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This paper addresses the question of understanding quantum algorithms in terms of unitary operators. Many
guantum algorithms can be expressed as applications of operators formed by conjugating so-called classical
operators. The operators that are used for conjugation are determined by the problem and any additional
structure possessed by the Hilbert space that is acted upon. We prove many commutative laws for these
different operators, and we use those to phrase and analyze old and new problems and algorithms. As an
example, we review the Abelian subgroup problem. We then introduce the problem of determining a group
homomorphism, and we give classical and quantum algorithms for it. We also generalize Deutsch’s problem
and improve the previous best algorithms for earlier generalizations [§1050-29478)07808-]

PACS numbg(s): 03.67.Lx, 89.80+h, 89.70+c, 02.70-c

[. QUANTUM COMPUTATION =afor all inputs. Further, we assume that the Ratontains
a particular element denotedi 0 such that the black box
Here is an outline of the most popular quantum algorithmoutputs(a, y(a)) on the input &,0g). These last two restric-
ever developed. It begins with elementary classical preprotions are without loss of generality since Bennfg} has
cessing, and then it applies the following quantum experishown that any classical computation can be reduced to one
ment: starting in an initial superposition of all possible statesgn the above form. They are needed since they provide us
it computes a classical function, applies a quantum Fouriefith a natural way to extend the black box to work on a
transform, and finally performs a measurement. Depe”dinﬁuantum system.
on the outcome, it may carry out one or more simiI.ar quan-- e summarize a few important issues of computation on
; : e'quantum systems before discussing how to extend such
classical postprocessing. systems. We otherwise assume that the reader is familiar

This algorithm is in fact not just a single algorithm, but - . . :
rather a large class of algorithms. It includes Shor’s algo-Wlth the basic notions of quantum computif@]. For any

rithms for factoring and discrete logarithmi$], Deutsch'’s f|n|_te set X, '?’t (‘.X denote the vector space of all finite
initiating algorithm[2], and the algorithms by Bernstein and “linéar combinations of elements X On a quantum sys-
Vazirani[3], Simon[4], and others. tem, all computations ofX are do_ne with respect to some
It is the aim of this paper to investigate the properties andPréferred basis, called themputational basisWe shall al-
computational power of this kind of algorithm. Our focus is Ways pick X itself as this basis since we find it the most
on the quantum part, the experiments, and to a smaller extefiitural choice if we are to compare classical and quantum
on the classical preprocessing and postprocessing. Below, vadgorithms. We require that the initialization and measure-
write these quantum experiments as conjugated classical opients are performed with respect to this basis, too. As nor-
erators acting on initial superpositions, followed by a measmnal in quantum computation, we use Dirac notation: the col-
surement. We do not only consider the above problems andmn vector of the basis elemeng X is denoted by théasis
their algorithms, but more generally, problems that have state|x), and its row vector byx|. Similarly, we denote the
classical origin, and quantum algorithms obtained by conju€olumn vector ofS a,x € CX by the superpositionS a,|x).
gating classical operatofglefined below. Having fixed the computational basis A® R, the evalu-
The general setup for our considerations is as followsation of v is naturally extended to quantum systems. The
Given a mappingy:A— R between finite sets, the problem is quantum black box implements a unitary operatgron the
to compute some property of y. As commonly done, we Hilbert space CA®CR, and it satisfies thatU,|a)|Og)

require that the length of the answe(y) is polynomially — =|a)|y(a)) for all ac A. Here, the notatiofa)|r) is short-
bounded in the logarithm of the cardinality 8f Many in-  hand for|a)®|r).
teresting properties of functiong A—R are decision prob- The most naive approach to find property for some

lems whererr only takes the values 0 and 1, as, for example given functiony: A—R is to initialize some statgV'), apply
the problem of determining if a function is constant or not. U,, and then measure the system. That is, to perform the
Our main assumption is that comes as a black box so experiment g;,2,) = (M;® M>)U,|¥), whereM; denotes
that it is not possible to obtain knowledge abguby any  a measurement of thi¢h register with outcome; . From the
other means than evaluating it on points in its domain. Weputcome, we then try classically to deduce nontrivial knowl-
assume that the input to the black box is a pairrfe A  edge aboutr(y). By repeating this experiment for various
X R, and that the outputal,r’') e AXR satisfies thata’ initial states, we might hope to determine the sought prop-
erty. For many problems, this straightforward approach will
not yield an efficient algorithm—simply because of the
*Electronic address: u2pi@imada.ou.dk structure of the operatot),. But this does of course
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not exclude fast quantum algorithms for the problem. An V=Y Y)Z(FG®|)U7(FE®|), (1)
elementary, but very important, observation is that there
might exist some other orthonormal ba3s- CA® CR for W=WI(y)=(Fg® FH)Uy(FI;@) Fl). 2)
which the unitary operatoU,, takes a simple form. In that
case, we might consider the experiment We sometimes refer td and W asG operators
In Sec. lll, we state old and new properties of tGe
(21,25) = (M@ M3)(MU M 1wy, operators. In the following three sections, we then discuss

applications of thes-operators. First, in Sec. IV, we review
whereM is the unitary operator that maps the basi®o the  the unknown subgroup problem and its quantum solutions.
basisA®R, and whereM ' denotes the conjugate transposeWe introduce the problem of determining a group homomor-
of M. This experiment consists of three parts: the initializa-phism y:G—H in Sec. V, and in the last section, we con-
tion of |¥), the application of the operatoMU ,M N, and  sider the problem of determining if a function is constant or
finally the read out. not.

In contrast to many papers on quantum computation, we

shall refrain from intermixing our analysis of the first two Il. FOURIER TRANSFORMS FOR FINITE GROUPS
parts. We believe that those two parts serve different pur- .
poses, and to get a full understanding of the second, it needs Since the quantum Fourier transform plays a central role
its own investigation. This second part is obtained by conjuin the area of quantum algorithms, we now give a brief sum-
gating a “classical” operatot),, with a unitary operatoM. mary of the relevant theory. For further details, we refer the
We refer toM as aconjugation operatoand to MU M) reader to[7].
as theconjugated operatorn this context, rather than think-
ing of M as a unitary operator, we think of it as implement- A. Arbitrary groups

ing a basis change from some orthonormal basito the We define Fourier transforms for arbitrary finite groups

lows, the basix is the tensor product of a basis foA and

a basis folCR. The second part of the above experiment then Ds=(r,c|r®=c?=e,rc=cr?)

takes the simpler form
of order 6 and with identitye. In the following subsections,

(A® R)Uy(AT® R"), we then discuss in much more detail the case when the group
is Abelian. So far, all applications of the quantum Fourier

whereA is an operator acting on subsystéiA, andR is ~ transform have been for Abelian groups. _
acting onCR. It is worth noting that all quantum algorithms In this first subsection, we will make an exception and use

developed so far apply such a conjugated operator at sonfgultiplicative nqtation'fo'r the group operation. Thus, h€re
point during the computation. denotes an arbitrary finite group, written multiplicative. We

start by forming a vector space f@.

Let CG={Zy_caq0|ageC} be the set of all finite
C-linear combinations of elements & and endowCG with

In the above definitions, the functiomA—R is a map- the natural choice for addition,2(.cag9) +(Z4ccB49)
ping between arbitrary finite sets. For most problems studied= >4 (gt B84)9. ThenCG is a complex vector space hav-
in quantum computing, the séthas a known structure of an ing G as a basif3; and thus having dimension equal|®|,
additive groupG=(G,®). In that case, we reflect this by the order ofG. EquipCG further with the natural choice for
writing y:G—R. On the other hand, if the image has a multiplication (E4cc@9)(ZnccBnh)=Zgncc(@gBn)gh.
known structure of a groupl=(H,®), then we writey:A  ThenCG becomes an algebra, called ty®up algebraof G
—H and we assume that the black boy implements the overC. Moreover,CG is a Hilbert space by endowing it with
unitary operator defined bja)|h)—|a)|h® y(a)). Finally, the standard complex inner product.
we use the notatiory:G—H if y is a mapping between Consider the left action d& on CG obtained naturally by
finite additive groups. We daot assume thaty is a group  restricting the multiplication inCG to GXCG. In our ex-

Conjugating classical functions

homomorphism unless this is stated explicitly. ample, the action of the group elemen¢ D5 on the vector
For convenience, from now oA andR denote finite sets e+3r?—2ceCD; is the vector r(e+3r>—2c)=3e+r
andG andH finite additive groups. —2cr2,
Supposey:G—R is defined on some finite group, and We say that a subspadé of CG is invariant under the

consider the possible choices for the conjugation operator iaction of G if gUCU for all ge G. Invariant subspaces
the second part of the experiment discussed above. There aadowed with the above action &f are calledCG modules

at least two natural candidates: the first is just the identity Clearly, if U; andU, are CG modules, then so is the sum
®I, and the second is to apply a Fourier transform on thdJ,+U,. Conversely, if a modul®&) contains a submodulé,

first part of the system, that is, to conjugéte by Fs®1. A thenU also contains a submodul®' such thatU=VeW.
Fourier transforn¢ for a finite groupG is a unitary opera- Thus, we can restrict our attention to the nontrivial modules
tor on CG and is defined in Sec. Il. Fourier transforms will that contain no nontrivial, proper submodule. Such modules
be our most used operator for conjugation and we thereforare calledirreducible CG modules

give the corresponding conjugated operators their own sym- If we return to our example, then we see that the subspace
bols, U;CCD; spanned by the vecton; =34 .p g=e+r+r?
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+cter+cr? is invariant sinceg U= Uy U, for a||29 €Ds.  matrix of Fp, with respect to the ordered orthonormal bases,
Slmllarly_, the vectoru2=(efr+r _)—(c+_cr+cr_) spans i _(er r2c,cr,cr?) and B;= (U}, uj,ug,uj,uj,ug), is
an invariant subspadéd, of dimension 1 sinceu,=u, and

Cu,= —U,. Besides these two subspaces, there are no other 101 1 1 1 17
invariant subspaces of dimension 1. Letw, o

=exp(2m/—1/n) denote thenth principal root of unity. 1 w3 3

Then the subspacd; spanned byu;=e+ w3r+w§r2 and 1 2 =

Uy=C+ w4Cr + wicr? is invariant, and so is the subspdde ¥3 @3 ,
spanned byus=e+ w3r + wzr? and ug=c+ w3cr+ wycr?. 11 1 -1 -1 -1
Both U; and U, are irreducible since neither contains. 1 53 523
The four irreducibleCD ;3 modulesU; have dimension 1, 1, 2, _
and 2, respectively, and are mutually orthogonal. We can i 1 Z% w3 |

thus writeCD3 as the direct sunttD;=U,®U,®UzdU,.
Such decomposition ofG into irreducible submodules ex- where we have omitted normalization of the rows, and where

ists for every finite grouis (see, for example]7]). \ denotes the complex conjugate o& C.

Theorem 1For all finite groupsG, we have that:G can Consider the action of on a vectorf e CG. Fix an or-
be written as a direct sum of irreducibl& modules,CG dering of B;=(g'V, ... ,g™) wherem denotes the order of
=U;®--oUs. the group and representf by the tuple, f

One may ask what relationship there is between these- (f(g(1), ... f(g™)). For all elementgye G, the tuple

subspacedJ;? Continuing our example, since both, and  representingyf contains the same entries as the tuple repre-
U, have dimension 1, they are isomorphic as vector spacegentingf, but with the entries permuted. A drawback of the
and so ardJ3 andU,. The latter isomorphism is, however, pasisp, is that the group action is global in the sense that for
stronger than the former in the sense that only it can b‘évery two entries andj, there exists an elemegte G such
chosen such that it commutes with the action@®f Let  hat thejth entry ingf equals thdth entry inf.
¢:Uz—U, denote the vector space isomorphism defined by ysing the Fourier-transformed bags instead helps this
@(ug)=ug and ¢(us) =us. Then ¢(gu)=ge(v) for all g problem since it decomposes the spa&into a direct sum
€ D3 andv e Us. To prove that no such isomorphism f0s  of smallest possible subspaces that are invariant under the
and U, exists, it suffices to note thatu;+cu;=2u;  group action. Thus, we may say that the bagisnakes the
whereas'u,+cu,=0. action of G on CG as local as possible. The given groGp
This motivates the following definition. Le& be a fi-  determines how small these subspaces can be. In particular,
nite group and letJ andV be CG modules. A mapping all the irreducibleCG modules have dimension 1 if and only

¢:U—V is anisomorphism oftG modulesf ¢ is an iso- if G is Abelian. We consider this case in the rest of this
morphism of vector spaces arady=ge¢ for all ge G. With  gection.

this, we have in our example that

B. Abelian groups
ED3=U18U28(Us®Uy) =V18Vo8 Vs, LetG="7n - ®Zy be adirect sum of finite additive
) ) ) o i cyclic groups, wheré,,, denotes the cyclic group of order.
where eachV; is the direct sum of isomorphic irreducible From now on, we again use addition as the group operation.
(D3 submodules. More generally, theorem 1 can be refinegq ayoid confusion with vector addition, we use the symbol
as follows(see, for examplé]7]). o @ for addition of group elements, and we denote the inverse

Theorem 2For all finite groupsG, there exist integers ot g G by Og to distinguish it from the vectorg=

anddy, ... .d; such thatlG=V,®---®V, where eachV;  _ 14 As in the preceding subsection, we exemplify all the
=Ui1@--®Ujq, is the direct sum of irreducible submod- fo|l0wing main concepts, this time using the Abelian group

ules, andU; and U;; are isomorphic if and only if=j. K=7,97Z,.
Furthermore, every.G module is isomorphic to the direct ~ We start by determining the irreducibl& modules. De-
sum of a subset of the submoduldsg; . fine a bilinear magu=u®:GXG—C* by

We are now ready to define Fourier transforms for an
arbitrary finite groupG. Pick an orthonormal basis; for " “gh
each of ther subspaces/; appearing in theorem 2. Set M(g’h):iﬂl “’mi' " ©)
B;=U,;B; to be the joined basis fdtG. The Fourier trans-
form Fg for G with respect to3; is a change of basis from

ﬂ:e s(;[an(;j%rd _basft:FG to_ Bft' G'ern afyzc;ngrf €CG in thte notes the set of the nonzero complex numbers. For éach
standard basis, the Fourier transformras the same Vector  _ g - U, denote the subspace spanned by the vegtor

f e CG, but n(zW given with respect to the baﬁ The :EgeGﬂ(hig)gECG' Then Uh is invariant under the ac-
coordinates of are called thd-ourier coefficientof f with  tion of G since for all ke CG, we have thatkuy
respect toB;. Since each of th®; is chosen orthonormal, =X, gu(h,g)k@&g=pu(h,©k)u,eUy. Thus,Uy is an ir-
the Fourier transform is unitary by construction. reducibleCG module having dimension 1. The déi}, .
Returning to our example, let; denote the unit vector contains all irreduciblé.G modules sinc&€G has dimension
found by multiplyingu; with the reciprocal of its norm. The |G| anduy, andu, are orthogonal whenevér#k. It follows

whereg=(g;, ... .gn) andh=(hy, ... h,). Here,C* de-
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that there is a bijective correspondence between group ele- 1 1 1 1
ments of G and irreducibleCG modules given byg«~u/,
, . g 1 -1 1 -1
whereug denotes, normalized. 1
Let G* denote the sefug} and define a functiorG* 2(1 1 -1 -1
X G* —G* by 1 -1 -1 1
1

ro The Fourier transform for the cyclic group of two elements,
ul,un)—> —— K w(h,k)k. ) )
(Ug . Un) \/|G|k§G wakuhk) 7,, has the matrix representatiov=(1/y2)[1 *,]. We re-
fer to this as the Walsh-Hadamard transfdi@h Sometimes
Then (ué ,U{_I)Hué@h, and thusG* is isomorphic toG un-  this is also referred to as the Hadamard transform, in which

der the above correspondence. case its matrix representation is denoked
In our example, for the groug =7,%7,, there are four
irreducibleCK modules, each spanned by one of the vectors, C. The orthogonal subgroup
The concept of orthogonality in Abelian groups is very
Uoo=(0,0+(0.)+(1,0+(1,2), useful for understanding the Fourier transform. We say that
an elemeng e G is orthogonalto a subseXCG if, for all
Uo1=(0,0—-(0,)+(1,0—(1,1), xe X, we have thau(g,x) is the identity of the groug:,

that is, if u(g,x)=1. For any subseXCG, let
u;=(0,0+(0,)—-(1,0—(1,1),
X+ ={geG|u(g,x)=1forallxe X} (6)

Uy =(0,0-(0.D)=(1.0+(1.1). denote the set of elements @& that are orthogonal tX.
Y h i horthand f Clearly, X! is a subgroup and we refer to it as thehogonal

ere we use the notalioy,q, as shorthand 10, ¢,):  sybgroupof X. Let (X) denote the subgroup generateddy
where @,,9,) € K. The set of these four subspaces admits arhen,
group structure that easily can be verified to be isomorphic to

K by comparing their group operation tables. XE=(XH)=(X)*, (7
Let B,=G denote the standard basis fo6 and B; the
basis{ug}q. . The Fourier transfornfg for G maps a vec- XH=(X), (8)

tor f given with respect tad3; to its representatiod with

1 11—
respect td3; . A classical way to write this computation is as XX =16, ©

1 Equation(7) is easily proven, and for the last two, we sketch
fu))=—> wu(hg)f(g) simple indirect proofs below. _
\/@gee Given a generating set for a subgroup, one can easily
(classically or quantumlydeduce a generating set for its
<f(9) orthogonal subgroup using ideas similar to those used in
Gaussian elimination. This fact is often used in coding
1 PO theory: given the generator matrix of a binary linear code,
= ﬁhge u(g,h) = f(up). one can compute the generator matrix of its dual. We state
this formally in the following proposition.

Proposition 3 There exists a classical deterministic algo-
rithm that, given a subse¢C G, returns a generating set for
Xt. Moreover, the algorithm runs in time polynomial in
log,|G| and in|X|, the cardinality ofX.

4) Thus, knowing a small generating set for a subgrélp
<G is polynomial-time equivalent to knowing a small gen-
erating set for the orthogonal subgroHpg <G.

If we identify the two groupsG and G* in this equation, Consider the computation for the grolp defined in Sec.

using the isomorphisrg< ug, then we get to our definition I B,

of the quantum Fourier transform for an Abelian graBas

the unitary operator

For our purpose, Dirac notation is more suitable. Using it,
the Fourier transform reads

Fom— 3 u(ho)lu)(gl
G_\/@g,heG M( 1g) uh><g'

F(|00)+|10))=[00) +[01),

1 Fk(|00)+[11))=|00)+|11),

Fe J@gée w(h.g)lh) gl ® where|xy) is shorthand fof(x,y)). The vectof00)+|10) on

the left-hand side of the first equation is the superposition of

for the Hilbert space'G. the two basis state90) and |10). If we think of these as
With  respect to the ordered basesB; group elements, then they constitute exactly the elements of

=((0,0),(0,1),(1,0),(1,1) and Bs=(ugg,Ug;,Ugg,U11), the  the subgroupd ={(0,0),(1,0}. Likewise, the basis elements

matrix of Fy is in the superposition on the right-hand side
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form the subgroupi* ={(0,0),(0,1}. We may thus say that Fods=mosFg
the subgroupH=<K is mapped to the subgroug'<K by
the Fourier transform fokK. Fori= & Fc.
This property holds more generally: For all finite Abelian
groups G and subgroupsH<G, we have Fg|H)=[H"), Each of these three identities can be proven by a few

where |H) denotes the equally weighted superpositionreyyritings. The proposition states that the Fourier transform
(1/\/|H|)EheHJ|-h>' SinceFg is unitary and hence preserves maps a coset into phases, and phases into a coset. The duali-
the norm, |H*|=[G:H] as stated in Eq(9). Similarly, ties between subgroups and orthogonal subgroups, and be-

FEIH)=|HY), so|H)=FgFE|H)=|H**), and Eq.(8) fol-  tween phases and cosets, are crucial for all quantum algo-
lows. rithms for Abelian groups developed so far. As a simple
corollary to proposition 4, we get thequSS: TSFI; and
D. Characters for Abelian groups FLn= ¢oFL . Furthermore, for ally:G—R, we have that

Fourier transforms for finite groups can be defined in aV»{(¢s®1)=(#s2)U, and U,(n®1)=(n21)U,, where
variety of ways. In particular, when the gro@is Abelian,  v;:G—R is given by y,(g)=y(t©09).
it can be interpreted by referring to group homomorphisms With this setup, we can now derive commutative laws
instead of irreducible2G modules. For this, rewritey, as  involving the operatord and W defined in Eqs(1) and(2)
Sgec@yd, Where coefficientry equalsu(k,g). The set of — above.

coefficients{ay}, naturally gives rise to a mapping:G Lemma 5Let y:G—R. Then for alls,te G,
—C* defined byg— ay=u(k,g). Sinceu is bilinear, then

xk(g®h)=x(9)xk(h) so x, is a group homomorphism. V() (@)= (hps1)V(7s),
The se{ xx}ke g contains all homomorphisms frof to C*,

and thus we have a bijective correspondence between group V(rol)=(z®)V,

elements of G and homomorphismsG—C* given by
g<> xg- Not surprisingly, the sefx,} admits a group struc-  where y;:G—R is defined byy<(g) = y(s®g).
ture under the operatioggxn= xgen. SO the correspondence  |emma 5 remains true if we replad@ by W in the two
is again a group isomorphism. identities. There is no meaning in considering hdcom-
A group homomorphisny,=xg from G to C* is called a  mutes with operators acting on the second subsygtieat s,
linear characterfor G. Note that sinceu is symmetric, then  on CR) since we have not assumed any knowledge on the

xn(9) = xg4(h) for all g,heG. structure ofR, as discussed in Sec. I. However, for operator
W this is different. If y:A—H, then we also have that
Ill. COMMUTATIVE LAWS FOR THE G OPERATORS U,(Ien)=(l®x)U,. This implies that for operatowy,
- . we can add one commutative law to the two already stated in
Let G be a finite Abelian group ang: G—R some map- lemma 5 y

ping defined onG. In Sec. |, we defined tw& operators,
V(v) andW(y). Suppose we apply, say, the operay2iry)

on the states(h,g)|g)|r), whereg,he G andr e R. What is _
the resulting superposition? One way to answer this question W (hs® ) =(hs® h)W(vs),

is to do the direct calculations. However, a much more el-

egant and useful solution is to define two more operators for Wz 1) = (78 )W

G and then determine the commutative laws for all operators ) )

introduced so far. Having first established these laws, we cafhereys:G—H is defined byyy(9) = y(s®g).

then easily answer the above question and others in a general For y:G—H, we only lack determining the commutative
setting in the next subsections. law for the operatordV andl® 7;. In the next subsection,

We define two more unitary operators for the gra@p W€ prove two new lemmas for that case.
the translation operators(t e G) and thephase-change op-
erator ¢s(se G), A. Commutative laws for W and (1® 7;)

Let yv:G—H, and letge G andh,seH. Then

U,(1® ¢g)|g)|h)= " (s,h)|g)|he ¥(9))
s =u"(s,09(9))u"(s,he y(9)|g)|h
b= 2, 1(5,9)|9)(gl. & 9(9))

Lemma 6Let y:G—H. Then for allse G and allte H,

n= >, |tog)gl,
geG

Trivially, 7s7=Tee; and ¢sd= ¢bss; for all s,teG. To- =u"(s,09(9))(1© ¢s)U,|g)|h),

gether with the Fourier transform, theGeoperators satisfy b ) . .

the following commutative laws, which we shall use inten-Where the map.™ is defined in Eq(3) above. The leading

sively throughout the remaining part of this paper. phase factop"(s,©¥(g)) can be rewritten asys°7)(9),
Proposition 4 For all s,t e G, giving

u(s,t) 7 ps= dhsy U,(1® ¢s) = (Xes@ ) (1@ ¢pg) U, (10
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where, for eachteH, operator X; is defined by
X:|g)=(x>y)(g)|g). Having established Ed10), we can
supplement lemma 6 with the fourth case.

Lemma 7 Let y:G—H. Then for allte H,

W@ n)=(1®7)(FeX@Fu)U,(FEoF),

whereXi|g)=(xt"°¥)(9)[9).

If the two operator$¢ andX; satisfy a commutative law,
then so do the operato¥y andl ® 7; . The simplest example
where this holds is whery=h is a constant function. Then
(xMoy)(g)=x{'(h) for all ge G, so operatoK, acts by mul-
tiplication with a global phase factorX,|g)=xt'(h)|g).
Thus, FgX= xH(h)Fg and we find that

W(len)=xi'(h (1@ m)W.

With more effort, we can also find a commutative law Fgy
and X; if the mappingy:G—H happens to be a group ho-
momorphism.

Lemma 8 Let y:G—H be a homomorphism of groups.
Then for allte H,

W@ 1) = (705 ) W,

wherese G is defined byyS= yloy. Moreover,s and y
uniquely determing if and only if y is ontoH.

Proof. First notice that the composed transfoxt{?py isa
mapping fromG to C*. Sincevy is a group homomorphism,
then so is the composed mappipﬂoy and thus there exists
a uniques e G such thatyS= y{'oy. The first part follows by
writing FgX;=Fgds=70Fc and applying lemma 7. To
prove the second part, singeis a homomorphism, its image
is a subgrouK of H. If and only if K is proper inH does
there exist distinct elements;,t,eH such that X{*l(k)

=Xg(k) for all ke K.

B. The action of operatorsV and W

N QUANTUM ALGORITHMS 3285

This ends our discussion of tl& operators, and we now
turn our attention to applications of these. In the following
three sections, we consider problems of the form where we
are to determine some property of a mappingshor’s cel-
ebrated quantum algorithm for the discrete logarithm prob-
lem [1] can easily be understood in terms of the unknown
subgroup problem, which we review in the next section.
Then, in Sec. V, we introduce the problem of determining a
group homomorphism. Finally, in Sec. VI, we give an algo-
rithm for a generalization of Deutsch’s probldi.

IV. UNKNOWN SUBGROUP PROBLEM

Let G be a finite group and ley:G—R. Suppose there
exists a subgroupl =< G such thaty is constantanddistinct
on each coset oH,. That is, supposey(g)= y(h) if and
only if g6heH,. Then, following[9], we say ofy that it
fulfills the subgroup promisevith respect toH,. The un-
known subgroup probleiis, given a black box computing,
to find a generating set fdi,,.

This problem can be turned into a decision-problem by
instead asking if the subgroupy is nontrivial. Further,
graph automorphism reduces to it by lettiGgbe the sym-
metric group S on the verticesV and setting y(o)
={{o(a),o(b)}|{a,b} cE}, where oS and the given
graph is ¥,E).

If the given groupG=17y, & - ©Zy is commutative,
then we refer to this problem as tldoelian subgroup prob-
lem Also in this case, there are classical difficult problems
that reduce to it: Theliscrete logarithm problens, given a
prime p, a generato of Z>, and an eIemenanS, find
O<r<p such tha"=a in Zg. HereZg denotes the multi-
plicative cyclic group of the positive integers smaller thman
Let G=Z§_l and define the group homomorphismG
—Zg by ¥((91,92))={%1a% for (9,,9,) € G. LetHo<G be
the cyclic subgroup of ordgs—1 generated by the element
(r,—1)=(r,p—2). Thenvy is constant and distinct on each
coset ofH. The discrete logarithm problem reduces to find-

Having determined various commutative laws for the fouring the unique elementgg,g,) € Ho, for which g,=—11

G operatorsy, W, ¢, and s, we now discuss their actions.
Fortunately, this can be simplified largely by knowing their
commutative laws. For example, we have

V() 1(3,9)|9)|0r) = V(7)(s® 1) (74®1)[0)|Og)
:(¢s®l)(7g®|)v(75)|0>|0R>'

where y4(g) = y(s®Qg). As this illustrates, if we just know
the action ofV on the basis sta®)|0g), then we can apply
the commutative laws to determine the actiordbn other

states. Straightforward calculations give that

1
v<y>|0>|oR>=@gEG n(h,g)[h)¥(@). (@1

The preceding subsection already gives hy% com-
mutes with both¢p and = applied on either register, so again,
we only need to determine the action ®¥ on the initial
state|0)|0g). Going through the calculations shows that this

This element can, given a small generating setHgyr be
found classically in deterministic polynomial time by com-
puting the greatest common divisors using the extended Eu-
clidean algorithm.

Quantum algorithms for the Abelian subgroup problem
have been investigated by several authors. First, Sipdbn
considered the case whé&7) andH is promised to have
order at most 2. Assuming thk, can be applied in polyno-
mial time on a quantum computer, he proved that there exists
a quantum algorithm that finds a generating setHgrin
expected polynomial time. Shortly after, Shidr] showed
that the discrete logarithm problem also can be solved on a
quantum computer in expected polynomial time. His solution
consists essentially of first using the above described reduc-
tion and then solving the resulting special case of the Abe-
lian subgroup problem. In neither of the two papers just men-
tioned is a group-theoretical language used.

state is an eigenstate with eigenvalue 1. In a slightly more %t also reduces to finding the unique elemegt ,@,) € Hg for

general form, we have thatv|g)|0)=|g)|0) for all ge G.

which g;=1, but we do not need that here.
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,={edge G} is contained in the kernel of, andG’'=G/eG

it suffices to find a generating set for the orthogonal subis an Abelian group also having exponentDefine y':G’
groupHyg . Such a set can be found efficiently if we have a—H’ by y'(g’®eG)=y(g’). This mapping is a well-

fast algorithm for finding a random elementlaf (see[4,9]
for detaily. Thus, an efficient sampling algorithm i

yields an efficient algorithm for the Abelian subgroup prob-

lem. In[4], Simon gave an efficient quantum algorithm for
sampling a random element bfé when the given groufs
is the direct sun¥j. His algorithm can be generalized in a

natural way to arbitrary finite Abelian groups. In terms of the
operatory, it can be stated simply as performing the experi-

ment
z=My°V(7)|0)|0g).

We refer the reader t@] for details.

defined homomorphism, and if we know the valueybfon a
generating set foG’, then we can easily deduce the value of
v on a generating set fdB.

The next lemma shows that @ andH have the same
exponent, then classically, it is necessary to evalyate a
generating set foG to determiney uniquely.

Lemma 9 Let G andH be finite Abelian groups having
the same exponent. Given a group homomorphigr®
—H as a black box, we can uniquely determind and only
if we know the value ofy on a generating set fdB.

Proof. Suppose we have evaluated the black box on the
subsetXC G. LetK be the subgroup generated Kyand let

The results by Simon and Shor were extended by Bonel), :K —H be the unique homomorphism consistent with

and Lipton[10] and Grigoriev{11] to include fast quantum

algorithms for several variations of the Abelian subgroup

problem. Kitaev[12] then gave an algorithm for efficiently

computing the quantum Fourier transform for any finite Abe-
lian group. His method applies the transform not with per-

fection, but only with arbitrarily good precisidisee[12] for
detail9. Yet, this suffices to imply a sampling algorithm that

those answers. IK=G, then trivially y= vy .

Now, suppose is proper inG. Let y, be any extension
of ykx to G. Consider the group of homomorphisms from
G/K to H, denoted homG/K,H). SinceG/K is nontrivial
and since the exponent @&/K divides the exponent afl,
then homG/K,H) is nontrivial. Lety;, vy, e hom(G/K,H)

succeeds with arbitrarily high probability, and hence also arlPe two distinct elem(,ants. Fdr:},z, define the mapping
expected polynomial-time quantum algorithm for the generalyi :G—H by ¥i(9) = v (g&K) & y¢(g). Clearly, y, andy,

Abelian subgroup problem.

are homomorphisms, and since they are distinct and both are

A natural next question to ask is if it is possible to solve extensions ofyy , the lemma follows.

the Abelian subgroup problem iworst-casepolynomial

It follows that any classical algorithm solving the group

time, as opposed to in expected polynomial time as just dehomomorphism problem must apply the black box on a gen-
scribed? A partial answer to that question was first given irerating set foiG.
[13] by showing that, under some additional assumptions, a Corollary 10. Let G andH be finite Abelian groups hav-

single nonzero element &f; can be found deterministically.
Brassard and Heer [9] then showed that for some groups of

ing the same exponent. Let a group homomorphigr®
—H be given as a black box. Then any classical determin-

smooth order, it is possible deterministically to find a generdstic algorithm solving the group homomorphism problem

ating set forHg , and not only a single nonzero element.
Here the order of a grou@ is smoothif all its prime factors
are at most l0gG| for some fixed constamt. Building on the
work in [13], Beals[14] has subsequently, for the cage

must apply the black box at leasttimes, wheren is the
cardinality of the smallest set generatiGg

On a quantum computer, we can beat this bound i
generated by a set smaller than any set gener&ing

=75, found an alternative deterministic quantum algorithm ~Theorem 11LetG andH be finite Abelian groups having

for finding a generating set fddy<7j.

V. DETERMINING A GROUP HOMOMORPHISM

the same exponent. Let a group homomorphisi@—H be
given as a black box. Then there exists a quantum algorithm
solving the group homomorphism problem using omiyap-
plications of the black box, whema is the cardinality of the

In this section, we introduce the problem of determining asmallest set generatirtg. _
group homomorphism and we compare classical and quan- Let G=%q &---®©Zq and H=Z7; &---&Z . For 1s<i

tum solutions for it. LetG andH be finite Abelian groups,
and lety:G—H be a homomorphism given as a black box.
The group homomaorphism probleis to compute the value
of y on a generating set fdB.

This problem reduces to the case whé&randH have the
same exponerft.To see this, lety:G—H be a homomor-
phism. The order ofy(g) divides the order ofy for all ele-
mentsg e G, and thus the image of is contained in the
subgroupH’<H of all elements of order dividing the expo-
nent of G. We therefore regargt a mapping fronG to H'.
Let e denote the exponent dfi’. Then the subgrougG

2A group G hasexponent df e is the smallest positive integer
such thateg equals the identity for alg € G.

=<n, let g; denote the element i@ that contains 1 at itgth
entry, and O everywhere else. Similarly, foi<m, let t;
denote the element id that contains 1 at iteth entry, and 0
everywhere else. The algorithm in the above theorem con-
sists of two steps. First, it performs the experimgnt M,
°W(7)|0)|t;) for each of them elementg; . Then, from the

m pairs (§;,t;) e GXH, it classically deduces the value pf

on each of then elementsg; € G. That this second step is
possible follows from lemmas 8 and 12.

Lemma 12Let y:G—H be a homomorphism of groups.
Suppose the exponent Hf divides the exponent @&. Then,
given a set of pairsg,t;) for which Xfiz)({?oy, we can
uniquely determiney if and only if thet;’s generateH.

Proof. We prove each of the two directions separately.
First suppose thatl is generated by thg's. Let g be an
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arbitrary element o5 and seth=y(g). By assumption, for of y, and that with equal probabilities returns eithgry) or
all i, a special value denoted “fail” from which one can deduce

" " H G nothing abouty. Independently, Tappl8] and Cleveet al.

X (1) =Xy, ()= (xt;°¥)(9) = x5(9). [17] then discovered that, still using only one evaluation of
v, there is another algorithm that always retusnsy). This
Since thet;’s generateH, we know the value of}, on every s to be compared with any classical algorithm that needs
element in its domain, and henbeis uniquely determined.  two evaluations ofy to decide with certainty ify is constant
For the opposite direction, suppose tiis only generate or not.

a proper subgroul of H. Let y,:G—H be any homomor- Deutsch’s problem can be generalized in the following
phism satisfying that natural way. We say that a function gerfectly balancedf
6 _ [y~ X(r)|=]y Y(r")| for all r,r" e R, wherey 1(r) denotes
Xs=Xy°vy forall i. (120 the preimage of . In [19], Deutsch and Jozsa showed that

there is a quantum algorithm that using just two evaluations

We now construct another homomorphisyp:G—H also  of a given functiony:Z,,—Z,, either correctly concludes
satisfying Eq.(12). S that it is nonconstant, or correctly concludes that it is not

Since K is proper inH, there exist distinct elements perfectly balanced. Note that at least one of these two state-
hi.h,eH such thaty,'(h;) = xi(h,) for all keK. Letg’  ments must be true. Related to this, Jozsa considerg2Din
€ G be an element of maximal order. Wri=G,®(g’) as  how well a quantum algorithm can determine a properiyf
a direct sum of two subgroups, one of them being the suba given functiony:7,— 7, if we only allow one evaluation
group generated by’. Define the mappingy,:G—H by  of y. Further, Costantini and Smeralf21] analyzed how

setting well a specific quantum algorithm correctly determines if a
, , given function y:{0, ... n—1}—{0,... m—1}(n,m=2)

Both Deutsch’s algorithm and its generalizations in
[19,21] can be written in the form we discussed in Sec. I:
z,=M;°V(v)|0)|0) where y:G—H is considered a
mapping between cyclic groups. In Deutsch’s algorithm,
G=H=7,, and in its generalization if19], G=7,, and
H=7,, and in[21], G=%7, andH=7,,.

We now show that hardly any structure on either the set
G, or H, is needed to prove their result in an even more
general form. For this, ley:A— R be any mapping. For any
nonempty set X, let |X) denote the superposition
(LX) =4 x/X). Let A be a unitary operator ofiA satis-

ing thatA|A)=1|0). Then the operatoA® | maps|A)|r) to

and extending it linearly t6&. We need to show three prop-
erties ofy,: first of all thaty, is well defined, second that,

is a homomorphism, and finally that it satisfies EtR). The
mappingvy, is well defined since the order of every element
ge{g'}UGq is a multiple of the order of its image. By
construction, the last two properties hold. The lemma fol-
lows.

An early result by Bernstein and Vazirdi@] can be seen
as a special case of theorem 11: &t 7] andH=7,. By
identifying Z, with the cyclic subgroup{1,—1}CC*, any
group homomorphisny: Z5— Z, is a character. Since there is
a bijective correspondence between the characters and tt e basis stath,)|r) for all r €R. In other words, if AY|r)

n - . .
?r?g%.elerlrt]ents ot (seg. Sec. 1Dy fllndlng Z II? equw'crl]Ient . corresponds to the constant functigi=r, then operatoA
0 Tinding Its corresponding group element. it was shown ing,| maps that function to the basis vectog)|r). Intuitively,

. . .
[3] that this corresponding elemegit 7, can be found on @ it \ye perform a measurement of the first register and we
quantum computer by applying only twice. This can be  measure some value different from Othen we know thay

improved to just a single application ¢fby applying lemma 5 honconstant. The next theorem shows that these ideas in-
5.5 in [15]. On the other hand, Terhal and Smolit6]  yeed work as just described.

showed that any classical algorithm cannot find the element thaorem 13Let y:A—R and letA be a unitary operator

geZy with less thann evaluations ofy. Independently of o1 A for which A|A)=|0,). Consider the experiment
our work, Cleveet al. [17] have proven theorem 11 for the

case wherG=75 andH=175". z=M;°(A®1)U,(AT®1)[0,)|0R).

V1. DECIDING IF A FUNCTION IS CONSTANT Then the probability thaz=0 is

One of the earliest problems considered for quantum com- 1 PP
putation is the problem of deciding constant functions: Given pl—W;E:R [y (O] (13
an arbitrary mapping: A— R of finite sets, determine i is
constant or not. In his seminal pagéi, Deutsch co_nsidered We omit the simple proof. The probabilify; of measur-
the case when we are given a two-valued funciof0,;  ing 0 is 1 if and only ify is constant. At the other engy

—{0,1} of a two-valued variable, and we are to compute theygies its minimum whery is as balanced as possible. That is,
bit 7(y)=7y(0)® y(1) where® denotes the exclusive-or. when|y~1(r)|=|y " X(r’")|=1 for allr,r’ eR. Thus,p; is a

He gave a quantum algorithm that uses only one evaluatiogyeasure for how constantis. Unfortunately, this minimum
is never zero, but instead at least {ia)A|,1/R|}.
If we have some partial knowledge on the Betthen we
3Not only is h uniquely determined, but it can also be found can show that it is possible to improve the experiment in
efficiently on a classical computer. theorem 13 to obtain a minimum equal to zero. Rebe a
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unitary operator ofiR for which R|0g)=R"|0g)=|R). Sup- The probabilityp, for measuring 0 in the first register is 1
pose that the seR is endowed with an addition operation if and only if the given functiony: A—R is constant. Ify is
satisfying thaiR+r =R for all elements in the image ofy. ~ constant on all but a single element of the domain, then
Then the operatdd,, given by|a)|r)~>|a)|r + y(a)) is uni- ~ =1—2(n—1)/n? wheren=|A|. That is, with probability
tary. 2(n—1)/n?>~2/n, we measure a nonzero value in the first

These assumptions are fulfilled, for exampleRihas the  register. Thus, using one evaluationgfwe can distinguish
structure of an Abelian group. They imply that the vectornonconstant functions from constant functions with probabil-
|0,)|0g) is an eigenvector of the operatoA® R)UY(AT ity at least roughly 2i. If we apply the experiment in Theo-
®R"). We therefore exclude the zero state in our initial stateeém 14 instead, then we improve this probability by a factor
and we obtain the following slightly better result. of |R|/(|R|—1). This factor is worthy of consideration if

Theorem 14 Let y:A—R. Suppose that A|JA)  (and only if the cardinality ofR is small, as, for example, in
=]04), R|0g)=R'|0g)=|R), and thatR is endowed with ~ Grover’'s searching problefi22].

an addition for whichR+ y(a)=R for all ac A. Consider Suppose we want to distinguish nonconstant functions
the experiment from constant functions with probability better than roughly
2/n. Then we can of course repeat the experiment, kay,
z=M;o(A@R)U(AT®@RT)[02)|R{0g}). times, giving a success probability closekp for smallk,

. . wherep denotes eithep; or p,. However, since our com-
Then the probability thaz=0 is putation is done on a quantum computer, we can show that
paR|—1 we can improve this to approximatelk¥2)p by applying
= (14) our amplitude amplification technigu®,23].
Until now, we have interpreted the probabilitipsandp,
as measures for how constant the functipris. From the

and this inequality is strict whewy is honconstant. closed formulas giv_en in the ahove theorems, we seepihat
As mentioned above, the assumptions in theorem 14 a@nd_p_z also can be mterpreted_ as measures for th_e ngmber of
satisfied ify:G—H, A=Fg, andR=F,. In that case, if collisions of y: Suppose we pick a _subset of car.d'mal!ty 2 of
we perform the experimer= Ao WW()|0)|H), the prob- A at random with respggt to the uniform probability distribu-
ability that the outcomez equals a is given by s tion. Then the probability that takes the same value on

=(UG|)Zh a7, |2 Here )\a(y,h)=2g,u,e(a,g), both elements of the subset is given by
where the sum is taken over all elements G for which _

_ . p.|Al—1
v(g)=h. If we remove the zero state from the initial .
state |[H) and instead perform the experiment [Al-1
= M°W(7)|0)|H\{0}), then we obtain a slight change |, particular, ifA andR have the same cardinality, then
of these probabilities similar to the change frgm to p,. equals this probability.
That is, the probability to measure zero is nowg|H]|
—1)/(|H|—1), while the probability to measure the nonzero
elementge G is (qq/H|)/(|H|-1).

Unlike p4, the probabilityp, takes the value 0 when the | am grateful to Joan Boyar, Gilles Brassard, lvan Dam-
given functiony is perfectly balanced. In particular, for the gard, and Mark Ettinger for discussions and comments. Parts
special case thaa=R=7,, andA=R=W, then we obtain of this research were carried out while | was at the Universite
the improvement of Deutsch’s algorithm that we discussed imle Montreal. | have been supported in part by the ESPRIT
the first paragraph of this section. Hané denotes the Fou- Long Term Research Programme of the EU under Project

P2~ TR-T

wherep; is given by Eq(13). Furthermorep,=<p; for all y,
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