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Quantum states of an oscillator with periodic time-dependent frequency under quasiresonant
condition: Unperturbed evolution, perturbative effects, and anharmonic effects
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In a recent paper@L. Ferrari, Phys. Rev. A57, 2347~1998!#, one of the authors has shown that the mean
energy of a quantum oscillator with periodic time-dependent frequency diverges exponentially in time, under
certain conditions. In the present paper, we study the explicit form of the evolving state, and compare the
results obtained with the general expressions developed by other authors for an arbitrary time-dependent
frequency. Then we approach the problem of the anharmonic effects. A first-order calculation is performed in
the case of a short-range perturbation. The transition rates between different states, evolving with the unper-
turbed Hamiltonian, are shown to vanish at long times when the unperturbed oscillator’s energy diverges
exponentially. A nonperturbative approach must be adopted, in the presence of anharmonic potentials of the
form V(q)}qj , j .2. In the case of weak anharmonicity (j 22!1), a mean-field procedure can be used to
show that the mean energy does actuallysaturateat long times, with the possible exception of periodic peaks,
having nonsaturating height, that we call ‘‘special quantum effects.’’@S1050-2947~99!12005-5#

PACS number~s!: 03.65.Fd, 03.65.Ge
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I. INTRODUCTION

The oscillator with time-dependent frequency

V~ t !5V0A11d~ t ! ~1!

is a long-standing problem, originally introduced as a mo
system for the adiabatic approximation in the case of a
quency varying smoothly between two asymptotic valu
@1#. The case of a frequency depending periodically or r
domly on time, has recently achieved a new impulse, in v
of possible applications to the physics of accelerators an
condensed-matter physics. Classically, the problem has
approached as an application of the invariant theory for
tegrable systems@2#, and as a special example of nois
driven motions, in the presence ofrandomfluctuations@3#.
Starting from a different viewpoint~the analogy existing
with a stationary Schro¨dinger equation in one dimension!,
one of the authors~Ferrari! has studied the special case
which the classical oscillator’s energy increasesexponen-
tially in time, at the expense of the field producing the f
quency fluctuation@4#. In the periodic case, this occurs whe
the parameters characterizing the frequency fluctuation
within certain ‘‘bands’’ of values. The condition yielding th
maximum rate of exponential increase is denoted as
‘‘quasiresonant condition,’’ and corresponds to the cente
the bands.

The quantum formulation of the problem has a long sto
in turn, starting from the early 1950s@5,6#. More advanced
methods, extending the invariants’ theory to the quant
case, have been used by Dodonov and Man’ko@7#, and by
Lewis and co-workers@8,9#. Those approaches have a gre
deal of generality, and provide methods of wide applicab
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†Electronic address: ferrari@gpxbof.df.unibo.it
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ity, regardless of the specific model for the fluctuation. In
attempt to approach the quantum version of the case stu
in Ref. @4#, the author adopted a different method, based
the transfer-matrix formalism. In Ref.@10#, the method is
applied to the model fluctuation, Fig. 1, that is, to a piec
wise constant frequency. It is found that, in agreement w
the correspondence principle, even the mean energy of
quantum oscillator increases exponentially in time, under
same conditions discussed above. Furthermore, the Ha
tonian in the Heisenberg representation was shown to b
generalized harmonic form, that is, a linear combination
the ~Schrödinger! operatorsp2, q2 and pq1qp, with time-
dependent coefficients all diverging exponentially in time

In Sec. II, we study the dynamics of the evolving quantu
stateun,t&, with initial condition un,0&[un&, corresponding
to the nth excited state of the zero-time Hamiltonian~here
and in what follows, the instantt50 marks the onset of the
frequency fluctuation!. We also make a detailed compariso

FIG. 1. The square fluctuationd(s/V0) is plotted against the
dimensionless times, between the (m21)-th and the (m11)-th
period.
3270 ©1999 The American Physical Society
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between our results and those obtained by other auth
showing that the relevant quantities entering our calculati
are special cases of the general expressions develope
Refs.@8,11,12#.

In Sec. III, the first-order perturbation theory is applie
by assuming theevolving states un,t& to be unperturbed
states, among which a scattering process takes place, d
an additional stationary perturbationV(q). It is shown that
the scattering rate betweenun,t& and um,t& vanishes in the
long-time limit, if V(q) is short-ranged. This means that th
coherenceof the exponential increase of the mean ene
cannot be broken at a perturbative level by short-ranged
tentials. Starting from this result, in Sec. IV we discuss
case of the anharmonic termsV(q)}qj , j .2. We show that
such potentials cannot be treated perturbativelyunder condi-
tions of exponential increase of the energy. We then develop
a method, reminiscent of the mean-field approximati
showing that a small deviation from harmonicity~measured
by the quantitye[ j 22) does actually behave as a dissip
tive channel for the oscillator’s energy, and leads to a sa
ration of the mean energy at long times, if the anharmo
effects tend to increase with the number of elapsed period
the frequency fluctuation~which is the standard case!. A self-
consistent equation is produced that makes it possible to
culate the saturation value and the saturation time sc
These are important points in view in the application to
alistic systems@4,13#.
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In Sec. V we discuss an intriguing quantum effect, due
the existence of special instants at which the anharmo
effects ~in the coordinate space! tend to decreasewith the
number of elapsed periods of the frequency fluctuation. A
cordingly, periodic peaks in the background saturating m
energy are expected to occur at those special instants.
shown that a saturation of the height of the peaks can
obtained by anharmonic terms in momentum space, pro
tional to pj , j .2. Hence, besides other possible nonuniv
sal reasons, the peaks do certainly saturate for relativ
effects, once an expansion of the relativistic kinetic energy
powers ofp2 is accounted for.

II. THE EVOLUTION OF THE QUANTUM STATE
IN THE QUASIRESONANT CASE

Given the unperturbed frequencyV0 @Eq. ~1!# and the
massm of the linear oscillator, we introduce the dimensio
less times5V0t, momentumP5p/Am\V0, and position
Q5qAmV0 /\. The model fluctuation Fig. 1, is thereb
characterized by a dimensionless periods5s01s1, split
into a subperiod of durations0, in which the frequency is
V0, followed by another subperiod of durations1, in which
the frequency isV1[V0A12j. We stress thatj will be
assumed to be the smallness parameter of the problem.
resulting ~dimensionless! Schrödinger Hamiltonian then
reads
H5H P21Q2

2
[H0 for s,0 and sPI 0~m![@ms,ms1s0@ ,

P21~12j!Q2

2
[H1 for sPI 1~m![@ms1s0 ,~m11!s@ ~m50,1,2, . . . !.

~2!
rs
g

ed in

ef-
he
Ref.

the
According to Eq.~2! ~see also Fig. 1!, two unitary operators
U0(s2ms) and U1(s2ms2s0) can be introduced, de
scribing the evolution in the two subperiods, respectively

U0~s2ms![exp@2 i ~s2ms!H0# for sPI 0~m! ,

~3!

U1~s2ms2s0![exp@2 i ~s2ms2s0!H1#

for sPI 1~m!.

We study the quantum state evolving in each time inter
I a(m) (a50,1) from the initial eigenstateun& of H0. They
can be obtained from Eq.~3!, asun,s&a5Ua(s)un&, where

Ua~s!5Ua„s2~m1a!s…@U1~s1!U0~s0!#m1a

for sPI a~m!, a50,1, ~4!

is the total evolution operator mapping the initial state in
the state evolving in the intervalI a(m). TheQ representation
of un,s&a in I a(m) follows from the property
l

H rev
(a)~s!5Ua~s!H0U a

†~s!⇒H rev
(a)~s!un,s&a5En

(0)un,s&a ,
~5!

whereEn
(0)[(n11/2) are the~dimensionless! eigenvalues of

H0. The property, Eq.~5!, is useful because the operato
H rev

(a)(s) are the ‘‘time reversed’’ form of the Heisenber
HamiltoniansH (a)(s)5U a

†(s)HaUa(s). Hence, from the re-
sults of Refs.@10,14#, one knows that theH rev

(a)’s are gener-
alized harmonic Hamiltonians, whose eigenstates in theQ
representation can be easily found. The same method us
Ref. @10# to calculateH (a)(s) @therein denoted asH(t)#
could be applied toH rev

(a)(s) as well, the only difference being
a redefinition of the transfer matrices. However, a more
ficient method is developed in the Appendix. One of t
advantages, with respect to the procedure adopted in
@10#, is that the relationship with theclassicalmotion equa-
tion is made manifest. The resulting expressions for
H rev

(a)’s are

H rev
(a)~s!5

Aa

2
P21

Ba

2
Q21

Ca

2
~PQ1QP! ~a50,1!.

~6!
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Setting

u[s2ms2s0 , ~a21!sa<u,asa , ~7!

we get, to first order inj @15#,

Aa5cosh~2vm!1sinh~2vm!sin@2u~12j!a/21s0#

1aj$cosh~2vm!sin2~uA12j!

1sinh~2vm!sin~uA12j!cos~uA12j1s0!%

1aO~j2!, ~8a!

Ba5cosh~2vm!2sinh~2vm!sin@2u~12j!a/21s0#

2aj$cosh~2vm!sin2~uA12j!

2sinh~2vm!sin~uA12j!cos~uA12j1s0!%

1aO~j2!, ~8b!

Ca52sinh~2vm!cos@2u~12j!a/21s0#

2
aj

2
cosh~2vm!sin~2uA12j!1aO~j2!, ~8c!

v52j
sins0

2
1O~j2!. ~8d!

In obtaining Eqs.~6!–~8! use has been made of the qu
siresonance condition@4,10#:

s8[s01s1A12j52p l ~ l PZ!, ~9!

which yields themaximumrateuvu @Eq. ~8d!# of exponential
increase in the coefficients@16#. The conditions onu in Eq.
~7! ensure thatsPI a(m). It should be noticed that Eqs.~8a!–
~8c! areexactin the intervalsI 0(m). The first-order approxi-
mation inj only affects the quantities in the intervalsI 1(m)
and the value ofv @Eq. ~8d!#. This is the reason why the nex
numerical calculations will be referred to the intervalsI 0(m).

Given the explicit form, Eq.~6!, of H rev
(a) , we can find its

eigenstateŝQun,s&a in the Q representation under the con
dition

i
dun,s&a

du
5Haun,s&a @sPI a~m!#, ~10!

that is, the Schro¨dinger equation in each intervalI a(m). Let
^Qun& be theQ representation of thenth eigenstate of the
Hamiltonian H0. Then, it can be seen by direct inspecti
that thenormalizedwave function

^Qun,s&a5Aya~u,m!exp@2 i „f a
(n)1Q2za~u,m!/2…#

3^ya~u,m!Qun& ~11!

is an eigenfunction ofH rev
(a)(s), with eigenvalueEn

(0) , satis-
fying the condition, Eq.~10!, provided that
ya~u,m!5
1

AAa~u,m!
, za~u,m!5

Ca~u,m!

Aa~u,m!
,

~12!

d fa
(n)

du
5~n11/2!ya

2~u,m!.

We notice from Eqs.~8! that limj→0ya(u,m)51 and
limj→0za(u,m)50, so that the standard solution^Qun,s&a

5exp(2iEn
(0)s)^Qun& is recovered in the limit of vanishing

frequency fluctuation. We can thereby conclude that E
~11! and ~12! yield the coordinate representation of th
evolving quantum states that we are after, in each time in
val I a(m). In particular, from Eqs.~2! and~11! it is possible
to verify that

a^s,nuH0un,s&a5En
(0)@cosh~2vm!

1aj sinh~2vm!sin~uA12j!cos~uA12j

1s0!#1aO~j2! ~a50!, ~13!

which coincides with Eq.~5b! of Ref. @10#, when evaluated
at u50 ~on restoring the dimensioned quantities!. A direct
inspection reveals the continuity inu ~to first order inj) of
Eqs. ~8! and ~12!, when passing froma50 to a51 in the
mth interval, and froma51 to a50 at the edge between th
mth and the (m11)-th period. It should be noticed that th
evolution of the quantum state is determined bytwo relevant
time scales,@see Eqs.~11! and ~12!#: one is the ‘‘macro-
scopic’’ ~dimensionless! time vm that enters the hyperbolic
functions only, and accounts for thelong-timeeffects of the
fluctuationd. These are shown to increaseexponentiallype-
riod by period@due to the quasiresonant condition~9!#. In
addition, there is the ‘‘microscopic’’ timeu ~Fig. 2!, that
enters the trigonometric functions only, and accounts for
details of the evolution within each period of the frequen
fluctuation.

By means of Eqs.~11! and~12!, one knows the evolution
of the basis$un&% in the complementary time intervalsI a(m),
respectively. So, given any initial state, one can study
complete evolution by projecting it on$un&%. In particular,
we will take un& as the initial state.

Taking the square modulus of Eq.~11!, the probability
density inQ turns out to beya(u,m) z^ya(u,m)Qun& z2, which
corresponds to the square modulus of thenth eigenstate of a
standard harmonic Hamiltonian, with the coordinate resca
by a factor ya(u,m). This factor decreases exponential
with the numberm50,1,2, . . . , of elapsed periods of the
frequency fluctuation@see the first Eq.~12! and Eq.~8a!#.
This is true foralmost all values of the continuous timeu
describing the evolution in each subperiod. However, at
isolated valuesua* of u,

ua* 5
1

2~12j!a/2 Fp2 1kp2s01
aj

2
coss0 coth~2vm!

1aO~j2!G ~14!
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~with k odd or even according to the positive or negative s
of v), such that

sin@2ua* ~12j!a/21s0#52sgn~v!1aO~j2! ~a50,1!;
~15!

the scaling factorya(ua* ,m) increasesexponentially withm,
as can be seen from Eqs.~12! and ~8a! ~see also Fig.2!.
Hence the evolution makes the probability density spread
exponentially with the number of elapsed periods, excep
the special instants

sa* ~m!5ua* 1ms1s0 , ~16!

for which one has, instead, limm→`z^Qun,sa* (m)&az25d(Q),
that is, a spatial probability density shrinking to ad function.
In Secs. IV and V we will see a nontrivial consequence
this result.

At this stage, we recall that the method used here is ba
on the transfer-matrix formalism~the Appendix!. This
method is especially useful when the frequency fluctuati
are periodic, but the results are~as they must be! special
cases of the general expressions developed for any frequ
fluctuation. For this comparison we refer to the paper
Lewis and Riesenfeld@8#. One can notice that, by constru
tion, the piecewise defined operator@Eq. ~6!#

FIG. 2. Plot ofy0(u,m) @first Eq.~12!# at m510 andm530, for
2s0<u,0 and s054, s159, l 52, j59.4031022. Note the
increasingly high peak, with decreasingly small width atu5u0* .
n
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H rev~s!5H H rev
(0) for sPI 0~m!,

H rev
(1) for sPI 1~m!

~17!

is nothing but the invariantI @Eq. ~44! of Ref. @8## with I (s
50)5H0. In fact, one has, by definition,H rev(s)
5U(s)H0U†(s), where U(s) is the evolution operator
However, any operator in the formF rev5UF0U† is a quan-
tum invariant, provided that]F0 /]s50. This is because the
HeisenbergrepresentationU†F revU of F rev is just the time-
independent operatorF0. This clarifies the relationship be
tween the transfer-matrix method and the invariant meth
of Lewis and Riesenfeld@8#. For a more specific comparison
the relevant quantity is the scaling factorya(u,m) @Eqs.~12!
and ~8a!#. It can be verified by direct inspection that, o
settingra5ya

21 , one has

d2ra

du2
1~12aj!ra2

1

ra
3

50 ~a50,1!. ~18!

Hence the piecewise defined function

r~s!5H y0
21~u,m! for sPI 0~m!,

y1
21~u,m! for sPI 1~m!

~19!

is just a special case of the functionr defined by Eq.~45! in
Ref. @8#. From the third Eq.~12! and from Eq.~19! it can be
seen that the phase

f (n)~s!5H f (0) for sPI 0~m!,

f (1) for sPI 1~m!
~20!

is just equivalent to the phase, Eq.~61! of Ref. @8# ~a sign
apart!. In general, our Eq.~11! for the evolving quantum
state is a special case of Eq.~27! in Ref. @11# and Eq.~3.6! in
Ref. @12#. The only point of caution is that our expressio
are piecewise defined, due to the special form of the
quency fluctuations~Fig. 1!.

III. FIRST-ORDER PERTURBATION THEORY
IN THE QUASIRESONANT CASE

Having found the unperturbed evolving statesun,s&a’s, a
perturbation theory can be applied to study the transit
probability PV(m,n;s) betweenun,s&a and um,s&a , due to a
perturbative potentialV(Q) that we assume, for the momen
to beshort-ranged. The first-order approximation yields@17#

PV~m,n;s!5
1

~\V0!2 U E0

s

dta^t,muVun,t&aU2

~nÞm!,

~21!

which leads one to study the integral
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The first sumJ(m) in Eq. ~22! accounts for the evolution in
them elapsed periods of the frequency fluctuations, while
second termj (s,m) accounts for the ‘‘residual’’ evolution in
the actual time interval@ms,s#. By means of Eq.~11!, it is
possible to writeJ(m)5(b50

m21(a50
1 j a(b), with

j a~b!5E
(a21)sa

asa
du ya~u,b!exp@2 i „f a

(n)~u,b!

2 f a
(m)~u,b!…#E

2`

`

dQ^muya~u,b!Q&V~Q!

3^ya~u,b!Qun&. ~23!

Now we can take Eq.~23! in the limit b@1, on assuming
0,u*2`

` dQV(Q)u,`:

j a~b!>^mu0&^0un& È`

dQV~Q!E
(a21)sa

asa
du ya~u,b!

3exp@2 i „f a
(n)~u,b!2 f a

(m)~u,b!…# ~b@1!.

~24!

Equation~24! follows from the property that the integral o
ya(u,b) in u decreases exponentially withb @18#. From the
same property, one can conclude that

lim
m→`

uJ~m!u5uJ~`!u,` ,

lim
m→`

u j ~s,m!u50 uniformly ins. ~25!

On using Eq.~25! in Eqs.~21! and ~22!, one finally gets

lim
s→`

PV~m,n,s!5PV~m,n,`!,`⇒ lim
s→`

dPV~m,n,s!

ds
50.

~26!

From Eq.~26! it follows that, for short-ranged potentials, th
rate of transition~probability per unit time! between any pair
of evolved states vanishes under the quasiresonance c
tion that leads the mean energy Eq.~13! to diverge exponen-
tially. This result is far from trivial, since in the usual pe
turbation theory for astationary unperturbed Hamiltonian
the integral in Eq. ~21! would become proportional to
sd(En

(0)2Em
(0)) in the limit of larges @19#. A similar expres-

sion would be obtained even for ourtime-dependentHamil-
tonian, if it were not for the exponential dependence
ya(u,m) on m. In fact, if we took the quantitys8 far enough
from the quasiresonant condition Eq.~9!, the hyperbolic
functions in Eq.~12! would be replaced bytrigonometric
functions @20#. In this case the quantityj a(b) in Eq. ~23!
e

di-

f

would not vanish in the limitb→`, and the probability of
transition, Eq.~21!, would be similar to the usual expressio
It is indeed possible to explain the formal result, Eq.~26!, by
a physical argument. The perturbative approach does in g
eral transform thedeterministic~in the quantum sense! evo-
lution due to theexactHamiltonian~unperturbed plus pertur
bation! into a probabilistic problem. For this to be possible
the perturbative approach must produce finite transit
rates. These make it possible to replace~on suitable time
scales! the exact evolution with an incoherent sequence
scattering events between the unperturbed states. A mea
of the incoherence is given by the broadening of the unp
turbed level, which is related to the level’s mean life. In t
quasiresonant case, there is a basic difference: the un
turbed states themselves evolve in such a way that the m
energy increases exponentially~at the expense of the extern
field producing the periodic frequency changes! with increas-
ingly large fluctuations. For times short compared touvu21,
this coherenteffect of broadening may be negligible, wit
respect to the incoherent effect due to the perturbation,
the former becomes overwhelming at long times, since
latter is finite at any time. The coherence reflects itself in
vanishing of the transition rates. As an important con
quence, it is impossible, under the quasiresonant condit
to suppress the exponential increase of the oscillator’s en
by means of a short-ranged perturbation.

IV. LONG-RANGE ANHARMONIC EFFECTS
AND SATURATION UNDER

THE QUASIRESONANT CONDITION

So far, the long-range anharmonic effects have been c
pletely ignored. In the standard case of a constant freque
it is well known that anharmonic potentials of the form

V~Q!5l jQ
j ~ j 53,4, . . .! ~27!

can be treated perturbatively, with the same methods as
short-ranged potentials. In contrast, we show that this is
always possible if the frequency fluctuates. In particular,
the quasiresonant condition, Eq.~9!, be satisfied. On insert
ing the potentials, Eq.~27!, in Eq. ~23!, one gets

j a~b!5l j^muQj un&E
(a21)sa

asa
du@ya~u,b!#2 j

3exp@2 i „f a
(n)~u,b!2 f a

(m)~u,b!…#. ~28!

Equation~28! shows that the transition rates now diverge
the long-time limit, due to the exponential divergence
@ya(u,b)#2 j . Note that this wouldnot be the case for a sta
tionary Hamiltonian, or far enough from the quasireson
condition, Eq.~9!. Once again, it is the exponential behavi
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in the macroscopic time that marks the difference betwee
standard case and the present case.

In Refs.@4,13#, it was argued that the anharmonic effec
lead the oscillator’s mean energy to saturate. The station
levels are therein related to massless bosons~for instance,
phonons!, and the anharmonic potentials are regarded to
boson-boson interactions producing a finite scattering rat
a perturbative level. Hence, the method looks perturbativ
a first glance~which would contrast with the argumen
above!. However, the anharmonic scattering rate is thenas-
sumedto act like an ‘‘annihilation’’ rate for the bosons, con
trasting with the ‘‘creation’’ rate, Eq.~8d!. This ansatz is the
nonperturbative ingredient of the approach just outlined. I
only thanks to it that the saturation of the energy~number of
bosons! can be obtained from the detailed balance betw
the creation and annihilation rate. Our present aim is to sh
that the saturation does actually follow from anharmonic
in a more formal way. The approach adopted is totally n
perturbative, and starts from the following physical arg
ments. As mentioned in Sec. II, the quasiresonant condit
Eq. ~9!, is of special interest because it yields themaximum
rate uvu of exponential increase of the mean energy. Ho
ever, there is a band of possible values ofs8[s0

1s1A12j for which an exponential increase is produce
with smaller and smaller rates, vanishing at the band ed
@20#. The physical origin of the exponential increase of t
classical amplitude~in the absence of anharmonic effects! is
that whens8 falls in the band, the moving ‘‘walls’’ of the
harmonic potential are in constructive phase with the am
tude, and always impart a positive amount of energy to
particle, in each period of the frequency fluctuation. The e
dence that this effect goes on without limit, and is not tra
sient~as it would be for a free particle rebounding elastica
between two periodically moving walls!, is a special feature
of the quadratic shape of the potential that yields a
amplitude-independent period. The anharmonicity d
break this ideal condition, and is thus expected to deph
the motion more and more with increasing amplitude, dr
ing the system out of the band where the constructive in
ference is possible. In an attempt to describe this effect m
formally, let us write the Hamiltonian with an anharmon
potential @Eq. ~27!#, in the dimensionless coordinate, m
mentum, and time

Hanh5
P21Ã2@11j~s!/Ã2#Q2

2
'

P21Ã2@11j~s!#Q2

2
,

Ã2[112l jQ
j 22, ~29!

wherej(s)[d(s/V0) is the frequency fluctuation in the d
mensionless time~described, for example, by Fig. 1!. The
factorization in the right-hand side~rhs! of Eq. ~29! means
that we are trying to include the anharmonic term into a n
effective frequencyÃ. The second approximate expressi
stems from assuming that the relevant effect of the poten
Eq. ~27! is to be small to orderj, at most~this will follow
self-consistently, in the case of interest!. The quantum state
evolving with a Hamiltonian in the form of Eq.~29! could be
easily found ifÃ were a smooth function of the dimensio
less times, varying on time scales large compared to t
period s of the fluctuation. In this case the state wou
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changeadiabaticallyin Ã, and nonadiabatically inj(s). The
solution would be still in the form Eq.~11!, onceÃV0 is
taken as a new quasistationary frequency. Time, coordin
and momentum can all be rescaled accordingly, in orde
get the same form, Eq.~2!, of the Hamiltonian. The rescaling
of time, however, yields the effect that we are after; that is
shifting y of therescaleds8, from the quasiresonant value o
Eq. ~9!:

s852p l→s8Ã52p l 1y⇒y52p l ~Ã21!. ~30!

If we wish the rescaled values8Ã to fall inside the band of
values yielding an exponential increase,y must be of orderj,
at most, since the bandwidth is of the same order@4,10#. The
shifting y now produces asmaller rate of exponential in-
creaseuveffu @20#. In fact, from Eq.~4! of Ref. @4#, it is not
difficult to see thatveff5vA12y2/v2, so that, from Eq.
~30!, one has

veff
2'v2F12S 2p l ~Ã21!

v D 2G , sgn~veff!5sgn~v!.

~31!

The crucial point is thatÃ(Q), defined in Eq.~29!, is a
Q-dependent operator, not a smooth function ofs alone. A
standard procedure for replacing operators with suitablc
numbers is the mean-field approximation. One assume
given form of the state, resulting from a solvable Ham
tonian, in terms of unknown quantities. Then one repla
the ‘‘unsolvable’’ operators with their mean values on t
state itself. This usually leads toself-consistentequations for
the unknown quantities. The main advantage of this met
is that one may produce nonperturbative solutions. The m
disadvantage is that the degree of confidence of the appr
mation is difficult to control. Hence the validity of th
method rests on the physical insights leading one to gu
the form of the solution. In our present case, the guess on
state is nonperturbative, since we take the form, Eq.~11!,
with an unknownveff(s) replacingv in the supplementary
equations~12!. The underlying insight is that the main effe
of anharmonicity is to dephase the motion progressive
driving the system off from the ideal constructive interfe
ence between the frequency fluctuation and the oscillat
amplitude. It is clear that the deviation from anharmonicity
given by @Eq. ~29!#

Ã21'l jQ
e, e5 j 22.0. ~32!

The mean-field approximation results in assuming t
veff(s) follows from the quantum average of the rhs memb
of Eq. ~31!, on account of Eq.~32!. Since the quantum stat
equation~11! now containsveff(s) in place ofv @Eq. ~12!#,
the procedure indicated yields the following self-consist
equation:

2veffm[x

52vmH 12S 2p ll j

v D 2

^nu uQu2eun&

3@coshx1sin~2u1s0!sinhx#eJ 1/2

, ~33!
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for sPI 0(m) @a similar equation can be obtained fors
PI 1(m)#. In writing down Eq. ~33!, the rescalings0
→Ãs0 has been neglected, since the correction is of ordj
at most. We notice that the variable of interestx is now a
function both of the macroscopic timevm and of the micro-
scopic timeuP@2s0,0@ . This reflects on the mean quantu
energy, which follows from Eq.~13!:

^Hanh&n5~n11/2!cosh@x~m,u!#, sPI 0~m!, ~34!

starting from thenth stationary eigenstate. For Eq.~33! to
make sense, it is clear that the initial valueveff(s50)
5veff(m50) must be real. This means that

S 2p ll j

v D 2

^nuuQu2eun&,1. ~35!

Equation~35! is ana priori condition, in order that the initia
state is still available to absorb energy from the freque
fluctuations, despite the presence of an anharmonic term

In contrast to the harmonic case, the anharmonic m
energy now depends explicitly onu, which yields nontrivial
effects. In Fig. 3 a plot of Eq.~34! is shown, obtained from
a numerical solution of Eq.~33!. The plot exhibits a saturat
ing background, as expected@Fig. 3~a!#, but also periodic
nonsaturatingpeaks of decreasingly small width@Fig. 3~b!#.
We refer to those peaks as ‘‘special’’ quantum effects, to
discussed in Sec. V.

In concluding the present section, we stress that thetrue
smallness parameter of the mean-field approximation lea
to Eqs.~33! and ~34! is e5 j 22; that is, the deviation from
the quadratic power of the anharmonic potential@Eq. ~32!#.
The smaller thee, the more reliable our approximation o
treatinguQue like a c number and the harmonic factorQ2 like
an operator. Hence it is clear that applying Eqs.~33! and
~34!, as they stand, to the familiar casese51,2, . . . , isdefi-
nitely arbitrary. Those equations should be taken only in
limiting ~and certainly unrealistic! case e!1. Notice, in
passing, that the unrealistically large saturation values
ported in Fig. 3 are just due to the smallness ofe50.1. In
conclusion, the present approach to the anharmonic prob
is of little use, in practical cases, but it does certainly help
elucidate why anharmonicity~under the quasiresonant co
dition! is expected to produce energy saturation as the m
effect.

V. SPECIAL QUANTUM EFFECTS

As mentioned above, the mean quantum energy, Eq.~34!,
exhibits nonsaturating peaks of decreasing width, cente
around periodically recurring instants. It is an easy matte
show that those instants are given by Eq.~16!, for the special
valuesu0* of u, such that

11sgn~v!sin~2u0* 1s0!511sgn~x!sin~2u0* 1s0!50.

In this case, in fact, the combination of hyperbolic functio
in the rhs of Eq.~33! sums to exp@2ux(m,u0* )u#, so that
x(m,u0* )→2vm with diverging m, and the corresponding
mean energy, Eq.~34!, tends to the value, Eq.~13!, as if the
anharmonic terms were ‘‘switched off’’ at the special i
stants, Eq.~16!. Similar special points are obviously prese
y
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e
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in the intervalsI 1(m) too @Eq. ~15!#. The origin of this effect
is quite clear. In Sec. II, we have shown that at the insta
Eq. ~16!, the evolving probability density inQ shrinks to ad
function with divergingm, so it is obvious that the influenc
of any potential of the form, Eq.~27!, becomes vanishingly
small after many frequency fluctuations have elapsed.
fact that the mean energy remains an exponentially incre
ing function of m even at the instants, Eq.~16!, simply re-
veals the genuinequantumorigin of the effect. A classical
oscillator with vanishing amplitude would yield a vanishin
energy. It is the Heisenberg principle that makes the m
energy diverge when the wave function becomes more
more localized.

The first-principle origin discussed above for the spec
quantum effects suggests that at the instants, Eq.~16!, the
mean energy is actually less sensitive to the anharmonic
fects, independently of the formal treatment of the proble
Peaks should then be expected, even from a more rigo
approach. All the way, there is a further mechanism of sa
ration of the peaks in Fig. 3, ignored so far, that works ev

FIG. 3. Saturation of the mean energy due to the anharmo
effects@Eqs.~33! and~34!#. ~a! Background saturation of themini-
mumvalues in each intervalI 0(m), as a function of the numberm
of elapsed periods.~b! Detailed evolution of the mean energ
within the intervalsI 0(m), as a function of the microscopic timeu.
Note the peaks atu5u0* , with nonsaturating height~special quan-
tum effects!. Selected values ares054, s159, l 52, j59.40
31022, l j51023, ande51021.
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in the present scheme of approximation. Since the peaks
due to divergently large fluctuations of the momentum,
simplest way to achieve saturation is to introduce more-th
quadratic terms in momentum space. A universal effec
this kind is certainly produced by therelativistic corrections
to the kinetic energy, represented by increasing power
P2. Should the nonsaturating peaks ‘‘survive’’ even to mo
rigorous calculations, the relativistic corrections would p
vide their ultimate mechanism of saturation.

VI. CONCLUSIONS

As a continuation of Ref.@10#, the present paper dea
with the dynamics of a quantum oscillator, whose frequen
is forced to fluctuate periodically in time by some extern
field. Reference@10# was mainly concerned with the expo
nential increase of the mean energy under the quasireso
condition. Here we have studied the full evolution of t
quantum state.

In the absence of any perturbation~Sec. II!, the evolving
state turns out to be~a phase factor apart! a standard eigen
function of the harmonic oscillator@Eq. ~11!#, whose coordi-
nate scales with a factorya(u,m) @first Eq. ~12!#. This scal-
ing factor depends on the numberm of elapsed periods of the
frequency fluctuation, and on the continuous timeu, describ-
ing the ‘‘residual’’ evolution within the actual period consid
ered. For almost all values ofu, the probability density
spreads out in space, sinceya(u,m) decreases exponentiall
with m. However, at certain special valuesua* @Eq. ~15!#,
ya(ua* ,m) becomes an exponentiallyincreasingfunction of
m ~Fig. 2!, and the probability density tends to shrink to ad
function with increasingm. An interesting aspect, which w
leave to discussion for future works, is that the phase fa
of the wave function is a~quadratic! function of the coordi-
nate, which makes the state carry a~localized! probability
current.

For periodic frequency fluctuations, the transfer-mat
method adopted here~the Appendix!, is most convenient. In
the final part of Sec. II, we have shown that the transf
matrix method is nothing but an alternative way to calcul
the explicit form of the quantum invariant of interest. Th
provides the relationship between the present approach
the invariant theory@8#. Hence, our piecewise defined qua
tities, Eqs.~17!, ~19!, and~20! are special cases of the ge
eral expressions found elsewhere, with the invariant met
or with other related approaches@8,11,12#.

In the presence of an additional anharmonic poten
V(Q), one is faced with another intriguing result: under t
quasiresonant condition, the system isunderperturbedif
V(Q) is short-ranged~Sec. III!. This means thatV(Q) pro-
duces transition rates between the evolving unpertur
states, which vanish in the long-time limit. This follows fro
the coherent broadening of the energy due to the unpertu
evolution itself, which always overcomes the incohere
broadening due to short-ranged perturbation, at sufficie
long times. In contrast, ifV(Q) is a more-than-quadrati
power of the coordinate@Eq. ~27!#, the system becomesover-
perturbed. Namely, the transition ratesdivergeat long times
~Sec. IV!. The conclusion is that, under the quasiresona
condition ~or any other condition of exponential increase
the energy@20#!, the perturbation theory is either ‘‘irrel
re
e
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evant,’’ or inapplicable. Between these two cases, a bor
class of potentials„for instance, V(Q)} ln@uQu1ucu#; @uQu
1ucu] 21

…, could actually exist, yielding finite transition
rates. We leave these cases to future investigations.

Since the long-range anharmonic potentials cannot
treated perturbatively, we have proposed a nonperturba
approach in order to support the reasonable guess tha
anharmonicity should make the oscillator’s mean ene
saturateat long times~Sec. IV!. This approach is based o
the idea that anharmonicity does break the ideal construc
interference between the moving ‘‘walls’’ of the harmon
well, and the increasingly large amplitude of the oscillat
For this effect to go on indefinitely, it is indeed necessa
that the period of the motion be independent of its amplitu
By extracting from the potentials, Eq.~27!, the anharmonic
factor uQu j 22, and by treating its powere[ j 22 as the
smallness parameter of a mean-field approximation, we
write down a self-consistent equation for the effective rate
exponential increase of the energy, in the presence of an
monic terms@Eq. ~33!#. This effective rate does actually van
ish in the long-time limit, and the corresponding mean e
ergy, Eq.~34!, saturates accordingly@Fig. 3~a!#. However,
there are special instants, in each period of the freque
fluctuation, at which the saturation does not occur. This
sults in the presence of peaks@Fig. 3~b!#, which we call
‘‘special’’ quantum effects. Their genuine quantum origin
discussed in Sec. V. It is argued therein that, besides o
possible nonuniversal mechanisms, a saturation proces
the peaks is provided by the relativistic corrections to
kinetic energy, which yield anharmonic terms in momentu
space.

The future programs of the present research will mo
along two lines. First, we plan to approach the quasireson
case in the framework of the invariants’ theory@7,8#, in an
attempt to improve our understanding of the anharmonic
fects. Second, we will try to apply the present results to
strongly degenerate system of fermionic oscillators~for ex-
ample, electrons in a metal under the influence of a fluctu
ing magnetic field!. The effects of the exclusion principle ar
indeed far from trivial, as anticipated, in a very qualitati
way, in Ref.@13#.

APPENDIX

We report here the calculations leading to the ‘‘time r
versed’’ Heisenberg HamiltoniansH rev

(a)(s)5Ua(s)H0U a
†(s)

@see Eq.~5!#. First of all, we note that, from the unitarity o
Ua(s) @defined in Eq.~4!#, it is sufficient to study the trans
formation on the Schro¨dinger operatorsP and Q. Then, the
transformed HamiltoniansH rev

(a)(s) are obtained by squaring
the resulting transformed operators. Using the factorizat
of Ua(s) in terms of the unitary operatorsUa , one can take
advantage of the formula@14,19#

Otr[eiSOe2 iS5O2 i @O,S#1
~2 i !2

2
†@O,S#,S‡1•••,

~A1!

which yields the transform of an arbitrary operatorO under
the transformation induced by a Hermitian operatorS. In our
caseO is simply P or Q andS}Ha . Now, the key property
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of the harmonic Hamiltonians is thatPtr and Qtr are still
linear combinations of the initial~Schrödinger! operatorsP
andQ. To be more precise, let us consider the evolution
the subintervalsI 0(m). The evolution ofH0 in the first sub-
period I 0(0) is trivial. So we can conveniently rewrit
H rev

(0)(s) as

H rev
(0)~s!5U0~u!@U0~s0!U1~s1!#m

3H0@U1
†~s1!U0

†~s0!#mU0
†~u!,

u[s2ms2s0 . ~A2!

Them elapsed periods enter the power@U0U1#m in Eq. ~A2!,
and can be accounted for by iterating the two basic trans
mations obtained from Eq.~A1!:

S52s1H1⇒S Ptr
(1)

Qtr
(1)D 5S c1 A12js1

2
s1

A12j
c1

D S P

QD ,

S52s0H0⇒S Ptr
(0)

Qtr
(0)D 5S c0 s0

2s0 c0
D S P

QD ,

~A3!

c0[coss0 , s0[sins0 ,

c1[cos~s1A12j!, s1[sin~s1A12j!.

Keeping track of the order imposed by Eq.~A2!, the evolu-
tion over one period is ruled by a single transfer matrix:

S Ptr~m51!

Qtr~m51!
D 5TS P

QD ,

T5S c1c02A12js1s0 c1s01A12js1c0

2
s1c0

A12j
2c1s0 c1c02

s1s0

A12j
D . ~A4!

At this stage, one observes the strict analogy with the tra
fer matrix of theclassicalcase~see@4# and references quote
therein!. The transformedP and Q at s5m are obtained
through the application of the matrixTm. It is useful to note
that detT51, so that the eigenvalues ofT can be expresse
in the form l65exp(6v). Thus, the action ofTm on the
n

r-

s-

basis of eigenvectors ofT itself is simply given byl6
m

5exp(6vm). Though these calculations can be made
actly, for our purposes it is sufficient to retain the first-ord
contribution inj. Under the quasiresonant condition, Eq.~9!,
the maximum value ofv is given by Eq.~8d!, and the trans-
formed operators are

Ptr~m!5@cosh~vm!1s0 sinh~vm!#P2c0 sinh~vm!Q,

Qtr~m!52c0 sinh~vm!P1@cosh~vm!2s0 sinh~vm!#Q.
~A5!

Now one is left with the evolution in the residual timeu,
under the action ofU0 @Eq. ~A2!#. The transfer matrix is
similar to Eq.~A3!, with u replacings0. The transformedP
andQ at timesPI 0(m) are given by the linear combination

Ptr~s!5Am~u!P1Bm~u!Q,
~A6!

Qtr~s!5Cm~u!P1Dm~u!Q,

with

Am~u!5cosh~vm!cosu1sinh~vm!sin~u1s0!,

Bm~u!5cosh~vm!sinu2sinh~vm!cos~u1s0!,

~A7!

Cm~u!52cosh~vm!sinu2sinh~vm!cos~u1s0!,

Dm~u!5cosh~vm!cosu2sinh~vm!sin~u1s0!.

Finally, H rev
(0)(s) is obtained by squaring the operators of E

~A6!. The result is just Eq.~6!, with a50, which refers to
the evolution of the state in the subintervalsI 0(m), of dura-
tion s0, where the Schro¨dinger Hamiltonian has the unpe
turbed form@first Eq. ~2!#. We now wish to sketch the evo
lution in the complementary intervalsI 1(m). For sPI 1(m),
one can define the Heisenberg HamiltonianH rev

(1)(s)
5U1(s)H0U 1

†(s), and the stateun,s&15U1(s)un&. Starting
from Eq.~5!, a structure similar to Eq.~A2! does emerge, the
only difference being a ‘‘residual’’ evolution operatorU1(u)
instead ofU0(u). The corresponding transfer matrix is give
by the first Eq.~A3!, with u replacing s1. The resulting
operatorsPtr(s),Qtr(s) are still linear combinations ofP and
Q. Their squares yield the result reported in Eq.~6! for a
51.
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