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Conjugated operators in quantum algorithms
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This paper addresses the question of understanding quantum algorithms in terms of unitary operators. Many
quantum algorithms can be expressed as applications of operators formed by conjugating so-called classical
operators. The operators that are used for conjugation are determined by the problem and any additional
structure possessed by the Hilbert space that is acted upon. We prove many commutative laws for these
different operators, and we use those to phrase and analyze old and new problems and algorithms. As an
example, we review the Abelian subgroup problem. We then introduce the problem of determining a group
homomorphism, and we give classical and quantum algorithms for it. We also generalize Deutsch’s problem
and improve the previous best algorithms for earlier generalizations of it.@S1050-2947~98!07808-1#

PACS number~s!: 03.67.Lx, 89.80.1h, 89.70.1c, 02.70.2c
hm
r

er
es
ri
in

an
m

ut
go

d

n
is
te
,
l o
a

a
e
ju

ws
is

le
t.
o

W

one
us
a

on

iliar

e

e

st
tum
re-
or-
ol-

he

the

l-
s
op-
ill
e

I. QUANTUM COMPUTATION

Here is an outline of the most popular quantum algorit
ever developed. It begins with elementary classical prep
cessing, and then it applies the following quantum exp
ment: starting in an initial superposition of all possible stat
it computes a classical function, applies a quantum Fou
transform, and finally performs a measurement. Depend
on the outcome, it may carry out one or more similar qu
tum experiments, or complete the computation with so
classical postprocessing.

This algorithm is in fact not just a single algorithm, b
rather a large class of algorithms. It includes Shor’s al
rithms for factoring and discrete logarithms@1#, Deutsch’s
initiating algorithm@2#, and the algorithms by Bernstein an
Vazirani @3#, Simon@4#, and others.

It is the aim of this paper to investigate the properties a
computational power of this kind of algorithm. Our focus
on the quantum part, the experiments, and to a smaller ex
on the classical preprocessing and postprocessing. Below
write these quantum experiments as conjugated classica
erators acting on initial superpositions, followed by a me
surement. We do not only consider the above problems
their algorithms, but more generally, problems that hav
classical origin, and quantum algorithms obtained by con
gating classical operators~defined below!.

The general setup for our considerations is as follo
Given a mappingg:A→R between finite sets, the problem
to compute some propertyp of g. As commonly done, we
require that the length of the answerp(g) is polynomially
bounded in the logarithm of the cardinality ofA. Many in-
teresting properties of functionsg:A→R are decision prob-
lems wherep only takes the values 0 and 1, as, for examp
the problem of determining if a function is constant or no

Our main assumption is thatg comes as a black box s
that it is not possible to obtain knowledge aboutg by any
other means than evaluating it on points in its domain.
assume that the input to the black box is a pair (a,r )PA
3R, and that the output (a8,r 8)PA3R satisfies thata8
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5a for all inputs. Further, we assume that the setR contains
a particular element denoted 0R , such that the black box
outputs„a,g(a)… on the input (a,0R). These last two restric-
tions are without loss of generality since Bennett@5# has
shown that any classical computation can be reduced to
on the above form. They are needed since they provide
with a natural way to extend the black box to work on
quantum system.

We summarize a few important issues of computation
quantum systems before discussing how to extendg to such
systems. We otherwise assume that the reader is fam
with the basic notions of quantum computing@6#. For any
finite set X, let CX denote the vector space of all finit
C-linear combinations of elements inX. On a quantum sys-
tem, all computations onCX are done with respect to som
preferred basis, called thecomputational basis. We shall al-
ways pick X itself as this basis since we find it the mo
natural choice if we are to compare classical and quan
algorithms. We require that the initialization and measu
ments are performed with respect to this basis, too. As n
mal in quantum computation, we use Dirac notation: the c
umn vector of the basis elementxPX is denoted by thebasis
stateux&, and its row vector bŷxu. Similarly, we denote the
column vector of(axxPCX by thesuperposition(axux&.

Having fixed the computational basis toA^ R, the evalu-
ation of g is naturally extended to quantum systems. T
quantum black box implements a unitary operatorUg on the
Hilbert space CA^ CR, and it satisfies thatUgua&u0R&
5ua&ug(a)& for all aPA. Here, the notationua&ur & is short-
hand forua& ^ ur &.

The most naive approach to find propertyp for some
given functiong:A→R is to initialize some stateuC&, apply
Ug , and then measure the system. That is, to perform
experiment (z1 ,z2)5(M1^M2)UguC&, whereMi denotes
a measurement of thei th register with outcomezi . From the
outcome, we then try classically to deduce nontrivial know
edge aboutp(g). By repeating this experiment for variou
initial states, we might hope to determine the sought pr
erty. For many problems, this straightforward approach w
not yield an efficient algorithm—simply because of th
structure of the operatorUg . But this does of course
3280 ©1999 The American Physical Society
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not exclude fast quantum algorithms for the problem.
elementary, but very important, observation is that th
might exist some other orthonormal basisX,CA^ CR for
which the unitary operatorUg takes a simple form. In tha
case, we might consider the experiment

~z1 ,z2!5~M1^M2!~MUgM†!uC&,

whereM is the unitary operator that maps the basisX to the
basisA^ R, and whereM† denotes the conjugate transpo
of M . This experiment consists of three parts: the initializ
tion of uC&, the application of the operator (MUgM†), and
finally the read out.

In contrast to many papers on quantum computation,
shall refrain from intermixing our analysis of the first tw
parts. We believe that those two parts serve different p
poses, and to get a full understanding of the second, it ne
its own investigation. This second part is obtained by con
gating a ‘‘classical’’ operatorUg with a unitary operatorM .
We refer toM as aconjugation operatorand to (MUgM†)
as theconjugated operator. In this context, rather than think
ing of M as a unitary operator, we think of it as implemen
ing a basis change from some orthonormal basisX to the
computational basisA^ R. In all our examples in what fol-
lows, the basisX is the tensor product of a basis forCA and
a basis forCR. The second part of the above experiment th
takes the simpler form

~A^ R!Ug~A†
^ R†!,

whereA is an operator acting on subsystemCA, and R is
acting onCR. It is worth noting that all quantum algorithm
developed so far apply such a conjugated operator at s
point during the computation.

Conjugating classical functions

In the above definitions, the functiong:A→R is a map-
ping between arbitrary finite sets. For most problems stud
in quantum computing, the setA has a known structure of a
additive groupG5^G,% &. In that case, we reflect this b
writing g:G→R. On the other hand, if the imageR has a
known structure of a groupH5^H,% &, then we writeg:A
→H and we assume that the black boxUg implements the
unitary operator defined byua&uh&°ua&uh% g(a)&. Finally,
we use the notationg:G→H if g is a mapping between
finite additive groups. We donot assume thatg is a group
homomorphism unless this is stated explicitly.

For convenience, from now on,A andR denote finite sets
andG andH finite additive groups.

Supposeg:G→R is defined on some finite groupG, and
consider the possible choices for the conjugation operato
the second part of the experiment discussed above. Ther
at least two natural candidates: the first is just the identiI
^ I , and the second is to apply a Fourier transform on
first part of the system, that is, to conjugateUg by FG^ I . A
Fourier transformFG for a finite groupG is a unitary opera-
tor on CG and is defined in Sec. II. Fourier transforms w
be our most used operator for conjugation and we there
give the corresponding conjugated operators their own s
bols,
e

-

e

r-
ds
-

n

e

d

in
are

e

re
-

V5V~g!5~FG^ I !Ug~FG
†

^ I !, ~1!

W5W~g!5~FG^ FH!Ug~FG
†

^ FH
† !. ~2!

We sometimes refer toV andW asG operators.
In Sec. III, we state old and new properties of theG

operators. In the following three sections, we then disc
applications of theG-operators. First, in Sec. IV, we review
the unknown subgroup problem and its quantum solutio
We introduce the problem of determining a group homom
phism g:G→H in Sec. V, and in the last section, we co
sider the problem of determining if a function is constant
not.

II. FOURIER TRANSFORMS FOR FINITE GROUPS

Since the quantum Fourier transform plays a central r
in the area of quantum algorithms, we now give a brief su
mary of the relevant theory. For further details, we refer
reader to@7#.

A. Arbitrary groups

We define Fourier transforms for arbitrary finite grou
and exemplify the definitions on the dihedral group

D35^r ,cur 35c25e,rc5cr2&

of order 6 and with identitye. In the following subsections
we then discuss in much more detail the case when the g
is Abelian. So far, all applications of the quantum Four
transform have been for Abelian groups.

In this first subsection, we will make an exception and u
multiplicative notation for the group operation. Thus, hereG
denotes an arbitrary finite group, written multiplicative. W
start by forming a vector space forG.

Let CG5$(gPGagguagPC% be the set of all finite
C-linear combinations of elements inG and endowCG with
the natural choice for addition, ((gPGagg)1((gPGbgg)
5(gPG(ag1bg)g. ThenCG is a complex vector space hav
ing G as a basisBt and thus having dimension equal touGu,
the order ofG. EquipCG further with the natural choice fo
multiplication ((gPGagg)((hPGbhh)5(g,hPG(agbh)gh.
ThenCG becomes an algebra, called thegroup algebraof G
overC. Moreover,CG is a Hilbert space by endowing it with
the standard complex inner product.

Consider the left action ofG on CG obtained naturally by
restricting the multiplication inCG to G3CG. In our ex-
ample, the action of the group elementr PD3 on the vector
e13r 222cPCD3 is the vector r (e13r 222c)53e1r
22cr2.

We say that a subspaceU of CG is invariant under the
action of G if gU#U for all gPG. Invariant subspaces
endowed with the above action ofG are calledCG modules.
Clearly, if U1 and U2 areCG modules, then so is the sum
U11U2. Conversely, if a moduleU contains a submoduleV,
then U also contains a submoduleW such thatU5V% W.
Thus, we can restrict our attention to the nontrivial modu
that contain no nontrivial, proper submodule. Such modu
are calledirreducible CG modules.

If we return to our example, then we see that the subsp
U1#CD3 spanned by the vectoru15(gPD3

g5e1r 1r 2
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1c1cr1cr2 is invariant sincegu15u1PU1 for all gPD3.
Similarly, the vectoru25(e1r 1r 2)2(c1cr1cr2) spans
an invariant subspaceU2 of dimension 1 sinceru25u2 and
cu252u2. Besides these two subspaces, there are no o
invariant subspaces of dimension 1. Letvn

5exp(2pA21/n) denote thenth principal root of unity.
Then the subspaceU3 spanned byu35e1v3r 1v3

2r 2 and
u45c1v3cr1v3

2cr2 is invariant, and so is the subspaceU4

spanned byu55e1v3
2r 1v3r 2 and u65c1v3

2cr1v3cr2.
Both U3 and U4 are irreducible since neither containsu1.
The four irreducibleCD3 modulesUi have dimension 1, 1, 2
and 2, respectively, and are mutually orthogonal. We
thus writeCD3 as the direct sumCD35U1% U2% U3% U4.
Such decomposition ofCG into irreducible submodules ex
ists for every finite groupG ~see, for example,@7#!.

Theorem 1. For all finite groupsG, we have thatCG can
be written as a direct sum of irreducibleCG modules,CG
5U1% ••• % Us .

One may ask what relationship there is between th
subspacesUi? Continuing our example, since bothU1 and
U2 have dimension 1, they are isomorphic as vector spa
and so areU3 andU4. The latter isomorphism is, howeve
stronger than the former in the sense that only it can
chosen such that it commutes with the action ofG: Let
w:U3→U4 denote the vector space isomorphism defined
w(u3)5u6 and w(u4)5u5. Then w(gv)5gw(v) for all g
PD3 andvPU3. To prove that no such isomorphism forU1
and U2 exists, it suffices to note thatru11cu152u1
whereasru21cu250.

This motivates the following definition. LetG be a fi-
nite group and letU and V be CG modules. A mapping
w:U→V is an isomorphism ofCG modulesif w is an iso-
morphism of vector spaces andwg5gw for all gPG. With
this, we have in our example that

CD35U1% U2% ~U3% U4!5V1% V2% V3.

where eachVi is the direct sum of isomorphic irreducibl
CD3 submodules. More generally, theorem 1 can be refi
as follows~see, for example,@7#!.

Theorem 2. For all finite groupsG, there exist integersr
and d1 , . . . ,dr such thatCG5V1% ••• % Vr where eachVi
5Ui1% ••• % Uidi

is the direct sum of irreducible submod

ules, andUik and U jl are isomorphic if and only ifi 5 j .
Furthermore, everyCG module is isomorphic to the direc
sum of a subset of the submodulesUik .

We are now ready to define Fourier transforms for
arbitrary finite groupG. Pick an orthonormal basisBi for
each of ther subspacesVi appearing in theorem 2. Se
Bf5ø iBi to be the joined basis forCG. TheFourier trans-
form FG for G with respect toBf is a change of basis from
the standard basisBt5G to Bf . Given a vectorf PCG in the
standard basis, the Fourier transform off is the same vecto
f̂ PCG, but now given with respect to the basisBf . The
coordinates off̂ are called theFourier coefficientsof f with
respect toBf . Since each of theBi is chosen orthonormal
the Fourier transform is unitary by construction.

Returning to our example, letui8 denote the unit vecto
found by multiplyingui with the reciprocal of its norm. The
er
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matrix of FD3
with respect to the ordered orthonormal bas

Bt5(e,r ,r 2,c,cr,cr2) andBf5(u18 ,u38 ,u58 ,u28 ,u48 ,u68), is

3
1 1 1 1 1 1

1 v̄3 v̄3
2

1 v̄3
2 v̄3

1 1 1 21 21 21

1 v̄3 v̄3
2

1 v̄3
2 v̄3

4 ,

where we have omitted normalization of the rows, and wh
l̄ denotes the complex conjugate oflPC.

Consider the action ofG on a vectorf PCG. Fix an or-
dering ofBt5(g(1), . . . ,g(m)) wherem denotes the order o
the group and represent f by the tuple, f
5„f (g(1)), . . . ,f (g(m))…. For all elementsgPG, the tuple
representingg f contains the same entries as the tuple rep
sentingf , but with the entries permuted. A drawback of th
basisBt is that the group action is global in the sense that
every two entriesi and j , there exists an elementgPG such
that thej th entry ing f equals thei th entry in f .

Using the Fourier-transformed basisBf instead helps this
problem since it decomposes the spaceCG into a direct sum
of smallest possible subspaces that are invariant under
group action. Thus, we may say that the basisBf makes the
action ofG on CG as local as possible. The given groupG
determines how small these subspaces can be. In partic
all the irreducibleCG modules have dimension 1 if and on
if G is Abelian. We consider this case in the rest of th
section.

B. Abelian groups

Let G5Zm1
% ••• % Zmn

be a direct sum ofn finite additive

cyclic groups, whereZm denotes the cyclic group of orderm.
From now on, we again use addition as the group operat
To avoid confusion with vector addition, we use the symb
% for addition of group elements, and we denote the inve
of gPG by *g to distinguish it from the vector2g5
21g. As in the preceding subsection, we exemplify all t
following main concepts, this time using the Abelian gro
K5Z2% Z2.

We start by determining the irreducibleCG modules. De-
fine a bilinear mapm5mG:G3G→C! by

m~g,h!5)
i 51

n

vmi

2gihi, ~3!

whereg5(g1 , . . . ,gn) and h5(h1 , . . . ,hn). Here,C! de-
notes the set of the nonzero complex numbers. For each
PG, let Uh denote the subspace spanned by the vectoruh
5(gPGm(h,g)gPCG. Then Uh is invariant under the ac
tion of G since for all kPCG, we have that kuh
5(gPGm(h,g)k% g5m(h,*k)uhPUh . Thus,Uh is an ir-
reducibleCG module having dimension 1. The set$Uh%hPG
contains all irreducibleCG modules sinceCG has dimension
uGu anduh anduk are orthogonal wheneverhÞk. It follows
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that there is a bijective correspondence between group
ments ofG and irreducibleCG modules given byg↔ug8 ,
whereug8 denotesug normalized.

Let G* denote the set$ug8% and define a functionG*
3G*→G* by

~ug8 ,uh8!°
1

AuGu
(
kPG

m~g,k!m~h,k!k.

Then (ug8 ,uh8)°ug% h8 , and thusG* is isomorphic toG un-
der the above correspondence.

In our example, for the groupK5Z2% Z2, there are four
irreducibleCK modules, each spanned by one of the vecto

u005~0,0!1~0,1!1~1,0!1~1,1!,

u015~0,0!2~0,1!1~1,0!2~1,1!,

u105~0,0!1~0,1!2~1,0!2~1,1!,

u115~0,0!2~0,1!2~1,0!1~1,1!.

Here we use the notationug1g2
as shorthand foru(g1 ,g2) ,

where (g1 ,g2)PK. The set of these four subspaces admit
group structure that easily can be verified to be isomorphi
K by comparing their group operation tables.

Let Bt5G denote the standard basis forCG andBf the
basis$ug8%gPG . The Fourier transformFG for G maps a vec-

tor f given with respect toBt to its representationf̂ with
respect toBf . A classical way to write this computation is a

f̂ ~uh8!5
1

AuGu
(

gPG
m~h,g! f ~g!

↔ f ~g!

5
1

AuGu
(

hPG
m~g,h!21 f̂ ~uh8!.

For our purpose, Dirac notation is more suitable. Using
the Fourier transform reads

FG5
1

AuGu
(

g,hPG
m~h,g!uuh8&^gu. ~4!

If we identify the two groupsG and G* in this equation,
using the isomorphismg↔ug8 , then we get to our definition
of the quantum Fourier transform for an Abelian groupG as
the unitary operator

FG5
1

AuGu
(

g,hPG
m~h,g!uh&^gu ~5!

for the Hilbert spaceCG.
With respect to the ordered basesBt

5„(0,0),(0,1),(1,0),(1,1)… and Bf5(u008 ,u018 ,u108 ,u118 ), the
matrix of FK is
le-

s,

a
to

t,

1

2F 1 1 1 1

1 21 1 21

1 1 21 21

1 21 21 1
G .

The Fourier transform for the cyclic group of two elemen
Z2, has the matrix representationW5(1/A2)@1

1
21
1 #. We re-

fer to this as the Walsh-Hadamard transform@8#. Sometimes
this is also referred to as the Hadamard transform, in wh
case its matrix representation is denotedH.

C. The orthogonal subgroup

The concept of orthogonality in Abelian groups is ve
useful for understanding the Fourier transform. We say t
an elementgPG is orthogonalto a subsetX#G if, for all
xPX, we have thatm(g,x) is the identity of the groupC!,
that is, if m(g,x)51. For any subsetX#G, let

X'5$gPGum~g,x!51for all xPX% ~6!

denote the set of elements inG that are orthogonal toX.
Clearly,X' is a subgroup and we refer to it as theorthogonal
subgroupof X. Let ^X& denote the subgroup generated byX.
Then,

X'5^X'&5^X&', ~7!

X''5^X&, ~8!

uX'uuX''u5uGu. ~9!

Equation~7! is easily proven, and for the last two, we sket
simple indirect proofs below.

Given a generating set for a subgroup, one can ea
~classically or quantumly! deduce a generating set for i
orthogonal subgroup using ideas similar to those used
Gaussian elimination. This fact is often used in codi
theory: given the generator matrix of a binary linear cod
one can compute the generator matrix of its dual. We s
this formally in the following proposition.

Proposition 3. There exists a classical deterministic alg
rithm that, given a subsetX#G, returns a generating set fo
X'. Moreover, the algorithm runs in time polynomial i
log2uGu and in uXu, the cardinality ofX.

Thus, knowing a small generating set for a subgroupH
<G is polynomial-time equivalent to knowing a small ge
erating set for the orthogonal subgroupH'<G.

Consider the computation for the groupK, defined in Sec.
II B,

FK~ u00&1u10&)5u00&1u01&,

FK~ u00&1u11&)5u00&1u11&,

whereuxy& is shorthand foru(x,y)&. The vectoru00&1u10& on
the left-hand side of the first equation is the superposition
the two basis statesu00& and u10&. If we think of these as
group elements, then they constitute exactly the element
the subgroupH5$(0,0),(1,0)%. Likewise, the basis element
in the superposition on the right-hand side
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form the subgroupH'5$(0,0),(0,1)%. We may thus say tha
the subgroupH<K is mapped to the subgroupH'<K by
the Fourier transform forK.

This property holds more generally: For all finite Abelia
groups G and subgroupsH<G, we haveFGuH&5uH'&,
where uH& denotes the equally weighted superpositi
(1/AuHu)(hPHuh&. SinceFG is unitary and hence preserve
the norm, uH'u5@G:H# as stated in Eq.~9!. Similarly,
FG

† uH&5uH'&, so uH&5FGFG
† uH&5uH''&, and Eq.~8! fol-

lows.

D. Characters for Abelian groups

Fourier transforms for finite groups can be defined in
variety of ways. In particular, when the groupG is Abelian,
it can be interpreted by referring to group homomorphis
instead of irreducibleCG modules. For this, rewriteuk as
(gPGagg, where coefficientag equalsm(k,g). The set of
coefficients$ag%g naturally gives rise to a mappingxk :G
→C! defined byg°ag5m(k,g). Sincem is bilinear, then
xk(g% h)5xk(g)xk(h) so xk is a group homomorphism
The set$xk%kPG contains all homomorphisms fromG to C!,
and thus we have a bijective correspondence between g
elements of G and homomorphismsG→C! given by
g↔xg . Not surprisingly, the set$xg% admits a group struc
ture under the operationxgxh5xg% h , so the correspondenc
is again a group isomorphism.

A group homomorphismxg5xg
G from G to C! is called a

linear characterfor G. Note that sincem is symmetric, then
xh(g)5xg(h) for all g,hPG.

III. COMMUTATIVE LAWS FOR THE G OPERATORS

Let G be a finite Abelian group andg:G→R some map-
ping defined onG. In Sec. I, we defined twoG operators,
V(g) andW(g). Suppose we apply, say, the operatorV(g)
on the statem(h,g)ug&ur &, whereg,hPG andr PR. What is
the resulting superposition? One way to answer this ques
is to do the direct calculations. However, a much more
egant and useful solution is to define two more operators
G and then determine the commutative laws for all opera
introduced so far. Having first established these laws, we
then easily answer the above question and others in a ge
setting in the next subsections.

We define two more unitary operators for the groupG,
the translation operatortt(tPG) and thephase-change op
erator fs(sPG),

tt5 (
gPG

ut % g&^gu,

fs5 (
gPG

m~s,g!ug&^gu.

Trivially, tstt5ts% t and fsft5fs% t for all s,tPG. To-
gether with the Fourier transform, theseG operators satisfy
the following commutative laws, which we shall use inte
sively throughout the remaining part of this paper.

Proposition 4. For all s,tPG,

m~s,t !ttfs5fstt ,
a

s

up

n
l-
r

rs
n
ral

-

FGfs5t*sFG ,

FGtt5ftFG .

Each of these three identities can be proven by a
rewritings. The proposition states that the Fourier transfo
maps a coset into phases, and phases into a coset. The
ties between subgroups and orthogonal subgroups, and
tween phases and cosets, are crucial for all quantum a
rithms for Abelian groups developed so far. As a simp
corollary to proposition 4, we get thatFG

† fs5tsFG
† and

FG
† tt5f*tFG

† . Furthermore, for allg:G→R, we have that
Ug(fs^ I )5(fs^ I )Ug and Ug(tt ^ I )5(tt ^ I )Ug t

, where

g t :G→R is given byg t(g)5g(t % g).
With this setup, we can now derive commutative law

involving the operatorsV andW defined in Eqs.~1! and~2!
above.

Lemma 5. Let g:G→R. Then for alls,tPG,

V~g!~fs^ I !5~fs^ I !V~gs!,

V~tt ^ I !5~tt ^ I !V,

wheregs :G→R is defined bygs(g)5g(s% g).
Lemma 5 remains true if we replaceV byW in the two

identities. There is no meaning in considering howV com-
mutes with operators acting on the second subsystem~that is,
on CR) since we have not assumed any knowledge on
structure ofR, as discussed in Sec. I. However, for opera
W this is different. If g:A→H, then we also have tha
Ug(I ^ tt)5(I ^ tt)Ug . This implies that for operatorW,
we can add one commutative law to the two already state
lemma 5.

Lemma 6. Let g:G→H. Then for allsPG and all tPH,

W~g!~fs^ ft!5~fs^ ft!W~gs!,

W~ts^ I !5~ts^ I !W

wheregs :G→H is defined bygs(g)5g(s% g).
For g:G→H, we only lack determining the commutativ

law for the operatorsW and I ^ tt . In the next subsection
we prove two new lemmas for that case.

A. Commutative laws forW and „I ^ tt…

Let g:G→H, and letgPG andh,sPH. Then

Ug~ I ^ fs!ug&uh&5mH~s,h!ug&uh% g~g!&

5mH
„s,*g~g!…mH

„s,h% g~g!…ug&uh

% g~g!&

5mH
„s,*g~g!…~ I ^ fs!Ugug&uh&,

where the mapmH is defined in Eq.~3! above. The leading
phase factormH

„s,*g(g)… can be rewritten as (x*s
H +g)(g),

giving

Ug~ I ^ fs!5~X*s^ I !~ I ^ fs!Ug , ~10!
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where, for each tPH, operator Xt is defined by
Xtug&5(x t

H+g)(g)ug&. Having established Eq.~10!, we can
supplement lemma 6 with the fourth case.

Lemma 7. Let g:G→H. Then for alltPH,

W~ I ^ tt!5~ I ^ tt!~FGXt ^ FH!Ug~FG
†

^ FH
† !,

whereXtug&5(x t
H+g)(g)ug&.

If the two operatorsFG andXt satisfy a commutative law
then so do the operatorsW andI ^ tt . The simplest example
where this holds is wheng5h is a constant function. Then
(x t

H+g)(g)5x t
H(h) for all gPG, so operatorXt acts by mul-

tiplication with a global phase factor,Xtug&5x t
H(h)ug&.

Thus,FGXt5x t
H(h)FG and we find that

W~ I ^ tt!5x t
H~h!~ I ^ tt!W.

With more effort, we can also find a commutative law forFG
and Xt if the mappingg:G→H happens to be a group ho
momorphism.

Lemma 8. Let g:G→H be a homomorphism of groups
Then for all tPH,

W~ I ^ tt!5~t*s^ tt!W,

where sPG is defined byxs
G5x t

H+g. Moreover,s and g
uniquely determinet if and only if g is ontoH.

Proof. First notice that the composed transformx t
H+g is a

mapping fromG to C!. Sinceg is a group homomorphism
then so is the composed mappingx t

H+g and thus there exist
a uniquesPG such thatxs

G5x t
H+g. The first part follows by

writing FGXt5FGfs5t*sFG and applying lemma 7. To
prove the second part, sinceg is a homomorphism, its imag
is a subgroupK of H. If and only if K is proper inH does
there exist distinct elementst1 ,t2PH such that x t1

H(k)

5x t2
H(k) for all kPK.

B. The action of operatorsV andW

Having determined various commutative laws for the fo
G operatorsV,W, f, andt, we now discuss their actions
Fortunately, this can be simplified largely by knowing the
commutative laws. For example, we have

V~g!m~s,g!ug&u0R&5V~g!~fs^ I !~tg^ I !u0&u0R&

5~fs^ I !~tg^ I !V~gs!u0&u0R&,

wheregs(g)5g(s% g). As this illustrates, if we just know
the action ofV on the basis stateu0&u0R&, then we can apply
the commutative laws to determine the action ofV on other
states. Straightforward calculations give that

V~g!u0&u0R&5
1

uGu (
g,hPG

m~h,g!uh&ug~g!&. ~11!

The preceding subsection already gives howW com-
mutes with bothf andt applied on either register, so agai
we only need to determine the action ofW on the initial
stateu0&u0R&. Going through the calculations shows that th
state is an eigenstate with eigenvalue 1. In a slightly m
general form, we have thatWug&u0&5ug&u0& for all gPG.
r

e

This ends our discussion of theG operators, and we now
turn our attention to applications of these. In the followin
three sections, we consider problems of the form where
are to determine some property of a mappingg. Shor’s cel-
ebrated quantum algorithm for the discrete logarithm pr
lem @1# can easily be understood in terms of the unkno
subgroup problem, which we review in the next sectio
Then, in Sec. V, we introduce the problem of determining
group homomorphism. Finally, in Sec. VI, we give an alg
rithm for a generalization of Deutsch’s problem@2#.

IV. UNKNOWN SUBGROUP PROBLEM

Let G be a finite group and letg:G→R. Suppose there
exists a subgroupH0<G such thatg is constantanddistinct
on each coset ofH0. That is, supposeg(g)5g(h) if and
only if g*hPH0. Then, following@9#, we say ofg that it
fulfills the subgroup promisewith respect toH0. The un-
known subgroup problemis, given a black box computingg,
to find a generating set forH0.

This problem can be turned into a decision-problem
instead asking if the subgroupH0 is nontrivial. Further,
graph automorphism reduces to it by lettingG be the sym-
metric group S on the vertices V and setting g(s)
5ˆ$s(a),s(b)%u$a,b%PE‰, where sPS and the given
graph is (V,E).

If the given groupG5Zm1
% ••• % Zmn

is commutative,
then we refer to this problem as theAbelian subgroup prob-
lem. Also in this case, there are classical difficult problem
that reduce to it: Thediscrete logarithm problemis, given a
prime p, a generatorz of Zp

! , and an elementaPZp
! , find

0<r ,p such thatz r5a in Zp
! . HereZp

! denotes the multi-
plicative cyclic group of the positive integers smaller thanp.
Let G5Zp21

2 and define the group homomorphismg:G
→Zp

! by g„(g1 ,g2)…5zg1ag2 for (g1 ,g2)PG. Let H0<G be
the cyclic subgroup of orderp21 generated by the elemen
(r ,21)5(r ,p22). Theng is constant and distinct on eac
coset ofH0. The discrete logarithm problem reduces to fin
ing the unique element (g1 ,g2)PH0, for which g2521.1

This element can, given a small generating set forH0, be
found classically in deterministic polynomial time by com
puting the greatest common divisors using the extended
clidean algorithm.

Quantum algorithms for the Abelian subgroup proble
have been investigated by several authors. First, Simon@4#
considered the case whenG5Z2

n andH0 is promised to have
order at most 2. Assuming thatUg can be applied in polyno-
mial time on a quantum computer, he proved that there ex
a quantum algorithm that finds a generating set forH0 in
expected polynomial time. Shortly after, Shor@1# showed
that the discrete logarithm problem also can be solved o
quantum computer in expected polynomial time. His solut
consists essentially of first using the above described red
tion and then solving the resulting special case of the A
lian subgroup problem. In neither of the two papers just m
tioned is a group-theoretical language used.

1It also reduces to finding the unique element (g1 ,g2)PH0
' for

which g151, but we do not need that here.
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To solve the Abelian subgroup problem, by proposition
it suffices to find a generating set for the orthogonal s
groupH0

' . Such a set can be found efficiently if we have
fast algorithm for finding a random element ofH0

' ~see@4,9#
for details!. Thus, an efficient sampling algorithm ofH0

'

yields an efficient algorithm for the Abelian subgroup pro
lem. In @4#, Simon gave an efficient quantum algorithm f
sampling a random element ofH0

' when the given groupG
is the direct sumZ2

n . His algorithm can be generalized in
natural way to arbitrary finite Abelian groups. In terms of t
operatorV, it can be stated simply as performing the expe
ment

z5M1+V~g!u0&u0R&.

We refer the reader to@9# for details.
The results by Simon and Shor were extended by Bo

and Lipton@10# and Grigoriev@11# to include fast quantum
algorithms for several variations of the Abelian subgro
problem. Kitaev@12# then gave an algorithm for efficientl
computing the quantum Fourier transform for any finite Ab
lian group. His method applies the transform not with p
fection, but only with arbitrarily good precision~see@12# for
details!. Yet, this suffices to imply a sampling algorithm th
succeeds with arbitrarily high probability, and hence also
expected polynomial-time quantum algorithm for the gene
Abelian subgroup problem.

A natural next question to ask is if it is possible to sol
the Abelian subgroup problem inworst-casepolynomial
time, as opposed to in expected polynomial time as just
scribed? A partial answer to that question was first given
@13# by showing that, under some additional assumption
single nonzero element ofH0

' can be found deterministically
Brassard and Ho”yer @9# then showed that for some groups
smooth order, it is possible deterministically to find a gen
ating set forH0

' , and not only a single nonzero elemen
Here the order of a groupG is smoothif all its prime factors
are at most logcuGu for some fixed constantc. Building on the
work in @13#, Beals @14# has subsequently, for the caseG
5Z2

n , found an alternative deterministic quantum algorith
for finding a generating set forH0

'<Z2
n .

V. DETERMINING A GROUP HOMOMORPHISM

In this section, we introduce the problem of determining
group homomorphism and we compare classical and qu
tum solutions for it. LetG andH be finite Abelian groups,
and letg:G→H be a homomorphism given as a black bo
The group homomorphism problemis to compute the value
of g on a generating set forG.

This problem reduces to the case whereG andH have the
same exponent.2 To see this, letg:G→H be a homomor-
phism. The order ofg(g) divides the order ofg for all ele-
mentsgPG, and thus the image ofg is contained in the
subgroupH8<H of all elements of order dividing the expo
nent ofG. We therefore regardg a mapping fromG to H8.
Let e denote the exponent ofH8. Then the subgroupeG

2A group G hasexponent eif e is the smallest positive intege
such thateg equals the identity for allgPG.
,
-

-

-

h

-
-

n
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e-
n
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5$egugPG% is contained in the kernel ofg, andG85G/eG
is an Abelian group also having exponente. Defineg8:G8
→H8 by g8(g8% eG)5g(g8). This mapping is a well-
defined homomorphism, and if we know the value ofg8 on a
generating set forG8, then we can easily deduce the value
g on a generating set forG.

The next lemma shows that ifG and H have the same
exponent, then classically, it is necessary to evaluateg on a
generating set forG to determineg uniquely.

Lemma 9. Let G and H be finite Abelian groups having
the same exponent. Given a group homomorphismg:G
→H as a black box, we can uniquely determineg if and only
if we know the value ofg on a generating set forG.

Proof. Suppose we have evaluated the black box on
subsetX#G. Let K be the subgroup generated byX, and let
gK :K→H be the unique homomorphism consistent w
those answers. IfK5G, then trivially g5gK .

Now, supposeK is proper inG. Let gK8 be any extension
of gK to G. Consider the group of homomorphisms fro
G/K to H, denoted hom(G/K,H). SinceG/K is nontrivial
and since the exponent ofG/K divides the exponent ofH,
then hom(G/K,H) is nontrivial. Let g18 ,g28Phom(G/K,H)
be two distinct elements. Fori 51,2, define the mapping
g i :G→H by g i(g)5g i8(g% K) % gK8 (g). Clearly,g1 andg2

are homomorphisms, and since they are distinct and both
extensions ofgK , the lemma follows.

It follows that any classical algorithm solving the grou
homomorphism problem must apply the black box on a g
erating set forG.

Corollary 10. Let G andH be finite Abelian groups hav
ing the same exponent. Let a group homomorphismg:G
→H be given as a black box. Then any classical determ
istic algorithm solving the group homomorphism proble
must apply the black box at leastn times, wheren is the
cardinality of the smallest set generatingG.

On a quantum computer, we can beat this bound ifH is
generated by a set smaller than any set generatingG.

Theorem 11. Let G andH be finite Abelian groups having
the same exponent. Let a group homomorphismg:G→H be
given as a black box. Then there exists a quantum algori
solving the group homomorphism problem using onlym ap-
plications of the black box, wherem is the cardinality of the
smallest set generatingH.

Let G5Zq1
% ••• % Zqn

and H5Zr 1
% ••• % Zr m

. For 1< i

<n, let gi denote the element inG that contains 1 at itsi th
entry, and 0 everywhere else. Similarly, for 1< i<m, let t i
denote the element inH that contains 1 at itsi th entry, and 0
everywhere else. The algorithm in the above theorem c
sists of two steps. First, it performs the experimentsi5M1
+W(g)u0&ut i& for each of them elementst i . Then, from the
m pairs (si ,t i)PG3H, it classically deduces the value ofg
on each of then elementsgiPG. That this second step i
possible follows from lemmas 8 and 12.

Lemma 12. Let g:G→H be a homomorphism of groups
Suppose the exponent ofH divides the exponent ofG. Then,
given a set of pairs (si ,t i) for which xsi

G5x t i
H+g, we can

uniquely determineg if and only if the t i ’s generateH.
Proof. We prove each of the two directions separate

First suppose thatH is generated by thet i ’s. Let g be an
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arbitrary element ofG and seth5g(g). By assumption, for
all i ,

xh
H~ t i !5x t i

H~h!5~x t i
H+g!~g!5xsi

G~g!.

Since thet i ’s generateH, we know the value ofxh
H on every

element in its domain, and henceh is uniquely determined.3

For the opposite direction, suppose thet i ’s only generate
a proper subgroupK of H. Let g1 :G→H be any homomor-
phism satisfying that

xsi

G5x t i
H+g1 for all i . ~12!

We now construct another homomorphismg2 :G→H also
satisfying Eq.~12!.

Since K is proper in H, there exist distinct element
h1 ,h2PH such thatxk

H(h1)5xk
H(h2) for all kPK. Let g8

PG be an element of maximal order. WriteG5G0% ^g8& as
a direct sum of two subgroups, one of them being the s
group generated byg8. Define the mappingg2 :G→H by
setting

g2~g8!5g1~g8! % ~h1*h2!, g2~g!5g1~g! ~gPG0!,

and extending it linearly toG. We need to show three prop
erties ofg2: first of all thatg2 is well defined, second thatg2
is a homomorphism, and finally that it satisfies Eq.~12!. The
mappingg2 is well defined since the order of every eleme
gP$g8%øG0 is a multiple of the order of its image. B
construction, the last two properties hold. The lemma f
lows.

An early result by Bernstein and Vazirani@3# can be seen
as a special case of theorem 11: LetG5Z2

n andH5Z2. By
identifying Z2 with the cyclic subgroup$1,21%,C!, any
group homomorphismg:Z2

n→Z2 is a character. Since there
a bijective correspondence between the characters and
group elements ofZ2

n ~see Sec. II D!, finding g is equivalent
to finding its corresponding group element. It was shown
@3# that this corresponding elementgPZ2

n can be found on a
quantum computer by applyingg only twice. This can be
improved to just a single application ofg by applying lemma
5.5 in @15#. On the other hand, Terhal and Smolin@16#
showed that any classical algorithm cannot find the elem
gPZ2

n with less thann evaluations ofg. Independently of
our work, Cleveet al. @17# have proven theorem 11 for th
case whenG5Z2

n andH5Z2
m .

VI. DECIDING IF A FUNCTION IS CONSTANT

One of the earliest problems considered for quantum c
putation is the problem of deciding constant functions: Giv
an arbitrary mappingg:A→R of finite sets, determine ifg is
constant or not. In his seminal paper@2#, Deutsch considered
the case when we are given a two-valued functiong:$0,1%
→$0,1% of a two-valued variable, and we are to compute
bit p(g)5g(0)% g(1) where % denotes the exclusive-or
He gave a quantum algorithm that uses only one evalua

3Not only is h uniquely determined, but it can also be foun
efficiently on a classical computer.
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of g, and that with equal probabilities returns eitherp(g) or
a special value denoted ‘‘fail’’ from which one can dedu
nothing aboutg. Independently, Tapp@18# and Cleveet al.
@17# then discovered that, still using only one evaluation
g, there is another algorithm that always returnsp(g). This
is to be compared with any classical algorithm that ne
two evaluations ofg to decide with certainty ifg is constant
or not.

Deutsch’s problem can be generalized in the followi
natural way. We say that a function isperfectly balancedif
ug21(r )u5ug21(r 8)u for all r ,r 8PR, whereg21(r ) denotes
the preimage ofr . In @19#, Deutsch and Jozsa showed th
there is a quantum algorithm that using just two evaluatio
of a given functiong:Z2n→Z2, either correctly concludes
that it is nonconstant, or correctly concludes that it is n
perfectly balanced. Note that at least one of these two st
ments must be true. Related to this, Jozsa considered in@20#
how well a quantum algorithm can determine a propertyp of
a given functiong:Zn→Zm if we only allow one evaluation
of g. Further, Costantini and Smeraldi@21# analyzed how
well a specific quantum algorithm correctly determines i
given function g:$0, . . . ,n21%→$0, . . . ,m21%(n,m>2)
is nonconstant.

Both Deutsch’s algorithm and its generalizations
@19,21# can be written in the form we discussed in Sec.
z15M1+V(g)u0&u0& where g:G→H is considered a
mapping between cyclic groups. In Deutsch’s algorith
G5H5Z2, and in its generalization in@19#, G5Z2n and
H5Z2, and in@21#, G5Zn andH5Zm .

We now show that hardly any structure on either the
G, or H, is needed to prove their result in an even mo
general form. For this, letg:A→R be any mapping. For any
nonempty set X, let uX& denote the superpositio
(1/AuXu)(xPXux&. Let A be a unitary operator onCA satis-
fying thatAuA&5u0&. Then the operatorA^ I mapsuA&ur & to
the basis stateu0A&ur & for all r PR. In other words, ifuA&ur &
corresponds to the constant functiong5r , then operatorA
^ I maps that function to the basis vectoru0A&ur &. Intuitively,
if we perform a measurement of the first register and
measure some value different from 0A , then we know thatg
is nonconstant. The next theorem shows that these idea
deed work as just described.

Theorem 13. Let g:A→R and letA be a unitary operator
on CA for which AuA&5u0A&. Consider the experiment

z5M1+~A^ I !Ug~A†
^ I !u0A&u0R&.

Then the probability thatz50 is

p15
1

uAu2(r PR
ug21~r !u2. ~13!

We omit the simple proof. The probabilityp1 of measur-
ing 0 is 1 if and only ifg is constant. At the other end,p1
takes its minimum wheng is as balanced as possible. That
whenug21(r )u5ug21(r 8)u61 for all r ,r 8PR. Thus,p1 is a
measure for how constantg is. Unfortunately, this minimum
is never zero, but instead at least max$1/uAu,1/uRu%.

If we have some partial knowledge on the setR, then we
can show that it is possible to improve the experiment
theorem 13 to obtain a minimum equal to zero. LetR be a
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unitary operator onCR for which Ru0R&5R†u0R&5uR&. Sup-
pose that the setR is endowed with an addition operatio
satisfying thatR1r 5R for all elementsr in the image ofg.
Then the operatorUg given byua&ur &°ua&ur 1g(a)& is uni-
tary.

These assumptions are fulfilled, for example, ifR has the
structure of an Abelian group. They imply that the vec
u0A&u0R& is an eigenvector of the operator (A^ R)Ug(A†

^ R†). We therefore exclude the zero state in our initial st
and we obtain the following slightly better result.

Theorem 14. Let g:A→R. Suppose that AuA&
5u0A&, Ru0R&5R†u0R&5uR&, and thatR is endowed with
an addition for whichR1g(a)5R for all aPA. Consider
the experiment

z5M1+~A^ R!Ug~A†
^ R†!u0A&uR\$0R%&.

Then the probability thatz50 is

p25
p1uRu21

uRu21
~14!

wherep1 is given by Eq.~13!. Furthermore,p2<p1 for all g,
and this inequality is strict wheng is nonconstant.

As mentioned above, the assumptions in theorem 14
satisfied ifg:G→H, A5FG , andR5FH . In that case, if
we perform the experimentz5M1+W(g)u0&uH&, the prob-
ability that the outcomez equals a is given by qa
5(1/uGu2)(hPHula(g,h)u2. Here la(g,h)5(gmG(a,g),
where the sum is taken over all elementsgPG for which
g(g)5h. If we remove the zero state from the initia
state uH& and instead perform the experimentz
5M1+W(g)u0&uH\$0%&, then we obtain a slight chang
of these probabilities similar to the change fromp1 to p2.
That is, the probability to measure zero is now (q0uHu
21)/(uHu21), while the probability to measure the nonze
elementgPG is (qguHu)/(uHu21).

Unlike p1, the probabilityp2 takes the value 0 when th
given functiong is perfectly balanced. In particular, for th
special case thatA5R5Z2, andA5R5W, then we obtain
the improvement of Deutsch’s algorithm that we discusse
the first paragraph of this section. HereW denotes the Fou
rier transform forZ2, as defined in Sec. II B.
-

r

e

re

in

The probabilityp1 for measuring 0 in the first register is
if and only if the given functiong:A→R is constant. Ifg is
constant on all but a single element of the domain, thenp1
5122(n21)/n2, where n5uAu. That is, with probability
2(n21)/n2'2/n, we measure a nonzero value in the fir
register. Thus, using one evaluation ofg, we can distinguish
nonconstant functions from constant functions with proba
ity at least roughly 2/n. If we apply the experiment in Theo
rem 14 instead, then we improve this probability by a fac
of uRu/(uRu21). This factor is worthy of consideration i
~and only if! the cardinality ofR is small, as, for example, in
Grover’s searching problem@22#.

Suppose we want to distinguish nonconstant functio
from constant functions with probability better than rough
2/n. Then we can of course repeat the experiment, sayk
times, giving a success probability close tokp for small k,
wherep denotes eitherp1 or p2. However, since our com
putation is done on a quantum computer, we can show
we can improve this to approximately (k2/2)p by applying
our amplitude amplification technique@9,23#.

Until now, we have interpreted the probabilitiesp1 andp2
as measures for how constant the functiong is. From the
closed formulas given in the above theorems, we see thap1
andp2 also can be interpreted as measures for the numbe
collisions ofg: Suppose we pick a subset of cardinality 2
A at random with respect to the uniform probability distrib
tion. Then the probability thatg takes the same value o
both elements of the subset is given by

p1uAu21

uAu21
.

In particular, if A andR have the same cardinality, thenp2
equals this probability.
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