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Semiclassical theory for the Maslov-type wave packet:
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A semiclassical theory based on the Maslov-type wave packet is reported. The present approximation
constitutes a class of semiclassical theory that brings about a hierarchy of theoretical structures below or
equivalent to the standard semiclassical approximation to the Feynman kernel. We first propose a semiclassical
wave function; that is, what we call the action-decomposed func¢#ddF). An ADF is propagated in time
semiclassically along a “single action surface,” which is characterized in terms of a given initial momentum,
with the phase being proportional to tRg(q,p)-type generating function. An arbitrary wave function can be
expanded continuously in the ADF’s of different initial momenta, each of which is associated with weighting
factors both in configuration and momentum spaces. Depending on the form of the weighting function, the
present scheme covers a number of different levels of approximation, ranging from a “single” ADF to a
semiclassical kernel. Thus our theory provides a way of connecting the Maslov-type semiclassical wave packet
to the WKB theory based on the Feynman kernel. It is generally concluded that the above kernel limit attains
the highest accuracy possible within the present scheme, but it requires a large number of classical trajectories
to represent it. On the other hand, a single ADF yields a little less accurate results but demands the fewest
representing classical trajectories due to the narrowest momentum distribution. In fact, we show numerically
that the autocorrelation function represented in terms of a single ADF, from which the energy spectrum is
extracted with a Fourier transformation, can be calculated with drastically fewer classical trajectories without
losing much accuracy. We also present a limitation in applying the ADF, and show an interesting symptom
arising from a pathological use of the approximation. The present theory is quite promising for a spectral
analysis of the vibrational states of relatively large molecules, if applied appropriately.
[S1050-294{@9)10005-2

PACS numbds): 03.65.Sq, 03.65.Ge, 31.15.Gy

I. INTRODUCTION here we would like to present an interesting kind of semi-
classical theory.

Semiclassical mechanics is not simply an academic prob- As is well known, WKB (Wentzel-Kramers-Brillouin
lem, but one that covers quite an important and wide domaittheory gives the very first step in semiclassical mechanics.
of research for systems whose nature in between classicBloth the asymptotic theory to a wave functipn8] in the
and quantum mechani¢8—5]. Such transitions from quan- first order of the Planck constant, and that for the Feynman
tum to classical nature are frequently observed in systemikernel[1,2], are commonly called the WKB theorStrictly
where the Planck constant is relatively smaller than the acspeaking, they can be different from each other, as will be
tion integrals characterizing the wavelength of a matter waveeen below. Generally speaking, a higher-order evaluation
for a system. Nuclear dynamics, such as in molecular vibraef the kernel, as in uniform approximatiofg,4,5], or an
tion and chemical reactions, are typical examples. It is als@ttempt at solutions of the higher hierarchical equations in
generally believed that an increase of the number of consisthe Maslov semiclassical theof$], are definitely among the
ing particles is another route from quantum to classical domost desirable tasks in this field. On the other hand, how-
mains in that only the particle nature could survive throughever, more accurate solutions generally demand a higher
the random phase cancellation of associated matter wavgsgice of labor. In a marked contrast to the mainstream of
[6]. Again, the dynamics of molecular systems, particularlysemiclassical theory, we develop a semiclassical theory
of a large molecular system, can be a prototype. Thereforayhich is in a hierarchical stage below or equal to the stan-
in certain dynamics of molecules consisting of many heavydard WKB theory[9]. This kind of study is worth accom-
atoms, two routes from quantum to classical mechanics caplishing if the lower level approximations thus developed
cross over. We are interested in this interaction between thean represent a wave function and/or spectrum with far fewer
two limiting stagesh—0 andN—<, and its effects on mo- classical trajectories without losing much accuracy. The
lecular dynamics. Keeping this particular aspect in mind present property is quite useful in applications to large sys-

tems, since it is still difficult to apply even the standard semi-

classical kernel to a system of more than, say, three dimen-

* Author to whom correspondence should be addressed. Electrongions, let alone the above-mentioned higher-order
address: KazTak@mns2.c.u-tokyo.ac.jp approximations. In fact we show numerically that this is cer-
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tainly the case: Our proposed semiclassical approximatiomiew of its generality and popularity, however, it is conve-
indeed reproduces reasonably accurate spectra of moleculaient to begin by reviewing the semiclassical kernel briefly.
vibrations with far fewer classical trajectories than the semi-
classical Feynman kernel.

We first investigate a semiclassical wave function, what
we call the action-decomposed functiéADF). An ADF We begin with a primitive semiclassical expression for
propagates in time semiclassically only along a single actio (q,q;t) = (q|exd — (i/%)Ht]jgy); that is,
surface that is characterized in terms of Bg(q,po)-type
generating functiofi10], which specifies the initial momen- s _ N2
tum p, everywhere in configuration space. An arbitrary wave K*(q,q0;t) =(27if)
function can be represented continuously in ADF’s of differ-
ent initial momenta. The wave function thus represented is i T
equipped internally with weighting functions both in con- Xex;{gsl(q,qo;t)—T}, 2.1
figuration and momentum spaces. Depending on the form of
the weighting functions, the present scheme covers a number _ L , .
of different levels of approximation, ranging from the semi- Whereq andqo are given points in configuration space that
classical Feynman kernel to a single ADF approximation@re to be connected by classical p4thg]. [It is understood
which has as-function momentum distribution. In this way, implicitly throughout the present paper that when more than
we have a new route connecting the Maslov semiclassicdine classical path conneajg andg, all those contributions
theory with the WKB theory based on the Feynman kernelshould be summed up coherently in E2.1).] S;(q,qo;t) is
(It is well known that the Van Vleck transformation theory an action integral for this path, andis the Maslov index in
[11,129 for a wave packet produces essentially the saméhis representatiolN denotes the dimension of configuration
propagation as the semiclassical Feynman keriiieis an-  space. As is well known, the above straightforward
ticipated that the above kernel limit should attain the highestasymptotic approximation of the kernel breaks down at caus-
accuracy possible within the present scheme. On the otheic points where the amplitude factor diverg@ﬁq/ﬁporl’z
hand, a single ADF in turn would yield slightly less accurate=cc, |n the 1990s, a general scheme to avoid singularities at
results, but requires the fewest representing classical trajegaystics without resorting to tedious uniform approximations
tories because of the narrowest momentum distribution. 2 4] has been developed by several authors independently

fact we show that the number of trajectories required to reEIflS]. Among various possible forms, the initial value repre-
resent the autocorrelation function in terms of a single AD sentation[ 13(a)]

can be drastically reduced without losing much accuracy by
using a single ADF.

Another, but less practical, advantage to exploring the KS4q qo't)—(ZWiﬁ)_lef dpo 8(q—ay)

’ [V t

A. Semiclassical Feynman kernel

a9 -12

dPo

1/2

lower hierarchical structure below the standard semiclassical

theory is that some insight into quantum-classical correspon- ) ]
dence is deepened. For instance, an inappropriate application < ex I—S ( t)— lmp 2.2
of the ADF can miss taking account of some interference nt Ge-9o: 2 '
effects of quantum phases. We present such an example, in

which a negative-energy spectrum is generated for a positive, C -
potential system(This erratic situation is closely related to Slves an elegant example. Note, that, in this expressjois,

the general role of phase destructive interference, and hené@ec'f'e.d as th_e end pomt_ln conf|gurat|or_1 space at timke

will be studied in great detail in a companion papéte a classical trajectory starting fromuq, po) n phase space,

thus clarify the limitation in applying the ADF. With this gnd therefore the root—segrc_h procedu_re mherent.tc(Em).

note in mind in practical applications, the present theory idS not needed. The explicit divergence in the amplltude.factor

quite promising for a spectral analysis of the vibrational®f EQ- (2.1 has been removed through a transformation of

states of relatively large molecules. integral variable froma, to py. The new amplitude factor
The present paper is organized as follows. In Sec. 11, afte?d: /9P| "> becomes only zero at the caustic points.

the standard semiclassical approximation of the Feynman With Eq. (2.2, a semiclassical wave function is obtained

kernel is briefly reviewed, we discuss a semiclassical frameln double integrals such that

work based on the Maslov-type wave packet, and present an

explicit form of the ADF. Section Il describes how a general

wave function can be represented and propagated in terms of \If(q,t)=f dao K*(a,do;t) ¥ (do,0)

the action-decomposed functions, the most expensive ex-

treme of which is equivalent to propagation based on the S

Feynman kernel. We then show numerically in Sec. IV how =(2mih) lef f dpo ddo 5(q— )

a single action-decomposed function can actually work. In _

Sec. V we discuss qualitative conditions for the ADF to be a % I—S ty—

good semiclassical approximation. &XHz 10, dost)

Po

1/2

dPo

i
Il. SEMICLASSICAL DYNAMICS

FOR THE ACTION-DECOMPOSED FUNCTION (ADF) and the autocorrelation function, the Fourier transform of

which gives the energy spectrum, is again represented in a
We consider a semiclassical representation for a wavedouble integral due to the presence of th&unction in Eq.
function directly, rather than that for the Feynman kernel. In(2.3), such that
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“quantum potential” arises. Instead, the amplitude function
=f dq¥*(q,0%(q,t) F in Eq. (2.7 is to be asymptotically expanded in terms of
N~ 1=#%/27i, giving rise to a hierarchical transport equation
. for each order ok ~ ! (or %) [3]. The physical meaning of the
W7 (6,0 (00,0 higher-order terms is not necessarily clear, however. It is
easy to seé (q,t) satisfying the simple equation of motion

1/2

L J
=(2mih) N/ZJ‘J‘dponOﬁ

i _ i
X ex| gSl(qt,qo,t)—T . (2.9

dF if_,

E—Hj VF+ - (V V)F——V F, (2.9
Thus this initial value representation turns out to be much

easier in use. However, the initial momentpg, which has

no finite distribution in Egs.2.3) and (2.4), should be wherevr is the classical velocity defined as=9S,/dq. The
sampled from the space of infinite size, which results in anass-weighted coordinates are used throughout so that all
very slow convergence in the numerical integration of Eq.the masses are scaled to unity. In the limitiof-0, Eq.(2.9)

(2-4).- . _ _ corresponds to the lowest-order transport equation
Finally, another representation of the semiclassical kernel

is appended[13c|, since this is more relevant to our

theoretical development which is mainly described dF

in the (g;,po) representation. The kerneK(q,pg;t) a_t+v VF+3 (V »IF=0. (210
=(q|exfd —(i/)Ht]|py) has its semiclassical counterpart

From this equation and its complex-conjugate counterpart,

q ; : P .
KS4(q,pg:t) = (2mi#) N/zf dg, 8(q— Qt) t the following equation of continuity follows:
i iT™™M J(EE*
Xexr{gsz(qt,po;t)—T} (2.9 (at )+V~(vFF*)=0. (2.1

The Maslov indexM arises from the sign change of

Since FF* represents the density of classical particles in
dq:/dqq. This kernel works on the momentum representa- b y P

configuration space moving along the classical velocity field

tion of an initial wave functionW¥ (p,,0)) such that v(q,t) =dSy/dq, F(q,.t) gives a “complex-valued classi-
cal flow,” which is termed as the WKB flow.
NJ2 3| V2 Defining a substantial time derivative along the flow such
V(q,t)=(2mifh)" f Jdpod% o(q—0)|=— 9% that
xex[{ S3(a,Po;t) — }‘P(po,o) (2.6 D_J4 1
Dt—&t+V~V+2V~V, (2.12
This form shows up later as a special case of our semiclas-
sical wave functions. one can rewrite Eq2.9) as
B. Equations of motion for a wave packet DE i%
We now turn from the kernel to a wave packet. Maslov Dt 2 - V?F. (2.13

and Feodoriuk established a systematic theory to generate a
class of wave functions beginning with a fofi®
This is nothing but a diffusion equation with an imaginary
i diffusion constanti#/2. The diffusion takes place not in a
\P(q,t)=F(q,t)ex;{%Sc|}, (2.7 simple homogeneous space but on the WKB flow, in other
words, diffusing points jump from one classical flow line to
another. In this way, the higher-order effects can be taken
where S; denotes the classical action satisfying theinto account without resorting to the hierarchical transport

Hamilton-Jacobi equation equations due to Maslov and Feodoril®. Although ex-
tremely interesting, this aspect will be studied in our future
IS, IS, publications. _ _ o
g + (q, Et) =0. (2.8 We come back to the lowest semiclassical approximation

[Eq. (2.10], writing down its explicit solutiorf9]. A formal
solution to Eq.(2.10 is given by an exponential form
Unlike the Bohm formalism[14], the exponential part is F(q(t))=F(q(0))exd —/;V-»/2], which, however, breaks
fixed to be the purely classical action, and therefore nalown at caustics.
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wp(,(q,t):F(q,O)expL'i—poq] (219

We now present an explicit solution satisfying an appro-
priate initial condition to Eq(2.10. From this equation, one there js a family of wave functions that have the form of Eq.

can also derive an equation of motion fot (besides that for
IFI%)
FZ

7+V~(v|=2)=o. (2.14

(2.19, with a typical example being the coherent state
[2,16], in whichF(q,0) is a Gaussian functiofsee also Ref.
[17] for Heller's Gaussian approach

A wave function which consists of a single ADF, denoted

by wPo (Q:.t), is specified as a single ADFSADF). Since

local

Notice here thaf(q,t) can take an imaginary value, and & SADF is given at the end points of classical trajectories,
henceF2 can be negativeF2 can be readily integrated lo- ON€ may want to rewrite it in a slightly more global form as
cally along a classical path in terms of a quantity
(99:/900) "L, since by taking partial derivatives of the
Hamilton-Jacobi equation fd,(q,pg;t) in terms ofpy and
g successively, we have a similar equation to €q14), that

i = f ddp 34— (Ao, Po)) VL, (e t)

g (agy\* (‘9% -t
—|— V- — 2.1
ddg g ddg 219

Vo0 [ 0 50— ado.po) V(a0

2
aq

=0. 1/2

ot

aq
= f ddo 5(q—qt(qo,po))F(qo,0)a—q;

Furthermore, one has a trivial initial conditioad;/dq,) ~*
=1, sinceg,=q, att=0, indicating that q,/dq,) ~* can be
regarded as a local representation of the Green function of
Eqg. (2.14. On comparing Egs(2.14 and (2.15), together
with the initial conditions above, one immediately H8$

aqt ) -1/2

do
-1/2 i ™M
exp{ - T

where the derivativédq,/dqg is taken under the fixed initial
momentump,, andM is the Maslov index in this represen-
tation that counts the number of zerosdaf,/9qq up to de-
generacy.dq;/dqq is a minor determinant arising from the
so-called stability matrix1,4,5,19

i . iT™M
X ex gsz(QUPO,t)—T : (2.20

Although the local solutior-(q;,t) in Eq.(2.16 diverges at
every caustic point where the Jacobian determidaptdqg
becomes zero, the global solution E8.20 does not suffer
from such a divergence. This is again due to the transforma-
tion of the integral variable frong; to qq [13].

Note that the action-decomposed function in Ej20 is
represented in terms df-dimensional integration over the
initial coordinateq,, which should be compared with Eg.
(2.3, in which 2N integrations ovepy andqg are required.
Likewise, the autocorrelation function is written with a
SADF such that

F(at,t)=F(qo,0)

o
=F(do,0) 9% , (216

C(H= <\Pp0(0)|\l,p0(t)>

o oa st
9z _ o dPo (2.17 :fdQOF*(Qt:O)F(QOyO)a—%
| om | |

ddo dPo

[ i i7™M
X eXF{ ~ 7 Potit 7 Sx(0 Po;t)— T}'
and (@9,/900) 1= 9°Sy(q:,Po;t)/ (9qIp,) is interpreted as 59
the density of the families of classical paths having a com- (2.2
mon initial momentunpg. o ) ) ) )

With the above choice of the initial condition, the classi- Which is also anN-dimensional integral, while that of Eq.

cal action in Eq(2.7) is naturally fixed to theF ,-type gen-  (2-4 is 2N dimensional. Therefore it is anticipated that the
erating function of Goldsteifil0], namely, correlation function of Eq(2.21) and its deduced spectra

may be extracted with much fewer classical trajectories. It is

thus the main aim of the rest of the present paper to demon-
(2.19  strate that this is really the case.

Sei(d,Po;t) =F2(q,po:t) =F1(0,do;t) +doPo-

[The generating functions; andF, should not be confused
with our amplitude functiori(q,t).] In other words, all the
classical paths representing E@.7) lie commonly on a Before a numerical examination of an ADF, we touch
single action surface, the initial momentum of whichpis  upon a weaKsemiclassicalorthogonality among the ADF's.
everywhere. We therefore term this function as an ADF.SADF's that are characterized by different initial momenta
Having the F, generating function as a phase, the initial are orthonormalized to each other in the lowest-order ap-
form of the ADF att=0 is rewritten as proximation of#, such that

D. Orthogonal property of the action-decomposed functions
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if pi=pj, that of the Feynman kernel, thereby characterizing more
clearly about a hierarchical structure of the semiclassical
theory down to classical mechanics.

Suppose we have a decomposition for an arbitrary wave
function such that

1
* —
f\lfpi(q,t)\lfpj(q,t)dq— O(#N)  otherwise.

(2.22

A proof for Eq.(2.22 is given in the Appendix[The proof

assumes that the amplitude functidn(q,t) is smooth W(q)=F(q)G(q), (3.0
enough, but the resultant orthogonality expression does not

depend on the practical form &%(q,t), as far as the Planck

constant is small enoughThis fact suggests taking a set of under a condition thaB(q) has a momentum representation
ADF's as a basis to expand any wave function. However,

unlike the case of the coherent state representp®idr], we _ 1 i

do not have a resolution of the identity in terms of a continu- G(p)= 51 f G(q)exy{ - — pq) dg. (3.2
ous momentum parametpr nor even aovencompleteness (27h) h

relation.

Effectively, however, a discretized representation can bgye assume thd(q) is a slowly varying function iy space,
constructed as follows. Let us reformulate the above normakyhile G(q) is (relatively) oscillatory function like a plane
ization such that wave. There is no uniqueness in this decomposition though.
Nonetheless, we will show that the theory works well
enough if the Planck constant is small. The total wave func-

f i= Pj» . . .
Pi=P tion thus decomposed is rewritten as

f‘P’gi(q,t)‘prj(q,t)dF Wi
O(h) otherwise,
(2.23 5 i
1If(q)=f dpoG(po)F(q)eX%gpoq), (3.3
where the momenta are chosen at the quadrature points, and
w; are the weighting factors at these poinis§]. Then, we

can set an effective resolution of identity in which one recognizes the initial form of ADF that ap-
peared in Eq(2.19. Hence we now have another way of
W (NP, (1)]=1, 292 propagating a ggneral wave fun.ction, wheBg€p) is re-
Ei: Wil (D) (¥ (V)] 2.29 garded as a weighting function in momentum space. The
_ semiclassical time propagation of this wave function is
since we have straightforward with use of Eq2.20), that is,
. . 9 1/2 _
(Z W||Wpi(t)><wpi(t)|)(; WJ|‘I’pj(t)><‘ij(t)|) xp(q,t)zj J ddo dpo 5(9—ay) a_q; F(q0,00G(po)
= i i7m™
=(Z wilwpi(t»wpi(t)l), (2.29 Xex;{%sz(qt,po;t)— ”T) (3.4

and hence, for an arbitrary functidfy, it holds that wherego=dS,(d,po.t=0)/dp,. There has been no need to

assume the completeness of the ADF in this representation.
_ This wave function materializes a semiclassical way of
|f>~(§i: Wi|q’pi(0)><q’pi(o)|)| f) phase-space representation of a quantum wave fun(tem
Refs.[15,19 and references cited therein for a phase-space
_ representation of quantum mechanids is straightforward
_f dpi|\1fpi(0))<\lfpi(0)| ). (2.2 to see that the form of E¢3.4) holds also fot=0, which is
brought back to Eq(3.3). Let us show some simple ex-
amples of the above decomposition and their consequences.

Thus|f) can be approximately evolved in time withr , (t)), (1) SADF.Setting

under Eq.(2.26), the coefficient of which isrvi<\1'pi(0)|f).

i
F=F(q) and G=ex;{%poq) (3.5
I1l. REPRESENTATION OF A WAVE FUNCTION

IN TERMS OF ADF att=0, we have

In Eq.(2.26, we have shown how an arbitrary wave func- ~
tion can be propagated in terms of ADF’s. In this section, we G(p)=46(p—po) (3.6)
take another approach to utilizing the ADF, which will
clarify a relationship between our semiclassical scheme andnd
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i (2) The semiclassical kernel(l§; ,po;t). Set
\If(q,0)=F(q)exp(gsz(q,po;o))
F(gq)=1 (cons},
[
:F(Q)exl{gDOQ), 3.7 G(q)=%¥(q) (wave function itself, (3.9
which is just a SADF. with

(~3(p)=\Tf(p) (momentum representation of the wave function (3.9

and we have

N iTM )\
W(q,t)=(2mh)" Jquodpoé(q qt) ex Sz(qt.po t)— 5 W(po). (3.10

Comparison of this expression with EQ.6) shows that Eq. 1/4 i

(3.10 is essentially the same as a wave function propagatedV ()= 27b exr{ —(a+b)(q—0)?+ gpc(q—qc) ,
with the kernelK{(q;,po;t) (aside from a minor difference

. o : 4.9
in the coefficienty that is,

which is divided into

1/4

‘P(q,t)=fdpoK“(q,po;t)‘T'(po,O). (3.1 F(q)= ™ expl—a(g—q.)?)
a+b ¢

Thus we have found another relation of the Maslov-typegnd
wave packet to the Feynman kernel in a semiclassical stage. 4.2
However, there can exist many different choices in the de- i

composition of Eq(3.1), which constitute a lower hierarchy G(Q)=9XF{ —b(q—qc)*+ 7 pc(q_qc)> ,

below the kernel limit. Finally, we note an important techni-

cal difference between the kernel-type propagatiém. with
(3.10] and that of a SADFEQ. (2.20)]. It is obvious that Eq.

(2.20 requires onlyN-fold integration, while the integral of 1 o\ 112
Eqg. (3.10 consists of A variables. In addition, Eq3.10 E;(po)z (—) 4 (
employs the momentum representation of a wave function, (2mh) 4b

which requiresN more integrals unles¥(p,) can be ob-
tained analytically.

2
poﬁ pc) } w3

Thus, an area in the initial sampling phase spagg o)
representing the propagation must be roughly proportional to

IV. NUMERICAL STUDY ON CORRELATION FUNCTION
AND SPECTRA

In this section we numerically examine the accuracy and
tractability of our semiclassical scheme by applying it to the
autocorrelation function and its Fouri@mergy spectrum. A
variety of decompositions of a wave function, ranging from
the kernel limit to a SADF, are tested with different system
parameters such as the magnitude of the Planck constant and large
the anharmonicity. Emphasis is placed on the convergence of
the correlation function and spectra with respect to the num- anharmonicity
ber of sampled trajectories.

1
sma kernel «—

4 _ SADF
a+b

A. Area of sampling space to apply ADF L. . .
FIG. 1. The schematic picture of the parameter space in which

The accuracy and convergence property of the semiclashe semiclassical approximations are examingdstands for the
sical propagation depend on the decomposition of(Bd).  semiclassical Feynman kernel, whiteis dedicated to the SADF.
Here we study the effect of the decomposition systematicallyrhe height represents the magnitude of the Planck constant, and the
by choosing a Gaussian function as an initial wave functiondepth the extent of the anharmonicity of a potential.
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p which is an eigenfunction of Eq4.5) if #=1.0. The follow-
4 ing Hamiltonian
€ _001 —“4--01 2

a+b a+b p 2
H=7+D[1—exq—)\q)] , 4.7

- - -

\ with the parameter® =30 and\=0.08, is adopted as an
anharmonic problem. An initial wave packet is set to
1\v4 1 i

- ‘I’(q,0)=(; ex;{— 5(0=00)%+ ~pod|, (4.8

located atg.=—7 andpy=0.
The Gaussian quadratures] is the most useful to sample
/ the initial phase-space points for carrying out the integration

in the one-dimensional case. However, since we are inter-

ested in applying the semiclassical scheme to a large system,

-1 in which only Monte Carlo type sampling is practical, and

since we are studying the rate of convergence with respect to

the number of trajectories, we would rather adopt the
FIG. 2. Schematic picture of the sampling areas in phase spacéandom-number sampling.

from which classical trajectories are picked randomly to represent

the semiclassical wave functions. The boxes areaf¢a+b)=1, C. Quality of spectra with change of the system parameters
0.1, and 0.01.

a

a+b

We first examine the quality of the correlation function
112 and its related spectra in the various approximations, using a
(4.4) sufficiently large number of classical trajectories. The con-
vergence property will be investigated in the next subsection.
There are three parameters that characterize the system as
shown in Fig. 11(i) The anharmonicityharmonic or Morsg
ﬁi) The magnitude of the Planck constarfit=1.0 or 0.1.
(iii) The ratio ofb to a specifying the decomposition of Eq.
(4.1) in between a SADF and the kernel. Although/a is a
— o K*(q.po 1) ¥ (po.0) as in Eq.(3.10. We therefore good parameter to see the convergence property, we also use
0 +Po. Po,Y) as In E£q.(3.10). , a/(a+b) to parametrize the quality of approximation. The
call this case the kernel I|mll(.||) The minimum sampling  gmaller (larged this is, the closer the approximation ap-
space withb=0. In this case5(pg) = o(Po—Pc), as in EQ.  proaches the kerneSADF) limit, namely, a/(a+b)
(3.6). This is just the case of a SADF. The initial trajectories =0 [a/(a+b)=1] for the kernel(SADF). Three cases are

EﬁZ
a

Fixing a+b=3, we can parametrize the two extremes,
namely, the limits of the kernel and SADF, and general case
in between:(i) The maximum sampling area wit=0. As
stated abovécf. Eg. (3.8)], this case corresponds to a full
use of the Feynman Kkernel of the form¥(q,t)

are picked so as to have only a given momenfym picked fora/(a+b)=1.0, 0.1, and 0.01 in practice, as de-
picted in Fig. 2, which specifies the sizes of areas in phase
B. Test systems space required for sampling. In what follows, we simply de-

gote the case ad/(a+b)=0.01 to be the kernel limit. Ob-
viously, the kernel limit is the most tedious, but it is sup-
posed to give the most accurate resuiits particular, an
exact result for the harmonic poteniial

Our test systems are one-dimensional harmonic an
Morse oscillators. As a harmonic case we simply use

2 2
H - % + q? ’ (4.5)
1. Harmonic potential with a large Planck

with an initial wave paCket constant—spurious spectrum

ua We begin with the poorest example, in that the validity of
W(q,0)= i) exnl — qu 4.6 the SADF approximation could be violated. This is a case of
' T 27 ) ' a harmonic potentidlEq. (4.5] with a large Planck constant

FIG. 3. The autocorrelation function for a har-
monic oscillator withs=1. The real and imagi-
nary parts are drawn by the solid and dashed
lines, respectively. A large deviation between the
kernel limit [a/(a+b)=0.01] and the SADF
[a/(a+Db)=1.0] is observed.

c(t)
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FIG. 5. The power spectrum of a direct product system of two
harmonic oscillators witth = 1. A spurious(subtracting combina-
0 tion band arises. The energies are in absolute units.
a a systems greater than or equal to two dimensions. Let us con-
P 0.01 5 =001 sider a case in which two frequencies are different from each
-1000 * L ar other,
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FIG. 4. The positive(left boxeg and negative(right boxe$ p1 wid; P>  w30Q5
spectra arising from the harmonic oscillator witk=1, which are H= 5 2 + 7+ 2 (4.9

compared in terms od/(a+b).

B . .with w;=2 andw,=0.6, and the initial wave packet is pre-
(A=1.0). The present magnitude of the Planck constant i ared as a Gaussian:

actually very large, and is far from the domain where a semi-
classical approximation is generally valid. Also, it should be
noted that a SADF does not give the exact results even for a (1 V2 P
harmonic case. Conversely, a harmonic oscillator is a Wo(d1,02) = - e E(q1+q2)
tougher problem than an anharmonic one for the SADF
scheme, in contrast to the kernel, as will be described below

' i, : Again, A=1. Figure 5 demonstrates that a wrong combina-
Applying the decomposition of E¢4.1) with Eq. (3.5 to , . 2
Eq. (4.6), we make a SADF=0, p,=0). Figure 3 shows tion band, namely, a subtracting baB§— E3, has appeared

the correlation functions in a time interv,4x]. The solid as a consequence of the negative spectra. Thus it turns out

and dotted curves indicate the real and imaginary parts, réhat @ SADF cannot be reliable under this situation.
spectively, in each box, which in turn correspond to different
a/(a+b) (1.0, 0.1, and 0.01 A large deviation between the
SADF limit [a/(a+b)=1] and the kernel limifa/(a+ b)
=0.01] is observed. The kernel limit is essentially exact ex-
cept for small kinks numerically formed at& /2, and so It is quite obvious that such a large Planck constant
on. The resultant energy spectra are shown in Fig. 4. Thehould deteriorate the quality of the semiclassical approxi-
boxes in the left column show the energy spectra, all ofmation, if we look back at Eq(2.9). With =1 we were
which certainly reproduce the peak at the exact place for theimply in a region where the semiclassical approximation is
guantum numben=0, and no other major peaks are seen.never valid. So let us resume with a smaller choice of the
On the other hand, the boxes in the right-hand-side columi®lanck constant ai =0.1. With this value, the initial wave
show spurious components of spectra, which take negativiinction[Eq. (4.6)] is no longer an eigenfunction of the har-
values (negative energies for the positive potentialhis  monic oscillator. Figure 6 presents a correlation function as
symptom reflects the worst condition for the application of ain Fig. 3. This time the correlation function for the SADF
SADF. Nonetheless, the kernel limit does not have such @omes much closer to that of the kernel limit than in the case
large contamination. of A=1.0. The spectra are depicted in Fig. 7, the left and
In the succeeding paper we will examine the reason whyight columns corresponding to the positive and negative
such negative energies app¢20]. Here we focus on a con- Fourier spectra, respectively. Note that we have peaks for
sequence of the spurious peaks. Although the negative spen=0,2,4 . .., since Eq.(4.6) is not the eigenfunction o
trum can be simply ignored as far as the energy for a one=0. It is clearly observed that the negative components have
dimensional system is concerned, this is not the case faalmost disappeared from the SADF spectrum. Likewise, the

. (410

2. Harmonic potential with a small Planck constant—
disappearance of a spurious spectrum
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FIG. 6. An autocorrelation function of the
harmonic oscillator witth = 0.1, which should be
compared with Fig. 3. The solid and dashed lines
are the real and imaginary parts, respectively.

bad (subtracting combination bands have disappeared fromered. There is hence no need to test whether the SADF works
the two-dimensional problem, as shown in Fig. 8. Thus wewell for a nonlinear system with a small Planck constant,
have confirmed that the smallness of the Planck constant ishich is the case of our primary concern.

quite essential for the semiclassical approximation to stay

valid.

D. Convergence with respect to the number of trajectories

We now examine the aspect of computational time. Al-
, ) . though the semiclassical approximations below the semiclas-
. It is well known that the semlclassmgl Feynman kernelgjcq Feynman kernel are not always very accurate, as de-
gives exact results for harmonic potentiglj, but not for  gcriped above, they demand fewer trajectories to represent
anharmonic systems. This in turn leaves us with an impresyaye functions and correlation functions, as shown in Fig. 2
sion that all the semiclassical methods would give less accusng related mathematical expressions. We now explore how
rate results in anharmonic problems than in harmonic onese,y classical trajectories are required in practice as a func-
This is not necessarily the case in our semiclassical schemggn of the parametea/(a+b). To do this, we check the
as shown below more premsely._The dynamics on a harzonyergence of the correlation functions with respect to the
monic potential is degeneraf@1]; in other words, all the  mper of trajectories. The test Hamiltonian and the initial
trajectories with different energiegthe action variables, \,4ve packet are again Eqét.7) and (4.8), respectively.

more precisely run collectively with a synchronous phase Again, three different decompositions, namedy(a+ b)
(the angle variablgsBecause of this fact, the quantum phase

arising from a harmonic oscillator has an extraordinary co-
herence, which is pathological from the viewpoint of phase
cancellation that is expected in more general cases.

As an anharmonic system, we use the Morse oscillator. J

3. Morse potential with a large Planck constant

10001

Egs. (4.7 and (4.8). The potential is quite anharmonic
around the initial position of the wave packeai.E—7),
where classical trajectories are distributed more widely as the
time evolution proceeds. Figure 9 shows the real part of the
correlation function from timé=0 to 20(the first row, the
energy spectrum in positive valuéke second royy and the
negative(spurious energy spectrurtthe third row, with the
accuracy parametefa/(a+b)] being 1 (left column and
0.01 (right column. The Planck constant has been deliber-
ately chosen to bé = 1.0 despite the pathological results in
the harmonic cas@-ig. 4). As is observed very clearly, how-
ever, even a SADFa/(a+b)=1] with this large Planck
constant gives very good results. For instance, no negative
eigenvalues have appeared. The present facts suggest very
strongly that the random-phase cancellation due to the non-
degenerate motion in phase space for an anharmonic poten-
tial can be a very important factor to remove unnecessary
spectral components such as the negative spectrum.
Summarizing the results in Secs. IV C 1-1V C 3, we have
observed under a condition that-b in Eq. (4.1) is small
enough:(i) The quality of the approximation varies in a con-
tinuous manner by changirayf(a+b). (ii)) The quality of a

The Hamiltonian and the initial wave packet are those in 0 {T

-1000 |

1000
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1000 |
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-1000
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—=0.01

a+b

2 _o01
a+b

E

E

SADF significantly deteriorates in the case when a large FiG. 7. The positive(left boxe$ and negative(right boxes
Planck constant is adopted for a harmonic potential. Nonespectra arising from the harmonic oscillator with=0.1, which
theless, it is dramatically improved either if a small Planckshould be compared with Fig. 4. The negative components have
constant is used or when an anharmonic potential is consiteen virtually removed.
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FIG. 10. The rate of convergence of a correlation function rep-
resented in ADF's(a) a/(a+b)=1 (SADF), (b) a/(a+b)=0.1,
and(c) a/(a+b)=0.01(the kernel limi}. A dramatic difference in

the convergence rate is seen. The absolute values of the correlation

=0.01, 0.1, and 1.0, of a common wave function are emfunctions converged ar@) 0.1340,(b) 0.1375, andc) 0.1434.

ployed to calculate the correlation functions. The conver-

gence of the correlation functions is monitored with increas+a)] needs far fewer trajectories than the kernel lifpianel

ing the number of trajectories. Figure 10 demonstrates g:)]. The convergence becomes monotonically slower as we

approach the kernel limit.
To quantify the rate of convergence more precisely as a

function of the decomposition, we consider the convergence

remarkable difference in the convergence: The SApdnel

2 1 2 _o01
a+b a+b
oy
T - 4
t t
200 .
¢ 1 -olo1
a+b a+b
400
g
=
E 0 U | |
o E
& E
D 800
z £ 1 2 _o001
o a+b a+b
400
0
-E -E

FIG. 9. Comparison of the SAD@eft boxes and the semiclas-
sical kernel(right boxe$ in an anharmonic potential. In spite of a
large Planck constanti(=1), they yield very similar results. The
real parts of the correlation functiogpper row, the positive spec-
tra (middle row), and the negative specti@wer row) are dis-

played.

rate. First, here we adopfb/a to specify the decomposition
rather thana/(a+b). For the SADF limity/b/a=0, while

the kernel limit is located at/b/a=. Let us define the
convergence ratio as :QC(Ny)|/|C(»)|, where|C(Ny)|

is the absolute value of a correlation function fixed at a given
parameter/b/a that is calculated witN, trajectories, and

Number of Trajectories

(x107

1.0

e
i

—

T

| L L L

| S Sy S T S [ Ay S |

4.0 80 100

6.0
(b/a)>

FIG. 11. Number of trajectories to attain the convergence of
given percentages as a function-#i/a. For instance, the top line
indicates the number of trajectories required to have the correlation
function converged within 1%. The number of trajectories required
to attain this convergence suddenly becomes latggrabout 50
times by moving fromyb/a=0 to \b/a=1.0.
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C(=) is the corresponding value with practicaly,=c; for  nel limit at yb/a=10.0 requires 175 times more trajectories
instance, 3% convergence med@N,,)|/|C(=)|=0.97. In  than the SADF. We have thus confirmed and shown the very
Fig. 11 we show the number of trajectories required to attaii@st convergence of the SADF, which can be vital to an
the convergence ratios 1% and 3% vergb#a. The inset of actual application to large dimensional systems.

Fig. 11 displays log, Ny, vs Vb/a. As expected, the number

of trajectories required increases almost monotonically ad"
Jb/a. However, the manner of the increase is not simple.
For instance, in the graph for the convergence ratio 1%, a Here we deduce qualitative conditions in which the
large jump between the case afb/a=0 (SADF) and present semiclassical method can work. With use of the gen-
Jb/a=1.0 has been observed: The latter needs almost 5@ral form of the decomposition as in E.4), the correlation
times more trajectories. For a 3% convergence ratio, the kefunction is written as

QUALITATIVE CONDITIONS FOR GOOD ACCURACY
IN THE CORRELATION FUNCTION WITH ADF’s

5 ~ 0, 1/2
C(t)=fdqW*(q,O)W(q,t)=quldp1f dgodpg 6(qt(qo,po)—ql)G*(pl)G(po)F*(ql,O)&—qo F(do,0)
i iTm™M
XeXF{g[SKQt'QO;t)+QOpo_Q1p1]_T)- (5.9

First we would like to find what kind of trajectories would specifies a narrower sampling space due to the factor
dominate this integral, since the present analysis will becomg&+ ()G (po) F* (q4,0)F (do,0).

necessary later. To do so, we first carry out the integrals over |, case of the SADF, the correlation function is written as
the variables qg,po), fixing (d,,p1). Note, in addition, that

the integration should be performed under a constraint

1/2

Jq
d¢(do.Po) =01 (5.2 C(t)=f dap F*(Ch,o)‘ﬁ—qt F(90.0)
0
Since thes function in Eq.(5.1) is not smooth and prevents i i M
the stationary phase approximatiBPA) overq,, we delete xexp 7 [S1(Gr,Go;t) +doPo~ AiPol = —— -
it beforehand by integrating ovex, first. Then the SPA for
go leads to (5.5
2ok G
fqopt_ a_%pl_()’ (5.3 Trajectories dominating this integral can be picked with the

use of the stationary phase condition, which leads only to
Po=p:, but no condition betweeq, andq, arises. Thus not

where we have used E¢5.2), and it is only the periodic orbits but others can contribute to the inte-
gral. It is important, however, in view of reducing the error
=P (5.4) of the correlation function that the stationary phase condition
t_ . .

has been satisfied formally, as discussed below.

We next estimate the qualitative errors of the correlation
Thus the trajectories making a dominant contribution to thefunction that employ the ADF’s, and thereby figure out what
integral should pass through a poitd,(qg,po),P:(d0.Po))  are the conditions for the approximatiorimcluding the
=(d1,p1). The action surface should of course cover thisSADF) to be valid. The error arises from neglecting the term
point. Furthermore, in the Fourier transform of the correla-(i%/2)V2F(q,t) in the equation of motions foF(q,t), Eq.
tion function over the time coordinate, from which the spec-(2.9). Even if F(q,0) is smooth enougHand thereby
tra can arise, only a trajectory passing, (p;) many times V?2F(q,0) is very small, V?F(q,t) is not always small.
can contribute the integral. This is a periodic orbit. Then theTherefore we trace how this error is evolved along the WKB
integration over §;,p;) requires one to “sum up” all the flow. From Eq.(2.13, (DF/Dt) — (i%/2)V2F must be iden-
possible periodic orbits, as in the Gutzwiller trace formulatically zero along the action surface Afwas exact. Thus the
[22,23. The practical differences, however, diewe do not  evolution of this difference can provide a measure of the
analytically reduce the correlation function to a form in error due to the Laplacian term. The first-order error in the
which only periodic orbits appear, but carry out the numeri-correlation functionAC(t) can therefore be roughly esti-
cal integrations, andi) the correlation function in Eq5.1) mated as
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DF if _, i i% -
AC(t)=—qu*I'*(q,0) Dt 2V F|exp 5 S =7qu1dplf ddo dpo 8((do,Po) —91)G* (P1)

i7T™™

X G(pg) F* (ql,O)[VZF(qt(qO,po),t)]exp(;L—[Sl(qt ,0o;t) +doPo—g1P1]— — (5.6

Here we have useBF/Dt=0, that holds for the ADFsee Eq.(2.10]. This value merely gives an error generated at each
time, and the total error should be estimated by accumulating them. Just as in the above procedure leadiBghtodag.can
readily show that this error term is also dominated by the periodic orbits. The contributions from other trajectories are of the
magnitudeO(#N"1). Note that the Laplacian in E5.6) is now to be operated on the functionsapf

IntegratingAC(t) in g by parts, and assuming that a wave padkéq,t) is zero at the asymptotic regiohg(— ), we
have

i% ot - i
sc=-"5 [ dny [ dadnl 70 S (p)B(py VIF* @01 VF(@tdo.po).000% 1 4]
0

1 ao| ~ i
3 dplf thdeO—,_;I; G*(pl)G(po)F*(qt,O)[VF(qt(qo,po),t)]-V[(Sl(qt,qo;t)+qopo—qtp1)]exp(g¢)

if - ~
—;jdplj da dpo G* (1) G(Po) F* (A,0)F (G:(do, Po) 1)

%

v
ddg

X

1 .
}-V{[Sl(qt,qO:t)+quo—qtp1]}exp(;L—¢). (5.7)

where¢ denotes the phase part collectively. The error arisinglominant trajectories are not necessarily periodic orbits.
from the first term of Eq(5.7) must be suppressed as long asThus if the initial F(q,0) is smooth enough, and if the inte-
VF*(q,,0) is small enough. Therefore, the initial amplitude gration of Eq.(5.9) is performed so as to reproduce the sta-
function has to be smooth, which is in accord with the aboveaionary phase situation well, the accuracy of the ADF is con-
argument when we introduced the decomposition of a waveeived to be good as well, which is in accord with our
function into two pieces. Again, however, we note that thenumerical observations made above. We have thus theoreti-
flatter F(q,0) is, the more the sampling trajectories are re-cally identified a qualitative domain where our semiclassical
quired. The third term ofAC(t) can become significant at scheme can be valid. Together with the numerical study
caustic points wherédq;/dqo| ~1=0, which is common to made in Sec. IV, we have shown how efficiently the ADF
all the semiclassical approximations of this level. The firstcan work as long as the appropriate applications are made.
and third terms can become zerakifapproaches zero, pro-

vided that the other geometrical quantities such¥ag)? do VI. CONCLUDING REMARKS
not canceh. As for the second term, on the other hafichn
the right-hand side has been canceled by «hich showed We have presented a semiclassical framework based on

up in the phase factor. Thus the smallness of the Plancihe Maslov-type wave packets, the theoretical hierarchy of
constant does not directly warrant that this term is negligiblewhich lies below or is equal to the level of the standard
However, if the stationary phase condition holds such thasemiclassical approximation of the Feynman kernel. It in-

the phase is smooth, that is, cludes various levels of approximation, the semiclassical
Feynman kernel being the most accurate and time-
V[S;(d,do;t) +doPo—d1P1]=0, (5.8 consuming extreme among them. Another extreme on the

other end is the single action-decomposed function, which is
the second term of Eq5.7) is simply zero. Conversely, if a little less accurate but has the fastest convergence in the
the stationary phase condition is not fulfilled, the error aris-representation with use of classical trajectories. In fact, it has
ing from this term must be very large in the order/d been shown numerically that a SADF based on an appropri-
Finally, in case of the SADF, ately selected initial wave function, that is, a smooth wave
. function, can reproduce sufficiently accurate quantum energy
I spectra from the Fourier transform of the autocorrelation
AC(t)= 7f da; F* (a,0)[V2F (ai(qo, o) 1)] function with far fewer classical trajectories than required by
the Feynman kernel. This implies that the SADF and its
proximity are quite promising in describing vibrational spec-
tra of relatively large molecules. An application of the
present method is in fact under way for a several-atom sys-
the above argument can apply equally well, since the statiortem.
ary phase condition is satisfied as in E§.5), although the Finally we would like to stress that the ADF theory is

i
X eXF{ g[sl(Qt +0o;t) +doPo—diPol |, (5.9
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useful in practical applications but also in exploring theHere two different families of classical trajectories are to be
guantum-classical limit of a wave function. For instance, weconsidered, namely, the families of classical trajectories
have found that negative spurious spectra can arise for which start with an initial momenturp; (p;) att=0 and
positive potential in the domain where the semiclassicahrrives atq; at timet. In the limit of #— 0, the exponential
theory is not valid. By analyzing those crude cases, one caterm oscillates so rapidly that only the trajectories that make

comprehend a feature of quantum mechanics that to ouhe phase stationary as
knowledge has not been shown before. We will report this

aspect in the succeeding papa0].
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APPENDIX: PROOF OF THE SEMICLASSICAL
ORTHONORMALITY OF SADF'S

Action-decomposed functionADF’s) characterized by
different initial momentap; and p; are orthonormalized to
each other in the lowest-order sfsuch that

O(#N)  otherwise.

| w;i(q,t>~vpj<q,t>=[ (A1)

Substituting the semiclassical expressions\y and\Ifpj

\pr(q,t)=f dg 5(q—qt)F(qt,t)exr{%sz(qt,po:t)},
(A2)

we have(neglecting the Maslov index

f‘lf’;i(q,t)‘l’pj(q,t)
:f da; F*(q;,t)F(a,t)

Xexr{%—{—sz(qt,pi;t)+Sz(qt,pj;t)}}. (A3)

_ 9S(9:.pit) N 3S5(q . Pj ;1) _

0 A4
d0 dq; A4

can contribute to the integral, which simply implies

P«(dt,Pi) = Pe(,P;j)- (A5)
This, in turn, requires directly that
Pi=Pj - (A6)

All the other trajectories make contributions to the integral in
the order ofO(%N) due to the Riemann-Lebesgue lemma.
We thus have seen the semiclassical orthogonality.

On the other hand, ip;=p;, we observe

J *I’Si(q,t)‘ij(q,t)dq=J dg F* (¢, t)F(qe,t),
(A7)
while we have already had

0y
F(q;,t)=F(d0,0) o

—-1/2 i M
of . s
which brings about a normalization

f ‘I’Ei(q,t)‘l’pi(q,t)dq:f F* (00,00 F(do,0)dgp=1.
(A9)

This completes the proof.
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