit probability
Eve.

E. One-photon contribution for corrected errors

If we correct errors without leaking knowledge about th
position to the eavesdropper, then the one-photon contr
tion to the collision probability is given by
pc
~1!5

1

8psif
~n! (

kPK~1!

Tr2~r01
Ak

†Ak!1Tr2~r11
Ak

†Ak!

Tr~Ak
†Ak!

1
1

8psif
~n! (

k8PK8~1!

Tr2~r03
Bk8

† Bk8!1Tr2~r13
Bk8

† Bk8!

Tr~Bk8
† Bk8!

. ~51!
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~Note thatprec
(1)5psif

(1) .) The disturbance parameter coincid
with the error ratee(1) in the sifted key, and is given by

ē ~1!5
perr

~1!

psif
~1!

, ~52!

with

psif5
1
4 ~ uA00u21uA11u21uA01u21uA10u2!

5 1
4 ~ uB̃00u21uB̃11u21uB̃01u21uB̃10u2!, ~53!

perr5psif2
1
8 ~ uA00u21uA11u21uB̃00u21uB̃11u2!. ~54!

In Appendix C, I show that the collision probability in thi
case can be estimated by

pc
~1!<H 1

2 13ē ~1!25~ ē~1!!2 for ē ~1!< 1
4

3
4 1 ē ~1!2~ ē~1!!2 for 1

4 <ē~1!< 1
2

1 for 1
2 <ē~1!.

. ~55!

This estimate is not necessarily sharp, but it is good eno
for practical purposes. It shows thatt151 for an error rate of
ē5 1

2 , which corresponds to a strategy which intercepts a
stores all signals while random signals are resent. By de
ing the measurement of the signals Eve thus knows all
nals while causing a disturbance of1

2 .

F. One-photon contribution for corrected errors
with leaked error positions

If Alice and Bob use a bidirectional error correctio
scheme, then Eve will gain some knowledge about the p
tions of the errors. She can therefore divide the signals
subsets characterized by Eve’s measurement outcomek, the
polarization basisa of the signal, and the correctness of t
signal reception of Bob. We therefore need to introduce n
operatorsCCC8

k and D̃CC8
k to describe the eavesdroppin

strategy applied to incorrectly received signals. They
formed analogous toACC8

k andB̃CC8
k , respectively. Then the

one-photon contribution toward the collision probability
given by

pc
~1!5

1

8psif
~1! (

kPK~1!

~A00
k !41~A11

k !4

~A00
k !21~A11

k !2
~56!

1
1

8psif
~1! (

k8PK8~1!

~B̃00
k8!41~B̃11

k8!4

~B̃00
k8!21~B̃11

k8!2

~57!

1
1

8psif
~1! (

kPK~1!

~C01
k !41~C10

k !4

~C01
k !21~C10

k !2

1
1

8psif
~1! (

k8PK8~1!

~D̃01
k8!41~D̃10

k8!4

~D̃01
k8!21~D̃10

k8!2
.

~58!
h

d
y-
g-

i-
to

w

e

The disturbanceē (1), psif, and perr are defined as in Eqs
~52!–~54!, where we note that within scalar products like E
~43! the vectorsC (D̃) can be replaced byA (B̃). In Appen-
dix D, I show that

pc
~1!<H 1

2 12ē ~1!22~ ē~1!!2 for ē ~1!< 1
2

1 for 1
2<ē~1!.

~59!

As is the case if the error positions are not known to E
this estimate is not necessarily sharp. This is due to the
of the Cauchy inequality during the estimation. It shows
behavior analogous to that of Eq.~55! that for an error rate of

e5 1
2 ~and disturbance rateē5 1

2 ) we find t1( 1
2 )51, which

means that Eve knows the whole key.

G. Multiphoton signals between Eve and Bob

To deal with multiphoton signals, we have to pick a d
tection model. We will concentrate here on the passive
tection scheme to choosewD such that it is disadvantageou
for Eve to use multiphoton signals. In my thesis@23#, I
showed that even for active switching between two polari
tion analyzers with different polarization orientations o
can show security against eavesdropping strategies emp
ing multiphoton signals.

The crucial observation for the passive detection uni
that sending multiphoton signals will invariably cause t
outcome associated withFD to appear with a finite probabil
ity. This means that we can choose the weight factorwD

such thatē (n). ē (1) holds for n>2. As a consequence, th
optimal eavesdropping strategy will employ only singl
photon signals. The contribution of ambiguous signals to
disturbance parameterē (n) for discarded errors is bounded b
a rough estimate obtained with the help of Eq.~23! by omis-
sion of suitable positive terms in the expression forFD :

pD
~n!

prec
~n!

5

1
4 (

kPK~n!

C,a

Tr~AkrCa
Ak

†FD!

1
4 (

kPK~n!

C,a

Tr~AkrCa
Ak

†FCa

~n! !

>

1
4 (

kPK~n!

C,a

~ 1
2 222n!Tr~AkrCa

Ak
†ECa

~n! !

22n 1
4 (

kPK~n!

C,a

Tr~AkrCa
Ak

†ECa

~n! !

5
~ 1

2 222n!

22n
>1. ~60!

The contribution of ambiguous signals to the disturbance
rameterē (n) for corrected errors is bounded in the same w
as
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pD
~n!

psif
~n!

5

1
4 (

kPK~n!

C,a

Tr~AkrCa
Ak

†FD!

1
4 (

kPK~n!

C,C8,a

Tr~AkrCa
Ak

†F
C

a8
~n!

!

>

1
4 (

kPK~n!

C,C8,a

~ 1
2 222n!Tr~AkrCa

Ak
†E

C
a8

~n!
!

22n 1
4 (

kPK~n!

C,C8,a

Tr~AkrCa
Ak

†E
C

a8
~n!

!

5

1
4 ~ 1

2 222n!

22n 1
4

>1. ~61!

One can find lower values ofwD estimating the expressio
for ē (n) as a whole, including the errors in the sifted ke
However, the values found here serve our purposes
enough.

For correcting and for discarding errors, we find tha
disturbance parameterē5 1

2 means that Eve knows the who
key using one-photon signals. Therefore, if we choosewD

5 1
2 , we obtain ē (n)>wD(pD

(n)/prec
(n))> 1

2 and ē (n)

>wD(pD
(n)/psif

(n))> 1
2 , respectively, and can bound the col

sion probability, taking into account the possibility of mult
photon signals, for discarded errors by

t1~ ē !<H log2~114ē24ē2! for ē< 1
2

1 for 1
2 <ē,

, ~62!

for corrected errors without leaked error position by

t1~ ē !<H log2~116ē210ē2! for ē< 1
4

log2~ 3
2 12ē22ē2! for 1

4 <ē< 1
2

1 for 1
2 <ē,

~63!

and for corrected errors with leaked error positions by

t1~ ē !<H log2~114ē24ē2! for ē< 1
2

1 for 1
2 <ē.

~64!

The results fort1 are shown in Figs. 2 and 3, respectively.
should be noted again that the value of the disturbance
rameter changes depending on the intention to correct
errors. For other detector models these results hold as w
as long as we can show that for them the conditionē (n)> 1

2

for n>2 holds. This condition can be readily satisfied
pD

(n)/prec
(n)>m for some m.0 and n>2 by choosingwd

51/(2m). For experiments with negligible numbers of am
biguous results, we can approximate the disturbanceē by a
function of e5perr/psif as the traditional error rate in th
sifted key. In the case of discarding errors, this approxim
tion is ē'e/(12e), while for corrected keys it isē'e.
.
ll

a-
he
ll,

-

Since we cannot give an estimate ofē from measured
quantities, the case of discarded errors, we concentrate
reconciliation methods which correct errors. From the res
of this section we see that this is the better method in
case, since discarding errors leads to a smallernrec than cor-
recting errors. This number would have to be reduced furt
during privacy amplification than in the case of correct
errors, as can be seen by a comparison of the estimates ft1
as a function ofe. Therefore, the final key will be shorter
and with that the protocol less efficient.

From the estimates we find that the direct estimate fort1
gives higher values if the information about error positions
not leaked to the eavesdropper during reconciliation. We
regard the information of error positions asspoiling informa-
tion @7#, and thus use estimate~64! even in the case of a
unilateral error correction. The spoiling information is an
information which increases Eve’s Shannon information

FIG. 2. The fractiont1 has to be discarded during privacy am
plification as a function of the disturbance per correctly receiv
element of the generalized sifted key. This result is a sharp estim
in the sense that Eve can reach the level of collision probability
which the estimate is based.

FIG. 3. The fractiont1 has to be discarded during privacy am
plification as a function of the disturbance per element of the g
eralized sifted key if one corrects errors. If no information about t
position of errors leaked to the eavesdropper, fort1 we find the
dash-dotted curve, and for leaked error positions we find the s
curve.
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decreases her expected collision probability on the key, le
ing to a decreased value oft1. We conclude that from the
point of privacy amplification and reconciliation, the bes
known way to give a high rate of secure bits would be to u
bilateral reconciliation methods.

V. ANALYSIS OF THE EFFICIENCY OF KEY GROWING

The process of quantum key growing depends on phys
parameters and on the security parameters of the final ke
this section we will bring together the essential formu
about the security statements concerning an accepted
and about the average key growing rate we can expect.
analysis is presented only for error correction reconciliat
methods.

A. Security needs

The first thing a potential user has to fix is the tolera
change of Shannon entropyD tol that an eavesdropper migh
obtain on the key without posing a security hazard to
application in mind. Since this limit cannot be guarante
with absolute certainty, the user has to limit the tolera
probability a tol that Eve’s knowledge exceedsD tol . Authen-
tication may fail to detect errors, leaving Alice and Bob wi
a key neither safe nor shared. The tolerated probability
this has to be specified asg tol .

Given I tol , a tol , andg tol , and having in view a particula
physical implementation of the quantum channel, Alice a
Bob fix a value of the tolerated disturbanceēmax and of the
security bitsnS used in privacy amplification, as well as th
length nsif of the sifted key and the number of secure b
Naut used for authentication, such that for an accepted
the security target set byI tol , a tol , andg tol is met, and that
the rate of secure bits generated, given below, is optimiz

B. Security statement

The following security statement holds if the key growin
is performed by extracting a key of length

nfin5nsif@12t1~ ēmax!#2nS ~65!

from the reconciled key during privacy amplification. He
t1 is given by by the functional dependence of Eqs.~63! and
~64!, respectively. From the previous calculations we fi
that the bits generated in a run of the key growing proc
are secure in the sense that Eve achieves a change of S
non entropy on the accepted key of less thanD tol with prob-
ability a. The contributions toa are the probability of failure
of the estimation of the average disturbance given bya1 in
Eq. ~14!, the probability to estimate the Shannon informati
in a specific run from the average information, given bya2
in Eq. ~16!, and the probability of faked authentication give
by a3 in Eq. ~17!. Since all those quantities are expected
be small, the estimate

a<a11a21a35 exp~22nsifd
2!1

log2~22nS11!

D tol

122Naut11

' exp~22nsifd
2!1

22nS

D tol ln 2
122Naut11, ~66!
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with d5 ēmax2emeas, is sufficient for practical purposes.
The failure to establish a key in a specific run is due to

failure of authentication. Here two contributions can be d
tinguished. One is the failure of reconciliation, which occu
with probabilityb1; the other is the failure to reach the targ
of a tol in that run, which is signaled by making the authe
tication fail. This happens with a probabilityb2. In the de-
sign of the setup and the choice of parameters, we wo
need to estimateb, so that at least in the absence of
eavesdropper we will find a net gain of secure bits accord
to the formula given below. Miscalculation ofb does not
affect the security of the key, but only affects the efficien
of key generation. We therefore omit detailed examinatio
of values forb.

The last quantity concerning the security of the key isg,
which is the probability that authentication succeeds
though Alice and Bob do not share a key. This probabil
can be estimated byg522Naut11.

C. Gain

In Sec. V B we described the influence of the chosen ba
parameters on the acceptance and security of a run of
growing. Since we need secret bits as an input for the
generation, we have to make sure that on average we
gain more secret bits than we put in. The important quanti
are here the success probabilitypsucc512b that a run of the
key expansion leads to accepted new secure bits, the num
Nout5nrec@12t1( ēmax)#2nS of secret bits gained in that in
stance, and the average numberN̄in5N̄rec1Naut of input se-
cret bits. Then the condition for an overall gain on averag
to have a positive value ofN̄gain5psuccNout2N̄in , resulting in

N̄gain5~12b!$nsif@12t1~ ēmax!#2nS%2Naut2Nrec.
~67!

To explore the implications of this condition, we go to th
limit of large sample sizes. Then we can neglect the num
of secret bits used for authentication and the safety param
nS . The remaining contribution ofN̄in now comes from the
error correction part. For ideal error correction we can
b50 and can use the Shannon limit, which givesN̄in
5nsif@12I AB(emeas)# with the Shannon information share
between Alice and Bob given by

I AB~emeas!511emeaslog2 emeas1~12emeas! log2 ~12emeas!.
~68!

With these preparations we find

Ngain5nsif@12t1~emeas!#2nsif@12I AB~emeas!#.

In the limit of nsif→`, we can assume thatd→0 still satis-
fies any confidence limits put ona. Therefore, the condition
N̄gain>0 is now equivalent to

I AB~emeas!>t1~emeas!. ~69!

As we see from Fig. 4, this means that the protocol in
presented form will be able to grow secret keys only
setups operating at an error rate of less than 11.5% of e
correction. However, making use of the concept of spoil
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information and of improved estimates ofpc
(1) might result in

lower estimates fort1. A lower bound is, however, the
Shannon informationI AE shared by Alice and Eve in thi
scenario. In Ref.@15#, Fuchset al. gave a sharp bound fo
I AE , which is shown in Fig. 4 as a dotted line. The differen
betweent1 andI AE represents the average gainG in a run of
the key growing protocol in the limit of ideal error correctio
and infinite sample sizes. The gain

G5I AB~emeas!2t1~emeas! ~70!

gives the length of the final key as a fraction of the gene
ized sifted key.

VI. CONCLUDING REMARKS

In this paper I have given estimates needed in quan
cryptography which are closely oriented toward practical
periments. I do not deal with security against all possi
attacks in quantum mechanics, but I deal with all attacks
individual signals. This allows me to include issues related
practical implementation of quantum cryptography whi
still cannot be treated in the general scenario. One of th
issues is the question of signals which, for example, sim
taneously trigger two detectors monitoring orthogonal po
ization modes.~This is the question of multiphoton signa
resent by Eve, leading to ambiguous signals.! The other im-
portant question is that of an efficient key reconciliation pr
to privacy amplification. As seen in this paper, it is possi
to use the efficient bilateral error correction scheme of Br
sard and Salvail@14# without compromising security.

In the statistical analysis I showed that it is possible
this scenario to limit the knowledge of the eavesdropper
the final key in an individual realization frommeasured
quantitiesfor parameters which seem to be reachable in
periments. As measure of the eavesdropper’s knowled
used the change betweena priori anda posterioriShannon
entropy associated with the corresponding probability dis

FIG. 4. Shortening during privacy amplification, represented
t1 ~the unilateral scenario is shown by the dash-dotted curve,
the bilateral scenario by the solid curve!, in balance with the loss
during reconciliation, represented byI AB ~falling solid line!. The
intersections between two lines limit the tolerable error rate in
generalized sifted key in the case of corrected errors. A lower l
of potentially improved bounds fort1 is I AE ~dotted line!.
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butions over all possible keys from Eve’s point of view. O
has to take into account that single-photon signals states
not used in today’s experiments. However, this theory can
extended to signal states containing multiphoton com
nents. A first approach for that is to estimatepc

x51 for each
bit of the reconciled key on which Eve could have succe
fully performed a splitting operation with subsequent d
layed measurement. We denote the total number of these
by nm , and then we need to reduce the key during priva
amplification by

t1
~mult!~ ē !5

nm

nrec
1S 12

nm

nrec
D t1S ē

nrec

nrec2nm
D . ~71!

The statistics, however, becomes more complicated this w
and it seems to be better to include the dim coherent st
directly as signal states and to solve the problem in a cl
way. Work in that direction is currently under progress.

The estimates fort1 are not necessarily sharp in the ca
of error correction, and even in the case of discarding err
this limit could be lowered using spoiling information@7#.
However, the possible improvement of efficiency of the k
growing process is limited, and this fine tuning might
postponed until the experimental relevant situation for d
coherent signal states is solved.
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APPENDIX A: CAUCHY INEQUALITY

In this appendix we prove inequality~48! starting from
the expression
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We rewrite the first sum as
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and use the Cauchy inequality, given as
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k )2 to obtain the inequality
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This can be used to estimate the first part in Eq.~A1! while
the second part can be estimated similarly, so that, with
help of Eq.~46!, we find the result
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APPENDIX B:
MAXIMIZING PC

„1… FOR DISCARDED ERRORS

To optimize expression~48!, we first note that we can
assume thatuA00u5uA11u. If Eve starts with a strategy define
by operatorsAk not satisfying this condition, then she cou
use theA operators

Āk5S 0 1

1 0DAkS 0 1

1 0D
without a change in the obtained collision probability or d
turbance. When we combine the two strategies we find
the resulting vectors satisfyuA00u5uA11u and uA01u5uA10u.
This then gives the estimateuA011A10u2<4uA01u2. Another
observation is that we can always chooseuA00u1uA11u
>uB̃00u1uB̃11u, which means that there are fewer or an eq
number of errors in the sifted key coming from the use of
polarization basis ‘‘1’’ than from the basis ‘‘3.’’ This can
always be satisfied, since both polarization basis could
interchanged. UsinguA00u5uA11u and the definition ofuB̃00u
and uB̃11u this results in 2uA00u2(12 cosf00

11)>uA011A10u2

with the anglef00
11 betweenA00 andA11.

The three relevant relations now become after eliminat
of prec

(1) according to~36! and the use of relations~42!:
pc
~1!<12

~11 ē ~1!!uA00u2~cosf00
11!2

8psif
2

~11 ē ~1!!@2uA00u2~11 cosf00
11!2uA011A10u2#2

32psif@2uA00u2~11 cosf00
11!1uA011A10u2#

, ~B1!

psif

~11 ē ~1!!
5 1

8 ~ uA00u2~31 cosf00
11!1 1

2 uA011A10u2! , ~B2!

psif5
1
2 ~ uA00u21uA01u2!. ~B3!

Our next step is to show that we can estimate the optimal value ofpc
(1) by replacinguA011A10u2 by 4uA01u2. To see that we

observe that this would allow to decrease (11 ē (1)) by Eq. ~B2!, meaning a lower error rate. At the same timepc
(1) grows

indirectly from the falling value of (11 ē (1)) and directly, since (d/dD)pc
(1)>0 with DªuA011A10u2. To prove the last point

we calculate

d

dD
pc

~1!5
~11 ē ~1!!A

32psif~2uA00u21D12uA00u2 cosf00
11!2

, ~B4!

A512uA00u424uA00u2D2D2124uA00u4 cosf00
1124uA00u2D cosf00

11112uA00u4~cosf00
11!2. ~B5!

This is positive, ifA is positive. This is indeed the case, since

d

dD
A524uA00u222D24uA00u2 cosf00

11<0 ~B6!

allows us to evaluateA at the maximal value ofDmax52uA00u2(12 cosf00
11), where it gives zero. This proves thatA>0 and

with that (d/dD)pc
(1)>0. Therefore, three relevant equations become

pc
~1!<12

~11 ē ~1!!uA00u2~cosf00
11!2

8psif
2

~11 ē ~1!!@ uA00u2~11 cosf00
11!22uA01u2#2
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, ~B7!
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psif

~11 ē ~1!!
5 1

8 @ uA00u2~31 cosf00
11!12uA01u2#, ~B8!

psif5
1
2 ~ uA00u21uA01u2!. ~B9!

We solve Eqs.~B8! and~B9! for uA01u and cosf00
11, and insert these into Eq.~B7!. The maximum overuA00u is then taken, and

we find

pc
~1!< 1

2 @114ē ~1!24~ ē~1!!2#. ~B10!

The strategy resulting in this collision probability is described by

uA00u25uA11u25
2psif

11 ē ~1!
, ~B11!

uA01u25uA10u25
2psifē

~1!

11 ē ~1!
, ~B12!

cosf00
115122ē ~1!, ~B13!

cosf01
1051. ~B14!

In the derivation we have chosen 2uA00u2(12 cosf00
11)>uA011A10u2, and find the optimal solution respects this choice

ē (1)< 1
2 . For ē (1)5 1

2 we find pc
(1)51, so that we conclude that

pc
~1!<H 1

2 @114ē ~1!24~ ē~1!!2# for ē ~1!< 1
2

1 for ē ~1!> 1
2 .

~B15!

APPENDIX C: MAXIMIZING PC
„1… FOR CORRECTED ERRORS

We start from Eq.~51! and use the Cauchy inequality in a similar way as in Appendix B. We obtain the bound

pc
~1!<12

~A00A10!
21~A00A11!

21~A01A10!
21~A01A11!

2
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2
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2
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. ~C1!

Next we introduce the anglesw00
11, w00

10, andw01
10 between the corresponding vectorsA00, A10, A01, andA11; make use of

relations~42! and~43!; use the symmetry argument as in Appendix B; and after some transformation find the set of eq

pc
~1!<

3

4
1

uA00u4~123 cos2w00
11!1uA01u4~123 cos2w01

10!

8~ uA00u21uA01u2!2
1uA00u2uA01u2

31cosw00
11cosw01

1022 cos2w00
10

4~ uA00u21uA01u2!2
~C2!

ē~1!5
uA00u2~12cosw00

11!1uA01u2~32cosw01
10!

4~ uA00u21uA01u2!
. ~C3!

The first observation is that it is optimal to choose cosw00
1050 since this choice optimizespc

(1) while it leavesē (1) unchanged.
The second observation is that the choice of

uA00u2 cosw00
115uA01u2 cosw01

10, ~C4!

within the subspace defined by

uA00u2 cosw00
111uA01u2 cosw01

105const

and fixed values ofuA00u and uA01u, is optimal if this choice is possible. In this case we are left with the equations
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pc
~1!<

3
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ē~1!5
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4~ uA00u21uA01u2!
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At the end of a short maximization calculation, we find a solution consistent with symmetry condition~C4! for 1
4 <ē (1)< 1

2 . It
is given by

pc
~1!< 3

4 1 ē ~1!2~ ē~1!!2. ~C7!

This maximum is obtained by choosing the values cosw00
115(122ē (1))/@2(12 ē (1))# and uA01u5uA00uAē (1)/(12 ē (1)). The

symmetry condition~C4! then gives cosw01
105(122ē (1))/2ē (1) which limits the range of validity to1

4 <ē (1). For 1
4 >ē (1) we

find the optimal solution by selecting cosw01
1051. A short maximization calculation then gives the bound

pc
~1!< 1

2 13ē ~1!25~ ē~1!!2 ~C8!

for the choice of parameters cosw00
115(123ē (1))/(12 ē (1)) and uA01u5uA00uA( ē (1))/(12 ē (1)).

APPENDIX D: MAXIMIZING PC
„1… FOR CORRECTED ERRORS WITH LEAKED ERROR POSITIONS

We apply Cauchy inequalities to Eq.~56!, and use the vector notationsA, B̃, C, andD̃ to find
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1
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. ~D1!

It becomes clear immediately that we can replaceC by A andD̃ by B̃ because of relations similar to Eq.~43!. Similar to the
calculations in Appendixes B and C, we introduce the anglesw00

11, w00
10, and w01

10 and use relations~42! and ~43! and the
symmetry argument introduced in Appendix B to find the new form of Eq.~D1! as

pc
~1!<

3

4
2

uA00u2 cos2w00
111uA01u2 cos2 w01

10

4~ uA00u21uA01u2!
1

uA00u2uA01u2

2~ uA00u21uA01u2!
F ~11 cosw00
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10!
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10!

1
~12 cosw00

11!~12 cosw01
10!

uA00u2~12 cosw00
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G , ~D2!

while from Appendix C we take the expression forē (1) as

ē ~1!5
uA00u2~12 cosw00

11!1uA01u2~32 cosw01
10!

4~ uA00u21uA01u2!
. ~D3!

We next perform a variation along the path defined byuA00u2 cosw00
111uA01u2 cosw01

105const, and find thatpc
(1) is optimized

for the choice cosw00
115cosw01

10. An optimization calculation for the remaining parameters leads to the estimate

pc
~1!< 1

2 12ē ~1!22~ ē~1!!2 ~D4!

for a disturbanceē (1)< 1
2 . This optimum is obtained by choosing cosw00

115122ē (1) and uA00u5uA01uA(12 ē (1))/ ē (1).
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