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Semiclassical theory for the Maslov-type wave packet:
Hierarchy below the semiclassical Feynman kernel
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A semiclassical theory based on the Maslov-type wave packet is reported. The present approximation
constitutes a class of semiclassical theory that brings about a hierarchy of theoretical structures below or
equivalent to the standard semiclassical approximation to the Feynman kernel. We first propose a semiclassical
wave function; that is, what we call the action-decomposed function~ADF!. An ADF is propagated in time
semiclassically along a ‘‘single action surface,’’ which is characterized in terms of a given initial momentum,
with the phase being proportional to theF2(q,p)-type generating function. An arbitrary wave function can be
expanded continuously in the ADF’s of different initial momenta, each of which is associated with weighting
factors both in configuration and momentum spaces. Depending on the form of the weighting function, the
present scheme covers a number of different levels of approximation, ranging from a ‘‘single’’ ADF to a
semiclassical kernel. Thus our theory provides a way of connecting the Maslov-type semiclassical wave packet
to the WKB theory based on the Feynman kernel. It is generally concluded that the above kernel limit attains
the highest accuracy possible within the present scheme, but it requires a large number of classical trajectories
to represent it. On the other hand, a single ADF yields a little less accurate results but demands the fewest
representing classical trajectories due to the narrowest momentum distribution. In fact, we show numerically
that the autocorrelation function represented in terms of a single ADF, from which the energy spectrum is
extracted with a Fourier transformation, can be calculated with drastically fewer classical trajectories without
losing much accuracy. We also present a limitation in applying the ADF, and show an interesting symptom
arising from a pathological use of the approximation. The present theory is quite promising for a spectral
analysis of the vibrational states of relatively large molecules, if applied appropriately.
@S1050-2947~99!10005-2#

PACS number~s!: 03.65.Sq, 03.65.Ge, 31.15.Gy
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I. INTRODUCTION

Semiclassical mechanics is not simply an academic p
lem, but one that covers quite an important and wide dom
of research for systems whose nature in between clas
and quantum mechanics@1–5#. Such transitions from quan
tum to classical nature are frequently observed in syst
where the Planck constant is relatively smaller than the
tion integrals characterizing the wavelength of a matter w
for a system. Nuclear dynamics, such as in molecular vib
tion and chemical reactions, are typical examples. It is a
generally believed that an increase of the number of con
ing particles is another route from quantum to classical
mains in that only the particle nature could survive throu
the random phase cancellation of associated matter w
@6#. Again, the dynamics of molecular systems, particula
of a large molecular system, can be a prototype. Theref
in certain dynamics of molecules consisting of many hea
atoms, two routes from quantum to classical mechanics
cross over. We are interested in this interaction between
two limiting stages\→0 andN→`, and its effects on mo-
lecular dynamics. Keeping this particular aspect in mi
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PRA 591050-2947/99/59~5!/3256~14!/$15.00
b-
in
al

s
c-
e
-
o
t-
-

h
es

y
e,
y
an
he

,

here we would like to present an interesting kind of sem
classical theory.

As is well known, WKB ~Wentzel-Kramers-Brillouin!
theory gives the very first step in semiclassical mechan
Both the asymptotic theory to a wave function@7,8# in the
first order of the Planck constant, and that for the Feynm
kernel@1,2#, are commonly called the WKB theory.~Strictly
speaking, they can be different from each other, as will
seen below.! Generally speaking, a higher-order evaluati
of the kernel, as in uniform approximations@2,4,5#, or an
attempt at solutions of the higher hierarchical equations
the Maslov semiclassical theory@3#, are definitely among the
most desirable tasks in this field. On the other hand, ho
ever, more accurate solutions generally demand a hig
price of labor. In a marked contrast to the mainstream
semiclassical theory, we develop a semiclassical the
which is in a hierarchical stage below or equal to the st
dard WKB theory@9#. This kind of study is worth accom
plishing if the lower level approximations thus develop
can represent a wave function and/or spectrum with far fe
classical trajectories without losing much accuracy. T
present property is quite useful in applications to large s
tems, since it is still difficult to apply even the standard sem
classical kernel to a system of more than, say, three dim
sions, let alone the above-mentioned higher-or
approximations. In fact we show numerically that this is c
ic
3256 ©1999 The American Physical Society



tio
cu
m

ha

tio

-
ve
r

n-

b
i-

on
,
ic
e

ry
m

es
th
te
je

.
ep
DF
b

th
ic
o
at
c

le,
iti
o
en

i
a

fte
a

t
ra
s
e

th
ow

I
e

av
In

e-
y.

or

at

an

n
rd
us-

s at
ns
ntly
e-

,

tor
of

d

of
in a
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tainly the case: Our proposed semiclassical approxima
indeed reproduces reasonably accurate spectra of mole
vibrations with far fewer classical trajectories than the se
classical Feynman kernel.

We first investigate a semiclassical wave function, w
we call the action-decomposed function~ADF!. An ADF
propagates in time semiclassically only along a single ac
surface that is characterized in terms of anF2(q,p0)-type
generating function@10#, which specifies the initial momen
tum p0 everywhere in configuration space. An arbitrary wa
function can be represented continuously in ADF’s of diffe
ent initial momenta. The wave function thus represented
equipped internally with weighting functions both in co
figuration and momentum spaces. Depending on the form
the weighting functions, the present scheme covers a num
of different levels of approximation, ranging from the sem
classical Feynman kernel to a single ADF approximati
which has ad-function momentum distribution. In this way
we have a new route connecting the Maslov semiclass
theory with the WKB theory based on the Feynman kern
~It is well known that the Van Vleck transformation theo
@11,12# for a wave packet produces essentially the sa
propagation as the semiclassical Feynman kernel.! It is an-
ticipated that the above kernel limit should attain the high
accuracy possible within the present scheme. On the o
hand, a single ADF in turn would yield slightly less accura
results, but requires the fewest representing classical tra
tories because of the narrowest momentum distribution
fact we show that the number of trajectories required to r
resent the autocorrelation function in terms of a single A
can be drastically reduced without losing much accuracy
using a single ADF.

Another, but less practical, advantage to exploring
lower hierarchical structure below the standard semiclass
theory is that some insight into quantum-classical corresp
dence is deepened. For instance, an inappropriate applic
of the ADF can miss taking account of some interferen
effects of quantum phases. We present such an examp
which a negative-energy spectrum is generated for a pos
potential system.~This erratic situation is closely related t
the general role of phase destructive interference, and h
will be studied in great detail in a companion paper.! We
thus clarify the limitation in applying the ADF. With this
note in mind in practical applications, the present theory
quite promising for a spectral analysis of the vibration
states of relatively large molecules.

The present paper is organized as follows. In Sec. II, a
the standard semiclassical approximation of the Feynm
kernel is briefly reviewed, we discuss a semiclassical fram
work based on the Maslov-type wave packet, and presen
explicit form of the ADF. Section III describes how a gene
wave function can be represented and propagated in term
the action-decomposed functions, the most expensive
treme of which is equivalent to propagation based on
Feynman kernel. We then show numerically in Sec. IV h
a single action-decomposed function can actually work.
Sec. V we discuss qualitative conditions for the ADF to b
good semiclassical approximation.

II. SEMICLASSICAL DYNAMICS
FOR THE ACTION-DECOMPOSED FUNCTION „ADF…

We consider a semiclassical representation for a w
function directly, rather than that for the Feynman kernel.
n
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view of its generality and popularity, however, it is conv
nient to begin by reviewing the semiclassical kernel briefl

A. Semiclassical Feynman kernel

We begin with a primitive semiclassical expression f
K(q,q0 ;t)5^quexp@2(i/\)Ht#uq0&; that is,

Ksc~q,q0 ;t !5~2p i\!2N/2U ]q

]p0
U21/2

3expF i

\
S1~q,q0 ;t !2

ipm

2 G , ~2.1!

whereq andq0 are given points in configuration space th
are to be connected by classical paths@1,2#. @It is understood
implicitly throughout the present paper that when more th
one classical path connectsq0 andq, all those contributions
should be summed up coherently in Eq.~2.1!.# S1(q,q0 ;t) is
an action integral for this path, andm is the Maslov index in
this representation.N denotes the dimension of configuratio
space. As is well known, the above straightforwa
asymptotic approximation of the kernel breaks down at ca
tic points where the amplitude factor diverges:u]q/]p0u21/2

5`. In the 1990s, a general scheme to avoid singularitie
caustics without resorting to tedious uniform approximatio
@2,4# has been developed by several authors independe
@13#. Among various possible forms, the initial value repr
sentation@13~a!#

Ksc~q,q0 ;t !5~2p i\!2N/2E dp0 d~q2qt!U ]qt

]p0
U1/2

3expF i

\
S1~qt ,q0 ;t !2

ipm

2 G ~2.2!

gives an elegant example. Note, that, in this expression,qt is
specified as the end point in configuration space at timet of
a classical trajectory starting from (q0 ,p0) in phase space
and therefore the root-search procedure inherent to Eq.~2.1!
is not needed. The explicit divergence in the amplitude fac
of Eq. ~2.1! has been removed through a transformation
integral variable fromqt to p0 . The new amplitude factor
u]qt /]p0u1/2 becomes only zero at the caustic points.

With Eq. ~2.2!, a semiclassical wave function is obtaine
in double integrals such that

C~q,t !5E dq0 Ksc~q,q0 ;t !C~q0,0!

5~2p i\!2N/2E E dp0 dq0 d~q2qt!U ]qt

]p0
U1/2

3expF i

\
S1~qt ,q0 ;t !2

ipm

2 GC~q0,0!, ~2.3!

and the autocorrelation function, the Fourier transform
which gives the energy spectrum, is again represented
double integral due to the presence of thed function in Eq.
~2.3!, such that
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C~ t !5E dq C* ~q,0!C~q,t !

5~2p i\!2N/2E E dp0 dq0U ]qt

]p0
U1/2

C* ~qt,0!C~q0,0!

3expF i

\
S1~qt ,q0 ;t !2

ipm

2 G . ~2.4!

Thus this initial value representation turns out to be mu
easier in use. However, the initial momentump0 , which has
no finite distribution in Eqs.~2.3! and ~2.4!, should be
sampled from the space of infinite size, which results in
very slow convergence in the numerical integration of E
~2.4!.

Finally, another representation of the semiclassical ke
is appended@13c#, since this is more relevant to ou
theoretical development which is mainly describ
in the (qt ,p0) representation. The kernelK(q,p0 ;t)
5^quexp@2(i/\)Ht#up0& has its semiclassical counterpart

Ksc~q,p0 ;t !5~2p i\!2N/2E dq0 d~q2qt!U ]qt

]q0
U1/2

3expF i

\
S2~qt ,p0 ;t !2

ipM

2 G . ~2.5!

The Maslov index M arises from the sign change o
]qt /]q0 . This kernel works on the momentum represen
tion of an initial wave function„C̃(p0,0)… such that

C~q,t !5~2p i\!2N/2E E dp0 dq0 d~q2qt!U ]qt

]q0
U1/2

3expF i

\
S2~q,p0 ;t !2

ipM

2 GC̃~p0,0!. ~2.6!

This form shows up later as a special case of our semic
sical wave functions.

B. Equations of motion for a wave packet

We now turn from the kernel to a wave packet. Masl
and Feodoriuk established a systematic theory to genera
class of wave functions beginning with a form@3#

C~q,t !5F~q,t !expF i

\
SclG , ~2.7!

where Scl denotes the classical action satisfying t
Hamilton-Jacobi equation

]Scl

]t
1HS q,

]Scl

]q
,t D50. ~2.8!

Unlike the Bohm formalism@14#, the exponential part is
fixed to be the purely classical action, and therefore
h

a
.

el

-

s-

a

o

‘‘quantum potential’’ arises. Instead, the amplitude functi
F in Eq. ~2.7! is to be asymptotically expanded in terms
l215\/2p i , giving rise to a hierarchical transport equatio
for each order ofl21 ~or \! @3#. The physical meaning of the
higher-order terms is not necessarily clear, however. I
easy to seeF(q,t) satisfying the simple equation of motio

]F

]t
1n•“F1

1

2
~“•n!F5

i\

2
¹2F, ~2.9!

wheren is the classical velocity defined asn5]Scl /]q. The
mass-weighted coordinates are used throughout so tha
the masses are scaled to unity. In the limit of\→0, Eq.~2.9!
corresponds to the lowest-order transport equation

]F

]t
1n•“F1

1

2
~“•n!F50. ~2.10!

From this equation and its complex-conjugate counterp
the following equation of continuity follows:

]~FF* !

]t
1“•~nFF* !50. ~2.11!

Since FF* represents the density of classical particles
configuration space moving along the classical velocity fi
n(q,t)5]Scl /]q, F(qt ,t) gives a ‘‘complex-valued classi
cal flow,’’ which is termed as the WKB flow.

Defining a substantial time derivative along the flow su
that

D

Dt
[

]

]t
1n•“1

1

2
“•n, ~2.12!

one can rewrite Eq.~2.9! as

DF

Dt
5

i\

2
¹2F. ~2.13!

This is nothing but a diffusion equation with an imagina
diffusion constanti\/2. The diffusion takes place not in
simple homogeneous space but on the WKB flow, in ot
words, diffusing points jump from one classical flow line
another. In this way, the higher-order effects can be ta
into account without resorting to the hierarchical transp
equations due to Maslov and Feodoriuk@3#. Although ex-
tremely interesting, this aspect will be studied in our futu
publications.

We come back to the lowest semiclassical approximat
@Eq. ~2.10!#, writing down its explicit solution@9#. A formal
solution to Eq. ~2.10! is given by an exponential form
F„q(t)…5F„q(0)…exp@2*0

t
“•n/2#, which, however, breaks

down at caustics.
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C. Explicit solution to the equation of motion—
action-decomposed function

We now present an explicit solution satisfying an app
priate initial condition to Eq.~2.10!. From this equation, one
can also derive an equation of motion forF2 ~besides that for
uFu2)

]F2

]t
1“•~nF2!50. ~2.14!

Notice here thatF(q,t) can take an imaginary value, an
henceF2 can be negative.F2 can be readily integrated lo
cally along a classical path in terms of a quant
(]qt /]q0)21, since by taking partial derivatives of th
Hamilton-Jacobi equation forScl(q,p0 ;t) in terms ofp0 and
q successively, we have a similar equation to Eq.~2.14!, that
is,

]

]t S ]qt

]q0
D 21

1“•FnS ]qt

]q0
D 21G50. ~2.15!

Furthermore, one has a trivial initial condition (]qt /]q0)21

51, sinceqt5q0 at t50, indicating that (]qt /]q0)21 can be
regarded as a local representation of the Green functio
Eq. ~2.14!. On comparing Eqs.~2.14! and ~2.15!, together
with the initial conditions above, one immediately has@9#

F~qt ,t !5F~q0,0!S ]qt

]q0
D 21/2

5F~q0,0!U ]qt

]q0
U21/2

expF2
ipM

2 G , ~2.16!

where the derivative]qt /]q0 is taken under the fixed initia
momentump0 , andM is the Maslov index in this represen
tation that counts the number of zeros of]qt /]q0 up to de-
generacy.]qt /]q0 is a minor determinant arising from th
so-called stability matrix@1,4,5,15#

]Zt

]Z0
5S ]qt

]q0

]qt

]p0

]pt

]q0

]pt

]p0

D , ~2.17!

and (]qt /]q0)215]2Scl(qt ,p0 ;t)/(]qt]p0) is interpreted as
the density of the families of classical paths having a co
mon initial momentump0 .

With the above choice of the initial condition, the clas
cal action in Eq.~2.7! is naturally fixed to theF2-type gen-
erating function of Goldstein@10#, namely,

Scl~q,p0 ;t !5F2~q,p0 ;t !5F1~q,q0 ;t !1q0p0 .
~2.18!

@The generating functionsF1 andF2 should not be confused
with our amplitude functionF(q,t).# In other words, all the
classical paths representing Eq.~2.7! lie commonly on a
single action surface, the initial momentum of which isp0
everywhere. We therefore term this function as an AD
Having the F2 generating function as a phase, the init
form of the ADF att50 is rewritten as
-

of

-

.
l

Cp0
~q,t !5F~q,0!expF i

\
p0qG . ~2.19!

There is a family of wave functions that have the form of E
~2.19!, with a typical example being the coherent sta
@2,16#, in which F(q,0) is a Gaussian function~see also Ref.
@17# for Heller’s Gaussian approach!.

A wave function which consists of a single ADF, denot
by C local

p0 (qt ,t), is specified as a single ADF~SADF!. Since
a SADF is given at the end points of classical trajectori
one may want to rewrite it in a slightly more global form a

Cp0
~q,t !5E dqt d„q2qt~q0 ,p0!…C local

p0 ~qt ,t !

5E dq0 d„q2qt~q0 ,p0!…C local
p0 ~qt ,t !U ]qt

]q0
U

5E dq0 d„q2qt~q0 ,p0!…F~q0,0!U ]qt

]q0
U1/2

3expF i

\
S2~qt ,p0 ;t !2

ipM

2 G . ~2.20!

Although the local solutionF(qt ,t) in Eq. ~2.16! diverges at
every caustic point where the Jacobian determinant]qt /]q0
becomes zero, the global solution Eq.~2.20! does not suffer
from such a divergence. This is again due to the transfor
tion of the integral variable fromqt to q0 @13#.

Note that the action-decomposed function in Eq.~2.20! is
represented in terms ofN-dimensional integration over th
initial coordinateq0 , which should be compared with Eq
~2.3!, in which 2N integrations overp0 andq0 are required.
Likewise, the autocorrelation function is written with
SADF such that

C~ t !5^Cp0
~0!uCp0

~ t !&

5E dq0 F* ~qt,0!F~q0,0!U ]qt

]q0
U1/2

3expF2
i

\
p0qt1

i

\
S2~qt ,p0 ;t !2

ipM

2 G ,
~2.21!

which is also anN-dimensional integral, while that of Eq
~2.4! is 2N dimensional. Therefore it is anticipated that th
correlation function of Eq.~2.21! and its deduced spectr
may be extracted with much fewer classical trajectories. I
thus the main aim of the rest of the present paper to dem
strate that this is really the case.

D. Orthogonal property of the action-decomposed functions

Before a numerical examination of an ADF, we tou
upon a weak~semiclassical! orthogonality among the ADF’s
SADF’s that are characterized by different initial momen
are orthonormalized to each other in the lowest-order
proximation of\, such that
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E Cpi
* ~q,t !Cpj

~q,t !dq5H 1 if pi5pj ,

O~\N! otherwise.
~2.22!

A proof for Eq. ~2.22! is given in the Appendix.@The proof
assumes that the amplitude functionF(q,t) is smooth
enough, but the resultant orthogonality expression does
depend on the practical form ofF(q,t), as far as the Planck
constant is small enough.# This fact suggests taking a set
ADF’s as a basis to expand any wave function. Howev
unlike the case of the coherent state representation@2,16#, we
do not have a resolution of the identity in terms of a contin
ous momentum parameterp, nor even a~over!completeness
relation.

Effectively, however, a discretized representation can
constructed as follows. Let us reformulate the above norm
ization such that

E Cpi
* ~q,t !Cpj

~q,t !dq5H 1

wi
if pi5pj ,

O~\! otherwise,
~2.23!

where the momenta are chosen at the quadrature points
wi are the weighting factors at these points@18#. Then, we
can set an effective resolution of identity

(
i

wi uCpi
~ t !&^Cpi

~ t !u>1, ~2.24!

since we have

S (
i

wi uCpi
(t)&^Cpi

(t)u D S (
j

wj uCpj
(t)&^Cpj

(t)u D
>S (

i
wi uCpi

(t)&^Cpi
(t)u D , ~2.25!

and hence, for an arbitrary functionuf&, it holds that

u f &'S (
i

wi uCpi
(0)&^Cpi

(0)u D u f &

>E dpi uCpi
(0)&^Cpi

(0)u f &. ~2.26!

Thusuf& can be approximately evolved in time withuCpi
(t)&,

under Eq.~2.26!, the coefficient of which iswi^Cpi
(0)u f &.

III. REPRESENTATION OF A WAVE FUNCTION
IN TERMS OF ADF

In Eq. ~2.26!, we have shown how an arbitrary wave fun
tion can be propagated in terms of ADF’s. In this section,
take another approach to utilizing the ADF, which w
clarify a relationship between our semiclassical scheme
ot

r,

-

e
l-

nd

e

d

that of the Feynman kernel, thereby characterizing m
clearly about a hierarchical structure of the semiclass
theory down to classical mechanics.

Suppose we have a decomposition for an arbitrary w
function such that

C~q!5F~q!G~q!, ~3.1!

under a condition thatG(q) has a momentum representatio

G̃~p!5
1

~2p\!N E G~q!expS 2
i

\
pqDdq. ~3.2!

We assume thatF(q) is a slowly varying function inq space,
while G(q) is ~relatively! oscillatory function like a plane
wave. There is no uniqueness in this decomposition thou
Nonetheless, we will show that the theory works w
enough if the Planck constant is small. The total wave fu
tion thus decomposed is rewritten as

C~q!5E dp0 G̃~p0!F~q!expS i

\
p0qD , ~3.3!

in which one recognizes the initial form of ADF that ap
peared in Eq.~2.19!. Hence we now have another way o
propagating a general wave function, whereG̃(p) is re-
garded as a weighting function in momentum space. T
semiclassical time propagation of this wave function
straightforward with use of Eq.~2.20!, that is,

C~q,t !5E E dq0 dp0 d~q2qt!U ]qt

]q0
U1/2

F~q0,0!G̃~p0!

3expS i

\
S2~qt ,p0 ;t !2

ipM

2 D , ~3.4!

whereq05]S2(q,p0 ,t50)/]p0 . There has been no need
assume the completeness of the ADF in this representa
This wave function materializes a semiclassical way
phase-space representation of a quantum wave function~see
Refs. @15,19# and references cited therein for a phase-sp
representation of quantum mechanics!. It is straightforward
to see that the form of Eq.~3.4! holds also fort50, which is
brought back to Eq.~3.3!. Let us show some simple ex
amples of the above decomposition and their consequen

(1) SADF.Setting

F5F~q! and G5expS i

\
p0qD ~3.5!

at t50, we have

G̃~p!5d~p2p0! ~3.6!

and
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C~q,0!5F~q!expS i

\
S2~q,p0;0! D

5F~q!expS i

\
p0qD , ~3.7!

which is just a SADF.
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~2! The semiclassical kernel K(qt ,p0 ;t). Set

F~q!51 ~const!,

G~q!5C~q! ~wave function itself!, ~3.8!

with
G̃~p!5C̃~p! ~momentum representation of the wave function! ~3.9!

and we have

C~q,t !5~2p\!2NE E dq0 dp0 d~q2qt!U ]qt

]q0
U1/2

expS i

\
S2~qt ,p0 ;t !2

ipM

2 D C̃~p0!. ~3.10!
l to

ich

.
d the
Comparison of this expression with Eq.~2.6! shows that Eq.
~3.10! is essentially the same as a wave function propaga
with the kernelKsc(qt ,p0 ;t) ~aside from a minor difference
in the coefficients!, that is,

C~q,t !5E dp0 Ksc~q,p0 ;t !C̃~p0,0!. ~3.11!

Thus we have found another relation of the Maslov-ty
wave packet to the Feynman kernel in a semiclassical st
However, there can exist many different choices in the
composition of Eq.~3.1!, which constitute a lower hierarch
below the kernel limit. Finally, we note an important techn
cal difference between the kernel-type propagation@Eq.
~3.10!# and that of a SADF@Eq. ~2.20!#. It is obvious that Eq.
~2.20! requires onlyN-fold integration, while the integral o
Eq. ~3.10! consists of 2N variables. In addition, Eq.~3.10!
employs the momentum representation of a wave funct
which requiresN more integrals unlessC̃(p0) can be ob-
tained analytically.

IV. NUMERICAL STUDY ON CORRELATION FUNCTION
AND SPECTRA

In this section we numerically examine the accuracy a
tractability of our semiclassical scheme by applying it to t
autocorrelation function and its Fourier~energy! spectrum. A
variety of decompositions of a wave function, ranging fro
the kernel limit to a SADF, are tested with different syste
parameters such as the magnitude of the Planck constan
the anharmonicity. Emphasis is placed on the convergenc
the correlation function and spectra with respect to the nu
ber of sampled trajectories.

A. Area of sampling space to apply ADF

The accuracy and convergence property of the semic
sical propagation depend on the decomposition of Eq.~3.1!.
Here we study the effect of the decomposition systematic
by choosing a Gaussian function as an initial wave functi
d

e
e.
-

n,

d

nd
of
-

s-

ly
,

C~q!5S p

a1bD 1/4

expS 2~a1b!~q2qc!
21

i

\
pc~q2qc! D ,

~4.1!

which is divided into

F~q!5S p

a1bD 1/4

exp„2a~q2qc!
2
…

and

G~q!5expS 2b~q2qc!
21

i

\
pc~q2qc! D ,

~4.2!

with

G̃~p0!5
1

~2p\! S p

b D 1/2

expF2 1

4b S p02pc

\ D 2G. ~4.3!

Thus, an area in the initial sampling phase space (q0 ,p0)
representing the propagation must be roughly proportiona

FIG. 1. The schematic picture of the parameter space in wh
the semiclassical approximations are examined.A stands for the
semiclassical Feynman kernel, whileB is dedicated to the SADF
The height represents the magnitude of the Planck constant, an
depth the extent of the anharmonicity of a potential.
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S b

a
\2D 1/2

. ~4.4!

Fixing a1b5 1
2 , we can parametrize the two extreme

namely, the limits of the kernel and SADF, and general ca
in between:~i! The maximum sampling area witha50. As
stated above@cf. Eq. ~3.8!#, this case corresponds to a fu
use of the Feynman kernel of the formC(q,t)
5*dp0 Ksc(q,p0 ,t)C̃(p0,0) as in Eq.~3.10!. We therefore
call this case the kernel limit.~ii ! The minimum sampling
space withb50. In this case,G̃(p0)5d(p02pc), as in Eq.
~3.6!. This is just the case of a SADF. The initial trajectori
are picked so as to have only a given momentumpc .

B. Test systems

Our test systems are one-dimensional harmonic
Morse oscillators. As a harmonic case we simply use

H5
p2

2
1

q2

2
, ~4.5!

with an initial wave packet

C~q,0!5S 1

p D 1/4

expS 2
1

2
q2D , ~4.6!

FIG. 2. Schematic picture of the sampling areas in phase sp
from which classical trajectories are picked randomly to repres
the semiclassical wave functions. The boxes are fora/(a1b)51,
0.1, and 0.01.
,
s

d

which is an eigenfunction of Eq.~4.5! if \51.0. The follow-
ing Hamiltonian

H5
p2

2
1D@12exp~2lq!#2, ~4.7!

with the parametersD530 andl50.08, is adopted as a
anharmonic problem. An initial wave packet is set to

C~q,0!5S 1

p D 1/4

expF2
1

2
~q2qc!

21
i

\
p0qG , ~4.8!

located atqc527 andp050.
The Gaussian quadrature@18# is the most useful to sampl

the initial phase-space points for carrying out the integrat
in the one-dimensional case. However, since we are in
ested in applying the semiclassical scheme to a large sys
in which only Monte Carlo type sampling is practical, an
since we are studying the rate of convergence with respe
the number of trajectories, we would rather adopt t
random-number sampling.

C. Quality of spectra with change of the system parameters

We first examine the quality of the correlation functio
and its related spectra in the various approximations, usin
sufficiently large number of classical trajectories. The co
vergence property will be investigated in the next subsect
There are three parameters that characterize the syste
shown in Fig. 1:~i! The anharmonicity~harmonic or Morse!.
~ii ! The magnitude of the Planck constant (\51.0 or 0.1!.
~iii ! The ratio ofb to a specifying the decomposition of Eq
~4.1! in between a SADF and the kernel. AlthoughAb/a is a
good parameter to see the convergence property, we also
a/(a1b) to parametrize the quality of approximation. Th
smaller ~larger! this is, the closer the approximation ap
proaches the kernel~SADF! limit, namely, a/(a1b)
50 @a/(a1b)51# for the kernel~SADF!. Three cases are
picked for a/(a1b)51.0, 0.1, and 0.01 in practice, as d
picted in Fig. 2, which specifies the sizes of areas in ph
space required for sampling. In what follows, we simply d
note the case ofa/(a1b)50.01 to be the kernel limit. Ob-
viously, the kernel limit is the most tedious, but it is su
posed to give the most accurate results~in particular, an
exact result for the harmonic potential!.

1. Harmonic potential with a large Planck
constant—spurious spectrum

We begin with the poorest example, in that the validity
the SADF approximation could be violated. This is a case
a harmonic potential@Eq. ~4.5!# with a large Planck constan

e,
nt
r-

ed
he
FIG. 3. The autocorrelation function for a ha
monic oscillator with\51. The real and imagi-
nary parts are drawn by the solid and dash
lines, respectively. A large deviation between t
kernel limit @a/(a1b)50.01# and the SADF
@a/(a1b)51.0# is observed.
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(\51.0). The present magnitude of the Planck constan
actually very large, and is far from the domain where a se
classical approximation is generally valid. Also, it should
noted that a SADF does not give the exact results even f
harmonic case. Conversely, a harmonic oscillator is
tougher problem than an anharmonic one for the SA
scheme, in contrast to the kernel, as will be described be

Applying the decomposition of Eq.~4.1! with Eq. ~3.5! to
Eq. ~4.6!, we make a SADF (b50, pc50). Figure 3 shows
the correlation functions in a time interval@0,4p#. The solid
and dotted curves indicate the real and imaginary parts
spectively, in each box, which in turn correspond to differe
a/(a1b) ~1.0, 0.1, and 0.01!. A large deviation between th
SADF limit @a/(a1b)51# and the kernel limit@a/(a1b)
50.01# is observed. The kernel limit is essentially exact e
cept for small kinks numerically formed att5p/2, and so
on. The resultant energy spectra are shown in Fig. 4.
boxes in the left column show the energy spectra, all
which certainly reproduce the peak at the exact place for
quantum numbern50, and no other major peaks are see
On the other hand, the boxes in the right-hand-side colu
show spurious components of spectra, which take nega
values ~negative energies for the positive potential!. This
symptom reflects the worst condition for the application o
SADF. Nonetheless, the kernel limit does not have suc
large contamination.

In the succeeding paper we will examine the reason w
such negative energies appear@20#. Here we focus on a con
sequence of the spurious peaks. Although the negative s
trum can be simply ignored as far as the energy for a o
dimensional system is concerned, this is not the case

FIG. 4. The positive~left boxes! and negative~right boxes!
spectra arising from the harmonic oscillator with\51, which are
compared in terms ofa/(a1b).
is
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a
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systems greater than or equal to two dimensions. Let us c
sider a case in which two frequencies are different from e
other,

H5S p1
2

2
1

v1
2q1

2

2 D 1S p2
2

2
1

v2
2q2

2

2 D ~4.9!

with v152 andv250.6, and the initial wave packet is pre
pared as a Gaussian:

C0~q1 ,q2!5S 1

p D 1/2

expF2
1

2
~q1

21q2
2!G . ~4.10!

Again, \51. Figure 5 demonstrates that a wrong combin
tion band, namely, a subtracting bandE0

12E1
2, has appeared

as a consequence of the negative spectra. Thus it turns
that a SADF cannot be reliable under this situation.

2. Harmonic potential with a small Planck constant—
disappearance of a spurious spectrum

It is quite obvious that such a large Planck const
should deteriorate the quality of the semiclassical appro
mation, if we look back at Eq.~2.9!. With \51 we were
simply in a region where the semiclassical approximation
never valid. So let us resume with a smaller choice of
Planck constant at\50.1. With this value, the initial wave
function @Eq. ~4.6!# is no longer an eigenfunction of the ha
monic oscillator. Figure 6 presents a correlation function
in Fig. 3. This time the correlation function for the SAD
comes much closer to that of the kernel limit than in the c
of \51.0. The spectra are depicted in Fig. 7, the left a
right columns corresponding to the positive and negat
Fourier spectra, respectively. Note that we have peaks
n50,2,4, . . . , since Eq.~4.6! is not the eigenfunction ofn
50. It is clearly observed that the negative components h
almost disappeared from the SADF spectrum. Likewise,

FIG. 5. The power spectrum of a direct product system of t
harmonic oscillators with\51. A spurious~subtracting! combina-
tion band arises. The energies are in absolute units.
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FIG. 6. An autocorrelation function of the
harmonic oscillator with\50.1, which should be
compared with Fig. 3. The solid and dashed lin
are the real and imaginary parts, respectively.
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bad ~subtracting! combination bands have disappeared fro
the two-dimensional problem, as shown in Fig. 8. Thus
have confirmed that the smallness of the Planck consta
quite essential for the semiclassical approximation to s
valid.

3. Morse potential with a large Planck constant

It is well known that the semiclassical Feynman kern
gives exact results for harmonic potentials@2#, but not for
anharmonic systems. This in turn leaves us with an imp
sion that all the semiclassical methods would give less ac
rate results in anharmonic problems than in harmonic on
This is not necessarily the case in our semiclassical sche
as shown below more precisely. The dynamics on a h
monic potential is degenerate@21#; in other words, all the
trajectories with different energies~the action variables
more precisely! run collectively with a synchronous phas
~the angle variables!. Because of this fact, the quantum pha
arising from a harmonic oscillator has an extraordinary
herence, which is pathological from the viewpoint of pha
cancellation that is expected in more general cases.

As an anharmonic system, we use the Morse oscilla
The Hamiltonian and the initial wave packet are those
Eqs. ~4.7! and ~4.8!. The potential is quite anharmoni
around the initial position of the wave packet (qc527),
where classical trajectories are distributed more widely as
time evolution proceeds. Figure 9 shows the real part of
correlation function from timet50 to 20~the first row!, the
energy spectrum in positive values~the second row!, and the
negative~spurious! energy spectrum~the third row!, with the
accuracy parameters@a/(a1b)# being 1 ~left column! and
0.01 ~right column!. The Planck constant has been delib
ately chosen to be\51.0 despite the pathological results
the harmonic case~Fig. 4!. As is observed very clearly, how
ever, even a SADF@a/(a1b)51# with this large Planck
constant gives very good results. For instance, no nega
eigenvalues have appeared. The present facts suggest
strongly that the random-phase cancellation due to the n
degenerate motion in phase space for an anharmonic po
tial can be a very important factor to remove unnecess
spectral components such as the negative spectrum.

Summarizing the results in Secs. IV C 1–IV C 3, we ha
observed under a condition thata1b in Eq. ~4.1! is small
enough:~i! The quality of the approximation varies in a co
tinuous manner by changinga/(a1b). ~ii ! The quality of a
SADF significantly deteriorates in the case when a la
Planck constant is adopted for a harmonic potential. No
theless, it is dramatically improved either if a small Plan
constant is used or when an anharmonic potential is con
e
is
y
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ered. There is hence no need to test whether the SADF w
well for a nonlinear system with a small Planck consta
which is the case of our primary concern.

D. Convergence with respect to the number of trajectories

We now examine the aspect of computational time. A
though the semiclassical approximations below the semic
sical Feynman kernel are not always very accurate, as
scribed above, they demand fewer trajectories to repre
wave functions and correlation functions, as shown in Fig
and related mathematical expressions. We now explore
few classical trajectories are required in practice as a fu
tion of the parametera/(a1b). To do this, we check the
convergence of the correlation functions with respect to
number of trajectories. The test Hamiltonian and the init
wave packet are again Eqs.~4.7! and ~4.8!, respectively.
Again, three different decompositions, namelya/(a1b)

FIG. 7. The positive~left boxes! and negative~right boxes!
spectra arising from the harmonic oscillator with\50.1, which
should be compared with Fig. 4. The negative components h
been virtually removed.
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50.01, 0.1, and 1.0, of a common wave function are e
ployed to calculate the correlation functions. The conv
gence of the correlation functions is monitored with incre
ing the number of trajectories. Figure 10 demonstrate
remarkable difference in the convergence: The SADF@panel

FIG. 8. The power spectrum of a direct product of two harmo
oscillators with\50.1. No subtracting bands appear.~The small
peaks without marks are not the subtracting bands either.!

FIG. 9. Comparison of the SADF~left boxes! and the semiclas-
sical kernel~right boxes! in an anharmonic potential. In spite of
large Planck constant (\51), they yield very similar results. The
real parts of the correlation functions~upper row!, the positive spec-
tra ~middle row!, and the negative spectra~lower row! are dis-
played.
-
-
-
a
~a!# needs far fewer trajectories than the kernel limit@panel
~c!#. The convergence becomes monotonically slower as
approach the kernel limit.

To quantify the rate of convergence more precisely a
function of the decomposition, we consider the converge
rate. First, here we adoptAb/a to specify the decomposition
rather thana/(a1b). For the SADF limitAb/a50, while
the kernel limit is located atAb/a5`. Let us define the
convergence ratio as 1.02uC(Ntr)u/uC(`)u, where uC(Ntr)u
is the absolute value of a correlation function fixed at a giv
parameterAb/a that is calculated withNtr trajectories, and

c

FIG. 10. The rate of convergence of a correlation function r
resented in ADF’s.~a! a/(a1b)51 ~SADF!, ~b! a/(a1b)50.1,
and~c! a/(a1b)50.01 ~the kernel limit!. A dramatic difference in
the convergence rate is seen. The absolute values of the correl
functions converged are~a! 0.1340,~b! 0.1375, and~c! 0.1434.

FIG. 11. Number of trajectories to attain the convergence
given percentages as a function ofAb/a. For instance, the top line
indicates the number of trajectories required to have the correla
function converged within 1%. The number of trajectories requi
to attain this convergence suddenly becomes larger~by about 50
times! by moving fromAb/a50 to Ab/a51.0.
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C(`) is the corresponding value with practicallyNtr5`; for
instance, 3% convergence meansuC(Ntr)u/uC(`)u50.97. In
Fig. 11 we show the number of trajectories required to att
the convergence ratios 1% and 3% versusAb/a. The inset of
Fig. 11 displays log10 Ntr vs Ab/a. As expected, the numbe
of trajectories required increases almost monotonically
Ab/a. However, the manner of the increase is not simp
For instance, in the graph for the convergence ratio 1%
large jump between the case ofAb/a50 ~SADF! and
Ab/a51.0 has been observed: The latter needs almos
times more trajectories. For a 3% convergence ratio, the
d
m
v

s

th

hi
la
c

th

la

in
ri
in

s
.
a

50
r-

nel limit at Ab/a510.0 requires 175 times more trajectori
than the SADF. We have thus confirmed and shown the v
fast convergence of the SADF, which can be vital to
actual application to large dimensional systems.

V. QUALITATIVE CONDITIONS FOR GOOD ACCURACY
IN THE CORRELATION FUNCTION WITH ADF’s

Here we deduce qualitative conditions in which t
present semiclassical method can work. With use of the g
eral form of the decomposition as in Eq.~3.4!, the correlation
function is written as
C~ t !5E dq C* ~q,0!C~q,t !5E dq1 dp1E dq0 dp0 d„qt~q0 ,p0!2q1…G̃* ~p1!G̃~p0!F* ~q1,0!U ]qt

]q0
U1/2

F~q0,0!

3expS i

\
@S1~qt ,q0 ;t !1q0p02q1p1#2

ipM

2 D . ~5.1!
ctor

as

he
to
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at

rm
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First we would like to find what kind of trajectories woul
dominate this integral, since the present analysis will beco
necessary later. To do so, we first carry out the integrals o
the variables (q0 ,p0), fixing (q1 ,p1). Note, in addition, that
the integration should be performed under a constraint

qt~q0 ,p0!5q1 . ~5.2!

Since thed function in Eq.~5.1! is not smooth and prevent
the stationary phase approximation~SPA! overq0 , we delete
it beforehand by integrating overp0 first. Then the SPA for
q0 leads to

]qt

]q0
pt2

]qt

]q0
p150, ~5.3!

where we have used Eq.~5.2!, and it is

pt5p1 . ~5.4!

Thus the trajectories making a dominant contribution to
integral should pass through a point,„qt(q0 ,p0),pt(q0 ,p0)…
5(q1 ,p1). The action surface should of course cover t
point. Furthermore, in the Fourier transform of the corre
tion function over the time coordinate, from which the spe
tra can arise, only a trajectory passing (q1 ,p1) many times
can contribute the integral. This is a periodic orbit. Then
integration over (q1 ,p1) requires one to ‘‘sum up’’ all the
possible periodic orbits, as in the Gutzwiller trace formu
@22,23#. The practical differences, however, are~i! we do not
analytically reduce the correlation function to a form
which only periodic orbits appear, but carry out the nume
cal integrations, and~ii ! the correlation function in Eq.~5.1!
e
er

e

s
-
-

e

-

specifies a narrower sampling space due to the fa

G̃* (p1)G̃(p0)F* (q1,0)F(q0,0).
In case of the SADF, the correlation function is written

C~ t !5E dq0 F* ~qt,0!U ]qt

]q0
U1/2

F~q0,0!

3expS i

\
@S1~qt ,q0 ;t !1q0p02qtp0#2

ipM

2 D .

~5.5!

Trajectories dominating this integral can be picked with t
use of the stationary phase condition, which leads only
p05pt , but no condition betweenq0 andqt arises. Thus not
only the periodic orbits but others can contribute to the in
gral. It is important, however, in view of reducing the err
of the correlation function that the stationary phase condit
has been satisfied formally, as discussed below.

We next estimate the qualitative errors of the correlat
function that employ the ADF’s, and thereby figure out wh
are the conditions for the approximations~including the
SADF! to be valid. The error arises from neglecting the te
( i\/2)¹2F(q,t) in the equation of motions forF(q,t), Eq.
~2.9!. Even if F(q,0) is smooth enough@and thereby
¹2F(q,0) is very small#, ¹2F(q,t) is not always small.
Therefore we trace how this error is evolved along the WK
flow. From Eq.~2.13!, (DF/Dt)2( i\/2)¹2F must be iden-
tically zero along the action surface, ifF was exact. Thus the
evolution of this difference can provide a measure of
error due to the Laplacian term. The first-order error in t
correlation functionDC(t) can therefore be roughly est
mated as
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DC~ t !52E dq C* ~q,0!S DF

Dt
2

i\

2
¹2F DexpS i

\
SclD5

i\

2 E dq1 dp1E dq0 dp0 d„qt~q0 ,p0!2q1…G̃* ~p1!

3G̃~p0!F* ~q1,0!@¹2F„qt~q0 ,p0!,t…#expS i

\
@S1~qt ,q0 ;t !1q0p02q1p1#2

ipM

2 D . ~5.6!

Here we have usedDF/Dt50, that holds for the ADF@see Eq.~2.10!#. This value merely gives an error generated at e
time, and the total error should be estimated by accumulating them. Just as in the above procedure leading to Eq.~5.4!, one can
readily show that this error term is also dominated by the periodic orbits. The contributions from other trajectories ar
magnitudeO(\N11). Note that the Laplacian in Eq.~5.6! is now to be operated on the functions ofqt .

IntegratingDC(t) in q by parts, and assuming that a wave packetF(q,t) is zero at the asymptotic region (uqu→`), we
have

DC~ t !52
i\

2 E dp1E dqt dp0U ]qt

]q0
U21

G̃* ~p1!G̃~p0!“@F* ~qt,0!#•@“F„qt~q0 ,p0!,t…#expS i

\
f D

2
1

2 E dp1E dqt dp0U ]qt

]q0
U21

G̃* ~p1!G̃~p0!F* ~qt,0!@“F„qt~q0 ,p0!,t…#•“@„S1~qt ,q0 ;t !1q0p02qtp1…#expS i

\
f D

2
i\

2 E dp1E dqt dp0 G̃* ~p1!G̃~p0!F* ~qt,0!F„qt~q0 ,p0!,t…

3F“U ]qt

]q0
U21G•“$@S1~qt ,q0 ;t !1q0p02qtp1#%expS i

\
f D , ~5.7!
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wheref denotes the phase part collectively. The error aris
from the first term of Eq.~5.7! must be suppressed as long
“F* (qt,0) is small enough. Therefore, the initial amplitud
function has to be smooth, which is in accord with the abo
argument when we introduced the decomposition of a w
function into two pieces. Again, however, we note that t
flatter F(q,0) is, the more the sampling trajectories are
quired. The third term ofDC(t) can become significant a
caustic points whereu]qt /]q0u2150, which is common to
all the semiclassical approximations of this level. The fi
and third terms can become zero if\ approaches zero, pro
vided that the other geometrical quantities such as (¹F)2 do
not cancel\. As for the second term, on the other hand,\ on
the right-hand side has been canceled by 1/\, which showed
up in the phase factor. Thus the smallness of the Pla
constant does not directly warrant that this term is negligib
However, if the stationary phase condition holds such t
the phase is smooth, that is,

“@S1~qt ,q0 ;t !1q0p02q1p1#50, ~5.8!

the second term of Eq.~5.7! is simply zero. Conversely, i
the stationary phase condition is not fulfilled, the error ar
ing from this term must be very large in the order of\0.

Finally, in case of the SADF,

DC~ t !5
i\

2 E dqt F* ~qt,0!@¹2F„qt~q0 ,p0!,t…#

3expS i

\
@S1~qt ,q0 ;t !1q0p02qtp0# D , ~5.9!

the above argument can apply equally well, since the stat
ary phase condition is satisfied as in Eq.~5.5!, although the
g

e
e

e
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ck
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n-

dominant trajectories are not necessarily periodic orb
Thus if the initialF(q,0) is smooth enough, and if the inte
gration of Eq.~5.9! is performed so as to reproduce the s
tionary phase situation well, the accuracy of the ADF is co
ceived to be good as well, which is in accord with o
numerical observations made above. We have thus theo
cally identified a qualitative domain where our semiclassi
scheme can be valid. Together with the numerical stu
made in Sec. IV, we have shown how efficiently the AD
can work as long as the appropriate applications are ma

VI. CONCLUDING REMARKS

We have presented a semiclassical framework based
the Maslov-type wave packets, the theoretical hierarchy
which lies below or is equal to the level of the standa
semiclassical approximation of the Feynman kernel. It
cludes various levels of approximation, the semiclass
Feynman kernel being the most accurate and tim
consuming extreme among them. Another extreme on
other end is the single action-decomposed function, whic
a little less accurate but has the fastest convergence in
representation with use of classical trajectories. In fact, it
been shown numerically that a SADF based on an appro
ately selected initial wave function, that is, a smooth wa
function, can reproduce sufficiently accurate quantum ene
spectra from the Fourier transform of the autocorrelat
function with far fewer classical trajectories than required
the Feynman kernel. This implies that the SADF and
proximity are quite promising in describing vibrational spe
tra of relatively large molecules. An application of th
present method is in fact under way for a several-atom s
tem.

Finally we would like to stress that the ADF theory
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useful in practical applications but also in exploring t
quantum-classical limit of a wave function. For instance,
have found that negative spurious spectra can arise f
positive potential in the domain where the semiclass
theory is not valid. By analyzing those crude cases, one
comprehend a feature of quantum mechanics that to
knowledge has not been shown before. We will report t
aspect in the succeeding paper@20#.
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APPENDIX: PROOF OF THE SEMICLASSICAL
ORTHONORMALITY OF SADF’S

Action-decomposed functions~ADF’s! characterized by
different initial momentapi and pj are orthonormalized to
each other in the lowest-order of\ such that

E Cpi
* ~q,t !Cpj

~q,t !5H 1 if pi5pj

O~\N! otherwise.
~A1!

Substituting the semiclassical expressions forCpi
andCpj

Cp~q,t !5E dqt d~q2qt!F~qt ,t !expF i

\
S2~qt ,p0 ;t !G ,

~A2!

we have~neglecting the Maslov index!

E Cpi
* ~q,t !Cpj

~q,t !

5E dqt F* ~qt ,t !F~qt ,t !

3expF i

\
$2S2~qt ,pi ;t !1S2~qt ,pj ;t !%G . ~A3!
-

-

ys
e
a
l
n

ur
s

Here two different families of classical trajectories are to
considered, namely, the families of classical trajector
which start with an initial momentumpi (pj ) at t50 and
arrives atqt at time t. In the limit of \→0, the exponential
term oscillates so rapidly that only the trajectories that ma
the phase stationary as

2
]S2~qt ,pi ;t !

]qt
1

]S2~qt ,pj ;t !

]qt
50 ~A4!

can contribute to the integral, which simply implies

pt~qt ,pi !5pt~qt ,pj !. ~A5!

This, in turn, requires directly that

pi5pj . ~A6!

All the other trajectories make contributions to the integral
the order ofO(\N) due to the Riemann-Lebesgue lemm
We thus have seen the semiclassical orthogonality.

On the other hand, ifpi5pj , we observe

E Cpi
* ~q,t !Cpj

~q,t !dq5E dqt F* ~qt ,t !F~qt ,t !,

~A7!

while we have already had

F~qt ,t !5F~q0,0!U ]qt

]q0
U21/2

expF2
ipM

2 G , ~A8!

which brings about a normalization

E Cpi
* ~q,t !Cpi

~q,t !dq5E F* ~q0,0!F~q0,0!dq051.

~A9!

This completes the proof.
P.
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