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We propose a simple quantum-mechanical equation frarticles in two dimensions, each particle carrying
electric charge and magnetic flux. Such particles appeé2-iri)-dimensional Chern-Simons field theories as
charged vortex soliton solutions, where the ratio of charge to flux is a constant independent of the specific
solution. As an approximation, the charge-flux interaction is described here by the Aharonov-Bohm potential,
and the charge-charge interaction by the Coulomb one. The equation for two particles, one with charge and flux
(g, ®/Z) and the other with £ Zq, —®) whereZ is a pure number is studied in detail. The bound-state
problem is solved exactly for arbitrary and ® when Z>0. The scattering problem is exactly solved in
parabolic coordinates in special cases whdn2=#c takes integers or half integers. In both cases the cross
sections obtained are rather different from that for pure Coulomb scatte80§50-29479)03705-1

PACS numbds): 03.65.Bz, 12.90-b

I. INTRODUCTION are two kinds of Coulomb potentials. The first one satisfies
the two-dimensional Poisson equation with point source and
Field theories with Chern-Simon&S) term in (2+1)- is proportional to Iir, wherer is the distance between the

dimensional space time admit soliton solutions carrying botitwo point charges. The second simply imitates the form of
electric charge and magnetic flik—8]. These solutions are the three-dimensional one and is proportional to. 1it
often called CS vortices or vortex solitons, as compared witlshould be remarked that the real interaction between the CS
Nielsen-Olesen vorticeE9], which are electrically neutral. vortices may be very complicated, and it depends on whether
They appear in both relativistic and nonrelativistic field theo-the field-theoretical model involves both Maxwell and CS
ries, and regardless of whether the gauge-field action interms or only a CS term. Neither of the above forms can be
volves both Maxwell and CS terms or only a pure CS termexpected to be capable of well describing the real situation.
The ratio of electric chargg to magnetic flux® depends Either one is in any case a rough approximation. We prefer
only on the parameters in the field theoretical model, not orthe latter one since it is easier to obtain exact solutions in this
the specific solution. Such solutions are not only of interestase. This is the potential adopted in the study of the so-
in field theories, but also expected to be useful in condensedalled two-dimensional hydrogen atof@H) [13-18.
matter physics. However, the interaction of these vortex soli- In this paper we confine ourselves to the framework of
tons is very complicated. A single soliton solution is avail- nonrelativistic quantum mechanics. Now that the forms of
able in analytic form only for nonrelativistic theory and the interaction potentials are established, we can write down
when the Maxwell term is absent. It seems difficult to findan n-body Schrdinger equation for these particles carrying
multisoliton solutions in closed forms, especially when bothmagnetic flux as well as electric charges. This is done in Sec.
Maxwell and CS terms are present. Therefore, a simplél. The ath particle has charge and flug{, ®,), wherea
quantum-mechanical model for the interaction of such vortex=1,2, . .. n. It should be emphasized that the ratjg/®,
solitons may be of interest. The purpose of the present papeloes not depend oa, as pointed out in the first paragraph.
is to study such a model. After the time variable is separated out to obtain a stationary
The real CS vortices have finite sizes. The electric charg&chralinger equation, we concentrate our attention on the
density and the magnetic flux densitthe magnetic field two-body problem. This is separable into two equations. One
depend on the specific solution. As a simple approximationgoverns the center-of-mass motion, which is free, and the
we use pointlike particles to represent them in this paperother governs the relative motion, which is of main interest
Both the magnetic flux and the electric charge are then corto us and is the main subject of the remaining part of this
fined to a region of infinitesimal area, in other words, to apaper. It is remarkable that the separability of the two-body
point where the particle is located. The vector potential asequation crucially depends on the conditiog,/®;
sociated with the flux is the Aharonov-Boh{AB) potential =q,/®,. We then denote (;,P;)=(q,P/Z), (q,,P>,)
[10]. (see also Refd11,12 for some more works on the =(—Zq,—®), whereZ is a nonvanishing real number. The
subject) This is responsible for the charge-flux interaction. relative Hamiltonian has the same form as that for a particle
As for the charge-charge interaction, we make use of thef reduced mass moving in the composite field of a vector
Coulomb potential. Note that in two-dimensional space theré\B potential and a scalar Coulomb one. This may be called
an Aharonov-Bohm-Coulomb system. Although the so-
called ABC system has been dealt with by numerous works
*Mailing address. Electronic address: stdp@zsu.edu.cn [19-24 in the literature, the Coulomb potential considered
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there is a three-dimensional one. Thus the situation is quitgon, the ratioq,/®, is independent of. More precisely, we
different from that studied here. In other words, the modelgye

studied in the above cited works is a three-dimensional ABC

system, while that encountered here is a two-dimensional a1 Oy Un

one. N R (1)
In Sec. Il we study the bound-state problem. Bound o2 n

states are possible only whé-0, i.e., when the Coulomb e describe the charge-flux interactions among the particles

field represents attractive force, regardless of whether an A y the vector AB potentials and the charge-charge interac-
potential is present. Whed =0, the spectrum is just those jons by the scalar Coulomb ones. Tidody wave function

of the 2H. The levelEy has degeneracy N+1(N 5 qengted by#((t,ry, ... r,). In this paper we work in
=0,1,2...). If gb/2mhc takes nonvanishing integers, the yhe  gomain of nonrelativistic quantum mechanics. The
spectrum is roughly the same except that the ground state h@%hr’tﬁinger equation for the wave function is then

energy E; and the level Ey has degeneracy N(N

=1,2,...)since some solutions are not acceptable. In the gp™
general case each levEl, of the 2H splits into two, each i% =H;¥ M, (2a)
with lower degeneracy. Whenpd®/2+7ic takes half integers, Jt

however, some of the splitted levels coincide and we have . o )
again a high degeneracy. The degeneracy implies that théhereH is the Hamiltonian of the system given by
system should have IP) symmetry in this case, as the

SQ(3) symmetry of the ordinary 2Hf13,16,17. But this has 42 ig, 2 a0
not been explicitly proved. Hp=— 2, | Va~ 7o Aalfn, )| + Taerd’
In Sec. IV we study the scattering problem. In the general a=1 <Ha a<b fa™Th
case partial-wave expansion in the polar coordinates should (2b)

be employed. However, as the asymptotic form of the partial . .
wave involves logarithmic distortion due to the long rangeWhere the secon_d terl(rthg Coulomb mteract_l(_jrlnvolves a
nature of the Coulomb field, it is somewhat difficult to double summation subject to the _cond|t|<m<b,_ 'and
handle the partial-wave expansion. In this paper we restric'?‘a(rl' - Fn) IS _the AB vector potential at the_ positiog .
our discussion to special cases whgre/2w#c takes inte- Note that all particles, except th.ﬂh one, contribute @, .
gers or half integers. In these cases the scattering proble;l;Pus the components &, are given by

can be exactly solved in parabolic coordinates, as the ordi-

nary Coulomb scattering in two dimensiof5]. Note that Py ya—Yp

what we use here are parabolic coordinates on the plane, and Aax(T1, - o) = s m

thus they are quite different from the rotational parabolic a b
coordinates used in the discussion of the ordinary three-

dimensional Coulomb problem in the text books of quantum

mechanics. The latter are also used in the study of the three- Aayl(re, .. 'r“):ga
dimensional ABC systeni9]. When® =0 the cross section

is just that for the Coulomb scgtterlng in two dlmen5|or.1s.Since the HamiltoniarH, does not involvet, the time-
When q®/2nfic takes nonzero integers, the cross sectlonde endent factor it ™ can be separated out. Let
gains an additional term, which comes from the interference P P '
of the scattered wave with an additional stationary wave - Bt ()

present in the scattering solution. Without the stationary Wt ry, )= ETE( g, ). ()
wave term the solution would become meaningless at the

origin. To the best of our knowledge, such circumstances ardVe have fory(™ the stationary Scfichnger equation,

not encountered previously in the literature. Whgh/27# ¢

takes half integers, the result is simple but, of course, rather HrpW=Ey". (4
different from that for pure Coulomb scattering. Without the

Coulomb field our results reduce to those for pure AB scat- In the fo”owing we concentrate our attention on the two-

tering [10,1]} The classical limit of the results is also dis- body prob'em, since this is the On|y case where exact ana|y_

X
. (20

cussed. _ . sis is possible. In this case the first summation in &4p)
Section V is devoted to a brief summary and some morgontains two terms and the second contains only one. We
remarks. introduce the relative position and the center-of-mass po-

sition R defined by

IIl. THE MODEL il 1+ ol
r=ri—r,, R=—T"1"-

Considern pointlike particles carrying magnetic flux as M '
well as electric charges in two-dimensional space. &tte
particle has masg.,, carries electric charge and magnetic whereM = 1+ w5 is the total mass of the system. Note that
flux (q,, ®,), a=1,2,...n. The position of theath par- bothA; andA, depend only on; it is not difficult to recast
ticle is denoted by ,=(X,,Ya) - As remarked in the introduc- Hy in the form

®)
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#2 iq, |2 4?2 ig, \2 o010 To conclude this section we emphasize that the separabil-
He=— ﬂ( r— %Al) "%, V. + %Az) t = ity of Eq. (4) (for n=2) crucially depends on the relatidn)
! 2 and thus on the conditio(l).
h? i
2
~om VRT g (G1A1 T A2A2) - Vi, ©) Iil. BOUND STATES

In this section we study bound states of the two-body

wherer =|r|. Using Egs.(1) and(20), it can be shown that system. These are solutions vanishing at infinity of @4).

A=—0-A @) It is convenient to solve Eq(lla, with the Hamiltonian
B G2z written in the form of Eq.(12), in polar coordinates. We
Thus Eq.(6) reduces to denote
()
i gy |2, dde A%, g, (13
HT__ﬂ(Vr_ﬁ_c 1) t—u'rR ©® 2mhc

_ wheremy is an integer and € v<<1. Equation(11) can be
where u=uiu,/ (11t o) is the reduced mass of the sys- wyritten in polar coordinates as
tem. Now Eq.(4) can be separated into two equations. Let

19( o\ 1[0 )2 2uE  2uZ9?
P2(r 1) = Pem(R)Y(r). @  toar\Tar ) tlggtMetiv] bt et ey
We have =0. (14
72 , We write ¢ as
- WVR’/’cm: Ecmiems (10 )
Y(r,0)=R(r)eM Ml m=0+1+2 .... (15
Hy=Ey, (113  ThenR(r) satisfies the equation
where d’R 1dR [2uE 2uZ¢? (m+v)?
, | , W+Fa+ 52 + 72 - 2 R=0. (16)
_h 191 4102 ) ) . .
H=— m VimzoM) (11D Now it can be shown thaE>0 gives scattering solutions,
which will not be discussed in this section. Thus bound states
D,y b, x have E<O. It will also become clear in the following that
Alx:_z_zr_21 Aly:z_zr_z’ (1190 bound states are possible only wh2p-0, i.e., when the
’7T ’7T

Coulomb potential represents attraction. These are all famil-

. iar conclusions in the pure Coulomb problem in three or two
andEqy+ E=Ey. Equation(10) governs the center-of-mass gimensions. Note that the factorized form of the solution
motion of the system, which is obviously free and will not be (15) itself requires

discussed any further. Equati¢hl) governs the relative mo-

tion of the two particles, which is of essential interest to us R(0)=0, (17)
and is the main subject of the remaining part of this paper. In

the following we omit the subscriptof V,. We also denote except form=m,. This is becausé is not well-defined at
(q;,®4)=(q,®/Z) and (@,,P,)=(—2Zq,—P), whereZis the origin. It will exclude some well-behaved solutions of
a nonvanishing real number. The Hamiltonidrib) can be EQ.(16). As E<O0, we introduce a dimensionless variaple
written as defined as

H=—

+ 2mhc

hZ . qq) 2 ZqZ _ _8/,LE
V+i Vo p=ar,

_ _ -1 =—, 18
2u r’ (12 “ 18

where {,6) are polar coordinates on th plane and has and a new parameter

been used above. Zq? “

As pointed out in the Introduction, the Hamiltoniét®) is A=—1\/— E; (19
the same, as that governs the motion of a charged patrticle in
the combined field of a vector AB_ potential and a scalary, o, Eq.(16) can be written as
Coulomb one. However, it is quite different from that for the

so-called ABC system studied in the literature, since that is a d’R 1dR 1 N (m+p)?
three-dimensional model while ours is a two-dimensional W+;$+ —Z‘*‘;——pz— R=0. (20

one. More precisely, in their Coulomb potential= (x2
+y?+2%)"% whereas in ours=(x’+y?)"2 In fact, every- Now we define a new function(p) through the relation
thing is independent of here, or, if one prefers, there is no

z component here. R(p)=e""2pI™*"lu(p); (21)
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then we have fou(p) the equation

d2u+2 +y+1 du
P ap? (2|m+ | —P)E—

1
m+v|+ =—N|u=0.
2
(22

This is the confluent hypergeometric equation. It is solved by

the confluent hypergeometric function

u(p)=CF(|m+v|+3—\,2lm+v|+1,), (23

QUANTUM-MECHANICAL MODEL FOR PARTICLES . ..

3231
24
i_ M4 _
En= 2h%(N+ v+ 1/2)%" N=012... (293
while whenm< 0, we have
ZZ 4
Ey= e N=1.2,.... (29b

© 2h2(N— v+ 1/2)%

The possible values ofn,m) that correspond t&,, are
(N,0),(N—1,1),...,(ON); thus the degeneracy =N

whereC is a normalization constant to be determined below.+ 1. Those that correspond ®, are N—1,—1), (N-2,

The other solution to Eq22) makesR(r) infinite atr=0

—2), ..., (07/N); thus the degeneracy dy=N. The

and is thus dropped. The above solution, though well begifference between the case<@<1 and the casg <v<1

haved atr =0, diverges whem—x: u(p) behaves likee”

lies in the order of the energy levels. In the first case the

andR(p) behaves likee?’2. Therefore, it is still not accept- order of the levels is
able in general. Physically acceptable solutions appear when

E or \ takes special values so that the confluent hypergeo-

metric series terminates. This happens when

Im+v|+3—-A=-n,, n=012... (24)
andu(p) becomes a polynomial of ordeg . From Eq.(19)
we see that this can be satisfied only wh&r0, and the

energy levels are given by

nZq*

B R 2n tme [ F 122

(29

The corresponding wave function is
’pnrm(rv9):Cnrmeiplzp|m+v‘

XF(—n,,2|m+v|+1,p)e M M)l (26)

Eg<E;<E ;<. <Ey<EN<Epn;1<---. (309
In the second case it is
E;<Eg<E, <.+ <ENy<EgN_1<En:1<---.
(30b

(4) v=13. In other wordsg® /27 c takes half integers. In
this case we have

nZ%q*

—m, N=0,1,2....

EN=En:1= (3D

The degeneracy of the level @ +dy, ;=2N+2. This im-
plies that the system has higher dynamical symmetry than
the geometrical SQ@). It is well known that the 2H pos-
sesses S@) symmetry, just like the ordinary three-

There are degeneracies in the energy levels. This is why wdimensional hydrogen atom possesseq43@ymmetry. It
have not attached any subscript Bo The degeneracy de- seems that the symmetry for the present case ifSEnd
pends on the values of and m,. The various cases are the above energy level corresponds to the vaNe-§)(N

discussed as follows.

+2) for the Casimir operator of the $P) algebra. But this

(1) v=my=0. This is the case of a pure Coulomb prob- has not been explicitly proved. One can construct the Runge-
lem, or the 2H. We introduce the principal quantum numbef-enz vector in a way similar to that in the case of Pt6].

N=n,+|m|. (27
Then the energy levels are written as
___wZ’q _
En= 2R NT 12?2’ N=0,1,2.... (28

With a givenN, the possible values fom(,m) are (N,0),
(N=1,£1), ..., (0£N), and the degeneracy t=2N
+1. These results are well knoWyh3-18.

(2) v=0, my#0. In other wordsg®/2=fc takes non-

zero integers. In this case the energy levels are roughly th&
same. However, from Eq26) we see that the solution with

m=0 is not acceptable, regardless of the valuenpf be-

cause the radial part of the wave function does not satisfy Eq.

(17). Therefore, the ground state has eneegyand the level
Ey has degeneracgy=2N (N=1,2,...).

(3) 0<wv<3 or 3<v<L1. In this case each level of the 2H

splits into two. Wherm=0, we have

However, the conservation of it and the closure of the alge-
bra involve some difficulty due to the singularity of the AB
potential at the origin. Perhaps some other method should be
employed to deal with the problem.

Both bound state and scattering problems of the two-
dimensional Coulomb field can be solved in parabolic coor-
dinates[17,18,25. Here we point out that the cas2) and
(4) discussed above can also be solved in parabolic coordi-
nates. As no new result can be obtained, we will not discuss
the solutions in detail. In the next section we will deal with
the scattering problem. It is in these two cases that exact
solutions are available.

Finally, we give the value of the normalization constant
nm iN the wave functior(26):

4uZg?

Com= 5220, + 2lm+ p[F DT (2mt 7]+ 1)

L(n+2|m+v|+1) ]2
2mn ! (2n,+2|m+v|+1)

(32
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IV. SCATTERING PROBLEM Though this is not convenient in polar coordinates, it may be

In this section we study the scattering problem of theeaSin treated in parabolic coordinates.
i . Now we introduce the parabolic coordinatés ) whose

two-body system. Here the Coulomb field may be either at'relation with .y) and (,6) are given b
tractive or repulsive. We denote=Zq?, which may be posi- Y ' g y
tive or negative. For general value of, and », one may x=1(82—75?), y=¢n, (40)
employ the method of partial-wave expansion in polar coor-
dinates. Then the starting point may be E({s5) and (16). ) P
However, the asymptotic form d&(r) whenr—oo involves &= \/Ecosz, n=+\2r sinz. (41
the Inr distortion, due to the long-range nature of the Cou-
lomb field. This may be more clearly seen in the following. | these coordinates, Eq88) and (39) become
Thus it is not easy to treat the partial-wave expansion and to
obtain the scattering cross section in a closed form. For this bo(—E—m)=to(&é,m)  (v=0) (42)
reason we confine ourselves in this paper to two special cases
where exact analysis can be carried out in parabolic coordiand
nates, and defer the general discussion to subsequent study.

Consider Eqs(113 and(12). Let us make a transforma- Yo(—&—n)=—to(&,m)  (v=3), (43)

tion, . .
respectively, where for convenience we have used the same

P(r,0)=e (Mot 10y (v 6). (33  hotationyy to denote the wave function in parabolic coordi-
nates. It is easy to see that other valuesvoh Eq. (37)
The new wave functionjo(r,6) satisfies the Schdinger —rendersyg(&,7) multivalued and thus are difficult to deal
equation with a pure Coulomb field: with. Though, is double valued in polar coordinates in the
casev= 3, it becomes single valued in the parabolic coordi-
5 K nates. This is essentially becausé s plane covers thay
- ﬂv o~ T¢0:E¢0- (34 plane twice, which is obvious from the relationt-iy = (¢
+in)?2.
In parabolic coordinates this equation can be separated into In the parabolic coordinates E(34) becomes
two ordinary differential equations while E¢L1) cannot be

2

separated. The probability current density, (95+ ) ho+ K2(£2+ 9?) ho+ 48K =0, (44)
LIPS LI PR
j=5— - ,
2iu I - /_ZME 4 K us
can be written in terms ofy, as ho 7%k

% Note thatE>0 since we are considering scattering states,
j= m( s Vo= oV ig). (36)  andp is dimensionless. Equatiqd4) can be solved by sepa-
ration of variables. Let

Although i, satisfies a simpler equation, the problem does _ 46
not become easier singk, must satisfy a nontrivial bound- Yol&:m)=v(W(n). (48
ary condition, We have forv andw the following equations:

Yolr,6+2m) =2 (1, 6), (37) v"+K2E% + B1kv =0, (47)
such thaty(r, ) is single valued. Moreovetjy(r, 6) should W’ + k2 2w+ Bokw=0, (48)

have proper behavior at the origin, so tlfats well defined
there. The latter condition also imposes a constraint on theshere 8,+ 8,=43, and primes denote differentiation with
solution. respect to argument. The general solution of @4) can be

It is, in general, difficult to deal with Eq(37). In the  obtained by superposition of solutions of the fo(®) over
following we only consider two special cases. The firsiis the parameteB;. For the scattering problem at hand we will
=0, or qd®/27hc takes integers. In this case E®7) be-  see, however, that a sing® is sufficient. No superposition
comes is necessary. Specifically, we are looking for solutions that

have the asymptotic property
ho(r,0+2m)=yp(r,0) (v=0), (38) _
Yo~e > for x— —oo. (49)

which meansy, is single valued. This is because the first
factor in Eq.(33) is also single valued in the present case.This represents particles incident in thex direction, as is
The second case we are to consideﬁ;ips%, or q®/2mhc easily verified by using Eq36). In the parabolic coordinates
takes half integers. In this case E§7) becomes it becomes

Do(r,0+2m)=—ho(r,0) (v=1). (39) Yo~€eKETI2 for o andall £ (50)
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This can be satisfied only if

v(£§) =€ (51)
andw(»n) has the asymptotic form
w(p)~e K72 for pooo, (52)

It is easy to verify thav (£) given by Eq.(51) does satisfy
Eq. (47) with B,=—i. Then the constang, in Eq. (48) is

QUANTUM-MECHANICAL MODEL FOR PARTICLES . ..
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. 7T +i = T
e T =
(61)
we arrive at
Btanhgw
7= s o2 2

given by 8,=48+i. The subsequent discussions depend orf NiS is the result obtained in Ref25]. If mo#0, i.e., if
the value ofv, and we should distinguish between the two d®/277ic takes nonzero integers, the solutih?) has a

casesy=0 andv=3.
For v=0 we define a new function(») by

—ik5212

w(n)=e u(7); (53
then Eq.(48) becomes
u”—2ikyu’ +4Bku=0. (54)

On account of Eqgs(51) and (53), the condition(42) now
simply means thati( %) is an even function ofy:

(59

It is easy to find the solution of Eq54) that satisfies this
condition:

u(=mn)=u(n).

U(’?):ClF(iﬁa%aikﬁz): (56)

wherec, is a normalization constant. Collecting Eq46),
(51), (53), and(56) we obtain the solution

o=, € 2R (i g L ik p?) = €%F (i 8,3,k p?).
(57)

If in addition to v=0 we havem,=0, i.e., for a pure Cou-

problem, however. This is becaugg(r=0)=c;#0, and
according to Eq(33), ¢(r=0)=c,e ™Mo’ which is not well
defined sincel is not well defined at the origin. The correct
solution formy# 0 should be

Yo=Ci[e®F(iB,1,ikn?) —e N F(:—iB,1,-2ikr)],
(63)

where the second term in the square bracket also solves Eq.
(34) with the condition(38), and does not affect the bound-
ary condition(49). We have nowyy(r=0)=0 and no prob-
lem arises. Due to this additional term, the solution now
behaves at infinity like

Yo— Yint Ysct hgt (r—2), (64)
wherey;, and . represent the incident and scattered waves
that are given by the first and second terms in E&f),
respectively, ands represents a stationary wave that comes
from the second term in Eq463) and is given by

_ s [ 2 cogkr+ BIn2kr+ 8y— ml4)
lIDSt__e ﬁ \/F 1

(65)

lomb potential, this is the required solution. Taking the limit Where

r—oo, and choosing the constaot=ef™2I" (1/2—i )/,
we have fory, the asymptotic form

Yo—exgikx—iBInk(r—x)]
explikr +iBIn 2kr)

+fc(8) i (r—=) (58
up to the order ~ 2, where
_ T(1/2-ip) expliBInsir? 6/2—iml4) 59

fo(6)= :
ol I'(iB) J2K sir? 612

So=argl’'(3—ip). (66)
Since the second term in E(3) is in fact theswave term

in the partial-wave expansion for a pure Coulomb field, the
logarithmic distortion in its asymptotic form mentioned be-
fore becomes clear here. Similar distortions appear in all
partial waves regardless of whether the AB potential is
present. The first term in E¢64) gives an incident current in
the +x direction (whenx— —). The second gives a scat-
tered one in the radial directiotthe component in the&
direction can be ignored whamn— o) and leads to the cross
sectiono( 6) obtained above. The third term, as a stationary

The first term in the above equation represents the inciderff@ve contributes nothing to the cross section. There are,
wave while the second represents the scattered one. Both BPWeVer, interference terms. The interference of the first
them are distorted by a logarithmic term in the phase due t&™ With the subsequent ones does not lead to physically
the long-range nature of the Coulomb field. Despite thessignificant results. However, the interference of the second

distortions, it can be shown that the scattering cross sectiofi"d the third terms actually gives rise to an additional term in
is given by the cross section, which will be denoted &y (6). The dif-

ferential cross section in the present case is thus given by

a(0)=|fc(6)%,
(67)

(60)
g1(0)=0c(0)+ox(0),
where the subscript C indicates pure Coulomb scattering.

Using the mathematical formulas where
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VB tanhBm cog 8,+ 6, — B Insir? 6/2) BI'(—iB) exp(iBInsir?a/2+i3m/4)
Jmk |sin6/2] I'(12+ip) 2k sir?6/2
68
(8 Again note that both terms are double valued. The double
and valueness does not cause much trouble in the calculation.
Using the formula$61) the cross section can be shown to be
Si=ardl'(iB). (69) iy B coth B .
a2 0)=[1(0)"= 5 =i (76)

In the neighborhood 06=0, o (6) oscillates rapidly and
thus the total contribution in a finitdout smal) interval of 6
may be neglected. For largg especially neaf= 7, how-

ever,o«(6) gives a considerable contribution. It is remark- If we ignore the relationc=Z¢? and treatx as an inde-
able thato «(6) is not positive definite and thus,(6) may endent parameter, we may set0 in the above results

become negative sprnewhere. Th's means that the particl Rote thatZ=0 is not allowed in our formalisin Then we
move toward the origin at some directions. To the best of ou ave

knowledge, similar results were not encountered previously
in the literature. Though the differential cross sectioy 6)

may become negative at some direction, it does not cause
any trouble physically because the total cross section is posi-
tive (actually positively infinite due to the long-range nature These are the AB scattering cross sections for the corre-

This has the same angular distribution @g(0), but the
dependence on other parameters is quite different.

o1(6)=0, (77

1
72 0)= 5 kS o2

of the potentials Indeed,o(6) gives a finite contribution
(positive or negativeto the total cross section, whikec(6)
gives a positively infinite one.

Now we turn to the case= 3. In this case we make the

transformation
w( ) =e K72 u(); (70)
then the equation fon reads
pu"+2(1—ikp?)u’ +2k(28—i) yu=0. (72

The condition(43) means thati( %) is an even function of.
The required solution can be found to be

wherec, is a normalization constant. Collecting Eq46),
(51), (70), and(72) we obtain the solution

Po=C."nF (i B+3,3,ik7?). (73

sponding values of.

Finally, we point out that the cross sectiq@®), (67), and
(76), when expressed in terms of the classical veloeity
=hk/u instead ofk, involve # explicitly. In the classical
limit, #—0, B=«k/hv.— (this is actually realized in the
low-energy limi), we see thato(6) is negligible when
compared witho(6), and both tani8= and cothB tend to
+1. So we have in this limit,

| x|

Uc(0)=01(0)=02(9)=m,

(78)

which is the classical scattering cross section for a pure Cou-
lomb field in two dimensions. This result implies that the AB
potential has no significant effect in the classical limit as
expected.

V. SUMMARY AND DISCUSSIONS

In this paper we propose amnbody Schrdinger equation
for particles carrying magnetic flux as well as electric
charges. The ratio of electric charge to magnetic flux is the

Here two remarks should be made. First, as a function of same for all particles. The two-body problem is studied in

andé, i, is double valued, so that is single valuedcf. Eq.

detail. The bound-state problem is exactly solved in the gen-

(33) where nowr=13] . Second, as a consequence of Eq.eral case, while the scattering problem is exactly solved in

(43) and obvious from the above result, we hayg(r=0)

=0 here, so thats is well defined at the origin. We choose

_2\/E Bm
Co= —exp 5 iy

then the asymptotic form ofy is given by

I(1-ip);

sin6/2

Po— exdikx—iBInk(r _X)]W

+f(9)exp(ikr+iﬁln2kr) (1 o),

\/F

(749

where

two special cases.

The original intention of this paper is to describe the CS
vortex solitons by a simple quantum-mechanical model. If
the sizes of the solitons are small, the AB potential may be a
good approximation in describing the charge-flux interaction.
On the other hand, the real charge-charge interaction may be
quite complicated; thus the Coulomb potential used here may
be questionable. If a better form(qg,,qy,|ra—r,|) can be
found for the interaction potential of chargg at r, and
chargeqy, atry,, then then-body equation may be improved
by substituting this potential fog,q,/|r,—rp| in Eq. (2b).

In this case the last term.g,/r in the two-body relative
Hamiltonian(11b) should be replaced by(q;,q,,r). With

an improved potential, the Schiimger equation might be-
come more difficult to solve, however. Therefore, the model
studied in this paper, even though it cannot well describe the
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interaction of the vortex solitons, may have some interest in

itself since it allows exact analysis to some extent.
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