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In this paper | present a protocol for quantum cryptography which is secure against attacks on individual
signals. It is based on the Bennett-Brassard protocol of 1984. The security proof is complete as far as the use
of single photons as signal states is concerned. Emphasis is placed on the practicability of the resulting
protocol. For each run of the quantum key distribution the security statement gives the probability of a
successful key generation and the probability for an eavesdropper’s knowledge, measured as change in Shan-
non entropy, to be below a specified maximal vali&1050-294709)05305-4

PACS numbes): 03.67.Dd, 03.65.Bz, 42.79.Sz

[. INTRODUCTION be in the possession of at least some knowledge about the
reconciled string. For example, if one collects some parity
Quantum cryptography is a technique for generating andits of randomly chosen subsets of the reconciled string as a
distributing cryptographic keys in which the secrecy of thenew key, then the Shannon information of an eavesdropper
keys is guaranteed by quantum mechanics. The first suchn that new, shorter key can be brought arbitrarily close to
scheme was proposed by Bennett and Brassard in (84 zero by control of the number of parity bits contributing
BB84 protoco) [1]. Sender and receivefconventionally —towards it. This technique is the generalized privacy ampli-
called Alice and Bobuse a quantum channel, which is gov- fication procedure by Bennett al.[7].
erned by the laws of quantum mechanics, and a classical The final measure of knowledge about the key used in this
channel which is postulated to have the property that anpaper is that of change of Shannon entropy. If we assign to
classical message sent will be faithfully received. The claseach potential key an a-priori probability p(x), then the
sical channel will also transmit faithfully a copy of the mes- Shannon entropy of this distribution is defined as
sage to any eavesdropper, Eve. Along the quantum channel a
sequence of signals is sent chosen at random from two pairs
of orthogonal quantum states. Each such pair spans the same Sp(x)]=- g P(x)log,p(X). (1)
Hilbert space. For example, the signals can be realized as

polarized photons: one pair uses horizontal and vertical lino knowledge Eve obtains on the key may be denotek] by
ear polarization ), while the other uses linear polarization 44 |eads to am posteriori probability distributionp(x|k).

rotated by 45° k). Bob at random uses one of two mea- Thg gifference between the Shannon entropy ofatiori
surements, each performing projection measurements on the,q 3 posteriori probability distributions is a good measure
basis+ or X. The sifted key[2] consists of the subset of ¢ E\e's knowledge:

signals where the bases of signal and measurement coincide,
leading to deterministic results. This subset can be found by Ao(k) = _ K 2
exchange of classical information without revealing the sig- s(k)=S[p(x)]=Sp(x|k)]. 2

nals themselves. Any attempt by an eavesdropper to obtaillglor short, we will callAg(k) the entropy changeWe re-

|nformat|o_n abouf[ the signals leads fo a nonzero ?XpeCtegover the Shannon information as the expected value of that
error rate in the sifted key, and makes it likely that Alice and

Bob can detect the presence of the eavesdropper by compadrl-fference as

ing a subset of the sifted key over the public channel. If

Alice and Bob find no errors, they concludeithin the sta- |s:<As(k)>=E p(k)Ag(K), (3)

tistical bounds of error detectipithat no eavesdropper was k

active. They then translate the sifted key into a sequence of

zeros and ones which can be used, for example, as a onethere Eve’s knowledg& occurs with probabilityp(k). If

time pad in secure communication. we are able to give a bound ary(k) for a specific run of the
Several quantum cryptography experiments have beequantum key distribution experiment, then this is a stronger

performed. In the experimental setup noise is always presestatement than a bound on the Shannon information: we

leading to a bit error rate of, typically, 1-5 % errors in the guarantee not only security on average but make a statement

sifted key[3-6]. Alice and Bob cannot even in principle on a specific key, as required for secure communication.

distinguish between a noisy quantum channel and the signa- The challenge for the theory of quantum cryptography is

ture of an eavesdropper activity. The protocol of the keyto provide a statement like the following one: If one firels

distribution therefore has to be amended by two steps. Therrors in a sifted key of lengthg;, then, after error correc-

first is thereconciliation(or error correctiopstep, leading to  tion under an exchange bf,¢. bits of redundant information,

a key, shared by Alice and Bob. The second step deals wita new key of lengthng, can be distilled on which, with

the situation that the eavesdropper now has to be assumedpeobability 1— «, a potential eavesdropper achieves an en-
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tropy change of less thal, . HereA,, has to be chosen in by Mayers[11]. However, the protocol proposed there is, up
view of the application for which the secret key is used. It isto now, far less efficient than the one proposed here. Other
not necessary that each realization of a sifted key leads to $€curity proofs extend to a fairly wide class of eavesdropping
secret key; the realization may be rejected with some prob@ttacks, the coherent attacki]. _
ability 8. In this case Alice and Bob abort the attempt and In this paper | will give a solution to a restricted problem.
start anew. The restriction consists of four points.

The final goal is to provide a security statement, taking (i) The eavesdropper attacks each signal individually; no

into account the real experimental situation. For example, ngoh?re_m or _collelctltvet attaclm_k(ta pl?jce.d ft . f
real channel exists which fulfills the axiom of faithfulness. (ih) € signal states consist, indeed, ot two pairs of or-
There is the danger that an eavesdropper can separate A”Sg'%ogonal smgle—photon states, so that _‘V_VO states drawn from
and Bob, and replace the public channel by two channel il fg_(ent pairs have an overla_p prqbab|l|ty ﬁf. L
one from Alice to Eve and another one from Eve to Bob. In (iii) Bob uses detectors of identical detection efficiencies.

this separate world scenario Eve could learn to know the full (iv) The initial key shared by Alipe ar_1d Bob i_s secret, so
key without causing errors. She could establish differen ha_t the eavesdropper has negl_lglble mfprmatlon about it.
keys with Alice and Bob, and then effectively transfer the sing the part of_the key g:jownbln a ?re_wo;]_s quantum key
messages from Alice to Bob. This problem can be overcomgrodvv_'nhg sehSS|on IS assume t? e safe in t 'g' senshe. lead
by authentication[19]. This technique makes it possible for Ithin these assumptions | give a procedure that leads

a receiver of a message to verify that the message was inde$fith Somea priori probability 5 to a key shared by Alice

sent by the presumed sender. It requires that sender and rald Bob. If successiul, the key is secure in the sense that

ceiver share some secret knowledge beforehand. It should 4th probability (1—«a) any potential eavesdropper achieves
noted that it is not necessary to authenticate all individuaP" €NtroPy change of less than,. In contrast to all other
messages sent along the public channel. It is sufficient t§/Ork on this subject, this procedure takes into account that
authenticate some essential steps, including the final key, 48€ eavers]droppe:r d(.)esh not .nﬁcessarlly Itraﬂsmlt S|.ngle| pho-
indicated below. In the presented protocol, successful aut_ons'tolt € receier, she mig rt]use multiphoton signa shto
thentication verifies at the same time that no errors remainefianipulate Bob’s detectors. The procedure presented here
after the key reconciliation. The need to share a secret ke ight not be optimal, but it is certifiable safe within the four

beforehand to accomplish authentication reduces this schenhgStrictions mentioned above. _
from a quantum key distribution system to a quantum key It should be pointed out that coherent eavesdropping at-

growing system: from a short secret key we grow a IongeEaCks are at present beyond our experimental capability. Al-

secret key. On the other hand, since one needs to share'G% and Bob can increase the difficulty of the task of coherent
secret key beforehand, one can use part of it to control thg" collective eavesdropping attacks by using random timing

flow of side information to Eve during the stage of key rec-10" their signals(although here one has to be wary of the
onciliation in a new way. By side information we mean anyerror rate of the keyor by delaying their classical commu-

classical information about the reconciled key leaking to thdtcation, thereby forcing Eve to store her auxiliary probe
eavesdropper during the reconciliation. system coherently for longer time. There is an important dif-

Another problem is that in a real application we cannotf€T€nceé between the threat of growing computer power

effectively create single-photon states. Recent developmenfd@inst classical encryption techniques, and the growing
by Law and Kimble[8] promised such sources, but presentPOWer of experimental skills in the attack on quantum key
day experiments use dim coherent states, that is, cohereﬂist”b“t'or‘: while it is possible to decode today’s message

pulses with an expected photon number of typically 1/10 pelVIth tomorrow’s computer in classical cryptography, you
cannot use tomorrow’s experimental skills in eavesdropping

signal. The component of a signal containing two or more
photon states, however, poses problems. It is known that a photon sent and detected today. It there_fo_re SEeems per-
ctly legal to put some technological restrictions on the

eavesdropper can, by the use of a quantum nondemolitio

measurementQND) of the total photon number and a split- eavesdropp_er.. This might be, for example, a restriction to
ting of signals, learn with certainty all signals containing attacks on individual system, or even a restriction to unde-
more than one photon without causing any errors in théayed measurements. For the use of dim coherent states one

sifted key. If Eve can get hold of an ideal quantum Channel,might be tempted to disallow Eve to use perfect quantum

this will lead to the existence of a maximum value of loss inchannels, and to give her a minimum amount of damping of

the channel which can be toleratgg{10]. It is not known at Ner guantum channel. The ultimate goal, however, should be

present whether this QND attack, possibly combined witht© beableto cope without those restrictions.

attacks on the remaining single photons, is the optimal at- '€ structure of the paper is as follows. In Sec. Il |

tack, but it is certainly rather strong. present the com_plete protocol_on Whl_ch the security analys_ls
The eavesdropper is restricted in her power to interferds based. Then, in S_ec._ I, 1 discuss in more detail the vari-

with the quantum signals only by quantum mechanics. In th@YS e_Iements 9°f.““b““”9 to 'ghe protocol. The heart of t_he

most general scenario, she can entangle the signals with SECUrity analysis is presented in Sec. IV, before | summarize

probe of arbitrary dimensions, wait until all classical infor- (€ €fficiency and security of the protocol in Sec. V.

mation is transmitted over the public channel, and then make

a measurement on the auxiliary system to extract as much IIl. HOW TO DO QUANTUM KEY GROWING

information as possible about the key. Many papers, so far,

have dealt only with single-photon signals. At present there The protocol presented here is a suitable combination of

exists an important claim of a security proof in this scenariothe Bennett-Brassard protocol, reconciliation techniques, and
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authentication methods. | make use of the fact that Alice an
Bob have to share some secret key beforehand. Instead pf ) — . .
seeing that as a drawback, | make 3l/Jse of it to simplify ther%’W a sunab_le chosen upper bogngl,ax. With probability
control of the side-information flow during the classical datal — 82 they find a value fora; which allows them to con-
exchange. Side information might leak to Eve in the form oftinue this protocol successfully. Herg, is a weight factor
parity bits, exchanged between Alice and Bob during reconfixed later on. N
ciliation, or in the form of knowledge that a specific bit was  (8) Given the upper bound on the disturbance ratg,,
received correctly or incorrectly by Bob. The side informa- Alice and Bob shorten the key by a fractierduring privacy
tion could be taken care of during the privacy amplificationamplification, such that the Shannon information on that final
step using the results of R¢fL3]. Here for clarity | presenta key is belowl. The shortening is accomplished using a hash
method to avoid any such side information which correlate§ynction [19] chosen at random. To make a statement about
Eve’s information about different bit¢as parity bits do the entropy changa (k) Eve achieved for this particular

which are typically used in reconciliatiprby using secret  transmission, they observe that this change is with probabil-
bits to encode some of the classical communication. ity 1—a, less thanA ;. The probabilitya, can be esti-

The notation of the variables is guided by the idea that  mated bya,<1/A .

denotes numbers of bits, especially key length at various (g) |n the last step Alice chooses at random a suitable
stagesN, denotes numbers of secure bits used in differenhash function, which she transmits encrypted to Bob using
steps of the protocol; denote probabilities of failing to N, /2 secret bits. Then she hashes her new key with that
establish a shared key; denotes failure probabilities criti- - function, the time from stef8), and the string of bases from
cal to the safety of an established key; apdienotes the step(5) into a short sequence, called thathentication tag
probability that Alice and Bob, unknown to themselves, doThe tag is sent to Bob, who compares it with the hashed
not even share a key. Quantitigsor (x) denote expected version of his key. If no error was left after the error correc-
values of the quantityx. The protocol steps and their tion, the tags coincide.This step is repeated with the roles of
achievements are as follows. Alice and Bob interchanged. If Bob detects an error rate too
(1) Alice sends a sufficient number of signals to Bob tohigh to allow him to proceed with the protocol, he does not
generate a sifted key of lengthy;. forward the correct authentication to Alice. The probability
(2) Bob notifies Alice in which time slot he received a that Eve could have guessed the secret bits used by Alice or
signal. by Bob to encode their hashed message is givenpyThe
(3) Alice and Bob make a “time stamp,” allowing them probability that a discrepancy between the two versions of
to make sure that the previous step has been completed bihe key remains undetected is denotedyby
fore they begin the next step. This can be done, for example, The probability of detected failurés 8 with 8< B+ 8,
by taking the time of synchronized clocks after s8p and  and this failure does not compromise the security. In the case

@ure:=((nerr+ Wpnp)/n g is, with probability 1- a4, be-

to include this time into the authentication procedure. of success Alice and Bob can now say that, at worst, with a
(4) Alice sends the bases used for the signals marked iprobability of undetected failuréfailure of security of o
the second step to Bob. (with a<a;+ as+ @3), the eavesdropper can achieve an en-

(5 Bob compares this information with his measure-tropy change for the final key which is larger thAg,. The
ments, and announces to Alice the elements of the generalemaining probabilityy describes the probability that Alice
ized sifted key of lengtmg;. The generalized sifted key is and Bob do not detect that they do not even share a key.
formed by two groups of signals. The first is the sifted key of Note that the final authentication is made symmetric, so
the BB84 protocol formed by all those signals which Bobthat no exchange of information over the success of that step
can unambiguously interpret as a deterministic measuremei# necessary. Otherwise a party not comparing the authenti-
result of a single-photon signal state. The second group cortation tags could regard the key as safe in a separate-world
sists of those signals which are ambiguous, as they cannot Bgenario. More explanation about the authentication proce-
thought of as triggered by single-photon signals. If two ofdure can be found in Sec. Il E. The classical information
Bob’s detectorgfor example monitoring orthogonal modes becoming available to Eve during the creation of the sifted
are triggered, then this is an example of an ambiguous signakey will be taken care of in the calculations of Sec. IV.

The number of these ambiguous signals is denotedjy The public channel is now used for the following tasks:
The announcement of this step has to be included into tha) creation of the sifted key, where Eve learns which signals
authentication. reached Bob and from which signal set each signal was cho-

(6) Reconciliation: Alice sends, in totaN,. encoded sen; (b) transmission of encrypted parity check bits, on
parity-check bits over the classical channel to Bob as a kewhich Eve learns nothingr) for bidirectional reconciliation
reconciliation. Bob uses these bits to correct or to discard thenethods, feedback concerning the success of parity bit com-
errors. During this step he will learn the actual number ofparisons(see Sec. ll}; (d) for reconciliation methods which
errorsne,. The probability that an error remains in the sifted discard errors, the location of bits discarded from the key;
key is given byB;. Depending on the reconciliation scheme, announcement of the hash function chosen in this particular
Eve learns nothing in this step, or knows the position of theealization; andf) transmission of the encrypted hash func-
errors, or knows that Bob received all the remaining bitstion for authentication and of the unencrypted authentication
correctly. tags.

(7) From the observed number of errarg, and of am- The main subject of this paper is to give the fractiohy
biguous nonvacuum resultg,, Bob can conclude, using a which the key has to be shortened to match the security
theorem by Hoeffding, that the expected disturbance medarget as a function of the upper bound on the disturbance
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?max_ The estimation has to take care of all information 1ne difference between_the three approaches With respect
available to Eve by a combination of measurements on th& Our protocol shows up in the number of secret bits they
quantum channel and classical information overheard on the€€d to reconcile the string, the length of the reconciled
public channel. This classical information depends on théting, and the probability of success of reconciliation. For
reconciliation procedure used. The nature of this informatiorfXPerimental realization one should also think of the practi-
might allow Eve to separate the signals into subsets of sigf@ implementation. For example, interactive protocols are
nals, for example those being formed by the signals whiciYe'Y efficient to implemeriti4]. To illustrate the difference |
are correctly(incorrectly received by Bob, and to treat them 91V€ examples for the error correction protocols.
differently. The benchmark for efficiency of error correction is the
The knowledge of the specific hash function is of no useShannon limit. It gives the minimum number' of bits which
to Eve in the construction of her measurement on the signal§i@ve t0 be revealed about the correct version of a key to
This is a result of the assumption that Eve attacks each signggconcile a version which is subjected to an error eatehis

individually, and that the knowledge of the hash functions/Mit iS achieved for large keys, and the error correction
tells Eve only whether a specific bit will count toward the Probability then approaches unity. The Shannon limit is

parity bit of a signal subset or not. She will only learn how 91V€n in terms of the amount of Shannon informatiege)
important each individual bit is to her. If the bit is not used, contained in the version of the key affected by the error rate
then it is too late to change the interaction with that bit to® FOr @ binary channel, as relevant in our case, this is given
avoid unnecessary errors, since the damage by interacti
has been done long before. If it is used, then Eve intends to
obtain the best possible knowledge about it anyway. This
situation might be different for scenarios which allow coher-
ent attacks.

Ig(e)=1+elog,e+(1—e)log,(1—e). (4

The minimum number of bits needed, on average, to correct
a key of lengthm affected by the error rateis then given by

Il. ELEMENTS OF THE QUANTUM KEY Nn=n{1— ()}, )
GROWING PROTOCOL

In this section | explain in more detail the steps of theAS mentioned above, perfect error correction is achievable

quantum key growing protocol. Special attention is given to@Nly for n—c.
the security failure probabilitiegy;, limiting the security _ _
confidence of an established shared key, and to the failure 1. Linear codes for error correction
probabilitiesg; , limiting the capability to establish a shared  Linear codes are a well-established technique which can
key. be viewed in a standard approach as attaching to kdih
signal a number oh—k bits of linearly independent parity-
A. Generation of the generalized sifted key check bits, making it in total a-bit signal. The receiver gets

Elements of the generalized sifted key are signals whick0/SY Version of thisrbit signal, and can now in a well-
. ge : y '9 .rbefined procedure find the most likekbit signal. Linear
either can be unambiguously interpreted as being determlrl:—

o ) .. _codes which will safely return the corrdebit signal if up to
istically detected, given the knowledge of the polarlzat|on[%0f the n bits were flipped by the noisy channel are denoted

EZtSelj:,tigL V;/g;ﬁh;r\lfggsrrewcljoertz;?oarg (r)nnoeni?grteocrtgr.revl\fle?/etzlcnrzg [n.k,d] codes(with d=2f+1). If the signal is affected
P L . . . more errors, then these will be corrected with less than
each. Due to loss it is possible to find no photon in any nit probabilit
mode. Since Eve might use multiphoton signals, we may fing™ P Y- . .
L . ; This technique can be used for error correction. Alice and
photons in different monitored modes simultaneously, leads

! . . : . “Bob partition their sifted key into blocks of siZe For each
ing to ambiguous signals since more than one detector 9iVeS ok Alice computes the extra—k parity bits, encodes
a click. Detection of several photons éme mode, however, '

is deemed to be an unambiguous resi@ee further discus- them with secret bits and sends them via the classical chan-

sion in Sec. IV B) In practice we will not be able to distin- nel to Bob. Bob then corrects his block according to the

Lish between one or several bhotons triagering the detectosrtandard error correction technique. This procedure could be
9 P ggering mproved, since thén,k,d] codes are designed to cope with

;li—:ee d'?ggbtg g; Itgﬁgstm?d key accumulated in that way is kepihe_ situation that even the parity bits might be f':lffec_ted by

sif - noise. One can partly take advantage of the situation that
these bits are transmitted correctly. However, nonoptimal
performance is not a security hazard.

For the reconciliation we have to distinguish two main  The search for an optimal linear code is beyond the scope
classes of procedures: one class corrects the errors using @-this paper. To illustrate the problem | present as a specific
dundant information, and the other class discards errors bgxample the codg512,422,2]. It uses 90 redundant parity
locating error-free subsections of the sifted key. The class dbits to protect a block of 422 bits against ten errors. So how
error-correcting reconciliation can be divided into two fur- does this linear code perform if we use it to reconcile a string
ther subclasses: one subclass uses only unidirectional infoof ng=10128 bits which are affected by an error rate of
mation flow from Alice to Bob, while the second subclass1%? It can be shown that this string will be reconciled with
uses an interactive protocol with bidirectional informationa probability of 1—8,=0.908 at an expense of..=2160
flow. secret bits. The practical implementation of a code as long as

B. Reconciliation
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this one is, however, rather problematic from the point ofrandom subsets is made only at that instance, and changes
view of computational resources. In comparison, in thefor each repetition of the key growing protocol. This short-

Shannon limit we need to use 819 bits for this task. ening of the key to enhance the security of the final key is
common to all other approaches that deal with the security of
2. Interactive error correction quantum cryptography, for example, by Mayétd] or Bi-

An interactive error correction code was presented byl@metal.[12]. However, it differs the way to determine the
Brassard and Salvail in Ref14]. This code is reported to fraction 7 by which the key has to be shortened. In the case
correct a key with an error rate of 1% and lengily of individual eavesdropping attacks we can go via the colli-
=10000 at an average expenseNyf.=933 bits. No num- sion probability as described below]. When we consider

bers for3, are given, but in several tries no remaining errorjoint or collective attac_ks it is not possib_le to take_this ap-
was found. This protocol operates acceptable close to tharoach due to correlation between the signals, which possi-

Shannon limit, which tells us that we need at least 808 bits t&!Y @llows Eve to gain an advantage by delaying her mea-
correct the key. surement until she learns to know the specific parity bits

entering the final key.
3. Situation after reconciliation In the first step we give the main formulas of privacy

I . . ... amplification and introduce the parametsi(e). This pa-
After reconciliation Alice and Bob share with probability Fgmeter indicates the fraction by which the key has to be

1- B, the same key. The eavesdropper gathered some info O .
mation from measurements on the quantum channel. The inshortened, such that thexpecteceavesdropping information

formation she gained from listening to the public channelo-n the final key is less than one bit of Shannon information.

. . o : It is given as a function of Eve’s acquiredllision probabil-
now puts her into different positions depending on the reCiéy. Any additional bit by which the key is shortened leads to

onciliation protocol. In case errors are discarded, she know: n exponential decrease of that expected Shannon informa
that all remaining bits in the reconciled string were received; P P

correctly by Bob during the quantum transmission. If a uni-— ", ,
directional error correction protocol is used, then listening to We denote byz the final key of lengthng,, by x the

the public channel during reconciliation does not give EvereconCIIed key of lengtmyc, and byy the accumulated

any extra hints. The interactive error correction protocol,khnow!edgle of t(?(?[heavesdrzoppder Flue_tolher mtera_ctl(:_n W't.h
however, leaks some information to Eve about the positio hg S:?k:iacl:scr?gnnelev%eliegarsec:rsfigla tfgﬁr?ﬁj:égzr']on via
of bits which were received incorrectly by Bob during the P ' P Sep y 9

quantum protocol. We will have to take this into accountWhiCh' for example, describes the subsets whose parity bits

later on. There we take the view that Eve knows the posifodrm t_he flnarll key'l.Tht'.S hasEh fl,m(l:(tlon IIS é)art .Of Eve's "”%W."
tions of all errors exactly. edge in each realization. Eve’s knowledge is expressed in a

A difference between correcting and discarding errors idroPapility distributionp(z|g,y), that is the probability that

that, naturally, discarding errors will lead to a shorter recon’S the key given Eve’s measurement results and side infor-

ciled string of lengt,..<ng;, while the length of the key mation on the key. In a trivial extension of the starting equa-

does not change during error correction so that=ng;.  tion of Ref.[7], we find that the Shannon informatidn
Common to all schemes is that Alice and Bob know the@veraged over the hash functions, is bounded by
precise number of errors which occurrgatovided the rec- ~ ,

onciliation worked. When they discard parts of the sifted I=(1)g=nfint+1002(Pc(9.¥))y.q (6)

key they can open up the discarded bits, and learn thereby. . . . '
the actual number of error@Ithough in this case an addi- \%Ith the collision probability on the final key defined as

tional problem of authentication arigegnd when they cor- Pi(gly)%Ezpz(ZIQ,y)- The collision probability Pe(9:Y))g
rect errors Bob knows the number of bit flips he performedon the final key, averaged with respectgpis bounded by
during error correction. This is just the number of errors ofthe collision probabilityps(y) ==,p*(x|y) on the reconciled
the sifted key. Contrary to common belief, it is therefore notkey as

necessary to sacrifice elements of the sifted key by public , e

comparison to determine or estimate the number of occurred (Pe(9.y))g=<2” "in[2"npe(y) +1]. (7)

errors. . . . .
This can be trivially extended to an inequality for

(PZ(9.,Y))y.q resulting in

(Pe(9,Y))g,y<2™ Mn[2Min( pe(y))y+1]. ®)
In previous work it has been shown that for typical error
rates in an experimental setup the eavesdropper could gaihis allows us to give the estimate
on average, a hon-negligible amount of Shannon information
on the reconciled ke}l5,16. This means that we cannot use | < logy[ 2"in( pg(y))y+ 1], 9)
it as a secret key right away. Classical coding theory shows a
way to distill a final secret key from the reconciled key by bounding the eavesdropper’'s expected Shannon information
the method of privacy amplificatiof7]. As a practical by her expected collision probability on the sifted key and
implementation of the hashing involved, the secret key ighe length of the final key.
obtained by takingg;, parity bits of randomly chosen sub- ~ We can reformulate estimat@) by introducing the frac-
sets of then, bits of the reconciled string. The choice of the tion, ;. If we shorten the reconciled key by this fraction,

C. Privacy amplification and the Shannon information
on final key
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then Eve’s expected Shannon information is just one bit On=(ng,+Wphp)/Ngs. Sinceng is kept fixed, the expected

the whole final key. Therefore, we find disturbance is given bye=(ng,+Wpnhp)/ng:. From the
1 measured value,.,s We estimate the average disturbance
=1+ — logx(pe(Y))y - (10)  parametele.
ree To make the role o clear, it should be pointed out that
We introduce the security parameteyas the number of bits any given eavesdropping strategy will lead to an expected
by which the final key is shorter than prescribed by the fracerror probabilitye, while the actually caused and observed
tion ;. This security parameterg is implicitly defined by error rate can be much lower for an individual run of the
protocol. For example, think of an intercept-resend protocol
Nfin= (1= 71)Npec— Ns. (1) as in Ref[10] where Eve has her lucky day and measures,
by chance, all signals in the appropriate bases. This is not
very likely, but the treatment presented here takes care of
2-Ns this possibility.
. (12 In an application of a theorem by Hoeffdig7], which
In2 was already used in Refl2], we find an estimate of the

From this relation we see that the total amount of Eve’snumb('}mn‘3”+WDnD> from the actuqlly measured number
+wpnp for a total number ohg; signals as

expected Shannon information on the final key decreases eRer
ponentially with the security parameteg. The main part of

With the definitions ofr; andng, we then find[7]

I<log,(2 "s+1)~

this paper will be to estimatéo;(y)), for various scenarios (NertWpNp) <NgptWpNp + Ny, (14
as a function of the expected disturbance rate estimate
71, and with that to estimateas a functione. with probability

D. From expected quantities to specific quantities (1—ay)>1— exp— 2nsif52), (15

In Sec. Il C we showed that once we know the expected

disturbance rate and the functional dependence of( €), as long asvp<1. Forwp=1 we have to replace E{L5) by
we can estimate the eavesdropper’'s Shannon information(1— a;)>1— exp(—2ng6%/w3). This means that we can
on the final key in dependence of via Eq. (12). In this  gjve a bound on the expected disturbance paramefesm
section we now show how to link the observed error rate tGnhe gbserved quantitiesy and n,, within a certain confi-
the expected error rate and how to estimate the entropyence limit. To give a numeric example, we choogg= 1
changeAs in a single run from the expected Shannon infor-(see Sec. IV @ and refer to the situation reported by Ma-
mationl. rand and Townseni3]. There an experiment is presented
which can create a sifted key of lengthy=1.4x10 3n
from an exchange of quantum signals at an error rate of
Alice and Bob establish a generalized sifted key of lengthl.2% with a negligible amount of ambiguous signals. Then
ngs. During reconciliation of the sifted key Bob learns the the choice of§=0.038 and a sampling with= 10’ leads to
actual number of errora,, of unambiguous signals, while a reconciled key of lengtimg=1.4x10* with a value of
he already knows the numbap, of ambiguous signals. Our «;~10 18 This is the probability that the expected distur-
definition of disturbance here is bance parameter in a typical realization of the key transfer
is less than a maximal value @f,,=0.05. The values,
, (13)  will be used in privacy amplification. An eye has to be kept
Nrec on the sampling time. With the experiment described in Ref.
3] it will take about 10 s to establish the sifted key. An
xample for smaller samples is the choicensf10° and &

1. From the measured error rate to the expected error rate

— Nerrt WpNp

with wp as an adjustable weight parameter for ambiguou
signals to be chosen Ina suitable way. In Slec. VG we WIII=0.4, which leads for the same system to a reconciled key of
present a model for which we can choagg= 5. In the case

_ — —19  _
of error correction we have to correct even the ambiguoudEN9thnsi= 140 anda,~10""" and €yq,=0.412. The prob-
signals to keep the numbar; fixed, and to keep control of ability B, to fail to achieve a satisfactory level of confidence

the disturbance. The reason is we need to formulate a me :[_this stage is "? _mpst cases negligible in comparison to the
ailure of reconciliation. It should be noted that these num-

sure of disturbance per element of the reconciliated key, . : ; :

which is bounded. This is possible for a correction of thebers give a rough gu|da}nce only, since the experiment does

errors. In the case of discarding errors the number of error80t Use single-photon signals.

and ambiguous results per remaining bit is unbounded, and

we fail to be able to give a bound anfrom the measured 2. Expected information and information in specific realization

values. We still need to link the change of Shannon entrdpy
Therefore, we restrict ourselves to the case of correctedn the final key in arindividual realization of the protocol

errors where we find the length. of the reconciled string with a given probability to the Shannon informatibrthat is

to be equal to the lengthg; of the generalized sifted key. In over the average over many realizations. The key is thought

this situation the measured disturbance is giveneQy,s of as unsafe if the eavesdropper achieves an entropy change
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larger tham ., in a specific realization. This happens at mostfailgd. The probability that Eve could fake the authentication
with probability a, which is bounded implicitly byl is given by

- )
asA, leading to =2t 17

-n -n
a2<|_ = 10gp(2_ 5+ 1) ~ 2 ® _ (16)  This is at the same time the probability that two distinct final
Aol Aol A In2 keys lead to the same hashed key. Any remaining error in the
final key will therefore lead with probability + a5 to a fail-

Thus the knowledge of an estimate foand the prescription ure of the authentication.
of an acceptable value ok, gives us the probability 1

— a;, of secrecy of the key. IV. EXPECTED COLLISION PROBABILITY
AND EXPECTED ERROR RATE

E. Authentication This section represents the major input of physics to the

The tools of the previous sections allow Alice and Bob toquantum key growing protocol. The aim is to put an upper
construct a common secret key, provided that their classicdlound on the expected average collision probability Eve ob-
channel is faithful. Since channels with that property, adains on the reconciliated key as a function of an average
such, do not exist, we need to authenticate the procedure @isturbance rate her eavesdropping strategy inflicted on the
make sure that Alice and Bob actuakjparethe new key. signals. This is done for two methods of reconciliation, cor-
Authentication can protect at the same time against errortgcting or deleting errors. The result will allow us to give
which survived the reconciliation step and against an eavesralues for the parameter ().
dropping attack with a “separate world” approach.

It is essential to make sure that Eve has no influence on
the choice of bits entering the generalized sifted key exceed-
ing the power to manipulate the quantum channel. The time- The collision probability on the reconciled key is defined
stamp steg3) in the protocol assures us that there is no pointoy
in Eve faking the public discussion up to that point, since she
gained no additional information about the signals so far, X0\ 2
especially no information about the polarization basis. pC(y)_g P(X]y). (18

The following sequence of bases for the successful re-

ceived signals sent from Alice and Bob does not need to b9Ve assume that the signal sent by Alice are statistically in-

authenticated as well, since Eve cannot bar CorreSpondmé’ependent of each other. and that Eve interacts with and
signals from the sifted key without knowing Bob’s measure- erforms measurements bn each bit individually. Further-

ments as well. However, the message describing which bit ore, we avoid side information which correlates signals by

finally fprm the g_enerall_zed S'fted. key needs to be authentl:[he use of secret bits in the reconciliation step. Therefore, the
cated since Eve is now in the position to bar signals from th

. . . . . %onditional probability functiom(x|y), wherex is the key
fg:]?s gf%;hriig;zg]\”th Alice by manipulation of the Con'given Eve's knowledge, factorizes into a product of prob-

ilities fi h signal. With that th llisi
The subsequent reconciliation protocol need not to be a goilities for each signa ith that the expected collision

thenticated if we authenticate the final key. The reason fo robability factorizes as well into a product of the expected

this is that the previous steps fixed the reconciled key as th(e:zOIIISIOn probability for each bit. We denote tp} the ex-

generalized sifted key in Alice’s version. If Eve tampers with pected collision probability on one bit, so that
the reconciliation protocol, then Bob will fail to correct his

key so that it becomes equal to Alice’s key. Authentication (Pe(9,Y))y=(pg)ree.

of the final key will therefore be sufficient to protect against

tampering with the public channel in this step. It doubles atr ,thermore. we denote by the indexe {+,x} the two

the same time to protect against incomplete reconciliation. copjugate basee.g., horizontal or vertical polarization for
To summarize, we need to authenticate the string 'de”“éingle photonsused to encode the signals, #ye {0,1} the

fying the elements of the sifted key within the received Sig-|ogical values, and bi the possible outcomes of Eve’s mea-

nals, the time stamp, and the final key. The length of thissyrement. This leads to an expression of the expected colli-
string is roughlym~2ng;. The authentication is done in the gjgop, probability, at this stage, as

following way, which is based on the authentication proce-
dure of Wegman and Cartgt9]. )

Alice chooses a hash-function of approximate length = PT(Vq Ka)
N,./2=4t Inm, and sends it encrypted to Bob. Both evaluate C kKTa Pky)
the hashed version of the message, the tag, of lemdtlice

sends the tag via the public channel to Bob. If the tags coinFor the parameter;, describing the shortening of the key

cide, then this step is repeated with the role of Alice and BOtHuring privacy amplification from Eq10), we find
interchanged. With this symmetric scheme we make sure that -

neither Alice nor Bob can be coaxed into a position where <
they think that authentication succeeded when it in fact 71= 100,(2pg). (20)

A. Collision probability on individual signal

(19
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B. Eve’s interaction and detection description a)

The action of the eavesdropper can be described by a
completely positive maf20,21] acting on the signal density
matricesp as

polarization
shifter

;Z Ek AkpA; y (21)

2D

+orx

where we can associate this interaction with a measurement

by Eve of aprobability operator measuré@OM) formed by

the operatorst:AEAk. The operator#\, are arbitrary op-

erators mapping the Hilbert space of the signals to an arbi-

trary Hilbert space. The only restriction is trﬁtAlAk gives b)

the identity operator of the signal Hilbert space. The prob-

ability for occurrence of outcomk is then given byp(k)

= Tr(pF,). The action of Bob’s detectors can be described loss +

by a POM on the resulting Hilbert space after Eve's interac-

tion. Since the detection POM elements and the signal den-

sity operators can be represented by real matrices, we can BS BS

assume the operatofg to be represented by real matrices as n 50/50 PB

well. x
This does not limit the generality of the approach, since

the outcome corresponding to an operafqe=AC+iA",

with real operatorg\,’ andA;", is triggered with probability FIG. 1. (a) Active device: Bob’s two detectors each consist of a

Tr(pATTAD) + Tr(pAMA™) and the outcome probabilities polarizing beam splitter and an ideal detector. The polarizing beam

for Bob'’s detection, corresponding to POM elemEnit out- splitter discriminates the two orthogonal linear polarized modes.

comek of Eve’s measurement is being triggered, is given byUsing a polarization shifter the polarization basis can be changed as

Tr( fkepAfkeTF) +Tr(ArkepArkeTF). Since no cross-terms mix- desired. Detector efficiencies are modeled by a beam splitter which

ing Arke and ALm occur, this means that using the two real represgnts th’e Iotss,t and '\;vr:]'idt]) is thou?trtlt of as bbeing part of t?ef
operatorsA’® and A", instead ofA,=A+iA™ will not eavesdropper’s strategy. This beam splitter can be seen as part o

o, , the quantum channelb) Passive device: Here one uses two detec-
(’jhange the outcome probabilities of Bob’s detectors but "on modules as presented {a), one for each polarization basis.
fines Eve's measurement.

. . . . The central beam splitter takes the task to “switch” between the
Two typical detection setups are shown in Fig. 1. They, polarization analyzers.

active version consists of a polarization analy@em detec-

tors monitoring each an output of a polarizing beam splitter 5, 5 hogonal mod€, . The first POM outcome manifests
and a phase shifter which effectively changes the polarizagseyt in no detector click at all, the following four give pre-

tion basis of the subsequent measurement. Here one activelyse|, one detector click, and the last one gives rise to at least
has to choose the polarization basis of the measurement. T o detectors being triggered. If we denote foym),, the
* o

passive device uses two polarization analyzers, one for eacli o \which has photons in one mode ard photons in the

basis, and uses a beam splitter to split the incoming signaj,,yonal polarization mode with respect to the polarization
the two polarization analyzers are used with equal prObabllbaSiSa, use the abbreviatio(© for the projector onto the

ity for detection. (n) . .
One can represent the detectors by beam splitters comacuum an(E\I,a for the projector onto the state withpho

bined with ideal detector22]. Then the beam-splitters can tons in the polarization mode correspondingltq, then the
be thought to be responsible for the finite efficiency. Sincd®?OM of detection unita) is given by
all detectors are assumed to be equal, the losses of all detec-
tors involved can be attributed to a single-loss beam splitter, Fra=E'?,
which is then thought of as being part of the transmission
channel rather than being part of the detection unit.

We can use the idea of ideal detectors which measure Fy =32 EY, (22
each a POM with two elements, the projection operator onto n=1
the vacuum(no ‘“click” ) and the projection on the Fock
subspaces with at least one photSolick” ). The POM of 3 1
the active and the passive setup then contains the elements FD_fnvél |n,m>+(n,m|+5n2:1 [0 m)e(n,m.
Fvac: Fo,, F1,, Fo,, F1 . andF. These are projections
onto the vacuumf,,., onto states with at least one photon  On the other hand, the passive detection schémds
in one of the four signal polarizations and none in the othersmore susceptible to signals containing more than one photon.
therefore leading to an unambiguous reﬁ,lllta, and onto the It is described by the POM

rest of the Hilbert space; that is, onto all states containing at
least one photon in the signal polarization and at least one in Fuac=E?,

fluctuations

fluctuations

0

oo 0

(23
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2 [1\n Moreover, this equality holds even for non-Hermitian matri-
Fy = E (—) ES{,‘), cesp. We can combine this result with the partition into
© =112 “ n-photon subspaces. Then we find that even the stronger
@ 1 1\ statement
Fp= -z E(”))
= H2 <2 o e S ApAl= X BupB|, (25
s . kek(™ k' ek’
1 1
) n;_l [n,m) . (n,m[+ 5 n;_l [n,m)(n,m|. holds. Before we go on to the derivation of the relation be-

tween average disturbance and average collision probability,

The next idea concerns all detection setups where all eld-would "k? to point out that this treatment takes. into_ ac-
ments of the POM commute with the projectidgsonto the count the rich structure of modes supported by optical fibers,

subspaces of total photon numirerin that case we find that and the fact that detectors monitor a multitude of modes. As
Bob’s measurement on the final signal gives outcome long as the detection POM commutes with the projector onto

e{vac,V',,,D} with probability the actually used signal mode, which is usually the case, we
e can separate the action @f, with respect to the photon
number in a similar way.
Paoy(i) = Tr(Ek AkpAlFi> = Tr(% E AALEFi |

C. Separation into n-photon contributions

We can now replace the set 8f’s by the setA :=E A« In this section we are going to present the disturbance
which still describes Eve’s measurement but for which eachmeasures and the collision probability} as sums over con-
element maps the Hilbert space of the signals to a Hilberfributions with different definite photon numberarriving at
space with a fixed photon number. Eve will now associate ®8ob’s detector unit. We start from the definition of the dis-
POM element of her measurement with each sé¢h.,  turbancee. To allow some comparison between correcting
thereby refining her POM and leading to an increase of heand discarding errors, we present a unified definition which
knowledge. For short, we again writl, for this set, for  defines, even for discarded errors, a disturbance measure per

which now the property is assumed that the signal arriving apit of the reconciled key. This definition is given by
Bob’s detection unit is an eigenstate of the total photon num-

ber operator. We can divide the index gebf k into subsets NetWpNp
KM, so that for eactk e K(" the operato”, maps the one- €= :
photon Hilbert space of the signal into thephoton space.
This is useful to distinguish contributions of signals with Hereng,, is the number of errors in the sifted keayg is the
different photon number. number of ambiguous results occurring, angl. is the num-

We still have to discuss how to represent a delayed medbser of bits in the reconciled string. The weight parametgr
surement in this picture. A delayed measurement is perfor ambiguous signals will be fixed later on. If we keep the
formed in such a way that Eve brings an auxiliary systemsize of the reconciled key fixed, then the expectation value of
into contact with the signal, so that they evolve togethere is described by
under a controlled unitary evolution. Then the signal is mea-
sured by Bob while Eve delays the measurement of her aux- — PertWpPp 5
iliary system until she has received all classical information € Prec @7
exchanged over the public channel. Having this knowledge,
she picks the optimal measurement to be performed on havherepe,, pp, andp.are the absolute probabilities that a
auxiliary system. Classical information useful to Eve is in-signal will, respectively, enter the sifted key as error, cause
formation that allows her to divide the signals into subsetsan ambiguous result, or become an element of the reconciled
which should experience different treatment. In our situatiorkey. As mentioned above, it should be noted that no estimate
this information is represented by the polarization basis obf ¢ from measured data can be easily presented in the case
the signal and, for bidirectional error correction, by theof discarded errors. We separate the contributions from the
knowledge whether the signal was received correctly bwifferent photon number signals as
Bob. We therefore have to assume, for example, that Eve’s
ielay_ed measurement is characte’rlzed by th_e set of operators =3 p'2) pM +wppl) s %&_(n) s

« with ke K, giving rise to Eve's POMF, =A[A,, and € b o € (28)
which are applied to the signals from the aet" +” and a o Hree Prec no e
second setBy, with k' eK’, resulting in the POMF,,  \vhere we have implicitly defined
=Bl,Bk,, which are applied to the signals from the set
=" X", Of course, these two sets of operators cannot be —n) p(e'ﬂ,)JrWDpS”
chosen arbitrarily. The complete positive map has to be iden- € T
tical for all density matricep, that is Prec

(26)

n rec

(29

as then-photon contribution toward the disturbance measure.
;': 2 AkPA&: E BkrpBT,. (24) Now pg(“) are .the cgnditional probabilities that a.signal has
kek K eK’ property X while being transfered as amphoton signal be-
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tween Eve and Bob. The total disturbance is given as surfihe collision probability is split into contributions related to
over then-photon contribution weighted by the relative prob- fixed photon numbers arriving at Bob’s detector in the same
ability that a signal arriving as an-photon signal at Bob’s manner as the disturbance measure, to give
detector will enter the reconciled key.

If we discard errors, then we find for the relevant prob- * ptn

— prec ( )
abilities (with ¥ as the complement to the binary vahig p)c(:nzl poPe ! (34)

Per=1 2 Tr(Aww AF v, (30)  with

kEIKa

n,_ 1 pA(W,.k,)
pC = m (k )

Plec=4 2 Tr(Awy AlFY)), (3D ek w.a Prec  PKa

ke KM

v, a,

The basic idea is now to estimate the one-photon contribu-
tions to these quantities, and then to chowsgin such a

pe=% X Tr(Awpw AIFP)). (32)  way that the optimal eavesdropping strategy will necessarily
kE’K(”) employ only one-photon signals. To achieve this we will use

the fact that multiphoton signals lead unavoidably to am-
If we correct errors, then the probability for a signal to enterbiguous signals, that ip{”+#0 for n>2, when using the
the reconciled key differs from E¢31) and is, instead, given passive detection option.

by
D. One-photon contribution for discarded errors
(n)_ (n) e — .
Prec= Z Tr(AkP‘I"AkF ) E Tr(AAF ) We use the description of the general eavesdropping strat-

€ ) € ) - . . .
f;, aK\;, kq,Kan egy to calculate the one-photon contributions. We find, with
(33  the help of the identityF =3 py ,
|
(1)_ 1 T (Akpo, Al kPO, )+ Tr?(Agpy Akpl )
pb=
© 85w Pﬁeé Tr(Awpo, Alpo, )+ Tr(Awp1 Alps,)
2 t 2 T
1 1 | Tr(Bkrpo, Byipo, ) +Tr(Bypy Byipa ) 35
+ p— —_
T T '
8 w2k plg | Tr(Bypo, Byipo, )+ Tr(Brpy Byipy)

and with the relation betweep{l) and e from Eq. (29, mapping(21). We define four vectoré\gy, A1, Ao, and

andpQ=p®+pd  we find A1, with the componentke K() given by
k '
" plb) Ay g =(VLAT)). (39
=, (36)
14D These vectors are formed by the transition amplitudes from
_ - the signal states to the one-photon detection states for each
together with the quantities different measurement outcome. They effectively describe

not only the complete channel between Alice and Bob but
also the complete eavesdropping strategy. With these vectors

(1_1
rec kEZK {Tr(Awpw Akp‘l’ ) @) we can simplify the notation of the expectation values intro-
V,a ducing vector products
pi =% 2 Tr(AA]). (39 Z{ " Tr(Awpw Akqu )=Ay Ay = Ay
kek® keK

Equations(35)—(38) form the basis for the following calcu- Similarly, we can define vectoBq, By, Boy, andBy; and
lations. To start with, we decrease the number of free paramleCtorS Boo, Bio, Bo1, and Byy, with elements fork’
eters to a handful of real parameters, so that we can optimize K¢

Eve’s strategy to give an upper bound pﬂ) as a function

— Kk’ ’ ’
of €1). To do so, we take a new look at the complete positive By w = (V[Be|¥Y), (40)



PRA 59 ESTIMATES FOR PRACTICAL QUANTUM CRYPTOGRAPHY 3311

BX = (W, |B|W) (1) Next we use the Cauchy inequality as shown in Appendix A
v KT to estimatep(™) by an expression involving only scalar prod-
These vectors are not independent. They are related by tists of the basic vectors. With use of the definitionp§),

identities this results in the expression
Boo= 3 (Boo— B1o— Bos+ B1y), W_q_ 1L (AgoA11)? 1 (BooB10)?
¢ 4Prec |A00|2+ |A11|2 4Prec |§00|2+ |§11|2 .

_ (49)
Bo1= 2(Boo— B1o+ Bo1— B11),

(42)  We find that there are actually only a few real quantities left.
B These ardAq and|A;|, the angle¢gs betweenAy, and
B1o=5(Boot Bio— Bor~B1o), Asrs [Aol? A2 [Agi+Asd?, pst and, finally,e™). The
normalization factop{Z) can be immediately eliminated. As

shown in Appendix B, we can optimizpﬁl) and find the

Bi11=3(Boo+ Bio+ Bos+ Byy). result

The advantage of this description is that the value of any

. . 1 D412 <t
scalar product of the vectoBs;, . remains unchanged if the 2[1+4e 4(€'M)?] for €V=3

, S (U< _ (49
By v/'s are replaced by y's, since Eq.(25 guarantees ¢ 1 for V=1,
that
B B =A A ’. 43 . . .
A S 4 @3 4 compare this result with other results we introduce the
error ratee in the sifted key aee=p{l)/p{) [so thate™®
The idea is now to estimate and reformulate E§$)—(39) =e/(1—e) and we find
in such a way that the new set of equations involve only the
four vectors Agg, Ajp, Apz, and Aj; and the quantities " 1+2e—7€? -
et : _ LT e
€M, pd), andp{l). As a first step we find, from Eqd35), © S o(1—e) (50
1 (AR (A This upper bound was given before in Rgfa3,24 for the
pH= 0 11 case when Eve performed nondelayed measurements. Re-
¢ 8p(L) k(v (AK)2+(AK)? cently Slutsky and co-workef®5,26] found that this bound
holds even for the delayed case. My formulation of that
K4 =Ka proof shows that this bound is valid not only for the one-
. 1 (Boo)"+(B11) 44  Photon contribution but can be extended to include the full
g8p) o (Ek')z+(§k')z’ (44 Hilbert space of optical fibers and detectors accessible to Eve
reet s 0 1 in real experiments.
From Refs[23,24,26 we know that this bound is sharp,
while Eq. (36) remains unchanged: since the eavesdropping strategy achieving this bound is
given explicitly. It is a translucent attack. An important prop-
1 p(silf) erty of this bound is that for a disturbance ratet9=3 (or
rec— 1+ (45 error ratee= 1) the eavesdropping attempt is so successful
that each bit of the sifted key originating from this part of the
The definitions ofp(2) and e® simplify to eavesdropping strategy is known with unit probability by
rec Eve.
%2:: %(|Aoo|2+ |A11|2+ |Eoo|2+ |§11|2), (46) E. One-photon contribution for corrected errors
If we correct errors without leaking knowledge about their
D1 5 ) 5 5 position to the eavesdropper, then the one-photon contribu-
Psit = 2 (|Agd “+[A1a|“+|Aoe| “+|A1d%). (47)  tion to the collision probability is given by
! Tr(po, AVAD+Tr2(p1 ALAY 1 Tr2(po, By By) + Tr(p1 By Bi) s
Pc =

_8 " T o i
Psit kek® Tr(AcA) 8Psit k' ek’ (D Tr(By,By)
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(Note thatp{e)=p{}.) The disturbance parameter coincidesThe disturbancee™™, pg;, and pe, are defined as in Egs.
with the error ratee®) in the sifted key, and is given by (52—(54), where we note that within scalar products like Eq.

) (43) the vectorsC (D) can be replaced b# (B). In Appen-

—(1):pi£r’ 52 dix D, | show that
p:(sif)
with " 1+2eM—2(e™)? for V<3
= =1 for l<e® ®9
Psir= 7 (|Agol 2+ [Ar1 *+] At >+ A0 or 3¢
= 1(|Bool 2+ By >+ |Bog 2+ B1d?), (53

As is the case if the error positions are not known to Eve,

this estimate is not necessarily sharp. This is due to the use

of the Cauchy inequality during the estimation. It shows a

In Appendix C, | show that the collision probability in this behavior analogous to that_of E@S) that for an error rate of

case can be estimated by e=3 (and disturbance rate=3) we find 7,(3)=1, which
means that Eve knows the whole key.

Per= Psit— & (|Agd >+ [A1al?+ [Bool 2+ [B1il?). (59

143eM-5(eM)? for V=i
pfv,l)s S eM—(eD)2 for i<eW<i (55 G. Multiphoton signals between Eve and Bob

To deal with multiphoton signals, we have to pick a de-
tection model. We will concentrate here on the passive de-
ction scheme to choos®, such that it is disadvantageous

or Eve to use multiphoton signals. In my the$3], |

1 for i<,

This estimate is not necessarily sharp, but it is good enoug
for practical purposes. It shows that=1 for an error rate of . 2 .
— E) . Purp hal o howed that even for active switching between two polariza-
e=3, which corresponds to a strategy which intercepts an

Il sianals whil d ianal By del ion analyzers with different polarization orientations one
stores all signals while random signals are resent. By delayz,n show security against eavesdropping strategies employ-
ing the measurement of the signals Eve thus knows all si

Is whil ; disturb ; %hg multiphoton signals.
nals while causing a disturbance & The crucial observation for the passive detection unit is

o that sending multiphoton signals will invariably cause the
F. One-photon contribution for corrected errors outcome associated wifhy to appear with a finite probabil-
with leaked error positions ity. This means that we can choose the weight fatgr

If Alice and Bob use a bidirectional error correction such thate(”>¢™) holds forn=2. As a consequence, the
scheme, then Eve will gain some knowledge about the posieptimal eavesdropping strategy will employ only single-
tions of the errors. She can therefore divide the signals intphoton signals. The contribution of ambiguous signals to the
subsets characterized by Eve’s measurement outéoithe  disturbance parametef” for discarded errors is bounded by
polarization basisy of the signal, and the correctness of the a rough estimate obtained with the help of E2B) by omis-
signal reception of Bob. We therefore need to introduce newjon of suitable positive terms in the expression Fgy:
operatorscfl,q,, and "Df},q,, to describe the eavesdropping

strategy applied to incorrectly received signals. They are L E Tf(AkP«paAIFD)

formed analogous tAfI,\I,, and~B‘fI,q,, , respectively. Then the (n) keKM
. . .. . . pD v, a
one-photon contribution toward the collision probability is =
given by Prec : E( ) Tr(AkaaAng\i)
kek(m
k \4 k \4 ¥, a
pl)= 1(1) (Ai0)2+(Ail)2 (56
8P kek(® (Ag0)™+ (Azy P3G -2 T Ay AEY)
kek(m
4 1 (B *+ (Bip* > Y
8pll) o S (BK)2+(BK)? 27" 2 Tr(Awy ALEY)
(57) ke
1 ChA+(Ch)? (z—-27"
PR L L SEt (60
8pgi kek® (Cgp®+(Cho 2

~ kV 4 ~ k/ 4

1 (Doy)™+(D39) _ The contribution of ambiguous signals to the disturbance pa-

8ply K ok (D)2 +(DYy? rametere™ for corrected errors is bounded in the same way
(58) as
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1_

P2 Tr(Awpw ALFp)
(n) ke K™
pi: VY, a - 0.8r
pl . fe () c
P2 Tr(Awy AR S
kek(M a -8 0.6F
v a g
2
P2 (27T Ay ALEY) g o4
keK™ a 3
_ YV T 5ol
2778 X THAwy AlEY)
keK(M @ ) ) ) ) )
v % 01 02 0.3 0.4 0.5
11 B disturbance parameter €
i(z—-27")
= BT =1. (61 FIG. 2. The fractionr, has to be discarded during privacy am-
4 plification as a function of the disturbance per correctly received

) . ) . element of the generalized sifted key. This result is a sharp estimate
One can find lower values afp estimating the expression jj the sense that Eve can reach the level of collision probability on

for €™ as a whole, including the errors in the sifted key.which the estimate is based.
However, the values found here serve our purposes well

enough. ) ] ) _ Since we cannot give an estimate offrom measured
For correcting and for discarding errors, we find that agantities, the case of discarded errors, we concentrate on
disturbance parameter= ; means that Eve knows the whole reconciliation methods which correct errors. From the results
key using one-photon signals. Therefore, if we choage  of this section we see that this is the better method in any
=1, we obtain €M=wp(p/p{D)=% and €M case, since discarding errors leads to a smaligithan cor-
=wp(p/pP)=1, respectively, and can bound the colli- recting errors. This number would have to be reduced further

sion probability, taking into account the possibility of multi- during privacy amplification than in the case of corrected
photon signals, for discarded errors by errors, as can be seen by a comparison of the estimatesg for
as a function ofe. Therefore, the final key will be shorter,

log,(1+4e—4€?) for e<1 and with that the protocol less efficient.

m(e)< -, (62) ~ From the estimates we find that the direct estimaterfor
for i<e, gives higher values if the information about error positions is
not leaked to the eavesdropper during reconciliation. We can
for corrected errors without leaked error position by regard the information of error positions gsoiling informa-
tion [7], and thus use estimat®4) even in the case of a
|ng(1+6:_ 10€2) for_i% unilateral error correction. The spoiling information is any

. o information which increases Eve’s Shannon information but
ri(€)<{ logy(3+2e—2€%) forj<e<j; (63

1 fori<e, e
and for corrected errors with leaked error positions by o 0.8
. — J— g i'"
logy(1+4e—4€®) for e<3 £ 06l
()< ~ (69 g
fori<e s
T 04r [

The results forr; are shown in Figs. 2 and 3, respectively. It & .

. K N ;
should be noted again that the value of the disturbance pa- © 0ol ¢
rameter changes depending on the intention to correct the ey
errors. For other detector models these results hold as well, 7
as long as we can show that for them the condi&8h= 1 % 01 02 03 04 05
for n=2 holds. This condition can be readily satisfied if disturbance parameter ¢

p/p{)= 4 for some u>0 and n=2 by choosingwy _ _ o
=1/(2u). For experiments with negligible numbers of am- FIG. 3. The fractionr; has to be discarded during privacy am-

. . . — plification as a function of the disturbance per element of the gen-
blguqus results, we can apprommgt_e the d'SturbmW 2 eralized sifted key if one corrects errors. If no information about the
flj'nCt'on of = Per/Psit @S the tra(_j't'onal error,rate In the position of errors leaked to the eavesdropper, fprwe find the
sifted key. In the case of discarding errors, this approximagash-dotted curve, and for leaked error positions we find the solid

tion is?%e/(l—e), while for corrected keys it ig~e. curve.
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Qecreases her expected collision probability on the key, leadyith 5::max_ €meas IS Sufficient for practical purposes.

ing to a decreased value af. We conclude that from the e fajlure to establish a key in a specific run is due to the
point of privacy amplification and reconciliation, the best- t5jjyre of authentication. Here two contributions can be dis-
known way to give a high rate of secure bits would be t0 us§jnqyished. One is the failure of reconciliation, which occurs
bilateral reconciliation methods. with probability 3,; the other is the failure to reach the target
of ayy in that run, which is signaled by making the authen-
tication fail. This happens with a probabilifg,. In the de-

The process of qguantum key growing depends on physicalign of the setup and the choice of parameters, we would
parameters and on the security parameters of the final key. kfeed to estimates, so that at least in the absence of an
this section we will bring together the essential formulaseavesdropper we will find a net gain of secure bits according
about the security statements concerning an accepted ke the formula given below. Miscalculation @ does not
and about the average key growing rate we can expect. Thigfect the security of the key, but only affects the efficiency
analysis is presented only for error correction reconciliationof key generation. We therefore omit detailed examinations
methods. of values forp.

) The last quantity concerning the security of the keyjs
A. Security needs which is the probability that authentication succeeds al-

The first thing a potential user has to fix is the toleratedthough Alice and Bob do not share a key. This probability
change of Shannon entrogy,, that an eavesdropper might can be estimated by=2"Nau"1,
obtain on the key without posing a security hazard to the
application in mind. Since this limit cannot be guaranteed C. Gain
with absolute certainty, the user has to limit the tolerated
probability «, that Eve’s knowledge exceeds,,. Authen-
tication may fail to detect errors, leaving Alice and Bob wit
a key neither safe nor shared. The tolerated probability foéJ
this has to be specified ag,,.

Givenly,, ai, andvy,,, and having in view a particular
physical implementation of the quantum channel, Alice an
Bob fix a value of the tolerated disturbaneg,, and of the
security bitsng used in privacy amplification, as well as the — .
length ng; of the sifted key and the number of secure bitsStanC?' and the averagt_e_numbq: Nrect Na“t.Of Input se- .
N, Used for authentication, such that for an accepted keg'®! Pits- Then the condition for an overall gain on average is
the security target set by, ai, andy,, is met, and that to have a positive value Mgain=PsucdNour— Nin, resulting in
the rate of secure bits generated, given below, is optimized. _— —

Ngain: (1- B){nsif[l_ T1(€max ] — nS}_ Naut— Nrec- ®

V. ANALYSIS OF THE EFFICIENCY OF KEY GROWING

In Sec. V B we described the influence of the chosen basic
h parameters on the acceptance and security of a run of key
rowing. Since we need secret bits as an input for the key
eneration, we have to make sure that on average we will
gain more secret bits than we put in. The important quantities
OEre here the success probability,.=1— 8 that a run of the
ey expansion leads to accepted new secure bits, the number

Nout=Nred 1 — 71(€maxn 1 — N Of secret bits gained in that in-

B. Security statement
The following security statement holds if the key growing To explore the implications of this condition, we go to the

is performed by extracting a key of length limit of large sample sizes. Then we can neglect the number
o of secret bits used for authentication and the safety parameter
Nfin=Nsi{ 1~ T1(€max) ] —Ns (65  ng. The remaining contribution df;, now comes from the

. . . e error correction part. For ideal error correction we can set
from the reconciled key during privacy amplification. Here

71 IS given by by the functional dependence of E@S) and B=0 and can use the Shannon “m',t' Wh'ch givBig,
(64), respectively. From the previous calculations we find = "sil 1 ~!as(€mead] ith the Shannon information shared
that the bits generated in a run of the key growing proces2€tween Alice and Bob given by

are secure in the sense that Eve achieves a change of Shan- _ _ _

non entropy on the accepted key of less tiqg with prob- ARe(emead = L+ €mead0B; €meast (1= €mead 108, (1 ém?aes)é)
ability a. The contributions tax are the probability of failure

of the estimation of the average disturbance giveruhyn  With these preparations we find

Eq. (14), the probability to estimate the Shannon information

in a specific run from the average information, givendy Ngain= Nsit 1~ 71(€mead ]~ Nsil 1 — | AB( €mead]-

in Eq. (16), and the probability of faked authentication given
by a3 in Eq. (17). Since all those quantities are expected to
be small, the estimate

In the limit of ngz— o, we can assume tha@—0 still satis-
fies any confidence limits put am. Therefore, the condition
~ Ngair=0 is now equivalent to

logy(2 "s+1)

a<a;+a,+az= exp—2ngd%) + Ay | a(€mead = T1( Emead - (69

+ 2 Naytl As we see from Fig. 4, this means that the protocol in the
presented form will be able to grow secret keys only for
setups operating at an error rate of less than 11.5% of error
correction. However, making use of the concept of spoiling

27"s

~ — 52 —+
exp( — 2ngs6°) Agin2

+ 2 Nauth 1, (66)
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................... butions over all possible keys from Eve’s point of view. One
"""""""""" has to take into account that single-photon signals states are
0.8l ' not used in today’s experiments. However, this theory can be
S extended to signal states containing multiphoton compo-
s nents. A first approach for that is to estimafe=1 for each
'§ 0.6f bit of the reconciled key on which Eve could have success-
&= J fully performed a splitting operation with subsequent de-
® < layed measurement. We denote the total number of these bits
° 047 / b d . ;
5 ; Y N, and then we need to reduce the key during privacy
& s amplification by
T 5ol i'
e M) = Dm +|1- h) 7'1( ei) . (M
0 a . . . n rec Nrec Nrec™ N
0 0.1 0.2 0.3 0.4 0.5
error rate e on sifted key The statistics, however, becomes more complicated this way,

) _ _ o and it seems to be better to include the dim coherent states
FIG. 4. Shortening during privacy amplification, represented bydirectly as signal states and to solve the problem in a clean
71 (the unilateral scenario is shown by the dash-dotted curve, ana/ay Work in that direction is currently under progress
the bilateral scenario by the solid cujyén balance with the loss T'he estimates for, are not necessarily sharp in the ;:ase
during reconciliation, represented g (falling solid line). The of error correction a;\d even in the case of discarding errors
intersections between two lines limit the tolerable error rate in the, . = .~ ’ . o .
generalized sifted key in the case of corrected errors. A lower limi his limit could be _Iowe_red using SpOIIIhg_ mformatlc[ﬁ]'
of potentially improved bounds for; is | o¢ (dotted ling. owever, the pos_5|bl_e |_mprovemenF of_efﬂClen_cy of _the key
growing process is limited, and this fine tuning might be
postponed until the experimental relevant situation for dim

information and of improved estimates @) might result in . !
P @(Jl 9 coherent signal states is solved.

lower estimates forr;. A lower bound is, however, the
Shannon informatior 5,z shared by Alice and Eve in this
scenario. In Ref[15], Fuchset al. gave a sharp bound for ACKNOWLEDGMENTS
| e, Which is shown in Fig. 4 as a dotted line. The difference  The author would like to thank Miloslav Dk, Richard
betweenr; ar'1d|AE represgnts the average g&rin a run °f, Hughes, Paul Townsend, and the participants of the work-
the key growing protocol in the limit of ideal error correction gpop on quantum information at the Institute for Scientific
and infinite sample sizes. The gain Interchange(ltaly) for discussions, and Steven van Enk for
helpful critical comments on the manuscript. For financial
G=1ap(€mead ~ 71(€mead (70) support, the author would like to thank Elsag-Bailey and the
Academy of Finland. The foundations for this paper were
laid while he did research under the supervision and support
of Steve Barnett.

gives the length of the final key as a fraction of the general
ized sifted key.

VI. CONCLUDING REMARKS APPENDIX A: CAUCHY INEQUALITY

In this paper I have given esti_mates needed in quantum | this appendix we prove inequalit#8) starting from
cryptography which are closely oriented toward practical exype expression

periments. | do not deal with security against all possible

attacks in quantum mechanics, but | deal with all attacks on 1 (Ak )4+(Ak )4

individual signals. This allows me to include issues related to H—_—_ S VY

practical implementation of quantum cryptography which 8Plas kek® (Afo)?+(Af)?

still cannot be treated in the general scenario. One of these ka4 =Ka

issues is the question of signals which, for example, simul- +L > (Boo) " +(B11) (A1)
taneously trigger two detectors monitoring orthogonal polar- 89%3 K ek’ @ (EIS(’))2+(E|I_;)2-

ization modes(This is the question of multiphoton signals
resent by Eve, leading to ambiguous signal$ie other im-  \ye rewrite the first sum as
portant question is that of an efficient key reconciliation prior

to privacy amplification. As seen in this paper, it is possible (AkoAk )2
to use the efficient bilateral error correction scheme of Bras- > (AEO)ZJF(AIEDZ_Zﬁ (A2
sard and Salvail14] without compromising security. K (Ago) "+ (A1)

In the statistical analysis | showed that it is possible in
this scenario to limit the knowledge of the eavesdropper or@nd use the Cauchy inequality, given as
the final key in an individual realization froomeasured )
guantitiesfor parameters which seem to be reachable in ex- - 2 2
periments. As measure of the eavesdropper’'s knowledge | (2 Xkyk) B Zk Xk)(ik“ yk) A3
used the change betweanpriori anda posteriori Shannon
entropy associated with the corresponding probability distri-or
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2 APPENDIX B:
(Ek: Xkyk> MAXIMIZING P& FOR DISCARDED ERRORS
2
; Xk= ) (A4) To optimize expressioni48), we first note that we can
Ek Yi: assume thdtd,g =|A14. If Eve starts with a strategy defined

by operatorsA, not satisfying this condition, then she could

We set Xk=(Aléoo°~'I])/ /_k—k_(Aoo)2+(A11)2 and  y, use theA operators
= J(AS)Z+ (A¥)? to obtain the inequality B (0 1) (0 1)
Ax

Ak:
2(AE&“HAL)“ 1 071 0

- < ky2 ky2
> T (AL~ LA (AL)’]

without a change in the obtained collision probability or dis-
turbance. When we combine the two strategies we find that

(E A AK )2 the resulting vectors satisfyAg =|A11] and |Agy=|A4d.
A This then gives the estimajé\ g+ Ao °<4|Aq,/%. Another
-2 - (A5)  observation is that we can always chooBey+|Aq]

; (Ao 2+ (Afy? =|Byg +|B14, which means that there are fewer or an equal

number of errors in the sifted key coming from the use of the

This can be used to estimate the first part in &dl) while  Polarization basis " than from the basis X.” This can
the second part can be estimated similarly, so that, with thé/ways be satisfied, since both polarization basis could be

help of Eq.(46), we find the result interchanged. UsingAqq =|A44| and the definition ofBq|
, <~ and |By;| this results in 2Aq)%(1— cosdg)=|Ag+Ag?
p<1— 1 (AeA)” 1 (BooBiy) _ with the angleggs betweenAq, and A, .
¢ APrec |Agg2+|Ag]?  4Prec |Bogl?+|B1l? The three relevant relations now become after elimination

of p{&) according to(36) and the use of relationg?2):

(1+ €M) |AgdX(cospin)? (14 eM)[2|AgdA(1+ cosdge) —|Ags+ Arg ]2

(1)
pB<1 B1)
¢ 8Psif 3205 2| Ago 2(1+ coSgp) + | Agr+ Aggl?]
Psit
1) g (|Aoo|2(3+ cos¢g) *+ 3 |Aort A10|2), (B2)
Psit= 3 (|Ago >+ Aoil®). (B3)

Our next step is to show that we can estimate the optimal valyé'dby replacing|Ag;+ A192 by 4|Aq,|2. To see that we
observe that this would allow to decreaseH{d?) by Eq.(B2), meaning a lower error rate. At the same tipﬁé) grows

indirectly from the falling value of (%?1)) and directly, sincedq/d D)p(cl)BO with D:=|Ag;+ A2, To prove the last point
we calculate

d (1+e)A4
apPe = 2 2 12 (B4)
32p5it(2| Agol “+ D + 2| Agq * cos ey
A= 12 Agg*~ 4| Ag 2D — D%+ 24 Aqql* COS5— 4| Aodl*D Cosgg+ 12 Agd *(COSeT0) . (B5)
This is positive, ifA is positive. This is indeed the case, since
d
A=~ 4lAcd®— 2D —4| A cosggr=0 (B6)

allows us to evaluatel at the maximal value oD .= 2|Agg>(1— cos¢$é), where it gives zero. This proves thd&=0 and
with that (d/dD)p{"=0. Therefore, three relevant equations become

o)< L (1 elAg*(cosday®  (1+ ™)l Aod*(L+ cosegy) —2|Aal”)’ ®7)
’ 8psi 16p5il |Acdl*(1+ cosgg) +2|Ag|?]
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Psit
<1+——<1>> =5 [|Aod%(3+ cosggy) +2|Agyl?], (B8)

Psit= 3 (| Ago 2+ Agil?). (B9)

We solve Eqs(B8) and(B9) for |Ay,| and cospgs, and insert these into EGB7). The maximum oveA is then taken, and
we find

pél)$%[1+4?l)_4(?l))2]_ (B10)

The strategy resulting in this collision probability is described by

2pg;

2_ 2_ sif
|AOO| _|A11| _1+?1)’ (Bll)

2pgirer)
2_ 2_ sif

|Aoi?=|A1d*= L (B12)
cosgge=1-2¢€", (B13)
cos¢pd=1. (B14)

In the derivation we have chosen/A22(1— cosdgy)=|Agi+ A2, and find the optimal solution respects this choice for

eW<i. Fore®=1 we findp"'=1, so that we conclude that

| F[1+4eM—4(eM)?] for M=
pe= _ (B15)
1 for eV=1.

Nl

APPENDIX C: MAXIMIZING Pg) FOR CORRECTED ERRORS

We start from Eq(51) and use the Cauchy inequality in a similar way as in Appendix B. We obtain the bound

(Weq (AocA 10+ (AooA11) >+ (AgiA10)*+ (AgA1)?  (BooB1o)” + (BooB11)*+ (BosBio)*+ (BoiBry)?

= — = — (Cy
¢ (| Agd >+ [Ag >+ A2+ |A14]%)? (|Bod >+ |Boal >+ [B1gl 2+ [B14]?)?

Next we introduce the anglesys, @59, and o5 between the corresponding vectdkgy, Aqg, Agi, andA;;; make use of

relations(42) and(43); use the symmetry argument as in Appendix B; and after some transformation find the set of equations

o< 3. |Agd*(1—3 cogeld) +|Agl|*(1— 3 codel) Al |23+ COS@gsCoSEa—2 coS ey 2
=7 00l 01l
© o4 8(|Agd >+ [Ag]?)? 4(|Agd®+ |Agl?)?
. |Ad¥(1—cosell) 4+ |Agy?(3—cosel?d)
6(1):| od 00 T Aol 01 ©3

4(|Agdl ®+|Acil®)

The first observation is that it is optimal to choose gffs=0 since this choice optimizesi™ while it leavese(!) unchanged.
The second observation is that the choice of

|Agdl? cosegs=|Aoil? cosegs , (C4)
within the subspace defined by
|Agol2 COS@3i+ | Agy]? cospid= const

and fixed values ofAyy and|Ay,|, is optimal if this choice is possible. In this case we are left with the equations



3318 NORBERT LUTKENHAUS PRA 59

3 N |Agd *(1—4 co @gp) + | Agil*+ 6] Aggl 2| Agl?

(1)
Pc's 7 : (CH
¢ 4 8(|Aod*+]A0ll?)?
?1):|A00|2(1—2 cosegp) + 3| Aoyl )
4(|Acd®+[Aoll?)
At the end of a short maximization calculation, we find a solution consistent with symmetry cor@tpfor :<eM<1i It
is given by
pe=+ e — ()2 (o)

This maximum is obtained by choosing the values ggs- (1—2eM)/[2(1— eM)] and |Agy =|Agd Ve /(1 eM). The
symmetry conditionC4) then gives cogi=(1—2eM)/2¢™) which limits the range of validity td <e™). For =€ we
find the optimal solution by selecting cp§)=1. A short maximization calculation then gives the bound

PP <i+3eV—5(eb)2 (C9
for the choice of parameters coii=(1—3€e®)/(1— eV) and|Agy| = |Acd V(e®)/(1—eP).
APPENDIX D: MAXIMIZING Pél) FOR CORRECTED ERRORS WITH LEAKED ERROR POSITIONS
We apply Cauchy inequalities to E¢6), and use the vector notatiods B, C, andD to find

p(l)< ! |A00A11|2 1 IC01(310'2 1 |h|.5>oo~B‘11|2 1 |501510|2

<1- - - = — - ~ — . (DY)
¢ APsit | A2+ |Agyl®  4Psif [Coyl*+[Cyd®  4Psit [Bogl*+[Bya|*  4Psif [Dogl*+[ D1

It becomes clear immediately that we can repl@cky A andD by B because of relations similar to E@L3). Similar to the
calculations in Appendixes B and C, we introduce the anglgs ¢35, and ¢35 and use relationg42) and (43) and the
symmetry argument introduced in Appendix B to find the new form of [Bq) as

MO 2 _ |Aod? coS' gt |Anyl® cos @3 | Aod?Acdl (1+ Cos‘ilél (1+ cosep) .
4(|Aod*+]A0yl?) 2(|Aod®+A01l®) | [Agd*(1+ cosegp) + Al *(1+ cosep))
(1— cosege) (1— cosedd)
’ |Aad 2(1— cosegy) +|Aeg (1~ coseg)) | 02
while from Appendix C we take the expression ! as
prci | Ao *(1— cosegp) +|Agl *(3— cosepy (D3)

4(|Agdl ®+|Aol®)

We next perform a variation along the path defined Ay ? coseggt | Agil? cosego= const, and find thap(™ is optimized
for the choice co&é%): COScpé‘f. An optimization calculation for the remaining parameters leads to the estimate

pP=1+2eM—2(eV)? (D4)

for a disturbanceY<%. This optimum is obtained by choosing agg=1—2€e® and|Ag =|Ag V(1— M)/,
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