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Quantum-mechanical model for particles carrying electric charge and magnetic flux
in two dimensions

Qiong-gui Lin
China Center of Advanced Science and Technology (World Laboratory), P.O. Box 8730, Beijing 100080, People’s Republic of

and Department of Physics, Zhongshan University, Guangzhou 510275, People’s Republic of China*
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We propose a simple quantum-mechanical equation forn particles in two dimensions, each particle carrying
electric charge and magnetic flux. Such particles appear in~211!-dimensional Chern-Simons field theories as
charged vortex soliton solutions, where the ratio of charge to flux is a constant independent of the specific
solution. As an approximation, the charge-flux interaction is described here by the Aharonov-Bohm potential,
and the charge-charge interaction by the Coulomb one. The equation for two particles, one with charge and flux
(q, F/Z) and the other with (2Zq, 2F) whereZ is a pure number is studied in detail. The bound-state
problem is solved exactly for arbitraryq and F when Z.0. The scattering problem is exactly solved in
parabolic coordinates in special cases whenqF/2p\c takes integers or half integers. In both cases the cross
sections obtained are rather different from that for pure Coulomb scattering.@S1050-2947~99!03705-1#

PACS number~s!: 03.65.Bz, 12.90.1b
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I. INTRODUCTION

Field theories with Chern-Simons~CS! term in ~211!-
dimensional space time admit soliton solutions carrying b
electric charge and magnetic flux@1–8#. These solutions are
often called CS vortices or vortex solitons, as compared w
Nielsen-Olesen vortices@9#, which are electrically neutral
They appear in both relativistic and nonrelativistic field the
ries, and regardless of whether the gauge-field action
volves both Maxwell and CS terms or only a pure CS ter
The ratio of electric chargeq to magnetic fluxF depends
only on the parameters in the field theoretical model, not
the specific solution. Such solutions are not only of inter
in field theories, but also expected to be useful in conden
matter physics. However, the interaction of these vortex s
tons is very complicated. A single soliton solution is ava
able in analytic form only for nonrelativistic theory an
when the Maxwell term is absent. It seems difficult to fi
multisoliton solutions in closed forms, especially when bo
Maxwell and CS terms are present. Therefore, a sim
quantum-mechanical model for the interaction of such vor
solitons may be of interest. The purpose of the present p
is to study such a model.

The real CS vortices have finite sizes. The electric cha
density and the magnetic flux density~the magnetic field!
depend on the specific solution. As a simple approximat
we use pointlike particles to represent them in this pap
Both the magnetic flux and the electric charge are then c
fined to a region of infinitesimal area, in other words, to
point where the particle is located. The vector potential
sociated with the flux is the Aharonov-Bohm~AB! potential
@10#. ~see also Refs.@11,12# for some more works on the
subject.! This is responsible for the charge-flux interactio
As for the charge-charge interaction, we make use of
Coulomb potential. Note that in two-dimensional space th
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are two kinds of Coulomb potentials. The first one satisfi
the two-dimensional Poisson equation with point source
is proportional to lnr, wherer is the distance between th
two point charges. The second simply imitates the form
the three-dimensional one and is proportional to 1/r . It
should be remarked that the real interaction between the
vortices may be very complicated, and it depends on whe
the field-theoretical model involves both Maxwell and C
terms or only a CS term. Neither of the above forms can
expected to be capable of well describing the real situat
Either one is in any case a rough approximation. We pre
the latter one since it is easier to obtain exact solutions in
case. This is the potential adopted in the study of the
called two-dimensional hydrogen atom~2H! @13–18#.

In this paper we confine ourselves to the framework
nonrelativistic quantum mechanics. Now that the forms
the interaction potentials are established, we can write do
an n-body Schro¨dinger equation for these particles carryin
magnetic flux as well as electric charges. This is done in S
II. The ath particle has charge and flux (qa , Fa), wherea
51,2, . . . ,n. It should be emphasized that the ratioqa /Fa
does not depend ona, as pointed out in the first paragrap
After the time variable is separated out to obtain a station
Schrödinger equation, we concentrate our attention on
two-body problem. This is separable into two equations. O
governs the center-of-mass motion, which is free, and
other governs the relative motion, which is of main intere
to us and is the main subject of the remaining part of t
paper. It is remarkable that the separability of the two-bo
equation crucially depends on the conditionq1 /F1
5q2 /F2. We then denote (q1 ,F1)5(q,F/Z), (q2 ,F2)
5(2Zq,2F), whereZ is a nonvanishing real number. Th
relative Hamiltonian has the same form as that for a part
of reduced mass moving in the composite field of a vec
AB potential and a scalar Coulomb one. This may be cal
an Aharonov-Bohm-Coulomb system. Although the s
called ABC system has been dealt with by numerous wo
@19–24# in the literature, the Coulomb potential consider
3228 ©1999 The American Physical Society
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there is a three-dimensional one. Thus the situation is q
different from that studied here. In other words, the mo
studied in the above cited works is a three-dimensional A
system, while that encountered here is a two-dimensio
one.

In Sec. III we study the bound-state problem. Bou
states are possible only whenZ.0, i.e., when the Coulomb
field represents attractive force, regardless of whether an
potential is present. WhenF50, the spectrum is just thos
of the 2H. The level EN has degeneracy 2N11(N
50,1,2, . . . ). If qF/2p\c takes nonvanishing integers, th
spectrum is roughly the same except that the ground state
energy E1 and the level EN has degeneracy 2N(N
51,2, . . . ) since some solutions are not acceptable. In
general case each levelEN of the 2H splits into two, each
with lower degeneracy. WhenqF/2p\c takes half integers
however, some of the splitted levels coincide and we h
again a high degeneracy. The degeneracy implies that
system should have SU~2! symmetry in this case, as th
SO~3! symmetry of the ordinary 2H@13,16,17#. But this has
not been explicitly proved.

In Sec. IV we study the scattering problem. In the gene
case partial-wave expansion in the polar coordinates sh
be employed. However, as the asymptotic form of the par
wave involves logarithmic distortion due to the long ran
nature of the Coulomb field, it is somewhat difficult
handle the partial-wave expansion. In this paper we res
our discussion to special cases whereqF/2p\c takes inte-
gers or half integers. In these cases the scattering prob
can be exactly solved in parabolic coordinates, as the o
nary Coulomb scattering in two dimensions@25#. Note that
what we use here are parabolic coordinates on the plane
thus they are quite different from the rotational parabo
coordinates used in the discussion of the ordinary thr
dimensional Coulomb problem in the text books of quant
mechanics. The latter are also used in the study of the th
dimensional ABC system@19#. WhenF50 the cross section
is just that for the Coulomb scattering in two dimension
When qF/2p\c takes nonzero integers, the cross sect
gains an additional term, which comes from the interfere
of the scattered wave with an additional stationary wa
present in the scattering solution. Without the station
wave term the solution would become meaningless at
origin. To the best of our knowledge, such circumstances
not encountered previously in the literature. WhenqF/2p\c
takes half integers, the result is simple but, of course, ra
different from that for pure Coulomb scattering. Without t
Coulomb field our results reduce to those for pure AB sc
tering @10,11#. The classical limit of the results is also di
cussed.

Section V is devoted to a brief summary and some m
remarks.

II. THE MODEL

Considern pointlike particles carrying magnetic flux a
well as electric charges in two-dimensional space. Theath
particle has massma , carries electric charge and magne
flux (qa , Fa), a51,2, . . . ,n. The position of theath par-
ticle is denoted byra5(xa ,ya). As remarked in the introduc
te
l
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tion, the ratioqa /Fa is independent ofa. More precisely, we
have

q1

F1
5

q2

F2
5 . . . 5

qn

Fn
. ~1!

We describe the charge-flux interactions among the parti
by the vector AB potentials and the charge-charge inter
tions by the scalar Coulomb ones. Then-body wave function
is denoted byC (n)(t,r1 , . . . ,rn). In this paper we work in
the domain of nonrelativistic quantum mechanics. T
Schrödinger equation for the wave function is then

i\
]C~n!

]t
5HTC~n!, ~2a!

whereHT is the Hamiltonian of the system given by

HT52 (
a51

n
\2

2ma
F“a2

iqa

\c
Aa~r1 , . . . ,rn!G2

1 (
a,b

qaqb

ura2rbu
,

~2b!

where the second term~the Coulomb interaction! involves a
double summation subject to the conditiona,b, and
Aa(r1 , . . . ,rn) is the AB vector potential at the positionra .
Note that all particles, except theath one, contribute toAa .
Thus the components ofAa are given by

Aax~r1 , . . . ,rn!52 (
bÞa

Fb

2p

ya2yb

ura2rbu2
,

Aay~r1 , . . . ,rn!5 (
bÞa

Fb

2p

xa2xb

ura2rbu2
. ~2c!

Since the HamiltonianHT does not involvet, the time-
dependent factor inC (n) can be separated out. Let

C~n!~ t,r1 , . . . ,rn!5e2 iETt/\c~n!~ t,r1 , . . . ,rn!. ~3!

We have forc (n) the stationary Schro¨dinger equation,

HTc~n!5ETc~n!. ~4!

In the following we concentrate our attention on the tw
body problem, since this is the only case where exact an
sis is possible. In this case the first summation in Eq.~2b!
contains two terms and the second contains only one.
introduce the relative positionr and the center-of-mass po
sition R defined by

r5r12r2 , R5
m1r11m2r2

M
, ~5!

whereM5m11m2 is the total mass of the system. Note th
bothA1 andA2 depend only onr ; it is not difficult to recast
HT in the form
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HT52
\2

2m1
S“ r2

iq1

\c
A1D 2

2
\2

2m2
S“ r1

iq2

\c
A2D 2

1
q1q2

r

2
\2

2M
¹R

21
i\

Mc
~q1A11q2A2!•“R , ~6!

wherer 5ur u. Using Eqs.~1! and ~2c!, it can be shown that

q1A152q2A2 . ~7!

Thus Eq.~6! reduces to

HT52
\2

2m S“ r2
iq1

\c
A1D 2

1
q1q2

r
2

\2

2M
¹R

2 , ~8!

wherem5m1m2 /(m11m2) is the reduced mass of the sy
tem. Now Eq.~4! can be separated into two equations. Le

c~2!~r1 ,r2!5ccm~R!c~r !. ~9!

We have

2
\2

2M
¹R

2ccm5Ecmccm, ~10!

Hc5Ec, ~11a!

where

H52
\2

2m S“ r2
iq1

\c
A1D 2

1
q1q2

r
, ~11b!

A1x52
F2

2p

y

r 2 , A1y5
F2

2p

x

r 2 , ~11c!

andEcm1E5ET . Equation~10! governs the center-of-mas
motion of the system, which is obviously free and will not
discussed any further. Equation~11! governs the relative mo
tion of the two particles, which is of essential interest to
and is the main subject of the remaining part of this paper
the following we omit the subscriptr of ¹ r . We also denote
(q1 ,F1)5(q,F/Z) and (q2 ,F2)5(2Zq,2F), whereZ is
a nonvanishing real number. The Hamiltonian~11b! can be
written as

H52
\2

2m S“1 i
qF

2p\c
“u D 2

2
Zq2

r
, ~12!

where (r ,u) are polar coordinates on thexy plane andr has
been used above.

As pointed out in the Introduction, the Hamiltonian~12! is
the same, as that governs the motion of a charged partic
the combined field of a vector AB potential and a sca
Coulomb one. However, it is quite different from that for th
so-called ABC system studied in the literature, since that
three-dimensional model while ours is a two-dimensio
one. More precisely, in their Coulomb potential,r 5(x2

1y21z2)1/2, whereas in oursr 5(x21y2)1/2. In fact, every-
thing is independent ofz here, or, if one prefers, there is n
z component here.
s
n

in
r

a
l

To conclude this section we emphasize that the separa
ity of Eq. ~4! ~for n52) crucially depends on the relation~7!
and thus on the condition~1!.

III. BOUND STATES

In this section we study bound states of the two-bo
system. These are solutions vanishing at infinity of Eq.~11!.
It is convenient to solve Eq.~11a!, with the Hamiltonian
written in the form of Eq.~12!, in polar coordinates. We
denote

qF

2p\c
5m01n, ~13!

wherem0 is an integer and 0<n,1. Equation~11! can be
written in polar coordinates as

1

r

]

]r S r
]c

]r D1
1

r 2 S ]

]u
1 im01 in D 2

c1S 2mE

\2 1
2mZq2

\2r Dc

50. ~14!

We write c as

c~r ,u!5R~r !ei ~m2m0!u, m50,61,62, . . . . ~15!

ThenR(r ) satisfies the equation

d2R

dr2 1
1

r

dR

dr
1F2mE

\2 1
2mZq2

\2r
2

~m1n!2

r 2 GR50. ~16!

Now it can be shown thatE.0 gives scattering solutions
which will not be discussed in this section. Thus bound sta
haveE,0. It will also become clear in the following tha
bound states are possible only whenZ.0, i.e., when the
Coulomb potential represents attraction. These are all fa
iar conclusions in the pure Coulomb problem in three or t
dimensions. Note that the factorized form of the soluti
~15! itself requires

R~0!50, ~17!

except form5m0. This is becauseu is not well-defined at
the origin. It will exclude some well-behaved solutions
Eq. ~16!. As E,0, we introduce a dimensionless variabler
defined as

r5ar , a5
A28mE

\
, ~18!

and a new parameter

l5
Zq2

\
A2

m

2E
; ~19!

then Eq.~16! can be written as

d2R

dr2 1
1

r

dR

dr
1F2

1

4
1

l

r
2

~m1n!2

r2 GR50. ~20!

Now we define a new functionu(r) through the relation

R~r!5e2r/2r um1nuu~r!; ~21!
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then we have foru(r) the equation

r
d2u

dr2 1~2um1nu112r!
du

dr
2S um1nu1

1

2
2l Du50.

~22!

This is the confluent hypergeometric equation. It is solved
the confluent hypergeometric function

u~r!5CF~ um1nu1 1
2 2l,2um1nu11,r!, ~23!

whereC is a normalization constant to be determined belo
The other solution to Eq.~22! makesR(r ) infinite at r 50
and is thus dropped. The above solution, though well
haved atr 50, diverges whenr→`: u(r) behaves likeer

andR(r) behaves likeer/2. Therefore, it is still not accept
able in general. Physically acceptable solutions appear w
E or l takes special values so that the confluent hyperg
metric series terminates. This happens when

um1nu1 1
2 2l52nr , nr50,1,2, . . . ~24!

andu(r) becomes a polynomial of ordernr . From Eq.~19!
we see that this can be satisfied only whenZ.0, and the
energy levels are given by

E52
mZ2q4

2\2~nr1um1nu11/2!2 . ~25!

The corresponding wave function is

cnrm
~r ,u!5Cnrm

e2r/2r um1nu

3F~2nr ,2um1nu11,r!ei ~m2m0!u. ~26!

There are degeneracies in the energy levels. This is why
have not attached any subscript toE. The degeneracy de
pends on the values ofn and m0. The various cases ar
discussed as follows.

~1! n5m050. This is the case of a pure Coulomb pro
lem, or the 2H. We introduce the principal quantum num

N5nr1umu. ~27!

Then the energy levels are written as

EN52
mZ2q4

2\2~N11/2!2 , N50,1,2, . . . . ~28!

With a givenN, the possible values for (nr ,m) are (N,0),
(N21,61), . . . , (0,6N), and the degeneracy isdN52N
11. These results are well known@13–18#.

~2! n50, m0Þ0. In other words,qF/2p\c takes non-
zero integers. In this case the energy levels are roughly
same. However, from Eq.~26! we see that the solution with
m50 is not acceptable, regardless of the value ofnr , be-
cause the radial part of the wave function does not satisfy
~17!. Therefore, the ground state has energyE1 and the level
EN has degeneracydN52N (N51,2, . . . ).

~3! 0,n, 1
2 or 1

2 ,n,1. In this case each level of the 2
splits into two. Whenm>0, we have
y

.

-

en
o-

e

r

he

q.

EN
152

mZ2q4

2\2~N1n11/2!2 , N50,1,2, . . . ~29a!

while whenm,0, we have

EN
252

mZ2q4

2\2~N2n11/2!2 , N51,2, . . . . ~29b!

The possible values of (nr ,m) that correspond toEN
1 are

(N,0),(N21,1), . . . ,(0,N); thus the degeneracy isdN
15N

11. Those that correspond toEN
2 are (N21,21), (N22,

22), . . . , (0,2N); thus the degeneracy isdN
25N. The

difference between the case 0,n, 1
2 and the case12 ,n,1

lies in the order of the energy levels. In the first case
order of the levels is

E0
1,E1

2,E1
1,•••,EN

2,EN
1,EN11

2 ,•••. ~30a!

In the second case it is

E1
2,E0

1,E2
2,•••,EN

2,EN21
1 ,EN11

2 ,•••.
~30b!

~4! n5 1
2 . In other words,qF/2p\c takes half integers. In

this case we have

EN
15EN11

2 52
mZ2q4

2\2~N11!2 , N50,1,2, . . . . ~31!

The degeneracy of the level isdN
11dN11

2 52N12. This im-
plies that the system has higher dynamical symmetry t
the geometrical SO~2!. It is well known that the 2H pos-
sesses SO~3! symmetry, just like the ordinary three
dimensional hydrogen atom possesses SO~4! symmetry. It
seems that the symmetry for the present case is SU~2!, and
the above energy level corresponds to the value (N1 1

2 )(N
1 3

2 ) for the Casimir operator of the SU~2! algebra. But this
has not been explicitly proved. One can construct the Run
Lenz vector in a way similar to that in the case of 2H@16#.
However, the conservation of it and the closure of the al
bra involve some difficulty due to the singularity of the A
potential at the origin. Perhaps some other method shoul
employed to deal with the problem.

Both bound state and scattering problems of the tw
dimensional Coulomb field can be solved in parabolic co
dinates@17,18,25#. Here we point out that the case~2! and
~4! discussed above can also be solved in parabolic coo
nates. As no new result can be obtained, we will not disc
the solutions in detail. In the next section we will deal wi
the scattering problem. It is in these two cases that ex
solutions are available.

Finally, we give the value of the normalization consta
Cnrm

in the wave function~26!:

Cnrm
5

4mZq2

\2~2nr12um1nu11!G~2um1nu11!

3F G~nr12um1nu11!

2pnr ! ~2nr12um1nu11!G
1/2

. ~32!
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IV. SCATTERING PROBLEM

In this section we study the scattering problem of t
two-body system. Here the Coulomb field may be either
tractive or repulsive. We denotek5Zq2, which may be posi-
tive or negative. For general value ofm0 and n, one may
employ the method of partial-wave expansion in polar co
dinates. Then the starting point may be Eqs.~15! and ~16!.
However, the asymptotic form ofR(r ) whenr→` involves
the lnr distortion, due to the long-range nature of the Co
lomb field. This may be more clearly seen in the followin
Thus it is not easy to treat the partial-wave expansion an
obtain the scattering cross section in a closed form. For
reason we confine ourselves in this paper to two special c
where exact analysis can be carried out in parabolic coo
nates, and defer the general discussion to subsequent s

Consider Eqs.~11a! and ~12!. Let us make a transforma
tion,

c~r ,u!5e2 i ~m01n!uc0~r ,u!. ~33!

The new wave functionc0(r ,u) satisfies the Schro¨dinger
equation with a pure Coulomb field:

2
\2

2m
¹2c02

k

r
c05Ec0 . ~34!

In parabolic coordinates this equation can be separated
two ordinary differential equations while Eq.~11! cannot be
separated. The probability current density,

j5
\

2im
~c*“c2c“c* !1

~m01n!\

m
c* c“u, ~35!

can be written in terms ofc0 as

j5
\

2im
~c0*“c02c0“c0* !. ~36!

Although c0 satisfies a simpler equation, the problem do
not become easier sincec0 must satisfy a nontrivial bound
ary condition,

c0~r ,u12p!5ei2pnc0~r ,u!, ~37!

such thatc(r ,u) is single valued. Moreover,c0(r ,u) should
have proper behavior at the origin, so thatc is well defined
there. The latter condition also imposes a constraint on
solution.

It is, in general, difficult to deal with Eq.~37!. In the
following we only consider two special cases. The first isn
50, or qF/2p\c takes integers. In this case Eq.~37! be-
comes

c0~r ,u12p!5c0~r ,u! ~n50!, ~38!

which meansc0 is single valued. This is because the fir
factor in Eq.~33! is also single valued in the present cas
The second case we are to consider isn5 1

2 , or qF/2p\c
takes half integers. In this case Eq.~37! becomes

c0~r ,u12p!52c0~r ,u! ~n5 1
2 !. ~39!
t-

-

-
.
to
is
es
i-
dy.

to

s

e

t
.

Though this is not convenient in polar coordinates, it may
easily treated in parabolic coordinates.

Now we introduce the parabolic coordinates (j,h) whose
relation with (x,y) and (r ,u) are given by

x5 1
2 ~j22h2!, y5jh, ~40!

j5A2r cos
u

2
, h5A2r sin

u

2
. ~41!

In these coordinates, Eqs.~38! and ~39! become

c0~2j,2h!5c0~j,h! ~n50! ~42!

and

c0~2j,2h!52c0~j,h! ~n5 1
2 !, ~43!

respectively, where for convenience we have used the s
notationc0 to denote the wave function in parabolic coord
nates. It is easy to see that other values ofn in Eq. ~37!
rendersc0(j,h) multivalued and thus are difficult to dea
with. Thoughc0 is double valued in polar coordinates in th
casen5 1

2 , it becomes single valued in the parabolic coor
nates. This is essentially because ajh plane covers thexy
plane twice, which is obvious from the relationx1 iy5(j
1 ih)2/2.

In the parabolic coordinates Eq.~34! becomes

~]j
21]h

2 !c01k2~j21h2!c014bkc050, ~44!

where

k5
A2mE

\
, b5

mk

\2k
. ~45!

Note thatE.0 since we are considering scattering stat
andb is dimensionless. Equation~44! can be solved by sepa
ration of variables. Let

c0~j,h!5v~j!w~h!. ~46!

We have forv andw the following equations:

v91k2j2v1b1kv50, ~47!

w91k2h2w1b2kw50, ~48!

whereb11b254b, and primes denote differentiation wit
respect to argument. The general solution of Eq.~44! can be
obtained by superposition of solutions of the form~46! over
the parameterb1. For the scattering problem at hand we w
see, however, that a singleb1 is sufficient. No superposition
is necessary. Specifically, we are looking for solutions t
have the asymptotic property

c0;eikx for x→2`. ~49!

This represents particles incident in the1x direction, as is
easily verified by using Eq.~36!. In the parabolic coordinate
it becomes

c0;eik~j22h2!/2 for h→` and all j. ~50!
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This can be satisfied only if

v~j!5eikj2/2 ~51!

andw(h) has the asymptotic form

w~h!;e2 ikh2/2 for h→`. ~52!

It is easy to verify thatv(j) given by Eq.~51! does satisfy
Eq. ~47! with b152 i . Then the constantb2 in Eq. ~48! is
given byb254b1 i . The subsequent discussions depend
the value ofn, and we should distinguish between the tw
casesn50 andn5 1

2 .
For n50 we define a new functionu(h) by

w~h!5e2 ikh2/2u~h!; ~53!

then Eq.~48! becomes

u922ikhu814bku50. ~54!

On account of Eqs.~51! and ~53!, the condition~42! now
simply means thatu(h) is an even function ofh:

u~2h!5u~h!. ~55!

It is easy to find the solution of Eq.~54! that satisfies this
condition:

u~h!5c1F~ ib, 1
2 ,ikh2!, ~56!

wherec1 is a normalization constant. Collecting Eqs.~46!,
~51!, ~53!, and~56! we obtain the solution

c05c1eik~j22h2!/2F~ ib, 1
2 ,ikh2!5c1eikxF~ ib, 1

2 ,ikh2!.
~57!

If in addition to n50 we havem050, i.e., for a pure Cou-
lomb potential, this is the required solution. Taking the lim
r→`, and choosing the constantc15ebp/2G(1/22 ib)/Ap,
we have forc0 the asymptotic form

c0→exp@ ikx2 ib ln k~r 2x!#

1 f C~u!
exp~ ikr 1 ib ln 2kr !

Ar
~r→`! ~58!

up to the orderr 21/2, where

f C~u!5
G~1/22 ib!

G~ ib!

exp~ ib ln sin2 u/22 ip/4!

A2k sin2 u/2
. ~59!

The first term in the above equation represents the incid
wave while the second represents the scattered one. Bo
them are distorted by a logarithmic term in the phase du
the long-range nature of the Coulomb field. Despite th
distortions, it can be shown that the scattering cross sec
is given by

s~u!5u f C~u!u2, ~60!

where the subscript C indicates pure Coulomb scatter
Using the mathematical formulas
n

nt
of

to
e

on

g.

uG~6 ib!u25
p

b sinhbp
, uG~ 1

2 6 ib!u25
p

coshbp
,

~61!

we arrive at

sC~u!5
b tanhbp

2k sin2 u/2
. ~62!

This is the result obtained in Ref.@25#. If m0Þ0, i.e., if
qF/2p\c takes nonzero integers, the solution~57! has a
problem, however. This is becausec0(r50)5c1Þ0, and
according to Eq.~33!, c(r50)5c1e2 im0u, which is not well
defined sinceu is not well defined at the origin. The correc
solution form0Þ0 should be

c05c1@eikxF~ ib, 1
2 ,ikh2!2eikrF~ 1

2 2 ib,1,22ikr !#,
~63!

where the second term in the square bracket also solves
~34! with the condition~38!, and does not affect the bound
ary condition~49!. We have nowc0(r50)50 and no prob-
lem arises. Due to this additional term, the solution n
behaves at infinity like

c0→c in1csc1cst ~r→`!, ~64!

wherec in andcsc represent the incident and scattered wav
that are given by the first and second terms in Eq.~58!,
respectively, andcst represents a stationary wave that com
from the second term in Eq.~63! and is given by

cst52eid0A 2

pk

cos~kr1b ln 2kr1d02p/4!

Ar
, ~65!

where

d05argG~ 1
2 2 ib!. ~66!

Since the second term in Eq.~63! is in fact thes-wave term
in the partial-wave expansion for a pure Coulomb field, t
logarithmic distortion in its asymptotic form mentioned b
fore becomes clear here. Similar distortions appear in
partial waves regardless of whether the AB potential
present. The first term in Eq.~64! gives an incident current in
the 1x direction ~whenx→2`). The second gives a sca
tered one in the radial direction~the component in theu
direction can be ignored whenr→`) and leads to the cros
sectionsC(u) obtained above. The third term, as a stationa
wave, contributes nothing to the cross section. There
however, interference terms. The interference of the fi
term with the subsequent ones does not lead to physic
significant results. However, the interference of the sec
and the third terms actually gives rise to an additional term
the cross section, which will be denoted bys3(u). The dif-
ferential cross section in the present case is thus given b

s1~u!5sC~u!1s3~u!, ~67!

where
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s3~u!52
Ab tanhbp

Apk

cos~d01d12b ln sin2 u/2!

usinu/2u
,

~68!

and

d15argG~ ib!. ~69!

In the neighborhood ofu50, s3(u) oscillates rapidly and
thus the total contribution in a finite~but small! interval ofu
may be neglected. For largeu, especially nearu5p, how-
ever,s3(u) gives a considerable contribution. It is remar
able thats3(u) is not positive definite and thuss1(u) may
become negative somewhere. This means that the part
move toward the origin at some directions. To the best of
knowledge, similar results were not encountered previou
in the literature. Though the differential cross sections1(u)
may become negative at some direction, it does not ca
any trouble physically because the total cross section is p
tive ~actually positively infinite due to the long-range natu
of the potentials!. Indeed,s3(u) gives a finite contribution
~positive or negative! to the total cross section, whilesC(u)
gives a positively infinite one.

Now we turn to the casen5 1
2 . In this case we make th

transformation

w~h!5e2 ikh2/2hu~h!; ~70!

then the equation foru reads

hu912~12 ikh2!u812k~2b2 i !hu50. ~71!

The condition~43! means thatu(h) is an even function ofh.
The required solution can be found to be

u~h!5c2F~ ib1 1
2 , 3

2 ,ikh2!, ~72!

wherec2 is a normalization constant. Collecting Eqs.~46!,
~51!, ~70!, and~72! we obtain the solution

c05c2eikxhF~ ib1 1
2 , 3

2 ,ikh2!. ~73!

Here two remarks should be made. First, as a functionr
andu, c0 is double valued, so thatc is single valued@cf. Eq.
~33! where nown5 1

2 ] . Second, as a consequence of E
~43! and obvious from the above result, we havec0(r50)
50 here, so thatc is well defined at the origin. We choos

c252Ak

p
expS bp

2
2 i

p

4 DG~12 ib!;

then the asymptotic form ofc0 is given by

c0→ exp@ ikx2 ib ln k~r 2x!#
sinu/2

usinu/2u

1 f ~u!
exp~ ikr 1 ib ln 2kr !

Ar
~r→`!, ~74!

where
les
r

ly

se
si-

.

f ~u!5
bG~2 ib!

G~1/21 ib!

exp~ ib ln sin2u/21 i3p/4!

A2k sin2u/2
. ~75!

Again note that both terms are double valued. The dou
valueness does not cause much trouble in the calcula
Using the formulas~61! the cross section can be shown to

s2~u!5u f ~u!u25
b coth bp

2k sin2 u/2
. ~76!

This has the same angular distribution assC(u), but the
dependence on other parameters is quite different.

If we ignore the relationk5Zq2 and treatk as an inde-
pendent parameter, we may setk50 in the above results
~note thatZ50 is not allowed in our formalism!. Then we
have

s1~u!50, s2~u!5
1

2pk sin2 u/2
. ~77!

These are the AB scattering cross sections for the co
sponding values ofn.

Finally, we point out that the cross sections~62!, ~67!, and
~76!, when expressed in terms of the classical velocityvc
5\k/m instead ofk, involve \ explicitly. In the classical
limit, \→0, b5k/\vc→` ~this is actually realized in the
low-energy limit!, we see thats3(u) is negligible when
compared withsC(u), and both tanhbp and cothbp tend to
61. So we have in this limit,

sC~u!5s1~u!5s2~u!5
uku

2mvc
2 sin2 u/2

, ~78!

which is the classical scattering cross section for a pure C
lomb field in two dimensions. This result implies that the A
potential has no significant effect in the classical limit
expected.

V. SUMMARY AND DISCUSSIONS

In this paper we propose ann-body Schro¨dinger equation
for particles carrying magnetic flux as well as elect
charges. The ratio of electric charge to magnetic flux is
same for all particles. The two-body problem is studied
detail. The bound-state problem is exactly solved in the g
eral case, while the scattering problem is exactly solved
two special cases.

The original intention of this paper is to describe the C
vortex solitons by a simple quantum-mechanical model
the sizes of the solitons are small, the AB potential may b
good approximation in describing the charge-flux interacti
On the other hand, the real charge-charge interaction ma
quite complicated; thus the Coulomb potential used here m
be questionable. If a better formV(qa ,qb ,ura2rbu) can be
found for the interaction potential of chargeqa at ra and
chargeqb at rb , then then-body equation may be improve
by substituting this potential forqaqb /ura2rbu in Eq. ~2b!.
In this case the last termq1q2 /r in the two-body relative
Hamiltonian~11b! should be replaced byV(q1 ,q2 ,r ). With
an improved potential, the Schro¨dinger equation might be
come more difficult to solve, however. Therefore, the mo
studied in this paper, even though it cannot well describe
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interaction of the vortex solitons, may have some interes
itself since it allows exact analysis to some extent.

Several aspects of this model that need further stu
may be: the dynamical symmetry of the two-body syste
the scattering problem for general value ofn, and finally, the
relativistic generalization of the model.
t.
in
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