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Generalized coherent states

Ronald F. Fox
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430

~Received 3 November 1998!

Generalized coherent states are constructed for the Coulomb problem. Following a construction procedure
proposed by Klauder@J. Phys. A29, L293 ~1996!#, Rydberg atom coherent states are defined and analyzed.
The relationship between decorrelation in time and delocalization in space is elucidated. Keplerian orbits are
discussed. The connection with sharp Gaussian wave packets used to explain pump-probe experiments is made.
This is achieved by introducing genuine Gaussian Klauder coherent states that are overcomplete, and permit a
resolution of the identity operator. They decorrelate comparatively slowly, and remain spatially localized for
many Keplerian periods.@S1050-2947~99!05605-X#

PACS number~s!: 03.65.2w
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I. INTRODUCTION

Ever since Schro¨dinger @1# introduced coherent states fo
the harmonic oscillator, attempts to generalize this idea h
been made. The su~2! generalized coherent states@2# are an
especially nice example of a successful extension of the
herent state idea. More challenging has been the objectiv
obtaining generalized coherent states for the Coulomb po
tial problem, as was originally proposed by Schro¨dinger@1#.
Recently, significant progress has been made in this direc
@3,4#. Nevertheless, criticism of this approach has be
raised @5,6#. It was motivated by comparison with exper
ment using a pump-probe technique to detect the perio
return of a wave packet to a nucleus along an elliptical o
@7,8#. These experiments have been refined@9–11# and decay
and revival have been observed as well as fractional reviv
Gaussian wave packets@12–14# have successfully accounte
for these fascinating observations. Gaussian wave pac
per se, are not generalized coherent states and lack the p
erty of resolution of the identity operator that is so useful
genuine coherent states@2#. The Majumdar-Sharatchandr
@4# states for the hydrogen atom do have a Gaussian app
mation ~see Sec. IV D below! for a large principal quantum
number, but its variance is predetermined by the structur
these states and is much larger than for thead hocGaussian
wave packets@12–14# that are consistent with experiment
observations. The purpose of the present paper is to pre
genuine Gaussian generalized coherent states, and to cri
the recent literature. These states allow a resolution of
identity operator and can have very small variances for
lected operators. They should prove useful in contexts o
than the present, such as for quantum-classical corres
dence theory via Husimi-Wigner distributions@15–17# semi-
classical theory@18#, and wavelets for signal processin
@19,20#.

This paper is organized as follows. In Sec. II, a review
coherent states for the harmonic oscillator and of general
coherent states for angular momentum is presented. In
III, Klauder’s construction of generalized coherent states
Hamiltonians with discrete spectra is given. Section IV,
longest section of the paper, is devoted to Rydberg a
coherent states, in accord with Klauder’s construction@3# but
in parallel with the particular rendering given by Majumd
PRA 591050-2947/99/59~5!/3241~15!/$15.00
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and Sharatchandra@4#. Section IV is separated into seve
subsections. Section IV D contains a quantum-mechan
derivation of Kepler’s third law for circular Rydberg cohe
ent states. Section V deals with temporal decorrelation
the criticisms of Bellomo and Stroud@5,6#. Finally, Sec. VI
contains our construction of genuine Gaussian general
coherent states and natural generalizations of them. Sec
VI could be read directly after Secs. I, II, and III, since th
intervening sections essentially provide motivation and c
text only.

II. HARMONIC OSCILLATOR AND su „2… COHERENT
STATES

The paradigms for generalized coherent states are
harmonic-oscillator coherent statesua& and the su~2! coherent
statesuu,f& @2#. The harmonic-oscillator coherent stateua& for
complex parametera is defined by

ua&5expF2
uau2

2 G (
n50

`
an

An!
un&, ~1!

where un& denotes an eigenstate of the harmonic-oscilla
Hamiltonian, and the sum is over integern’s. These states
are normalized

^aua&51, ~2!

because

(
n50

` uau2n

n!
5exp@ uau2#, ~3!

and they provide a resolution of the identity operator:

1

p E d2aua&^au5 (
n50

`

un&^nu51 ~4!

because

2E
0

`

r dr exp@2r 2#
r 2n

n!
51 ~5!
3241 ©1999 The American Physical Society
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3242 PRA 59RONALD F. FOX
for all n wherea5r exp@if#. If H is the harmonic-oscillator
Hamiltonian, then

expF2
i

\
Ht G ua&5exp@2 ivt/2#uae2 ivt&

5exp@2 ivt/2#urei ~f2vt !&, ~6!

which exhibits Klauder’s definition of ‘‘temporal stability’
@3#. The su~2! generalized coherent statesuu,f& are defined
by @2,17,21#

u j ,u,f&5expF iu
1

\
„sin~f!Jx2cos~f!Jy…G u j , j &

5expF2
u

2\
~J1e2 if2J2eif!G u j , j &

5 (
p50

2 j
eipf

p!
cos2 j 2p~u!sinp~u!

3S ~2 j !! p!

~2 j 2p!! D
1/2

u j , j 2p&, ~7!

where uj,m& denotes an eigenstate ofJ2 andJz for the su~2!
algebra of angular momentum operators. These opera
satisfy the commutation identities

@Ji ,Jj #5 i\« i jkJk , ~8!

@Jz ,J6#56\J6 , @J1 ,J2#52\Jz ~9!

for J65Jx6 iJy , and where« i jk is completely antisymmet
ric and repeated indices are summed. These states are
malized

^u,fuu,f&51, ~10!

and provide a resolution of the identity operator:

2 j 11

4p E dVuu,f&^u,fu51, ~11!

wheredV is differential solid angle. They are localized fo
large j in the sense that

^u,fuJzuu,f&5\ j cos~u!, ~12!

^u,fuJ6uu,f&5\ je6 if sin~u!, ~13!

1

\2 j 2 @^u,fuJ2uu,f&2^u,fuJQ uu,f&2#5
1

j
. ~14!

Thus uu,f& points in the direction ofn̂k̂ cos(u)1„î cos(f)

1 ĵ sin(f)… sin(u) with a ratio of its standard deviation to it
average that vanishes with increasingj like 1/Aj .

III. KLAUDER COHERENT STATES

Klauder’s construction of generalized coherent states@3#
for Hamiltonians with discrete spectra may be represente
follows. Let the Hamiltonian H have eigenstates an
eigenenergies satisfying
rs

or-

as

Hun&5Enun&5\venun&, ~15!

so that theen’s are dimensionless for some energy scale\v,
and wherein for definitenesse0,e1,e2,¯ . We define the
generalized Klauder coherent state by

un0 ,f0&5„N~n0!…21/2(
n50

` n0
n/2

Arn

eienf0un&, ~16!

in which 2`,f0,`. The parametersrn are moments of a
positive weight functionK(n0) such that

rn5E
0

`

dn0

K~n0!

N~n0!
n0

n , ~17!

N(n0) is the normalization factor satisfying

N~n0!5 (
n50

` n0
n

rn
. ~18!

This guarantees that

^n0 ,f0un0 ,f0&51. ~19!

The resolution of the identity operator is given by

E
0

`

dn0K~n0! lim
F→`

1

2F E
2F

F

df0un0 ,f0&^n0 ,f0u

5E
0

`

dn0

K~n0!

N~n0! (
n50

` n0
n

rn
un&^nu5 (

n50

`

un&^nu51

~20!

because

lim
F→`

1

2F E
2F

F

dfoei ~en2en8!f05dnn8 . ~21!

One natural choice of weight function@3# K(n0) is K(n0)
51 for which rn5n!. In this case,N(n0)5en0, and we
have precisely the Poisson coefficients used in the harm
oscillator coherent states of Eq.~1!.

Notice that the extension of thef0 domain from@2p,p#
to ~2`,`! is essential for the resolution of the identity o
erator because it is required for the identity of Eq.~21!. This
is a key step in the Klauder construction. In order to obt
Gaussian generalized coherent states below~see Sec. VI!, a
similar extension will be required for then0 domain.
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IV. RYDBERG ATOM COHERENT STATES

In this section, a detailed account of Pauli’s su~2!3su~2!
algebra@22# for the quantum Coulomb problem is given.
produces the Klauder states for Rydberg atoms in the f
given by Mujumdar and Sharatchandra@4#. The special case
of circular orbits is elucidated, and Kepler’s third law is d
rived quantum mechanically. This is followed by a study
dephasing in the azimuthal angle. These results enable
critique the recent criticisms of Bellomo and Stroud@5,6#.
The critique is presented in Sec. V.

A. Pauli’s algebra

A Rydberg atom is described by the Hamiltonian

H5
p2

2m0
2

Ze2

r
, ~22!

angular momentum

LW 5rW3pW , ~23!

and eccentricity vector~also called the Runge-Lenz vecto
@23#!

«W 5 r̂ 2
1

2Ze2m0
~pW 3LW 2LW 3pW !5 r̂ 2

a0

Z
~¹W 1r ] r¹W 2rW¹2!,

~24!

which is rendered in spherical polar coordinates for later u
Instead of«W , we will use a renormalized variant defined b

KW 5S ~Ze2!2m0

2uEu D 1/2

«W 5\nop«W , ~25!

whereE is the Rydberg atom energy given by

E52
~Ze2!2m0

2\2~nop!
2 , ~26!

in which the number operator appears and is defined by
m

f
to

e.

nop5
1

\
AL21K21\2 ~27!

and has the property

nopun,l ,m&5nun,l ,m&, ~28!

in which un,l,m& denotes a standard Rydberg atom state of
form

un,l ,m&5Rnl~r !Yl
m~u,f!, ~29!

in which the spherical harmonics have the standard form@24#
and the radial functions are the standard hydrogenlike fu
tions @25# for ZÞ1.

The operatorsLW andKW satisfy the commutation relation

@Li ,L j #5 i\« i jkLk , ~30!

@Ki ,K j #5 i\« i jkLk , ~31!

@Li ,K j #5 i\« i jkKk , ~32!

@L2,Li #5@K2,Li #50,
~33!

@L21K2,Ki #50⇒@nop,Li #5@nop,Ki #50.

Using the well-known formulas

Lz52 i\]f ~34!

and

L656\ exp@6 if#„]u6 i cotan~u!]f…, ~35!

the well-known matrix element formulas follow:

^n8,l 8,m8uLzun,l ,m&5dn8nd l 8 ldm8m\m, ~36!

^n8,l 8,m8uL6un,l ,m&

5dn8nd l 8 ldm8m61\A~ l 7m!~ l 6m11!. ~37!

These are paralleled by the following formulas:
Kz5\nopXcos~u!1
a0

Z F „cos~u!1sin~u!]u…] r1
cos~u!

r S 2
L2

\2D GC, ~38!

K65\nopXsin~u!e6 if1
a0

Z
e6 ifF S sin~u!2cos~u!]u7

i

sin~u!
]fD ] r1

sin~u!

r S 2
L2

\2D GC, ~39!

^n8,l 8,m8uKzun,l ,m&52dn8ndm8m\Fd l 8 l 21S ~n22 l 2!~ l 2m!~ l 1m!

~2l 11!~2l 21! D 1/2

1d l 8 l 11S „n22~ l 11!2
…~ l 2m11!~ l 1m11!

~2l 11!~2l 13! D 1/2G ,
~40!

^n8,l 8,m8uK6un,l ,m&5dn8ndm8m61\F6d l 8 l 11S „n22~ l 11!2
…~ l 6m12!~ l 6m11!

~2l 11!~2l 13! D 1/2

7d l 8 l 21S ~n22 l 2!~ l 7m!~ l 7m21!

~2l 11!~2l 21! D 1/2G . ~41!
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Equations~36! and ~37! imply

^n8,l 8,m8uL2un,l ,m&5dn8nd l 8 ldm8m\2l ~ l 11!, ~42!

and Eqs.~40! and ~41! imply

^n8,l 8,m8uK2un,l ,m&5dn8nd l 8 ldm8m\2
„n22~ l 21 l 11!….

~43!

Together, these identities imply

^n8,l 8,m8u~L21K21\2!un,l ,m&5dn8nd l 8 ldm8m\2n2,
~44!

which justifies Eqs.~27! and ~28!.
Introduce operatorsMW andNW defined by@23#

MW 5 1
2 ~LW 1KW ! and NW 5 1

2 ~LW 2KW !. ~45!

These operators satisfy the commutation relations of the
gebra su~2!3su~2!:

@Mi ,M j #5 i\« i jkMk , ~46!

@Ni ,Nj #5 i\« i jkNk , ~47!

@Mi ,Nj #50. ~48!
ro

e,
l-

Since

M22N25~MW 1NW !•~MW 2NW !5LW •KW 50, ~49!

the eigenstates ofMW and NW are labeled byu j M ,mM& and
u j N ,mN&, respectively, withj M5 j N5 j . The last equality in
Eq. ~49! follows directly from the differential operator rep
resentations ofLW andKW . While the eigenstates ofL2 andLs
depend only on the anglesu andf, the eigenstates ofK2 and
Kz depend onr as well. Thus we may express the states
the Rydberg atom as product states@4#,

u j ,mM&u j ,mN&5(
l 50

2 j

Cj
l

mM j mN

mM1mN u2 j 11,l ,mM1mN&, ~50!

in which the right-hand side gives the Clebsch-Gordon
pansion in terms of the Rydberg states of Eq.~29!. The fact
that these Rydberg states all have principal quantum num
2 j 11 follows from the operatornop. According to Eq.~28!,

nop
2 u2 j 11,l ,mM1mN&5~2 j 11!2u2 j 11,l ,mM1mN&,

~51!

whereas, according to Eqs.~27!, ~45!, and~48!
nop
2 u j ,mM&u j ,mN&5

1

\2 ~L21K21\2!u j ,mM&u j ,mN&5
1

\2 „~MW 1NW !21~MW 2NW !21\2
…u j ,mM&u j ,mN&

5
1

\2 ~2M212N21\2!u j ,mM&u j ,mN&5„2 j ~ j 11!12 j ~ j 11!11…u j ,mM&u j ,mN&

5~2 j 11!2u j ,mM&u j ,mN&. ~52!
ng
B. Highest weight and Helgason’s identity

In order to construct coherent states, we follow the p
cedure used to generate generalized, su~2! coherent states
@17#. This requires obtaining the ‘‘highest weight’’ stat
which we now prove is given by

u j , j &u j , j &5u2 j 11,2j ,2j &. ~53!

In su~2!3su~2!, the highest weight state satisfies

M 1u j , j &u j , j &50 and N1u j , j &u j , j &50 ~54!

and

Mzu j , j &u j , j &5\ j u j , j &u j , j &

and ~55!

Nzu j , j &u j , j &5\ j u j , j &u j , j &.
-

From Eq.~45!, it follows that

L1u j , j &u j , j &50 and K1u j , j &u j , j &50 ~56!

and

Lzu j , j &u j , j &52\ j u j , j &u j , j &

and ~57!

Kzu j , j &u j , j &50.

The four conditions of Eqs.~56! and ~57! imply that

u j , j &u j , j &5u2 j 11,2j ,2j &. ~58!

The proof of this assertion involves explicit calculation usi
the differential forms in Eqs.~34!, ~35!, ~38!, and ~39! and
the functional form@23–25#
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u2 j 11,2j ,2j &5
1

Ap
S Z

a0
D 2 j 13/2 1

~2 j 11!2 j 12~2 j !!
r 2 j expF2

Zr

~2 j 11!a0
Gsin2 j~u!ei2 j f. ~59!

For fixed j, we may construct a coherent state factor using Helgason’s identity@17,26# to expand the generator:

u j ,uM ,fM ,uN ,fN&5expF iuM

1

\
~sinfMMx2cosfMM y!GexpF iuN

1

\
~sinfNNx2cosfNNy!G u j , j &u j , j &

5expF2
uM

2\
~M 1e2 ifM2M 2eifM!GexpF2

uN

2\
~N1e2 ifN2N2eifN!G u j , j &u j , j &

5 (
p50

2 j

(
q50

2 j
eipfM1 iqfN

p!q!
cos2 j 2p~uM !cos2 j 2q~uN!sinp~uM !sinq~uN!

3S ~2 j !! p! ~2 j !!q!

~2 j 2p!! ~2 j 2q!! D
1/2

u j , j 2p&u j , j 2q&. ~60!

Equation~50! can be used to convert the ket outer product in the last line of Eq.~60!, but this requires application of the Raca
formula @27# for the construction of the Clebsch-Gordon coefficients which are not otherwise given in closed form
alternative construction utilizes the properties of the operators,M 2 , N2 , L2 , andK2 . From

M 2u j ,mM&5\A~ j 1mM !~ j 2mM11!u j ,mM21&, ~61!

it follows that

M 2
k u j , j &5\kS ~2 j !!k!

~2 j 2k!! D
1/2

u j , j 2k&, ~62!

and similarly forN2 . Therefore@recall Eq.~48!#,

u j , j 2p&u j , j 2q&5
1

\p1q S ~2 j 2p!! ~2 j 2q!!

~2 j !! p! ~2 j !!q! D 1/2

M 2
p N2

q u j , j &u j , j &. ~63!

Equations~30!, ~31!, and~32! imply

@L2 ,K2#50. ~64!

Using Eq.~45!, we may convert the right-hand side of Eq.~63! into

u j , j 2p&u j , j 2q&5
1

~2\!p1q S ~2 j 2p!! ~2 j 2q!!

~2 j !! p! ~2 j !!q! D 1/2

(
a50

p
p!

a! ~p2a!! (
b50

q
q!

b! ~q2b!!
~21!qL2

p1q2a2bK2
a1bu2 j 11,2j ,2j &.

~65!

The actions ofL2 andK2 are given by Eqs.~37! and ~41!, respectively. By inspection of these formulas, it is clear that
equality of them components, i.e.,j 2p1 j 2q52 j 2p2q, is guaranteed, and is consistent with Eq.~50!.

Following Klauder’s lead@3,4# for the j sum, we obtain the Rydberg coherent state~we have scaled the phasef0 slightly
differently than in Sec. III in anticipation of Kepler’s third law below!

uRyd,n0 ,f0 ,t&5(
j 50

`

expF2
n0

2 G n0
j

A~2 j !!
expF i

n0
3f0

2~2 j 11!2GexpF i
Z2Ry

\~2 j 11!2 t G (
p50

2 j

(
q50

2 j
exp@ ipfM1 iqfN#

p!q!

3cos2 j 2pS uM

2 D cos2 j 2qS uN

2 D sinpS uM

2 D sinqS uN

2 D S ~2 j !! p! ~2 j !!q!

~2 j 2p!! ~2 j 2q!! D
1/2

u j , j 2p&u j , j 2q&, ~66!
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in which the j sum is overhalf-integervalues ofj, and the
terminal ket product may be replaced by standard Rydb
atomun,l,m& states in accord with the Clebsch-Gordon exp
sion in Eq.~50!, or by the method of Eq.~65!. The j coeffi-
cients must satisfy two roles simultaneously@3#. They must
guarantee normalization ofuRyd,n0 ,f0 ,t&, and provide a
resolution of the identity operator for the Hilbert space
bound states@3,4#. The time evolution operator for th
Hamiltonian of Eq. ~22! evolves the stateuRyd,n0 ,f0&
5uRyd,n0 ,f0,0& into uRyd,n0 ,f012Vt/n0

3&
5uRyd,n0 ,f0 ,t&, whereV5Z2Ry /\, and Ryd is the Ryd-
berg constant.

C. Properties of Rydberg atom coherent states

The following expectation values are exact consequen
of Eq. ~66!, albeit after considerable computation:

^Ryd,n0 ,f0 ,tuL2uRyd,n0 ,f0 ,t&

5\2
„

1
2 ~n01n0

2!1n01 1
2 ~n01n0

2!n̂M•n̂N…,

~67!

^Ryd,n0 ,f0 ,tuK2uRyd,n0 ,f0 ,t&

5\2
„

1
2 ~n01n0

2!1n02 1
2 ~n01n0

2!n̂M•n̂N…,

~68!

^Ryd,n0 ,f0 ,tuLW uRyd,n0 ,f0 ,t&5\„ 1
2 n0~ n̂M1n̂N!…,

~69!
e

y
w

rg
-

f

es

^Ryd,n0 ,f0 ,tuKW uRyd,n0 ,f0 ,t&5\„ 1
2 n0~ n̂M2n̂N!…,

~70!

^Ryd,n0 ,f0 ,tu«2uRyd,n0 ,f0 ,t&

5
1

n0
„11~g21!e2n02Ei~n0!e2n01 ln~n0!e2n0

1~12nW M•nW N!@n0221~22g!e2n0

1Ei~n0!e2n02 ln~n0!e2n0#…, ~71!

^Ryd,n0 ,f0 ,tu«W uRyd,n0 ,f0 ,t&

5XS 1

2
2

1

2n0
~12exp@2n0# ! D ~ n̂M2n̂N!C, ~72!

in which n̂M andn̂N are radial unit vectors given in terms o
uM andfM anduN andfN , respectively. Equations~70! and
~72! differ by more than a factor of\n0 , because Eqs.~25!,
~26!, and~28! imply that thej sum in Eq.~66! is affected. In
Eq. ~71!, g is the Euler constant, and Ei is the exponent
integral function given by

Ei~z!5g1 ln~z!1 (
n51

`
zn

n!n
~73!

for positivez.
To obtain these results, we have repeatedly used the

damental identity
Šj 8, j 82q8z^ j 8, j 82p8u~MW 6NW !u j , j 2p& zj , j 2q‹

5d j 8 jŠj , j 2q8z^ j , j 2p8u~MW 6NW !u j , j 2p& zj , j 2q‹

5d j 8 j S k̂dp8pdq8q\„j 2p6~ j 2q!…1 î Fdp8p21dq8q

\

2
Ap~2 j 2p11!6dp8pdq8q21

\

2
Aq~2 j 2q11!

1dp8p11dq8q

\

2
A~2 j 2p!~p11!6dp8pdq8q11

\

2
A~2 j 2q!~q11!G

1 ĵ Fdp8p21dq8q

\

2i
Ap~2 j 2p11!6dp8pdq8q21

\

2i
Aq~2 j 2q11!

2dp8p11dq8q

\

2i
A~2 j 2p!~p11!7dp8pdq8q11

\

2i
A~2 j 2q!~q11!G D . ~74!
tum
ng
e

In performing thep andq sums, care must be taken with th
limits of the summations since, for example,dp8p21 requires
that p>1, so thatp8 is not less than zero. After carefull
adjusting the limits and shifting the indices appropriately,
then use two identities@26# to finish the computations:

(
p50

2 j 21

~2 j 2p!
~2 j !!

~2 j 2p!! p!
x2p52 j ~11x2!2 j 21, ~75!
e

(
p50

2 j

~ j 2p!
~2 j !!

~2 j 2p!! p!
x2p5 j ~12x2!~11x2!2 j 21.

~76!

We may choose to have the conserved angular momen
along thez axis and the conserved eccentricity vector alo
the x axis. It is straightforward to show that this can b
achieved by setting
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uM5uN5 ū and fM50 and fN5p, ~77!

using ^¯& to denote the Rydberg coherent state expecta
value, from Eqs.~67!–~72! we obtain

^LW &5\n0 cos~ ū !k̂, ~78!

^KW &5\n0 sin~ ū ! î , ~79!

^«W &5S 12
1

n0
~12e2n0! D sin~ ū ! î , ~80!

^L2&5\2n0„11~11n0!cos2~ ū !…, ~81!

^K2&5\2n0„11~11n0!sin2~ ū !…, ~82!
n

^«2&5
1

n0
~12e2n0!2cos2~ ū !

3
1

n0
„Ei~n0!2g2 ln~n0!…e2n0

1sin2~ ū !S 12
2

n0
~12e2n0! D , ~83!

^L2&2^LW &•^LW &5\2n0„11cos2~ ū !…, ~84!

^K2&2^KW &•^KW &5\2n0„11sin2~ ū !…, ~85!

^«2&2^«W &•^«W &

5
1

n0
~12e2n0!2cos2~ ū !

1

n0
„Ei~n0!2g2 ln~n0!…

3e2n02sin2~ ū !
1

~n0!2 ~12e2n0!2. ~86!

D. Circular Rydberg atom coherent states

A circle is produced whenū50 is chosen. The genera
Rydberg coherent state in Eq.~66! simplifies considerably
~only thep50 andq50 terms need to be kept!, becoming
ucirc,n0 ,f0 ,t&5(
j 50

`

expF2
n0

2 G n0
j

A~2 j !!
expF i

n0
3f0

2~2 j 11!2GexpF i
Z2Ry

\~2 j 11!2 t G u2 j 11,2j ,2j &, ~87!

in which thej sum is again overhalf-integers. The position vector expectation value is now

^circ,n0 ,f0 ,turn̂ucirc,n0 ,f0 ,t&5 (
j 850

`

(
j 50

`

e2n0
~n0! j 1 j 8

A~2 j !! ~2 j 8!!
expF i S Vt1

n0
3f0

2 D S 1

~2 j 11!22
1

~2 j 811!2D G
3^2 j 811,2j 8,2j 8urn̂u2 j 11,2j ,2j &, ~88!

in which V5Z2Ry /\. The matrix elements, by lengthy but straightforward computation, yield

^2 j 811,2j 8,2j 8urn̂u2 j 11,2j ,2j &5
a0

Z
F S î

2
1

ĵ

2i
D d2 j 82 j 11

~2 j 11!2 j 14~2 j 12!2 j 13

~2 j 13/2!4 j 15

1S î

2
2

ĵ

2i
D d2 j 82 j 21

~2 j 11!2 j 12~2 j !2 j 13

~2 j 11/2!4 j 13 G . ~89!

Thus Eq.~88! becomes

^circ,n0 ,f0 ,turn̂ucirc,n0 ,f0 ,t&5
a0

Z
e2n0(

j 50

`

P~ j !F î cosXS Vt1
n0

3f0

2 D F 1

~2 j 11!22
1

~2 j 12!2GC
1 ĵ sinXS Vt1

n0
3f0

2 D F 1

~2 j 11!22
1

~2 j 12!2GCG , ~90!
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in which

P~ j !5
~n0!2 j 11/2

~2 j !!A2 j 11

~2 j 11!2 j 14~2 j 12!2 j 13

~2 j 13/2!4 j 15

'P~n0!S pn0

2 D 1/2 expF2
1

2

S j 2
n0

2 D 2

~n0/4!
G

S pn0

2 D 1/2 , ~91!

wherein

P~n0! ——→
n0@1

en0

A2pn0

. ~92!

These limiting approximations permit us to replace the s
in Eq. ~90! by an integral, provided that we observe that t
half-integer values forj in the sum imply a ‘‘density-of-
states’’ factor of 2, i.e.,

(
j 50

`

f ~ j !→2E
0

`

dy f~y!. ~93!

For the circle case, we obtain~for n0@1)

^circ,n0 ,f0 ,turn̂ucirc,n0 ,f0 ,t&

5
a0

Z
n0

2F î cosS 2Z2Ry

\n0
3 t1f0D 1 ĵ sinS 2Z2Ry

\n0
3 t1f0D G .

~94!

Kepler’s third law relates the periodt to the radiusr:

t52pS m0

k D 1/2

r 3/2 ~95!

wherek is the strength of the 1/r potential. In the presen
case,
t52p
\n0

3

2Z2Ry
52p

\3n0
3

Z2m0e4 , ~96!

r 5
a0

Z
n0

25
\2n0

2

Zm0e2 , ~97!

S m0

k D 1/2

5S m0

Ze2D 1/2

. ~98!

Even the coefficient agrees exactly.
The transition from reciprocal squares of the princip

quantum number in the exponentials of Eq.~90! to reciprocal
cubes in Eq.~94! results from the interference of adjace
energy levels in the expansion of Eq.~87! caused by the
couplings of 2j to 2j 61 created by the matrix elements o
the right-hand side of Eq.~88!. This is a manifestation of the
traditional Bohr correspondence principle@28#.

E. Slightly eccentric Rydberg atom coherent states

To obtain a slightly eccentric elliptical orbit, we chooseū
slightly larger than 0, and keep thep51 andq50 andq
51 andp50 terms in Eq.~66! as well as thep50 andq
50 term used for the circle case. The equivalent of
Clebsch-Gordon coefficients can be obtained by using pr
erties of theLW , KW , MW , andNW operators expressed in Eq.~65!.
In particular,

u j , j 21&u j , j &5
1

&
~ u2 j 11,2j ,2j 21&

1u2 j 11,2j 21,2j 21&), ~99!

u j , j &u j , j 21&5
1

&
~ u2 j 11,2j ,2j 21&

2u2 j 11,2j 21,2j 21&). ~100!

Therefore, a slightly eccentric coherent state is given by
uellip,n0 ,f0 ,t&5(
j 50

`

e2n0/2
n0

j

A~2 j !!
expF i

Vt1
n0

3f0

2

~2 j 11!2
G @ u2 j 11,2j ,2j &1 ūAj u2 j 11,2j 21,2j 21&]. ~101!

We now need variations of the matrix element given in Eq.~89!:

^2 j 811,2j 821,2j 821urn̂u2 j 11,2j 21,2j 21&5
a0

Z
F S î

2
1

ĵ

2i
D d2 j 82 j 11

~2 j 11!2 j 14~2 j 12!2 j 12

~2 j 13/2!4 j 14 S j

j 11/2D
1/2

1S î

2
2

ĵ

2i
D d2 j 82 j 21

~2 j 11!2 j 11~2 j !2 j 13

~2 j 11/2!4 j 12 S j 21/2

j D 1/2G , ~102!

^2 j 811,2j 8,2j 8urn̂u2 j 11,2j 21,2j 21&5
a0

Z
F S î

2
1

ĵ

2i
D d2 j 82 j„23~2 j 11!Aj …

1S î

2
2

ĵ

2i
D d2 j 82 j 22

~2 j 21!2 j 12~2 j 11!2 j 11

~2 j !4 j 12 Aj G , ~103!
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^2 j 11,2j ,2j urn̂u2 j 811,2j 821,2j 821&5
a0

Z
F S î

2
1

ĵ

2i
D d2 j 82 j„23~2 j 11!Aj …

1S î

2
2

ĵ

2i
D d2 j 82 j 12

~2 j 11!2 j 14~2 j 13!2 j 13

~2 j 12!4 j 16 Aj 11G . ~104!

In the sums ford2 j 82 j 21 andd2 j 82 j 22 , lower limit restrictions onj are required so thatj 8>0. When these are imposed,j can
be shifted so that the newj runs from 0 to` as before. After lengthy computation, the result is

^ellip,n0 ,f0 ,turn̂uellip,n0 ,f0 ,t&5
a0

Z
n0

2F î XcosS 2Z2Ry

\n0
3 t1f0D 1

«

2
cosS 4Z2Ry

\n0
3 t12f0D 2

3«

2
C

1 ĵ XsinS 2Z2Ry

\n0
3 t1f0D 1

«

2
sinS 4Z2Ry

\n0
3 t12f0D CG . ~105!
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Because eccentricity only introduces simple harmonics of
fundamental frequency, 2V/n0

3, Kepler’s third law remains
exact.

We can show that Eq.~105! represents an« perturbation
of the circular orbit described by Eq.~94!. By changing vari-
ables from r to u51/r , one may show that the classic
equation of motion is (k5Ze2, andL is the angular momen
tum! @30#

d2

dt2
u54k2

«221

2L2 u315
k

m0
u423

L2

m0
2 u5. ~106!

Writing u5u01«u11«2u2 , we find

u05
m0k

L2 5
1

r c
, u15

1

r c
cos~vct !,

~107!

u25
1

r c
„cos~2vct !21…,

in which r c is the classical radius andvc is the classical
frequency. The boundary conditions used for the solut
just given are that this solution agrees with the orbital eq
tion at t50, i.e., with

r 5
a~12«2!

11« cos~u!
, ~108!

wherea is the semimajor axis and the numerator is equa
the classical radius@29#. Using Eq. ~97! for the classical
e

n
-

o

radius and 2V/n0
3 for the classical frequency, Eq.~105! may

be used to show that the Rydberg atom electron radius m
nitude is

r 5r cA11 5
2 «222« cos~vct !2 3

2 «2 cos~2vct !

>r c„12« cos~vct !2«2 cos~2vct !1«2
…, ~109!

wherein we have usedA11x>11 1
2 x2 1

8 x2, in which x
stands for all of the« terms. This is precisely the first-orde
inversion of the results in Eq.~107!, i.e., 1/(11x)>12x. So
far, we have been unable to obtain comparable closed-f
results for arbitrary eccentricity. However, the results h
strongly suggest that higher powers of the eccentricity a
higher harmonics of the fundamental frequency will make
such general results.

F. Dephasing of the azimuthal angle

While the results above show that the expected value
the position executes circular or slightly eccentric orbi
motion, it is also important to determine the rate at whi
uncertainty in the coordinates grows. In this section, we
vestigate this issue for the circular Rydberg coherent sta
We show that these states remain tightly compact in bor
and u, but exhibit dephasing inf. To do this, we need the
explicit coordinate dependence given by Eqs.~59! and ~87!.

Defineccirc(r ,u,f,t) by

ccirc~r ,u,f,t !5^r ,u,fucirc,n0 ,f0 ,t&. ~110!

The probability density associated withccirc(r ,u,f,t) is
given by
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P~r ,u,f,t !5 (
j 850

`

(
j 50

`

e2n0
n0

j 1 j 8

A~2 j !! ~2 j 8!!
expF i S Vt1

n0
3f0

2 D S 1

~2 j 11!2 2
1

~2 j 811!2D G
3

1

p S Z

a0
D 2 j 12 j 813 1

~2 j 11!2 j 12~2 j !!

1

~2 j 811!2 j 812~2 j 8!!
ei ~2 j 22 j 8!f sin2 j 12 j 8~u!

3r 2 j 12 j 8 expF2
Zr

a0
S 1

2 j 11
1

1

2 j 811D G . ~111!
t
re

d
di

d to
We can reduce this to distributions in one coordinate a
time by integrating the other two coordinates. The requi
integrals are

E
0

2p

df ei ~2 j 22 j 8!f52pd j j 8 , ~112!

E
0

p

du sin2 j 12 j 811~u!52
~2 j 12 j 8!!!

~2 j 12 j 811!!!
, ~113!

E
0

`

dr r 2 j 12 j 812 expF2
Zr

a0
S 1

2 j 11
1

1

2 j 811D G
5~2 j 12 j 812!! S a0

Z D 2 j 12 j 813

3S ~2 j 11!~2 j 811!

2 j 12 j 812 D 2 j 12 j 813

. ~114!

In Eq. ~113! j 1 j 8 is even; forj 1 j 8 odd multiply byp/2.
It is now clear that thef integration produces reduce

distributions that are independent of time. The reduced
tribution for r andu is given by

Q~r ,u!5E
0

2p

df P~r ,u,f,t !52(
j 50

`

e2n0
n0

2 j

~2 j !! S Z

a0
D 4 j 13

3
1

~2 j 11!4 j 14@~2 j !! #2

3r 4 j expF2
Zr

a0
S 2

2 j 11D Gsin4 j~u!. ~115!
a
d

s-

In parallel with Eqs.~91! and ~92!, we find

e2n0
n0

2 j

~2 j !!
'

1

2

expF2
1

2

~ j 2n0/2!2

~n0/4! G
A2p~n0/4!

. ~116!

This implies that

sin4 j~u!'sin2n0~u!5exp@2n0 ln sin~u!#

'expF2
1

2

~u2p/2!2

~1/2n0! G . ~117!

This means that the root-mean-square deviation compare
the mean is

A^~Du!2&
p/2

5
&

pAn0

. ~118!

Thus, for sufficiently largen0 , u is confined to be very close
to p/2, i.e., in the azimuthal plane. Equation~116! also im-
plies that
S Zr

a0
D 4 j

expF2
Zr

a0
S 2

2 j 11D G'S Zr

z0
D 2n0

expF2
Zr

a0
S 2

n0
D G5expF2

2Zr

n0a0
12n0 ln~Zr/a0!G

'exp@22n012n0 ln n0
2#expF2

1

2

~r 2r 0!2

~n0
3a0

2/2Z2!G , ~119!

wherein

r 05
a0

z
n0

2, ~120!

and the variance is clearlyn0
3a0

2/2Z2. This means that the root-mean-square deviation compared to the mean is
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A^~Dr !2&
r 0

5
1

A2n0

. ~121!

Thus, for sufficiently largen0 , r is confined to relatively very close to the circle radius of Eq.~97!.
In contrast to these time-independent results forr andu, the reduced distribution for the anglef is time dependent. Using

Eqs.~111!, ~113!, and~114!, we obtain

F~f,t !5E
0

`

dr r 2E
0

p

du sin~u!P~r ,u,f,t !5
2

p
e2n0 (

j 850

`

(
j 50

` n0
j 1 j 8

A~2 j !! ~2 j 8!!
expF i S Vt1

n0
3f0

2 D S 1

~2 j 11!22
1

~2 j 811!2D G
3~2 j 12 j 812!@~2 j 12 j 8!!! #2

~2 j 11!2 j 811~2 j 811!2 j 11

~2 j 12 j 812!2 j 12 j 813

1

~2 j !! ~2 j 8!!
ei ~2 j 22 j 8!f, ~122!

wherein we have used the identity

~2 j 12 j 812!!
~2 j 12 j 8!!!

~2 j 12 j 811!!!
5~2 j 12 j 812!@~2 j 12 j 8!!! #2. ~123!

We now use the following approximations:

e2n0
n0

j 1 j 8

A~2 j !! ~2 j 8!!
'

pn0

A2pn0

expF2
1

2

~ j 2n0/2!2

~n0/2! G
Apn0

expF2
1

2

~ j 82n0/2!2

~n0/2! G
Apn0

, ~124!

~2 j 12 j 812!@~2 j 12 j 8!!! #2
~2 j 11!2 j 811~2 j 811!2 j 11

~2 j 12 j 812!2 j 12 j 813~2 j !! ~2 j 8!!
'

@~2n0!!! #2

~n0! !2

~n011!n011~n011!n011

~2n012!2n012

'22n022~2n012!5222, ~125!

expF i S Vt1
n0

3f0

2 D S 1

~2 j 11!22
1

~2 j 811!2D G'expF i S Vt1
n0

3f0

2 D S 1

n0
2
„11~2 j 2n011!/n0…

22
1

n0
2
„11~2 j 82n011!/n0…

2D G
'expF2 i S Vt1

n0
3f0

2 D 8

n0
3 ~2 j 22 j 8!1 i S Vt1

n0
3f0

2 D 3

n0
4 „~2 j !22~2 j 8!2

…G ,
~126!

wherein we have used 1/(11x)2;122x13x21¯ . Replacing the two sums by integrals in accord with Eq.~93!, we find

F~f,t !'S 2n0

p D 1/2E
0

`

dx8

expF2
1

2

~x82n0/2!2

~n0/2!
2 i S Vt1

n0
3f0

2 D 3

n0
4 ~2x8!2G

Apn0

3expF2 i2x8Xf2S Vt1
n0

3f0

2 D 8

n0
3 CG E

0

`

dx

expF2
1

2

~x2n0/2!2

~n0/2!
1 i S Vt1

n0
3f0

2 D 3

n0
4 ~2x!2G

Apn0

3expF i2xXf2S Vt1
n0

3f0

2 D 8

n0
3 CG . ~127!

Now shift the integration variables toy5x2n0/2 andy85x82n0/2, and obtain

F~f,t !'S 2n0

p D 1/2E
2`

`

dy8E
2`

`

dy

expF2
1

2

~y8!2

~n0/2!
2 i S Vt1

n0
3f0

2 D 3

n0
4 ~2y8!2G

Apn0

expF2
1

2

~y!2

~n0/2!
1 i S Vt1

n0
3f0

2 D 3

n0
4 ~2y!2G

Apn0

3expF i ~2y22y8!S f2Vt
2

n0
32f0D G . ~128!
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By performing the Gaussian integrals and rearranging the results, a normalized Gaussian reduced distribution is pro

F~f,t !'

expF2
1

2
~f2Vt2/n0

32f0!2
1

S 1

4n0
1

9

n0
~Vt2/n0

31f0!2D G
F2pS 1

4n0
1

9

n0
~Vt2/n0

31f0!2D G1/2 . ~129!
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This distribution clearly shows that the averaged value
f changes linearly with time in accord with the result in E
~94!. At first glance, it would appear that the variance gro
quadratically in time with a 1/n0

7 dependence. This would
seem to be negligible for sufficiently largen0 . However, we
have expressed this growing term in a form that shows
after exactly one period of the orbital revolution, the va
ance increases from 1/4n0 to (1/4n0)1(9/n0)(2p)2, or by a
factor of 1421.5. Thus, for typically obtained experimen
Rydberg atom states with 50<n0<200, say, there will be
complete dephasing in the anglef after less than one orbita
period. If n0 could be made as large as 106, say, then abou
25 orbital periods would be required before the varian
grew to order unity. While this may be impossible to achie
for Rydberg atoms, in Sec. IV G we show that it is trivial
achieve for celestial bodies.

G. Celestial bodies as Rydberg coherent states

The issue of the correspondence principle can be
proached by treating celestial dynamics by the Schro¨dinger
equation, and comparing the resulting description with t
of Newtonian classical mechanics. In this section, we do
for the Earth, Mars, and Saturn. The strength of attract
Ze2, for Rydberg atoms need only be replaced byGMm for
celestial bodies whereG56.6731028 dyn cm2/gm2, New-
ton’s gravitational constant;M51.8931033gm, the mass of
the Sun; andm5me55.9831027gm, the mass of the Earth
The masses of Mars and Saturn are 0.108me and 95.2me ,
respectively. This change in attractive strength is en
mous: Ze2;Z323.04310220erg cm and GMme;7.538
31053 erg cm, about 72 orders of magnitude larger. T
Bohr radius\2/m0e2 is 5.2931029 cm, whereas the celes
tial analog \2/GMmm is 2.443102136 cm for m5me ,
about 127 orders of magnitude smaller. Similarly, the Bo
orbital period 2p\3/e4m0 is 1.5310216 s, whereas the ce
f
.
s

at

l

e
e

p-

t
is
,

r-

e

r

lestial analog 2p\3/G2M2m2m, is 2.143102216 s for m
5me , about 200 orders of magnitude smaller. Since
know the orbital radius and period for the Earth~for the
present purpose, we can ignore the eccentricity of the Ear
orbit!, it is a simple matter to determine the principal qua
tum number in accord with the celestial analogs of Eqs.~96!
and ~97!. For the Sun-Earth system we know thatt53.16
3107 s, and thatr 51.5031013 cm. Equation~96! implies
that nSE52.5331074, and Eq.~97! implies thatnSE52.53
31074. This is an enormous principal quantum number. C
responding results for Mars and Saturn yieldnSM53.37
31073 andnSS57.4331076, respectively.

Looking back at Eq.~129!, we see that for the Earth th
variance grows by a factor of about 142
3(square of the number of periods). Since each period
year, the variance will not reach order unity fornSE52.53
31074, until about 1036 years have elapsed. This is so mu
longer than the age of the universe that we can conclude
a Rydberg coherent state treatment of the Sun-Earth sys
yields a compact, localized state in all three spherical po
coordinates for the entire lifetime of the system. In this lim
of extremely large principal quantum numbers, the quantu
mechanical treatment of celestial dynamics reproduces
classical mechanical description with very great precision

V. TEMPORAL DECORRELATION

Bellomo and Stroud@5,6# used the time autocorrelatio
function proposed by Nauenberg@13,14#,

C~ t !5U^cuexpF2
i

\
Ht G uc&U2

, ~130!

where uc& denotes either a generalized coherent state o
wave packet. For the circular Rydberg coherent states,
yields
C~ t !5U^circ,n0 ,f0uexpF2
i

\
Ht G ucirc,n0 ,f0&U2

5U(
j 50

`

e2n0
n0

2 j

~2 j !!
expF i

Z2Ry

\~2 j 11!2 t GU2

>
1

F11S 6Vt

n0
3 D 2G1/2expF 22n0S Vt

n0
3 D 2 2

11S 6Vt

n0
3 D 2G , ~131!
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where againV5Z2Ry /\. In a Kepler period@see Eq.~94!#,
i.e., t5T5n0

3p/V, the decorrelation is considerable for ev
modestly smalln0 . Nevertheless, as already noted by B
lomo and Stroud@6#, decorrelation does not necessarily im
ply a spreading of the wave packet. However, they went
to observe that the mean-square deviation inr for circular
Rydberg states is proportional ton0

3 ~their R!, which is very
large asn0 increases. In Sec. IV F it was shown that t
relevant quantity is the ratio of the root-mean-square de
tion and the mean radius which is given by Eq.~121!. This
quantity becomes very small with increasingn0 . Thus, as
was shown above, the Majumdar-Sharatchandra Rydb
states are very well localized in bothu and r but, neverthe-
less, delocalize rapidly inf unlessn0 is extremely large, as
in the case of celestial mechanics~see Sec. IV G!.

The Gaussian wave packets used earlier by Nauen
@13,14# and many others, and by Mallalieu and Stroud@12#,
have the advantage that their variances are very small c
pared with the variances of ordern0 imposed by the Gauss
ian limit of the Majumdar-Sharatchandra Rydberg coher
states. Observed decay and revival, and even fractiona
vivials @12# can be explained using sharp Gaussian w
packets. This is achieved by expanding the energy deno
nators around the principal quantum number that is at
center of the sharp Gaussian. The incommensurate freq
cies become almost perfectly uniformily distributed in th
approximation. They are virtually in resonance with ea
other @12#. However, no resolution of the identity operat
exists for these Gaussian wave packets. This deficienc
remedied in Sec. VI.
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VI. GAUSSIAN GENERALIZED COHERENT STATES

A Gaussian generalized coherent state is constructe
parallel with the method used for Klauder states@3#. Given
Eq. ~15!, we replace Eq.~16! with

uG,n0 ,f0&5 (
n50

` expF2
1

4

~n2n0!2

s2 G
„N~n0!…1/2 eienf0un& ~132!

where

N~n0!5 (
n50

`

expF2
~n2n0!2

2s2 G , ~133!

and this guarantees normalization

^G,n0 ,f0uG,n0 ,f0&51. ~134!

Clearly, asn0→`, N(n0)→A2ps2, but for finite n0 and
because the summation is discrete,N(n0) is generally not
determined in closed form. The resolution of the ident
operator is achieved by givingn0 a domain of2` to `
rather than just the positive values.
E
2`

`

dn0 lim
F→`

1

2F E
2F

F

df0K~n0!uG,n0 ,f0&^G,n0 ,f0u5E
2`

`

dn0K~n0!
1

N~n0! (
n50

`

expF2
~n2n0!2

2s2 G un&^nu5 (
n50

`

un&^nu51,

~135!
providedK(n0) is given by

K~n0!5
N~n0!

A2ps2
. ~136!

The interesting and useful Gaussian coherent states are
with n0 positive and reasonably large, but the states w
negativen0’s are required for resolution of the identity op
erator. For highly negativen0 , N(n0) becomes very small
and the states contain allun&’s with slowly decreasing ampli-
tudes. However, this permits sharpness in the variable c
jugate ton0 . For large positiven0’s, the states contain al
most exclusively thoseun&’s within threes’s of n0 .

It is easy to generalize these Gaussian states@31# to the
form
ose
h

n-

uM ,n0 ,f0&5 (
n50

`

nM

expF2
1

4

~n2n0!2n4M

s2 G
„N~n0!…1/2 eienf0un&,

~137!

where

N~n0!5 (
n50

`

n2M expF2
~n2n0!2n4M

2s2 G , ~138!

and the resolution of the identity operator takes the form
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E
2`

`

dn0 lim
F→`

1

2F E
2F

F

df0K~n0!uM ,n0 ,f0&^M ,n0 ,f0u

5E
2`

`

dn0K~n0!
1

N~n0! (
n50

`

n2M

3expF2
~n2n0!2n4M

2s2 G un&^nu5 (
n50

`

un&^nu51,

~139!

providedK(n0) is given by

K~n0!5
N~n0!

A2ps2
, ~140!

since

E
2`

`

dn0 expF2
~n2n0!2n4M

2s2 G5S 2ps2

n4M D 1/2

. ~141!

The inclusion ofnM in Eq. ~137! tends to suppress coeffi
cients nearn50, which may be desirable for states withn0
positive but small.
Application of this construction to the Rydberg cohere
states requires slight modifications to accommodate the s
mations over half-integer indices. For the Gaussian Rydb
coherent states, we obtain

uGR,n0 ,f0&5(
j 50

` expF2
~ j 2n0/2!2

4s2 G
„N~n0!…1/2

3expF i
n0

3f0

2~2 j 11!2G u j ,uM ,fM ,uN ,fN&,

~142!

where

N~n0!5(
j 50

`

expF2
~ j 2n0/2!2

2s2 G . ~143!

In both Eqs.~142! and ~143!, the summation is over half
integerj’s. When approximating this sum by an integral, t
density of states factor of 2@see Eq.~93!# must be included.
Thus, for largen0 , N(n0)→2A2ps2 approximately. The
resolution of the identity operator is given by
ssian
E
2`

`

dn0 lim
F→`

1

2F E
2F

F

df0K~n0!E dVME dVNuGR,n0 ,f0&^GR,n0 ,f0u

5E
2`

`

dn0K~n0!
1

N~n0! (j 50

`

(
mM52 j

j

(
mN52 j

j

expF2
~ j 2n0/2!2

2s2 G u j ,mM&u j ,mN&^ j ,mNu^ j ,mMu

5(
j 50

`

(
mM52 j

j

(
mN52 j

j

u j ,mM&u j ,mN&^ j ,mNu^ j ,mMu51, ~144!

providedK(n0) is given by

K~n0!5
N~n0!

A2p4s2
. ~145!

For sufficiently largen0 , this weight approaches unity.
The correlation function defined in Eq.~130! is easily computed because of the temporal stability property of the Gau

Rydberg coherent states, i.e.,

expF2
i

\
HtG uGR,n0 ,f0&5(

j 50

` expF2
~ j 2n0/2!2

4s2 G
„N~n0!…1/2 expF i

n0
3f0

2~2 j 11!2GexpF i
Z2Ry

\~2 j 11!2 t G u j ,uM ,fM ,uN ,fN&. ~146!

Therefore

C~ t !5U 1

N~n0! (j 50

`

expF2
~ j 2n0/2!2

2s2 GexpF i
Z2Ry

\~2 j 11!2 t GU2

>
1

S 11
576s4

n0
2 ~pt/T!2D 1/2expF216s2~pt/T!2

1

11576s4~pt/T!2/n0
2G , ~147!
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whereT is again the Kepler period. For smalls and largen0 , this expression decays slowly compared with Eq.~131!. By a
similar analysis, the calculations leading to Eq.~129! for the azimuthal angle dephasing may be reevaluated for these Gau
Rydberg coherent states. The result is

F~f,t !'

expF2
1

2
~f2Vt2/n0

32f0!2S 1

16s2
1

36s2

n0
2

~Vt2/n0
31f0!2D 21G

A2pS 1

16s2
136s2~Vt2/n0

31f0!2/n0
2D

. ~148!
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This result shows that many orbital periods may elapse
fore significant delocalization in the azimuthal angle occ
if s is sufficiently small andn0 is sufficiently large. For
example, assume thatn0 is 320 ands is 2.5 ~these are the
values used by Mallalieu and Stroud@12# in their Gaussian
wave packets!. With these values, the standard deviatio
which is initially 1

10 rad, doubles only after 72 orbital period
When these same values forn0 and s are placed in Eq.
~147!, however, the decay is considerable even after only
period. This underscores the unreliability of decorrelation
a measure of delocalization. Moreover, if the infinite sum
Eq. ~146! is approximated by a finite sum over just thosej
values within two or threes’s of n0/2, then the result is
almost periodic, and the correlation function computed the
s

n

ys

tt

, J

,
d

re
e-
s

,

e
s

-

from will show revivals@12#. The use of the integral approxi
mation in Eq.~147! smooths out and eliminates the reviva
much like in the case of the Jaynes-Cummings model@32#,
where revivals are a result of the discreteness of the f
quantum description.
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