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Quantum states of an oscillator with periodic time-dependent frequency under quasiresonant
condition: Unperturbed evolution, perturbative effects, and anharmonic effects
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In a recent papellL. Ferrari, Phys. Rev. A7, 2347(1998], one of the authors has shown that the mean
energy of a quantum oscillator with periodic time-dependent frequency diverges exponentially in time, under
certain conditions. In the present paper, we study the explicit form of the evolving state, and compare the
results obtained with the general expressions developed by other authors for an arbitrary time-dependent
frequency. Then we approach the problem of the anharmonic effects. A first-order calculation is performed in
the case of a short-range perturbation. The transition rates between different states, evolving with the unper-
turbed Hamiltonian, are shown to vanish at long times when the unperturbed oscillator's energy diverges
exponentially. A nonperturbative approach must be adopted, in the presence of anharmonic potentials of the
form V(q)=q’, j>2. In the case of weak anharmonicity{2<1), a mean-field procedure can be used to
show that the mean energy does actualijurateat long times, with the possible exception of periodic peaks,
having nonsaturating height, that we call “special quantum effediS1050-294{®9)12005-5

PACS numbd(s): 03.65.Fd, 03.65.Ge

I. INTRODUCTION ity, regardless of the specific model for the fluctuation. In an
attempt to approach the quantum version of the case studied
The oscillator with time-dependent frequency in Ref.[4], the author adopted a different method, based on
the transfer-matrix formalism. In Ref10], the method is
Qt)=Qyv1+6(1) (1) applied to the model fluctuation, Fig. 1, that is, to a piece-

wise constant frequency. It is found that, in agreement with
is a long-standing problem, originally introduced as a modethe correspondence principle, even the mean energy of the
system for the adiabatic approximation in the case of a frequantum oscillator increases exponentially in time, under the
quency varying smoothly between two asymptotic valuessame conditions discussed above. Furthermore, the Hamil-
[1]. The case of a frequency depending periodically or rantonian in the Heisenberg representation was shown to be a
domly on time, has recently achieved a new impulse, in viewgeneralized harmonic form, that is, a linear combination of
of possible applications to the physics of accelerators and tthe (Schralingep operatorsp?, g2 andpg+qp, with time-
condensed-matter physics. Classically, the problem has beeependent coefficients all diverging exponentially in time.
approached as an application of the invariant theory for in- In Sec. I, we study the dynamics of the evolving quantum
tegrable system$2?], and as a special example of noise- state|n,t), with initial condition |n,0y=|n), corresponding
driven motions, in the presence mindomfluctuations[3].  to the nth excited state of the zero-time Hamiltoniémere
Starting from a different viewpointthe analogy existing and in what follows, the instarit=0 marks the onset of the
with a stationary Schudinger equation in one dimension  frequency fluctuation We also make a detailed comparison
one of the authorgFerrar) has studied the special case in
which the classical oscillator's energy increasegonen- 4
tially in time, at the expense of the field producing the fre- 8
guency fluctuatio4]. In the periodic case, this occurs when
the parameters characterizing the frequency fluctuation fall
within certain “bands” of values. The condition yielding the
maximumrate of exponential increase is denoted as the

“quasiresonant condition,” and corresponds to the center of ., U, U, o U, U, spn

the bands. >
The quantum formulation of the problem has a long story, ? :

in turn, starting from the early 195(5,6]. More advanced ¢ DI R

methods, extending the invariants’ theory to the quantum ¢

case, have been used by Dodonov and Mai’Kp and by “——— o —»

Lewis and co-worker$8,9]. Those approaches have a great
deal of generality, and provide methods of wide applicabil-

FIG. 1. The square fluctuatiofi(s/Q)g) is plotted against the
*Electronic address: desposti@gpxbof.df.unibo.it dimensionless times, between the £ —1)-th and the ft+1)-th
TElectronic address: ferrari@gpxbof.df.unibo.it period.
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between our results and those obtained by other authors, In Sec. V we discuss an intriguing quantum effect, due to
showing that the relevant quantities entering our calculationghe existence of special instants at which the anharmonic
are special cases of the general expressions developed éffects (in the coordinate spagdend todecreasewith the
Refs.[8,11,17. number of elapsed periods of the frequency fluctuation. Ac-
In Sec. Ill, the first-order perturbation theory is applied, cordingly, periodic peaks in the background saturating mean
by assuming theevolving states|n,t) to be unperturbed energy are expected to occur at those special instants. It is
states, among which a scattering process takes place, duegbown that a saturation of the height of the peaks can be
an additional stationary perturbatidf(q). It is shown that obtained by anharmonic terms in momentum space, propor-
the scattering rate between,t) and|m,t) vanishes in the tional top', j>2. Hence, besides other possible nonuniver-
long-time limit, if V(q) is short-ranged. This means that the sal reasons, the peaks do certainly saturate for relativistic
coherenceof the exponential increase of the mean energyeffects, once an expansion of the relativistic kinetic energy in
cannot be broken at a perturbative level by short-ranged pgrowers ofp? is accounted for.
tentials. Starting from this result, in Sec. IV we discuss the
case of the anharmonic terir¢q)=q’, j>2. We show that Il. THE EVOLUTION OF THE QUANTUM STATE
such potentials cannot be treated perturbativelgler condi- IN THE QUASIRESONANT CASE
tions of exponential increase of the enerye then develop ]
a method, reminiscent of the mean-field approximation, Given the unperturbed frequendy, [Eq. (1)] and the
showing that a small deviation from harmonicitjeasured Massm of the linear oscillator, we introduce the dimension-
by the quantitye=j —2) does actually behave as a dissipa-less times=Q,t, momentumP = p/{m#i{),, and position
tive channel for the oscillator's energy, and leads to a satuQ=0gvm{q/%. The model fluctuation Fig. 1, is thereby
ration of the mean energy at long times, if the anharmonicharacterized by a dimensionless perioe- oo+ o, split
effects tend to increase with the number of elapsed periods dfito a subperiod of duration,, in which the frequency is
the frequency fluctuatiofwhich is the standard casé\ self- {1, followed by another subperiod of duratien, in which
consistent equation is produced that makes it possible to calhe frequency i2;=Q,y1—¢. We stress that will be
culate the saturation value and the saturation time scal@ssumed to be the smallness parameter of the problem. The
These are important points in view in the application to re-resulting (dimensionless Schralinger Hamiltonian then

alistic systemg4,13]. reads
P2+Q?
5 =Ho for s<0 and sely(p)=[pno,uo+o,
P?+(1-§Q* _ %)

2 =H, forsely(u)=[po+og,(u+1)o[ (£=012...).

According to Eq.(2) (see also Fig. )1 two unitary operators HSSV(S)ZUa(S)HoU;(S):HSS\),(SNn,S>a= Eﬁo)ln,8>a,
Uo(s—uo) and U (s—uo—op) can be introduced, de- (5)
scribing the evolution in the two subperiods, respectively:
. whereE{Y=(n+1/2) are thedimensionlesseigenvalues of
Uo(s—uo)=exd —i(s—uo)He] forselo(u), H,o. The property, Eq(5), is useful because the operators
() H@)(s) are the “time reversed” form of the Heisenberg

HamiltoniansH® (s) =2/ (s)H x(s). Hence, from the re-

Ui(s—po—og)=exd —i(s—uo—oo)H;] sults of Refs[10,14, one knows that thei(&)'s are gener-
alized harmonic Hamiltonians, whose eigenstates in@he
forsel(u). representation can be easily found. The same method used in

Ref. [10] to calculateH®(s) [therein denoted a$i(t)]
We study the guantum state evolving in each time intervatould be applied tdﬂﬁg\),(s) as well, the only difference being
l.(n) (a=0,1) from the initial eigenstatin) of Hy. They  a redefinition of the transfer matrices. However, a more ef-

can be obtained from E@3), as|n,s),=U,(s)|n), where ficient method is developed in the Appendix. One of the
advantages, with respect to the procedure adopted in Ref.
Uy(s)=U,(s— (u+a)o)[Uy(oq)Ug(og)]*"2 [10], is that the relationship with thelassicalmotion equa-
tion is made manifest. The resulting expressions for the
forsel,(u), a=0,1, 4 Hasare

is the total evolution operator mapping the initial state into (@) ey _ E 2 % 2 % _
the state evolving in the intervil(w). TheQ representation Hreu(s)= 2 Pt 2 Q™+ 2 (PQ+QP) (a=0.D.
of |n,s), in 1,(x) follows from the property (6)
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Setting

(a—1)o,<0<ac,,

()

0=s—uo—oy,
we get, to first order irf [15],

A,=cosl2wu)+sinh2ww)siN26(1— £)¥?+ o¢]
+a&{cosh2wu)sirt( 61— ¢)
+sinh(2wp)sin(0y1—€&)cog 01— E+og)}

+a0(&?), (8a)

B,=cosh2wu) —sinh(2wu)siM 26(1— £)¥%+ o]
—aé{cosi2wu)sir?( 61— ¢)
—sinh(2owp)sin(0y1—¢&)cog 6V1—E+ o)}

+a0(&?), (8b)

C,=—sinh(2ww)cog26(1—£)¥+ oy]

- a;cosr(ZwM)sir‘(ZG\/l— £)+a0(&?), (80

sinoy

> +0(&%).

w=—§ (8d)

In obtaining Eqgs.(6)—(8) use has been made of the qua-
siresonance conditiof#,10]:
o'=opgtoV1-E&=2n (le?), (9

which yields themaximunrate|w| [Eg. (8d)] of exponential
increase in the coefficienfd46]. The conditions org in Eq.
(7) ensure thase | ;(w«). It should be noticed that Eq&a)—
(8c) areexactin the intervald o(w). The first-order approxi-
mation in ¢ only affects the quantities in the intervalg w)
and the value ob [Eq. (8d)]. This is the reason why the next
numerical calculations will be referred to the intervigdéw).

Given the explicit form, Eq(6), of H), we can find its
eigenstategQ|n,s), in the Q representation under the con-
dition

n.S)a

d
" de

=Haln.s)a [sela(w)], (10

that is, the Schidinger equation in each intervi]|(u). Let
(Q|n) be theQ representation of theth eigenstate of the
HamiltonianH,. Then, it can be seen by direct inspection
that thenormalizedwave function

(QIn,8)a=ya(0, w)exd —i (F+Qz,(8,1)/2)]

X(Ya(8,1)Q|n) (11)

is an eigenfunction oH@)(s), with eigenvalueE?’, satis-
fying the condition, Eq(10), provided that
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Ca(0, 1)

Ya( O, 1) = : Za(eyﬂ):m,

Aa(0,n)
(12

df{M
g = (N+12)y2(0, ).

We notice from EQgs.(8) that lim._gy,(6,u)=1 and
lim; . 0za(6,1)=0, so that the standard solutid®|n,s),
=exp(—iE®s)(QJn) is recovered in the limit of vanishing
frequency fluctuation. We can thereby conclude that Egs.
(1) and (12) yield the coordinate representation of the
evolving quantum states that we are after, in each time inter-
val | ,(u). In particular, from Eqs(2) and(11) it is possible

to verify that

a(s:n[Holn,s),=E[cosh2wu)

+aésinh2ow)sin(0y1—§&)cog 6y1—¢
+09)]+a0(£%) (a=0), (13

which coincides with Eq(5b) of Ref.[10], when evaluated
at 6=0 (on restoring the dimensioned quantijieA direct
inspection reveals the continuity i (to first order in&) of
Egs. (8) and (12), when passing fronra=0 to a=1 in the
pthinterval, and froma=1 toa=0 at the edge between the
uth and the o+ 1)-th period. It should be noticed that the
evolution of the quantum state is determinedtiyyp relevant
time scales[see Eqgs.(11) and (12)]: one is the “macro-
scopic” (dimensionlesstime wu that enters the hyperbolic
functions only, and accounts for theng-timeeffects of the
fluctuation . These are shown to increasgponentiallype-
riod by period[due to the quasiresonant conditi¢®]. In
addition, there is the “microscopic” time (Fig. 2), that
enters the trigonometric functions only, and accounts for the
details of the evolution within each period of the frequency
fluctuation.

By means of Eqs(11) and(12), one knows the evolution
of the basig|n)} in the complementary time intervallg( ),
respectively. So, given any initial state, one can study its
complete evolution by projecting it ofin)}. In particular,
we will take |n) as the initial state.

Taking the square modulus of E{L1), the probability
density inQ turns out to bey,( 8, 1) |(ya(8, ) Q|n)[?, which
corresponds to the square modulus of tkie eigenstate of a
standard harmonic Hamiltonian, with the coordinate rescaled
by a factory,(6,u). This factor decreases exponentially
with the numberp=0,1,2 ..., of elapsed periods of the
frequency fluctuatiofjsee the first Eq(12) and Eq.(83d)].
This is true foralmost all values of the continuous time
describing the evolution in each subperiod. However, at the
isolated value®} of 6,

_ 1
2(1-4)*2

aw

2

ag
0 —C€0So, Ccoth 2w )

+Kkm—0opt+ 5

+aO(§2)} (14)
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3 Hi& forselo(n), (
H(S)= 17)
25t v, * Hi forseli(u)
u=10
2t is nothing but the invariant [Eq. (44) of Ref. [8]] with I(s

=0)=Hy. In fact, one has, by definition,H(S)
=U(s)HoUT(s), where U(s) is the evolution operator.
However, any operator in the forf,.,=UF,U" is a quan-
tum invariant, provided thaiF,/9s=0. This is because the
Heisenbergrepresentatiotd 'F U of F,, is just the time-
independent operatdf,. This clarifies the relationship be-
tween the transfer-matrix method and the invariant method
: - - : of Lewis and RiesenfelB]. For a more specific comparison,
-4 0 -3 -2 -1 the relevant quantity is tr_u_e scaling_facgcg( 0, ) [_Eqs.(12)
and (8a)]. It can be verified by direct inspection that, on
settingp,=y, -, one has

dzpa

de?

+(1—a§)pa—i3=0 (a=0,1). (18
Pa

Hence the piecewise defined function

(19

s _[yolw,m for se lo(u),
PP yitew forselyp)

-4 -3 -2 -1
e
is just a special case of the functiprdefined by Eq(45) in

FIG. 2. Plot ofyo(6,u) [first Eq.(12)] at u=10 andu=30, for  Ref,[8]. From the third Eq(12) and from Eq.(19) it can be
—00<0<0 andoo=4, 0,=9, =2, £=9.40x10 °. Note the  geen that the phase

increasingly high peak, with decreasingly small widthoat 65 .

(with k odd or even according to the positive or negative sign

(0)
of ), such that o) (g) = [f forsely(u),

f forsely(u) 20

Si26% (1— ¥+ 0y]= —sgnw)+a0(¢%) (a=0,1);

(15 is just equivalent to the phase, E@1) of Ref. [8] (a sign

apar}. In general, our Eq(11) for the evolving quantum
state is a special case of Hg7) in Ref.[11] and Eq.(3.6) in
Ref.[12]. The only point of caution is that our expressions
e piecewise defined, due to the special form of the fre-
uency fluctuationsgFig. 1).

the scaling factoy,(6; ,u) increasesexponentially withu,
as can be seen from Eqg6l2) and (8a) (see also Fig.R
Hence the evolution makes the probability density spread o
exponentially with the number of elapsed periods, except af
the special instants
lll. FIRST-ORDER PERTURBATION THEORY
IN THE QUASIRESONANT CASE
Sh(w)=0x+puo+oy, (16) _ _

Having found the unperturbed evolving statess),’s, a
for which one has, instead, lim...[(Q|n,sk (x))al*=8(Q),  perturbation theory can be applied to study the transition
that is, a spatial probability density shrinking t@dunction.  probability P (m,n;s) betweenn,s), and|m,s),, due to a
In Secs. IV and V we will see a nontrivial consequence ofpéerturbative potentiaV(Q) that we assume, for the moment,
this result. to beshort-ranged The first-order approximation yield47]

At this stage, we recall that the method used here is based

on the transfer-matrix formalismthe Appendi}. This

method is especially useful when the frequency fluctuations 1 s 2

are periodic, but the results afas they must bespecial Py(m,n;s)= f dr(m,mV|n,7),  (n#m),
cases of the general expressions developed for any frequency (hQ0)?| o

fluctuation. For this comparison we refer to the paper by (21)

Lewis and Riesenfel@@]. One can notice that, by construc-
tion, the piecewise defined operaféiqg. (6)] which leads one to study the integral
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p—-1 1

/ dr o(r,m|V|n,7), = E/ dr... +/ dr... forpoc<s<(u+1)o. (22
Y $=0a=0 Ia(ﬁ) JHo ,
I(w) o)

The first sumJ(u) in Eq. (22) accounts for the evolution in  would not vanish in the limi{8B—c, and the probability of
the u elapsed periods of the frequency fluctuations, while tharansition, Eq(21), would be similar to the usual expression.
second ternj(s, ) accounts for the “residual” evolution in It is indeed possible to explain the formal result, E26), by

the actual time intervdluo,s]. By means of Eq(11), itis  a physical argument. The perturbative approach does in gen-

possible to writeJ(u) =245 3_oja(8)., With eral transform theleterministic(in the quantum sensevo-
lution due to theexactHamiltonian(unperturbed plus pertur-
. _ [2a () bation into a probabilistic problem. For this to be possible,
Ja(ﬁ)_f - )(rade Ya(0,B)exd —i(f3"(6,8) the perturbative approach must produce finite transition

rates. These make it possible to repldoa suitable time

(m) o scale$ the exact evolution with an incoherent sequence of

—137(0,8))] JiwdQ<m|Ya(9,,3)Q>V(Q) scattering events between the unperturbed states. A measure
of the incoherence is given by the broadening of the unper-

X(ya(6,8)Q|n). (23)  turbed level, which is related to the level's mean life. In the

guasiresonant case, there is a basic difference: the unper-
Now we can take Eq(23) in the limit 8>1, on assuming turbed states themselves evolve in such a way that the mean
0<|f7..dQV(Q)|<e: energy increases exponentialft the expense of the external
field producing the periodic frequency changesh increas-

. _ * agy ingly large fluctuations. For times short comparedad™?,
ja(,B)=(m|O>(0|n>L dQV(Q)j(a_l)U doya(6.5) this coherenteffect of broadening may be neglig(ijl;tli, with
¢ respect to the incoherent effect due to the perturbation, but
xexgd —i(f{V(0,8)—fM(0,8))] (B>1). the former becomes overwhelming at long times, since the
(24) latter is finite at any time. The coherence reflects itself in the

vanishing of the transition rates. As an important conse-

Equation(24) follows from the property that the integral of 9uence, it is impossible, _un_der the quasiresonant c’ondltlon,
y.(6,8) in @ decreases exponentially with[18]. From the to suppress the exponential increase o_f the oscillator’'s energy
same property, one can conclude that by means of a short-ranged perturbation.

lim [3(w)[=]J(=)| <o, IV. LONG-RANGE ANHARMONIC EFFECTS
m=ee AND SATURATION UNDER
THE QUASIRESONANT CONDITION
lim |j(s,u)|=0 uniformly ins. (25
pu—oe So far, the long-range anharmonic effects have been com-
pletely ignored. In the standard case of a constant frequency,
On using Eq(29) in Egs.(21) and(22), one finally gets it is well known that anharmonic potentials of the form
lim Py(m.n,) = Py(m,n.ee) <oems fim o LS o VIQ=MQ (j=34,..) @7

o e ds
) ° (26) ~ can be treated perturbatively, with the same methods as the
short-ranged potentials. In contrast, we show that this is not
From Eq.(26) it follows that, for short-ranged potentials, the always possible if the frequency fluctuates. In particular, let
rate of transitionprobability per unit timg between any pair the gquasiresonant condition, E@®), be satisfied. On insert-
of evolved states vanishes under the quasiresonance condig the potentials, Eq27), in Eq. (23), one gets

tion that leads the mean energy E§3) to diverge exponen-

tially. This result is far from trivial, since in the usual per- ) B J. aoy -
turbation theory for astationary unperturbed Hamiltonian Ja(B)=N{m[Q[n) . dé[ya(6,8)]

the integral in Eg.(21) would become proportional to ?

s8(EQD—ED)) in the limit of larges [19]. A similar expres- xexgd —i(fM(0,8)—fM(0,8))]. (29

sion would be obtained even for otime-dependentamil-

tonian, if it were not for the exponential dependence ofEquation(28) shows that the transition rates now diverge in
Ya(6, 1) on w. In fact, if we took the quantity:’ far enough  the long-time limit, due to the exponential divergence of
from the gquasiresonant condition E), the hyperbolic [y.(6,8)] . Note that this wouldhot be the case for a sta-
functions in Eq.(12) would be replaced byrigonometric  tionary Hamiltonian, or far enough from the quasiresonant
functions[20]. In this case the quantity,(8) in Eqg. (23)  condition, Eq.(9). Once again, it is the exponential behavior
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standard case and the present case.

In Refs.[4,13], it was argued that the anharmonic effects
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ahangeadiabaticallyin w, and nonadiabatically ig(s). The
solution would be still in the form Eq(ll), oncew(}, is
taken as a new quasistationary frequency. Time, coordinate,

lead the oscillator's mean energy to saturate. The stationargnd momentum can all be rescaled accordingly, in order to

levels are therein related to massless bodéms instance,

get the same form, E@2), of the Hamiltonian. The rescaling

phonong, and the anharmonic potentials are regarded to asf time, however, yields the effect that we are after; that is, a
boson-boson interactions producing a finite scattering rate ahifting v of therescaleds’, from the quasiresonant value of
a perturbative level. Hence, the method looks perturbative &Eq. (9):

a first glance(which would contrast with the arguments
above. However, the anharmonic scattering rate is then
sumedo act like an “annihilation” rate for the bosons, con-
trasting with the “creation” rate, Eq:8d). This ansatz is the

(30

o' =27l—-oc'w=27l+v=v=27l(w—1).

If we wish the rescaled value’ w to fall inside the band of

nonperturbative ingredient of the approach just outlined. It is/alues yielding an exponential increasemust be of ordeg,

only thanks to it that the saturation of the enefgymber of

at most, since the bandwidth is of the same ofdel0]. The

bosong can be obtained from the detailed balance betweeghifting v now produces amaller rate of exponential in-
the creation and annihilation rate. Our present aim is to showeasé weq| [20]. In fact, from Eq.(4) of Ref.[4], it is not

that the saturation does actually follow from anharmonicity,

difficult to see thatwes=w\1—1v%/w?, so that, from Eq.

in a more formal way. The approach adopted is totally non{30), one has

perturbative, and starts from the following physical argu-

ments. As mentioned in Sec. I, the quasiresonant condition, ®
€

Eq. (9), is of special interest because it yields theximum

rate|w| of exponential increase of the mean energy. How-

ever, there is a band of possible values of=o0y,
+0,y1— ¢ for which an exponential increase is produced
with smaller and smaller rates, vanishing at the band edg
[20]. The physical origin of the exponential increase of the
classical amplitudéin the absence of anharmonic effedts
that wheng' falls in the band, the moving “walls” of the

harmonic potential are in constructive phase with the ampli-

tude, and always impart a positive amount of energy to th
particle, in each period of the frequency fluctuation. The evi

dence that this effect goes on without limit, and is not tran-

sient(as it would be for a free particle rebounding elastically
between two periodically moving wallsis a special feature

of the quadratic shape of the potential that yields an
amplitude-independent period. The anharmonicity doe
break this ideal condition, and is thus expected to depha
the motion more and more with increasing amplitude, driv-
ing the system out of the band where the constructive inte

formally, let us write the Hamiltonian with an anharmonic
potential [Eq. (27)], in the dimensionless coordinate, mo-
mentum, and time

P2+ w1+ &(s)/w?]Q? P2+w? 1+ &(s)]Q?
2 = 2

anh—

w?=1+2)\,Q' 7%, (29
whereé(s)=6(s/(),) is the frequency fluctuation in the di-
mensionless timddescribed, for example, by Fig).1The
factorization in the right-hand sidghs) of Eq. (29) means

e

r-
ference is possible. In an attempt to describe this effect mor€

1_(27T|(m—1))2

The crucial point is thatw(Q), defined in Eq.(29), is a
Q-dependent operatpmnot a smooth function of alone. A

2 2

SN wer) = SO w).
(31

w

standard procedure for replacing operators with suitable
numbers is the mean-field approximation. One assumes a
given form of the state, resulting from a solvable Hamil-
tonian, in terms of unknown quantities. Then one replaces
he “unsolvable” operators with their mean values on the
state itself. This usually leads self-consistenequations for

he unknown quantities. The main advantage of this method
is that one may produce nonperturbative solutions. The main
disadvantage is that the degree of confidence of the approxi-
mation is difficult to control. Hence the validity of the

t

gnethod rests on the physical insights leading one to guess
S@e form of the solution. In our present case, the guess on the

state is nonperturbative, since we take the form, @4,
with an unknownwu(s) replacinge in the supplementary
guationg12). The underlying insight is that the main effect
of anharmonicity is to dephase the motion progressively,
driving the system off from the ideal constructive interfer-
ence between the frequency fluctuation and the oscillator's
amplitude. It is clear that the deviation from anharmonicity is
given by[Eq. (29)]
w—1~\;Q°, €e=j—2>0. (32
The mean-field approximation results in assuming that
weri(S) follows from the quantum average of the rhs member
of Eq. (31), on account of Eq(32). Since the quantum state
equation(11) now containswx(S) in place ofw [EQ. (12)],
the procedure indicated yields the following self-consistent

that we are trying to include the anharmonic term into a newequation:

effective frequencyw. The second approximate expression

stems from assuming that the relevant effect of the potential

Eqg. (27) is to be small to ordeg, at most(this will follow
self-consistently, in the case of interesthe quantum state
evolving with a Hamiltonian in the form of E¢29) could be
easily found ifw were a smooth function of the dimension-
less times, varying on time scales large compared to the
period o of the fluctuation. In this case the state would

2wt =X

2
(nl1QI*n)

w

=2w,u,[ 1-

1/2
X[ coshx+sin(26+ ao)sinhx]f] , (33
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for selg(w) [a similar equation can be obtained fer
ely(p)]. In writing down Eq. (33), the rescalingoy A

—wo, has been neglected, since the correction is of ofder  loggHannlmin
at most. We notice that the variable of interasis now a s
function both of the macroscopic timew and of the micro-
scopic timef e[ — 0,00 . This reflects on the mean quantum ¢
energy, which follows from Eq(13):

4

(Hanwn=(n+1/2)costix(u,0)], selo(p), (34

2

starting from thenth stationary eigenstate. For E@J3) to
v

make sense, it is clear that the initial valuge(s=0) -
= we(u=0) must be real. This means that u

(b)

w

(39

2
) (nl|Q[*n)<1.

logl 0<H anh>,

15
Equation(35) is ana priori condition, in order that the initial

state is still available to absorb energy from the frequency
fluctuations, despite the presence of an anharmonic term.

In contrast to the harmonic case, the anharmonic mear
energy now depends explicitly ofy which yields nontrivial
effects. In Fig 3 a plot of Eq.(34) is shown, obtained from
a numerical solution of Eq33). The plot exhibits a saturat-
ing background, as expectéffig. 3a)], but also periodic
nonsaturatingoeaks of decreasingly small widtkig. 3(b)].

We refer to those peaks as “special”’ quantum effects, to be 2
discussed in Sec. V.

In concluding the present section, we stress thattrihe
smallness parameter of the mean-field approximation leadin¢
to Egs.(33) and(34) is €= —2; that is, the deviation from
the quadratic power of the anharmonic potentid. (32)].

The smaller thee, the more reliable our approximation of

,‘l=°°
1 =1000

u =500

u=250

u=100

treating| Q| € like ac number and the harmonic fact@? like
an operator. Hence it is clear that applying E¢33) and
(34), as they stand, to the familiar cases 1,2, . . ., isdefi-

FIG. 3. Saturation of the mean energy due to the anharmonic
effects[Eqgs.(33) and(34)]. (a) Background saturation of thmini-
mumvalues in each intervdly,(u), as a function of the number

nitely arbitrary. Those equations should be taken only in thef elapsed periods(b) Detailed evolution of the mean energy

limiting (and certainly unrealistjccase e<1. Notice, in

within the intervald 4(x), as a function of the microscopic tinte

passing, that the unrealistically large saturation values reNote the peaks a#= 67 , with nonsaturating heigtispecial quan-

ported in Fig. 3 are just due to the smallnessesf0.1. In

conclusion, the present approach to the anharmonic probleﬁﬁloi

tum effecty. Selected values arey=4, 0,=9, 1=2, £€=9.40
2, \j=107% ande=10"1.

is of little use, in practical cases, but it does certainly help to

elucidate why anharmonicitgunder the quasiresonant con-

in the intervald ;(«) too[Eq. (15)]. The origin of this effect

dition) is expected to produce energy saturation as the mail$ auite clear. In Sec. I, we have shown that at the instants,

effect.

V. SPECIAL QUANTUM EFFECTS

As mentioned above, the mean quantum energy (&4,

Eq. (16), the evolving probability density i shrinks to as
function with divergingu, so it is obvious that the influence

of any potential of the form, Eq27), becomes vanishingly
small after many frequency fluctuations have elapsed. The
fact that the mean energy remains an exponentially increas-

exhibits nonsaturating peaks of decreasing width, centereihg function of u even at the instants, EqL6), simply re-
around periodically recurring instants. It is an easy matter toveals the genuinguantumorigin of the effect. A classical

show that those instants are given by ELf), for the special
valuesdg of 4, such that

1+sgnw)sin(26; + o) =1+ sgn(x)sin(265 + o) =0.

oscillator with vanishing amplitude would yield a vanishing
energy. It is the Heisenberg principle that makes the mean
energy diverge when the wave function becomes more and
more localized.

The first-principle origin discussed above for the special

In this case, in fact, the combination of hyperbolic functionSquamum effects suggests that at the instants, (E6), the

in the rhs of Eq.(33) sums to exp—|x(u,65)|], so that
X(u,05)—2wu with diverging u, and the corresponding
mean energy, Eq34), tends to the value, E¢13), as if the
anharmonic terms were “switched off” at the special in-

mean energy is actually less sensitive to the anharmonic ef-
fects, independently of the formal treatment of the problem.
Peaks should then be expected, even from a more rigorous
approach. All the way, there is a further mechanism of satu-

stants, Eq(16). Similar special points are obviously presentration of the peaks in Fig. 3, ignored so far, that works even
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in the present scheme of approximation. Since the peaks asvant,” or inapplicable. Between these two cases, a border
due to divergently large fluctuations of the momentum, theclass of potentials(for instance, V(Q)xIn[|Q|+|c|]; [|Q|
simplest way to achieve saturation is to introduce more-than+|c|] 1), could actually exist, yielding finite transition
quadratic terms in momentum space. A universal effect ofates. We leave these cases to future investigations.
this kind is certainly produced by thelativistic corrections Since the long-range anharmonic potentials cannot be
to the kinetic energy, represented by increasing powers dfeated perturbatively, we have proposed a nonperturbative
P2. Should the nonsaturating peaks “survive” even to moreapproach in order to support the reasonable guess that the
rigorous calculations, the relativistic corrections would pro-anharmonicity should make the oscillator's mean energy
vide their ultimate mechanism of saturation. saturateat long times(Sec. I\V). This approach is based on
the idea that anharmonicity does break the ideal constructive
interference between the moving “walls” of the harmonic
well, and the increasingly large amplitude of the oscillator.
As a continuation of Ref[10], the present paper deals For this effect to go on indefinitely, it is indeed necessary
with the dynamics of a quantum oscillator, whose frequencythat the period of the motion be independent of its amplitude.
is forced to fluctuate periodically in time by some externalBy extracting from the potentials, E¢27), the anharmonic
field. Referencd10] was mainly concerned with the expo- factor |Q|' "2, and by treating its powee=j—2 as the
nential increase of the mean energy under the quasiresonagmallness parameter of a mean-field approximation, we can
condition. Here we have studied the full evolution of thewrite down a self-consistent equation for the effective rate of
guantum state. exponential increase of the energy, in the presence of anhar-
In the absence of any perturbati¢®ec. 1), the evolving  monic termgEq. (33)]. This effective rate does actually van-
state turns out to béa phase factor apara standard eigen- ish in the long-time limit, and the corresponding mean en-
function of the harmonic oscillatdEq. (11)], whose coordi- ergy, Eq.(34), saturates accordinglyFig. 3(a)]. However,
nate scales with a factor,(6,«) [first Eq.(12)]. This scal- there are special instants, in each period of the frequency
ing factor depends on the numherof elapsed periods of the fluctuation, at which the saturation does not occur. This re-
frequency fluctuation, and on the continuous tithelescrib-  sults in the presence of peakbig. 3(b)], which we call
ing the “residual” evolution within the actual period consid- “special” quantum effects. Their genuine quantum origin is
ered. For almost all values of, the probability density discussed in Sec. V. It is argued therein that, besides other
spreads out in space, singg( 8, 1) decreases exponentially possible nonuniversal mechanisms, a saturation process for
with u. However, at certain special valugg [Eq. (15)], the peaks is provi_ded .by the relativistic corrgctions to the
ya(#% 1) becomes an exponentialigcreasingfunction of ~ kinetic energy, which yield anharmonic terms in momentum
w (Fig. 2), and the probability density tends to shrink téa SPace. ,
function with increasing.. An interesting aspect, which we  'n€ future programs of the present research will move
leave to discussion for future works, is that the phase factofiONd two lines. First, we plan to approach the quasiresonant
of the wave function is dquadratig function of the coordi- ¢@se in the framework of the invariants’ thedi8], in an
nate, which makes the state carnylacalized probability attempt to improve our understanding of the anharmonic ef-
current. fects. Second, we will try to apply the present results to a
For periodic frequency fluctuations, the transfer-matrixStrongly degenerate system of fermionic oscillatdes ex-
method adopted herghe Appendiy, is most convenient. In _ample, eleqtro_ns in a metal under the mflugnce c_Jf a fluctuat-
the final part of Sec. Il, we have shown that the transferind magnetic fieldl The effects of the exclusion principle are
matrix method is nothing but an alternative way to calculatdNdeed far from trivial, as anticipated, in a very qualitative
the explicit form of the quantum invariant of interest. This W&y, in Ref.[13]
provides the relationship between the present approach and
the invariant theory8]. Hence, our piecewise defined quan- APPENDIX
tities, Egs.(17), (19), and(20) are special cases of the gen-

eral expressions found elsewhere, with the invariant metho oo @) "
or with other related approachf®,11,13. versed” Heisenberg Hamiltoniand g, (s)=U,(S)H ol 5(S)

In the presence of an additional anharmonic po'[entia[see Eq(5)]. First of all, we note that, from the unitarity of
V(Q), one is faced with another intriguing result: under thet/a(S) [defined in Eq.(4)], it is sufficient to study the trans-
quasiresonant condition, the system uaderperturbedif ~ formation on the &hpﬁnge(;)operator? and Q. Then, the
V(Q) is short-rangedSec. Il). This means tha¥(Q) pro- transformfad Hamiltonianbl¢,(s) are obta}lned by squaring
duces transition rates between the evolving unperturbeﬁ“e resul_tlng transformed operators. Using the factorization
states, which vanish in the long-time limit. This follows from Of Ua(s) in terms of the unitary operatots,, one can take
the coherent broadening of the energy due to the unperturbéifivantage of the formulgl4,19
evolution itself, which always overcomes the incoherent (—iy2
broadening due to short-ranged perturbation, at sufficiently  iS—iS_ . -l
long times. In contrast, iV(Q) is a more-than-quadratic Oy=€°0e""=0-il0,5]+ 2 [LO.S].S]+ -,
power of the coordinatEEq. (27)], the system becomewer- (A1)
perturbed Namely, the transition ratefivergeat long times
(Sec. V). The conclusion is that, under the quasiresonanc&hich yields the transform of an arbitrary opera@rmunder
condition (or any other condition of exponential increase of the transformation induced by a Hermitian operaon our
the energy[20]), the perturbation theory is either “irrel- caseQ is simply P or Q andSxH,. Now, the key property

VI. CONCLUSIONS

d We report here the calculations leading to the “time re-
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of the harmonic Hamiltonians is th&, and Q,, are still
linear combinations of the initia(Schralinge) operatorsP
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basis of eigenvectors of itself is simply given byi%
=exp(*ww). Though these calculations can be made ex-

and Q. To be more precise, let us consider the evolution inactly, for our purposes it is sufficient to retain the first-order

the subintervals$y(w). The evolution ofH, in the first sub-

contribution in&. Under the quasiresonant condition, E9j,

period 14(0) is trivial. So we can conveniently rewrite the maximum value o is given by Eq.(8d), and the trans-

Hig)(s) as
H{Q(S)=Uo(0)[Ug(ag)Us ()]
XHo[U1(a1)Ud(a0)J“UY(6),
b=s— puo—oy. (A2)

The u elapsed periods enter the powelk,U1# in Eq. (A2),

formed operators are
Pu(p)=[coswu)+spsinh(wu) ]P—cosini(ww)Q,

Qu(m)=—cosin(wu)P+[cosiwu)—sysin(ww)]Q.
(A5)

Now one is left with the evolution in the residual tinte
under the action ofJ, [Eq. (A2)]. The transfer matrix is

and can be accounted for by iterating the two basic transforsimilar to Eq.(A3), with 8 replacingo,. The transformed

mations obtained from EqA1):

Cq V1—§€s;

p
—% C1 (Q)

=—ooHe= = ,
oo Q§r°) —Sp Co/\Q
Co=C0So,, Sp=Sinoy,

ci=coqoq1V1—¢), s;=sin(oV1-¢§).

Keeping track of the order imposed by E&2), the evolu-
tion over one period is ruled by a single transfer matrix:

P

tr

(Ptr(ﬂzl))__l_ P)
Qu(pn=1) Q/)’
C1Co— V1—£s:Sg C1Sg+ V1—£€S:Cq
T= _ S]_CO s G S]_SO (A4)

andQ at timese I 4(u) are given by the linear combinations

(A6)

with
A,(0)=coslwu)cosd+sinNwu)sin( 6+ o),

B,.(0)=cosl{wu)sinf—sinhwu)cog 6+ ay),
(A7)

C,(0)=—coslwu)sing—sinh(ww)cog 6+ o),
D ,.(6)=cosi{wu)cosd—sinh(ww)sin( 0+ ag).

Finally, H{)(s) is obtained by squaring the operators of Eq.
(A6). The result is just Eq(6), with a=0, which refers to
the evolution of the state in the subintervijéu), of dura-
tion o, where the Schidinger Hamiltonian has the unper-
turbed form(first Eq. (2)]. We now wish to sketch the evo-
lution in the complementary intervalg(u). Forsel(u),
one can define the Heisenberg Hamiltonian{)(s)
=Uy(s)Ho41(s), and the statdn,s);=U/(s)|n). Starting
from Eq.(5), a structure similar to EQA2) does emerge, the

At this stage, one observes the strict analogy with the transanly difference being a “residual” evolution operator; ()
fer matrix of theclassicalcase(se€e[4] and references quoted instead ofUy(6). The corresponding transfer matrix is given

therein. The transformedP® and Q at s=u are obtained
through the application of the matri. It is useful to note
that defT=1, so that the eigenvalues ©fcan be expressed

in the form A . =exp(*w). Thus, the action off* on the

by the first Eq.(A3), with 6 replacing ;. The resulting
operatorsP,(s),Qy(s) are still linear combinations d® and
Q. Their squares yield the result reported in E@). for a
=1.
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