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Bell measurements for teleportation

N. Lütkenhaus, J. Calsamiglia, and K.-A. Suominen
Helsinki Institute of Physics, PL 9, FIN-00014 Helsingin yliopisto, Finland

~Received 23 September 1998!

In this paper we investigate the possibility of making complete Bell measurements on a product Hilbert
space of two two-level bosonic systems. We restrict our tools to linear elements, such as beam splitters and
phase shifters, delay lines and electronically switched linear elements, photodetectors, and auxiliary bosons. As
a result we show that with these tools a never failing Bell measurement is impossible.
@S1050-2947~99!04505-9#

PACS number~s!: 03.67.Hk, 42.50.2p, 03.67.2a, 03.65.Bz
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I. INTRODUCTION

Bell measurements project states of two two-level s
tems onto the complete set of orthogonal maximally
tangled states~Bell states!. The motivation to deal with Bell
states comes from the fact that they are key ingredient
quantum information. Bell states provide quantum corre
tions which can be used in certain striking applications s
as teleportation in which a quantum state is transferred f
one particle to another in a ‘‘disembodied’’ way@1#, quan-
tum dense coding in which two bits of information can
communicated by only encoding a single two-level syst
@2#, and entanglement swapping@3,4#, which allows en-
tanglement of two particles that do not have any comm
past, and opens a source full of new applications sinc
provides a simple way of creating multiparticle entanglem
@5,6#. But to take full advantage of these applications o
needs to be able to prepare and measure Bell states.
problem of creating Bell states has been solved in opt
implementations by using parametric down-conversion i
nonlinear crystal@7#. Particular Bell states can be prepar
from any maximally entangled pair by simple local unita
transformations. The question arises of whether it is poss
to perform a complete Bell measurement with linear devi
~like beam splitters and phase shifters!. It is clear that this
can be achieved once one has the ability to perform a c
trolled NOT operation ~CNOT! on the two systems, which
transforms the four Bell states into four disentangled ba
states. In principle we need to do less. As we are not in
ested in the state of the system after the measurement, i
be vandalized by the measurement. The only important th
is the measurement result identifying unambiguously a B
state.

In an earlier paper Cerf, Adami, and Kwiat@8# have
shown that it is possible to implement quantum logic
purely linear optical systems. These operations, however
not operate on a product of Hilbert spaces of two syste
instead they operate on the product of Hilbert spaces of
degrees of freedom~polarization and momentum! of the
same system. Therefore these results can be used to im
ment quantum logic circuits but not to perform most of t
applications mentioned above. For example, in the cas
teleportation there have been two recent experimental r
izations@9,10#. Boschiet al. presented results in which Be
measurement is realized with 100% efficiency using lin
PRA 591050-2947/99/59~5!/3295~6!/$15.00
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optical gates, but the teleported state has to be prepared
forehand over one of the entangled photons@9#. So, in some
sense that scheme differs from the ‘‘genuine’’ teleportat
since it does not have some very crucial properties, like
ability to teleport entangled states or mixed states. This
stacle could, of course, be overcome if one had the poss
ity to swap the unknown state to the Einstein-Podols
Rosen ~EPR! photon. But, this again requires quantum
quantum interaction~not linear operator!. On the other hand
the Innsbruck experiment can be considered as a ‘‘genui
teleportation but it has the important drawback that it on
succeeds in 50% of the cases~in the remaining cases th
original state is destroyed!. For the same reason the Inn
bruck dense coding experiment@11# can only reach a com
munication rate of 1.58 bits per photon instead of 2 bits
photon.

Recently, Kwiat and Weinfurter@12# have presented a
method which allows complete Bell measurements and
operates on the product Hilbert spaces of two systems, b
adds a very restrictive requirement too. That is, the partic
need to be entangled in some other degree of freedom
forehand~so half of the job is already done!. Notwithstand-
ing, this method still represents important progress sinc
allows, in principle, realization of all applications which fu
fill the condition that the Bell measurement is perform
over photons which already have quantum correlations~as in
the case of quantum dense coding!.

At this stage we choose to call a physical scheme a B
analyzer only if it operates on product Hilbert spaces of t
two-level systems. A generalization to systems with oth
structure than a two-level system is the measurement use
the teleportation of continuous variables@13# which success-
fully projects on singlet states.

In this paper we prove that all these turnabouts are m
than justified since we present a no-go theorem for the B
analyzer for experimentally accessible measurements inv
ing only linear quantum elements. We now lay out t
framework for this theorem in a language which clearly h
the experimental situation of the teleportation experim
performed at Innsbruck in mind. This means especially t
we concentrate on bosonic input states. Results concer
fermionic input or input of distinguishable particles can
found in the work of Vaidman and Yoran@14#.

The Hilbert space of the input states is spanned by st
describing two photons coming into the measurement fr
two different spatial directions, each carrying two polariz
3295 ©1999 The American Physical Society
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tion modes. Therefore we can describe the input states
subspace of the excitations of four modes with photon c
ation operatorsa1

† ,a2
† ,b1

† ,b2
† . Herea and b refer to spatial

modes, while ‘‘1’’ and ‘‘2’’ refer to polarization modes. Th
Hilbert space of interest is spanned by the orthonormal se
Bell states given by

uC1&5
1

A2
~a1

†b2
†2a2

†b1
†!u0&, ~1!

uC2&5
1

A2
~a1

†b2
†1a2

†b1
†!u0&, ~2!

uC3&5
1

A2
~a1

†b1
†2a2

†b2
†!u0&, ~3!

uC4&5
1

A2
~a1

†b1
†1a2

†b2
†!u0&, ~4!

where u0& describes the vacuum state. Although we us
spatial modes and polarization to motivate this form of B
states, it should be noted that any two pairs of bosonic
ation operators~all four commuting! can be chosen for the
theorem to be valid. This includes all possible degrees
freedom of the boson. In the photon case it includes es
cially polarization, time, spatial mode, and frequency. F
example, all wave packets containing one photon can
modeled. The Bell measurement we are looking for is
scribed by a positive operator valued measure~POVM! @15#
given by a collection of positive operatorsFk with (kFk
51. Each operatorFk corresponds to one classically disti
guishable measurement outcome, for example, that dete
‘‘1’’ and ‘‘2’’ out of four detectors go ‘‘click’’ and the rest
do not. The probabilitypk for the outcomek to occur while
the input is being described by density matrixr is given by
pk5Tr(rFk) . A Bell measurement with 100% efficiency
characterized by the property that allFk are triggered with
probability Tr(rC i

Fk)Þ0 for only one of the four Bell state

inputs rC i
( i 51, . . . ,4). This allows us to rephrase th

problem as one ofdistinguishingbetween four orthogona
equally probable Bell states with 100% efficiency. To illu
trate the formalism we look at the Innsbruck detecti
scheme@16# ~Fig. 1!, which consists of eight POVM ele
ments, corresponding to the events

detectors going ‘‘click’’ could have been
triggered by

‘‘1’’ and ‘‘4’’ C1

‘‘2’’ and ‘‘3’’ C1

‘‘1’’ and ‘‘2’’ C2

‘‘3’’ and ‘‘4’’ C2

‘‘1’’ sees 2 photons C3 or C4

‘‘2’’ sees 2 photons C3 or C4

‘‘3’’ sees 2 photons C3 or C4

‘‘4’’ sees 2 photons C3 or C4
a
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Only the first four events allow assigning unambiguou
Bell states to the outcomes. The total fraction of these eve
for teleportation, where all Bell states are equally probab
is 50%. The state demolishing projection on entangled st
is indeed possible using only linear elements, but not 10
efficient.

II. DESCRIPTION OF THE CONSIDERED
MEASUREMENTS

Before we continue we shall describe our tools more p
cisely. We restrict our measurement apparatus to linear
ments only. This means that the vector of creation opera
of the input modes is mapped by a unitary matrix onto
vector of creation operators of the output modes. Recket al.
@17# have shown that all these unitary mappings can be r
ized using only beam splitters and phase shifters. The n
ber of modes is not necessarily 4: we can couple to m
modes using beam splitters so that the input states are
scribed by the direct product of the Hilbert space of the B
states and the initial state of the additional modes. All tho
modes are mapped into output modes, where we place de
tors. We assume these detectors to be ideal, so that the
described as performing a POVM measurement on the m
tored mode where each POVM elementFk

(detector)5uk&^ku is
the projection onto a Fock state of that mode. For experim
tal reasons, one would like to reduce this to a simpler de
tor that cannot distinguish the number of photons by whic
is triggered. The simple ‘‘click’’ or ‘‘no click’’ detector is
described by a POVM with two elements,u0&^0u and
(k51

` uk&^ku. However, we will show that even a fancier d
tector does not allow us to implement a Bell measurem
that never fails. The last tool introduced here is the ability
perform conditional measurements. With that we mean t
we monitor one selected mode while keeping the ot
modes in a waiting loop. Then we can perform some lin
operation on the remaining modes depending on the outc
of the measurement with all the tools described above.
general strategy is shown schematically in Fig. 2.

Vaidman and Yoran@14# have arrived at the conclusio
that a Bell state analyzer cannot be built using only line
devices, but their measurement apparatus does only a
restrictive type of measurement. It is not allowed to ma

FIG. 1. The Innsbruck detection scheme uses an initial 50
beam splitter~BS!, mixing modesa1

† with b1
† anda2

† with b2
† . Then

each of the resulting outputs is separated from each other usi
polarizing beam splitter~PB!.
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PRA 59 3297BELL MEASUREMENTS FOR TELEPORTATION
use of auxiliary photons and no conditional measureme
are allowed either. Both tools might be very useful and
do not see any essential reason to disregard them. Fo
stance, the apparatus proposed by Vaidman and Yoran
not distinguish between the four disentangled basis state
the form

u↑&u←&,u↑&u→&,u↓&u↑&,u↓&u↓&

for which a conditional measurement is needed.

III. CRITICISM OF A PRIORI ARGUMENTS AGAINST
LINEAR BELL MEASUREMENTS

Intuitively, one needs to operate a ‘‘nonlinear’’ measuri
device to perform Bell measurements in the sense that
two-level system has to interact with the other. In the case
photons there is no direct interaction between them. One
try to couple them through a third system such as an a
@18# or map the state of the photons into atom or ion sta
and perform there the desired measurement@19#. These
schemes are closest to the simple idea of performing aCNOT

operation, a Hadamard transform, and then projecting on
disentangled base, but they bring up a whole new rang
problems~e.g., weak coupling, decoherence, pulse shape
sign! that breaks with the idea of having simple and co
trolled ‘‘table-top’’ optical implementations of quantum in
formation applications. Therefore it is worth checking t
possibility of performing it by linear means.

It is true that linear operations cannot make the two in
photons interact, they can only make them interfere. The

FIG. 2. The general scheme mixes the modes of the Bell s
with auxiliary modes~not necessarily in the vacuum state!. Then
one selected mode is measured and, depending on the measur
outcome, the other output modes are mixed with new modes
inputs linearly and again a mode is selected to be measured.
process can be repeated over and over again.
ts
e
in-
n-
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e
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fore the unitary transformationUL is separable in the sens
that it can be written in terms of a unitary operationU over
each photon, and of course aCNOT cannot be performed by
these means@UL5U ^ U acts on the symmetric subspace
the single-photon Hilbert space productH1^H1 , dim(U)
.2#. Even if this kind of operation preserves the entang
ment, the Hilbert space might be large enough to span
puts which trigger different combinations of detectors f
different input Bell states.

IV. NO-GO THEOREM

We now show that it is not possible to construct a B
measurement using only the tools mentioned above to rea
a measurement for which all POVM elements are projecti
on one of the four orthogonal Bell states.

To do so we concentrate on the first step of our meas
ment setup: We measure the photon number in one sele
moded ~see Fig. 3!. For each result we will find the remain
ing modes in four conditional states corresponding to e
Bell state input. We then show that there is always at le
one photon number detection event in the first mode t
leads to nonorthogonal~i.e., not distinguishable! conditional
states in the remaining modes.

In stage A~Fig. 3! the input state can be described as
product of two polynomials in the creation operators of t
auxiliary and the Bell state modes, respectively, acting on
vacuum~denoted byu0&):

uC i
~ total!&5Paux~cj

†!PC i
~a1

† ,a2
† ,b1

† ,b2
†!u0&.

Since we use detectors with photon number resolutio
is enough to assume that the auxiliary input is in a state
definite photon number. ThenPaux(cj

†) contains only prod-
ucts of a fixed number of creation operators, a

te

ent
nd
his

FIG. 3. The initial step takes the input state at stage A from
input mode description via the linear transformationU to the output
mode description at stage B. Depending on the detected ph
number in moded we find different conditional states for the fou
Bell state inputs at stage C.
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PBell(a1
† ,a2

† ,b1
† ,b2

†) contains only products of two creatio
operators. Now the modes of the Bell state inp
a1 ,a2 ,b1 ,b2 and the auxiliary modescj are linearly mapped
by the unitary transformationU into the output modesd and
ek . At stage B the state is described by

uC i
~ total!&5 P̃aux~d†,ek

†!P̃C i
~d†,ek

†!u0&.

We expand the two polynomials in powers ofd† as

P̃aux~d†,ek
†!5~d†!NauxQ̃aux~ek

†!1•••, ~5!

P̃C i
~d†,ek

†!5~d†!NBellQ̃C i
~ek

†!1•••. ~6!

NBell is defined as the maximal order ind† among the four
polynomialsP̃C i

and it is independent of the indexi. As a

consequence, the polynomialsQ̃C i
can be zero for somei.

Similarly Naux is defined as the order ind† of the polynomial
P̃aux.

In the moded we will find a range of photon numbers. T
prove the theorem it suffices to see that for any of th
events the conditional statesuF i

(total)& that arise for each o
the Bell states are not perfectly distinguishable. We conc
trate on the measurement outcomes in this mode which
to the maximum photon number detected in that modeN
5Naux1NBell . The stateuF i

(total)& of the remaining modes
conditioned on the occurrence of this event is then given

uF i
~ total!&5Q̃aux~ej

†!Q̃C i
~ej

†!u0&. ~7!

The reason for starting out from the event of detecting
N photons in the selected moded is that the problem reduce
to a much simpler form in which the measuring apparatu
not allowed to make use of auxiliary photons. That is,
imposing the orthogonality condition of the condition
states on this particular event, we prove that the contribu
Q̃aux(ej

†) of the auxiliary photons cannot make nonorthog
nal states orthogonal in the sense that two conditional st
uF i

(total)& are orthogonal if and only if the states

uF i&5Q̃C i
~d†,ej

†!u0&

are orthogonal.
t

e

n-
ad

y

e
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n
-
es

To prove this statement we observe that the overlap
two conditional states belonging to different Bell state inp
i and j is given by

^F i
~ total!uF j

~ total!&5^0uQ̃C i

† Q̃aux
† Q̃auxQ̃C j

u0&

5(
n̄

^0uQ̃aux
† Q̃auxun̄&^n̄uQ̃C i

† Q̃C j
u0&

5^0uQ̃aux
† Q̃auxu0&^0uQ̃C i

† Q̃C j
u0&. ~8!

The first step makes use of the commutativity ofQ̃C i

† and

Q̃aux following the commutativity of the two sets of creatio
operators for the auxiliary modes and the Bell mod
(@Paux,PC i

#50). Furthermore, the first step inserts the ide
tity operator of the Fock space for all involved modes. W
denote byn̄ the vector of photon numbers in each involve
mode. The second step then uses the fact that only on
these terms is nonzero. This is a consequence ofQ̃C j

u0&
being a state with total photon number 22NBell while the
conjugate statên̄uQ̃C i

† is a (22NBell)-photon state if and

only if ^n̄u5^0u.
Now that it is clear that the use of auxiliary photons do

not provide any help in building a Bell state analyzer, it
much easier to check if the orthogonality condition of t
conditional states is fulfilled when only one or two photo
are detected in the selected moded. To do this, we introduce
a formalism for the linear mapping of modes.

Consider the unnormalized input state

uC&5
m1

A2
~a1

†b1
†1a2

†b2
†!1

m2

A2
~a1

†b1
†1a2

†b2
†!

1
m3

A2
~a1

†b2
†2a2

†b1
†!1

m4

A2
~a1

†b2
†2a2

†b1
†!u0&. ~9!

By choosing one of the weightsm i as one and the others a
zero, we recover the four Bell states. This state can be w
ten with the help of a symmetric real matrixM as

uC&5~a1
† ,a2

† ,b1
† ,b2

† , . . . !M ~a1
† ,a2

† ,b1
† ,b2

† , . . . !Tu0&,

with
M523/2S 0 0 m11m2 m31m4 0 . . . 0

0 0 m32m4 m12m2 0 . . . 0

m11m2 m32m4 0 0 0 . . . 0

m31m4 m12m2 0 0 0 . . . 0

0 0 0 0 0 . . . 0

: : : : : : :

D .
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A linear transformation of the modes is now equivalent
the transformation

M̃5UTMU

for some matrixU of dimensionD3D ~with D>4) satisfy-
ing UU†51. The choiceD>4 corresponds to an enlarge
ment of the number of modes due to additional unexci
input modes of beam splitters. The output modes are n
d,e1 , . . . ,eD21. The entries of the matrixM̃ reveal the dis-
tinguishability of the Bell states in the following way: if tw
photons are detected in the moded then the presence ofm i in
the matrix elementM̃11 reveals which Bell statesC i could
have contributed to this event. For all Bell states that c
tribute, the conditional state of the remaining modes
vacuum. It turns out that this event cannot be attributed
single Bell state. To prove this statement we calculateM̃11
with a general first column of the matrixU given asv1
5(a,b,c,d, . . . )T:

M̃115v1
TMv15

1

A2
m1~ac1bd!1

1

A2
m2~ac2bd!

1
1

A2
m3~ad1bc!1

1

A2
m4~ad2bc!. ~10!

To be able to attribute the event of two photons in one m
unambiguously to one Bell state, one and only one of
coefficients of them i ’s should be nonzero. It is easily ver
fied that this condition cannot be satisfied.

If we impose that three of the coefficients vanish we o
tain two possible solutions,

a50,b50 ;c,d, i.e., v15~0,0,c,d!,
~11!

c50,d50 ;a,b, i.e., v15~a,b,0,0!.

But for both solutionsM̃1150. Therefore a perfect Bell ana
lyzer can never detect two photons in the selected mo
Now we have left only the case where only one photon
detected.

After a single-photon detection at moded, the first line of
M̃ , denoted byM̃1,i, tells us the state of the remaining mode
Their state is derived from the unnormalized state

uF&5M̃1,i~d†,e1
† , . . . ,eD21

† !T

by choosing, as before, one of them i to be one, and the res
to be zero. We have shown above that the first column oU
is of the form v15(a,b,0,0) or v15(0,0,c,d) in order to
avoid two photons entering the selected mode. Due to
symmetry of the problem we can restrict ourselves to the
situation,v15(a,b,0,0). We now writeU in the form
d
w

-
s
a

e
e

-

e.
s

.

e
st

U5S a aR

b bR

0 cR

0 dR

: :

D .

HereaR,bR,cR,dR areD21 dimensional row vectors. The
M̃1,i is given by

M̃1,i5
1

2A2
„0,m1~acR1bdR!1m2~acR2bdR!

1m3~bcR1adR!2m4~bcR2adR!…. ~12!

From this it follows that the conditional states are~up to
normalization!

uC1&5~a cR1b dR!e†u0&, ~13!

uC2&5~a cR2b dR!e†u0&, ~14!

uC3&5~a dR1b cR!e†u0&, ~15!

uC4&5~a dR2b cR!e†u0&, ~16!

with the vector of creation operatorse†5(e1
† , . . . ,eD21

† )T.
The six different overlaps between these states are~up to the
missing normalization factors!

^C1uC2&5uau2ucRu22ubu2udRu2, ~17!

^C1uC3&5a* bucRu21b* audRu2, ~18!

^C1uC4&5b* audRu22a* bucRu2, ~19!

^C2uC3&5a* bucRu22b* audRu2, ~20!

^C2uC4&52a* bucRu22b* audRu2, ~21!

^C3uC4&5uau2udRu22ubu2ucRu2. ~22!

These overlaps are zero if

~ uau22ubu2!~ ucRu21udRu2!50, ~23!

~ uau21ubu2!~ ucRu22udRu2!50, ~24!

a* bucRu250, ~25!

b* audRu250. ~26!

Since the column vectorv1 cannot be a zero vector (uau2

1ubu2Þ0) this simplifies to

ucRu25udRu2, ~27!

2~ uau22ubu2!ucRu250, ~28!

b* aucRu250, ~29!

from which we can conclude thatucRu25udRu250. But for
this choice the matrixU does not have rank 4 and so th
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3300 PRA 59N. LÜTKENHAUS, J. CALSAMIGLIA, AND K.-A. SUOMINEN
restriction onU given byUU†51 can no longer be satisfied
Obviously now we can discard the only remaining case;
zero-photon case represents a bad choice of the moded since
it would be disconnected from the incoming Bell mode
This is the final blow to the attempt to do Bell measureme
with linear elements.

V. CONCLUSION

In this paper we have shown that no experimental se
using only linear elements can implement a Bell state a
lyzer. Even the ‘‘nonlinear experimentalist’’ performin
photon number measurements and acting conditioned on
measurement result cannot achieve a Bell measurem
which never fails. Included in the proof is the possibility
insert entangled states in auxiliary modes into the meas
ment device.

Recently there has been another proof of this no-go th
rem @14# and some proposals to surmount the theor
@9,12,13,16#. In this paper we have discussed their oversig
or drawbacks and explained why the theorem does not a
to them.

The remaining open question is the one for the maxim
fraction of successful Bell measurements. The Innsbr
scheme gives 50%. It should be noted that in principle
s,

A

,

,

cu

r,

s.
e

.
s

p
a-

he
nt

e-

o-

s
ly

l
k
ll

numbers between 50% and, in a limit, 100% can be allow
by a POVM measurement, which either gives the corr
Bell state or gives an inconclusive result. Something that
help to gain some insight into the problem is to investig
the possibility of projecting with~or asymptotically close to!
100% efficiency over a not maximally entangled base~but
still with some entanglement!.

The fact that the first step in our proof was to rule out t
use of an auxiliary system does not mean that it could no
a very useful tool when considering the case of obtaining
efficiency bigger than 50%. Following the same procedure
in this proof, and trying to evaluate the maximum disti
guishability of the conditional states@20# that appear in each
stage, could be a way to obtain the real upper bound to
Bell measurement efficiency.
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