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Photon wave functions in a localized coordinate space basis
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A first quantized theory of the photon is developed that incorporates all of the usual rules of quantum
mechanics. The state vector is argued to be proportional to the four-vector potential. Scalar products and the
probability amplitude are invariant under gauge transformations that satisfy the Lorentz gauge condition. The
eigenvectors of a recently constructed Hermitian position operator with commuting components provide a
basis for the position representati¢81050-294{@9)02605-(

PACS numbg(s): 03.65.Ca, 03.65.Bz, 14.70.Bh

[. INTRODUCTION script (+) denotes the positive energy part. In this and a
related three-vector formulation due to Sif where the
In interactions with matter where photons are created and=1 helicity components are added, the concept of photon
destroyed a second quantized formalism is required. Howprobability density is given up, and replaced with energy
ever, where annihilation and creation are not involved, a firstlensity.
guantized description should exist. There have been several State vectors can be definedprspace using the Landau-
attempts to construct a first quantized description of the phoPeierls wave functiofl2] that differs from the fields by a
ton, but none of these allow full use of the formal structurefactor \/p. Expectation values then take the familiar quantum
of quantum mechanics. Considering the current interest imechanical form[13]. However, since these functions are
one-photon states and localizabilift—3], it is timely to  not fundamental to the electromagnetic field, the source
make yet another attempt to solve this long standing probterms become nonlocal functions of the charge and current
lem. densities[14] and the photon probability and current densi-
If position is to be an observable, the formal structure ofties do not transform as Lorentz objef#s and are not gauge
guantum mechanics requires a position operator. It has longvariant.
been claimed that there is no suitable position operator for Photon quantum mechanics based on Bg.has been
the photon[4]. Recently a photon position operator with expjored in considerable detéil1]. If Fi is the Hamiltonian,
commuting components has been constru¢d This re- 4 scalar product
moves a very significant obstacle to the full realization of
photon quantum mechanics. 3 tr1
It is a fluke of nature that Planck’s constant occurs to the (¢l ¢>BB=f dry'H "¢ 2
same power in all the terms of Maxwell's equations and thus
f does not appear explicitly. For nonrelativistic particles,can be defined and momentum and angular momentum
energy occurs to the first power while momentum is squaregigenvectors found(Here the subscript BB denotes the
and# cannot be divided out. In the case of massive relativBialynicki-Birula scalar product, and is used to distinguish it
istic particles, E2—p2c?=m?c* again results in a wave from the scalar product defined in the present papene
equation in whichz cannot be eliminated. In spite of the limitation is that a position operator was assumed not to exist
absence ofi, by analogy with massive particles, the nine- and, as a consequence, no projection operator onto a region
teenth century Maxwell equations should describe the wavef r space was available. Probability density was defined as
mechanics of a photon. 4"y divided by the average energy, as[8i.
Pryce constructed a six-component wave function from The wave function given by Ed1) is a natural choice if
the electric and magnetic fields and B [6], rejecting the it is thought necessary to base probability amplitudes on en-
vector potentialA based on the need for gauge invariance.ergy density, which equalg’. The existence of a position
Using E andB, Maxwell’s theory in vacuum can be stated in operator whose eigenvectors define a projection operator
a form that closely parallels Dirac’s theory of the electron|r)(r| suggests that it may be possible to base photon quan-
[7]. Recently, there has been renewed interest in this agum mechanics on number density as is usual. Since charges
proach [8-11. The wave function was written by are coupled to the vector potential in the photon-matter
Bialynicki-Birula as the six-vector Hamiltonian, A may provide a simpler basis for photon
gquantum mechanics thdh+icB, provided problems associ-
o ated with gauge invariance can be overcome.
In this paper a case is first presented for use of the vector
potential as the wave function of the photon. The scalar
where + and — describe photon helicit}8] and the super- product of two state vectors and the expectation value and
adjoint of an operator are defined in Sec. Il. It is then dem-
onstrated in Sec. Il that the eigenvectors of the position
*Electronic address: margaret.hawton@lakeheadu.ca operator form a basis for the position representation. In Sec.

E<+>+icB<+>)

b= ﬁ( E®)—icB(*)
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IV the relationship to second quantized photon operators andiith Hamiltonian
other photon wave functions is examined. Sgstelnterna-
tional units are used throughout. A=c [“”3 )

[l. EXPECTATION VALUES will be used to eliminate the time dependence.
A state vector, proportional to the four-vector potential

Expressions for momentum and angular momentum of th t normalized to give unity, will be defined as

field based on symmetries of the standard Lagrangian are 0
he f
the form \/2_60

3 . |¢M>ET|A(+)M>, 8
O:J-Zl 7"[ d*rE; OA 3)

where the factor/2 comes from the reduction to positive
[15]. Here A, and E; are the Cartesian components of the frequencies. It will be assumed that Maxwell’s equations are
. i j (o - - _ _ 0 ;
vector potential and electric field, respectively, and,E; satisfied and thaB=V XA and E=—dA/dt—cVA". This
f together with Eq(4) ensures that the field vectors have the

arises as the variable conjugate A9. In the absence o Lorth i s, Si h b aseal
matter,E is transverse and thus only real photons contribute!/SUa! orthogonality properties. Since they are based, ane

The densityi e,E- A% was examined previousljL6] state vectors are transverse in the Coulomb gauge, but in-

and arguments presented for its use as a number Operat(E)Ilude the possibility of longitudinal and scalar components
also apply to a first quantized theory. In the Lorentz gauge. . .

A covariant formalism will be used here, both for funda- ' "'© Scalar product will be written as
mental reasons and to allow flexibility in the calculation of -
potentials and fields in the presence of current sources. Ein- (Yl d)=—(y.[H[¢"), 9
stein notation where repeated indices are summed over will A
be used for conciseness. The four-vector potentiah4s  which equals—<¢”|H|¢M>*, as suggested by E@5) and
=(A% A) wherecA® is the scalar potential and is the the complex conjugate of E¢6). The minus sign is required
vector potential. A covariant four-vector is obtained from its since the spacelike componentsAf are negative. In mo-
contravariant counterpart d,=g,,A". The metric tensog  mentum spacé! becomes just the measupe and Eq.(9)
is diagonal with zeroth entry-1 and first to third entry reduces to
—1 and attaches a minus sign to the first to third terms of a
covariant-contravariant product. The gradient four-vector is
d,=((1fc)al3t,V) so that the derivative with respect to con- (Yl d)y=— J d*pyt (p,t)pcdt(p,t). (10
travariant components gives a covariant vector.

The Lorentz gauge condition . - . N
gaug Conservation of total probability is achievedyif,H ¢ is

9 A*=0 (4)  the first component of a four-vector satisfying a continuity
a equation. Inr space, the four-vector
will be imposed to ensure thattransforms as a four-vector.
The Lagrangian densitg= — 2&,c%(d,A")(9*A,) gives the ., dhc_ .
equations of motiom,d“A”=0 in a charge and current free I'=- T[%(ﬁ P = (3", ¢ (11
region. Analogous arguments to thosd 18] based on trans-
lational and rotational invariance of this covariant Lagrang-is a candidate. Evaluation @f,j” using the equation of mo-

ian then result in conserved quantities of the form tion, 9,9*A’=0, givesd,j”=0. This shows tha}” is a con-
, served four-current density, making the spatial integral of its
O= 'ﬂf d3r&A“CA)A/‘. (5) 0th component time independent. While the first and second

fi at terms of Eq.(11) are not identical, their integrals over

) space are equal, and the integral j8freduces to Eq(9).

In the Coulomb gaugey - A=0 requiresA to be trans-  This can be verified by substitution of the general free pho-
verse and the zeroth equation of motion becoMéa®=0 ton wave function,y(r,t)«= fd3py#(p)e'(PT-PVA Thus
which impliesA°=0 for a free photon. Thend@, /dt)A*  an equivalent scalar product to E) is the integral ofj°.
reduces toE-A, making Egs.(3) and (5) the same. Free  The |ongitudinal and scalar contributions to E#0) can-
photon expressions in the Coulomb gauge can be obtained Rg|  |eaving only the transverse components, aplp) can
setting the longitudinal and scalar components of the fourye seen to be invariant under gauge transformations that sat-
vector potential equal to zero. isfy the Lorentz gauge condition. For a free particle whose

As with the versions of photon quantum mechanics disyyayve function goes aa(PT=PV/E 3 general gauge transfor-
cussed in the introductory paragraphs, the positive energy,ation is necessarily of the Lorentz form.

components will be used here. The notati®f* will de- Following Eq. (5) and using Eq(9) with ¢=0y, the

note the positive frequency part of the four-vector potential. ) ~
The Schrdinger equation expectation value of an operat@®, becomes

HAT =iz gAE gt (6) <¢’|©|X>E_<'//u||:|ol;|)(v> (12)
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The operatoi© can be scalar or vector, and in general is awas obtained iff5] for the casea=—3 that applies here.
matrix. The 4x 4 unit matrix is implied if none is explicitty ~This operator is Hermitian and its eigenvectors are trans-
written. Adjoints will be required to satisfy the usual rela- verse, longitudinal or scalar. i
tionship, In momentum space the normalized eigenvectors of

A A given by Eq.(17), |r’)\'>, with eigenvalues’ are
(xIO"|w)=(¥lOlx)*. (13
r — oM a—iprihy 3
We will show that these definitions result in a first quantized Vov(P)=epye INpe(2mh) (18

description of the photon consistent with all the rules OfThese functions describe physical photons Xor1 and 2.

qguantum mechanics. They satisfy
Ill. EIGENVECTORS (N PNy =8 —1") 8\, (19
The momentum observable will be considered first. In the, . o they are orthogonal anifunction normalized
position representatiop= —i%V and theuth component of State vectors can be expanded in a position or momentum

its eigenfunction with eigenvalug’ and polarization\" is  pasis using the unit closure operator in the usual way. Since
the photon’s energy is known in the momentum basis,

g (N=¢b, &P \pTc2an)®. (14
These functions have been normalized according to(8q. |¢f(t)>=)\:z+1 f d3p|pA)(pA[¢(0))e PVE. (20)

The two transverse unit vectors will be callegy and e,

while e,3=p/p ande, denotes the scalar component. In Mo-The scalar productp)|4) is the probability amplitude for

mentum spacep=p and the probability amplitude for find- finding it with momentump. Similarly, the scalar product

ing the photon with momenturp and polarization\ is, by  (r\|¢) is the probability amplitude for finding a photon at

Eqg. (9), positionr with polarization\, and|(t)) can be expanded in
. a position basis as
(PA[p N )=8(p—p") 6\ (15
as expected. Thé-function normalized state vector is |¢(t)>:7\=§;1 f AP (rn (). (21
M — M ! [~
Pprnr(P) =€y, S(p—p")/Vp'C. (16 The probability amplitudér\|y) is consistent with any

rphoton wave function whose transverse components give the
since its norm is negative and it represents a negative prokﬁ”lbove scalar product _and whose Io_ngl'FudmaI and scalar com-
ponents are equal. Since the longitudinal and scalar compo-

ability density. This is a well-known difficulty associated . o
with the nonphysical scalar photofis5]. Here the problem nents must be.equal tq safisfy the gauge condnmq,(@q.
o= Ep3t 96 Will be defined. If a gauge term proportional to

will be dealt with in the following way: In the reference €pg X
frame whereg3=¢°=0 the Coulomb gauge condition is this four-vector is added to any state vector, scalar products

satisfied and there are only two photon polarizations or, aftef"® unaffected, implying that the new vector is equivalent to
taking linear combinations, two photon helicities. Viewed € Original one. Here equivalence refers to the equality of
from an arbitrary inertial frame, the states have equal longiSc@lar products in quotient spaicr].

tudinal and scalar components but they still describe one- !N & Position basis, using Eq&20) and(14) and
photon states. Eigenvectors with a nonzarel or A=2 e Lot h 3
component and with equal=0 and\ =3 components de- (PA|r'\)= e P (2ah),
scribe the above two transverse states in a general inertiﬁlIe localized states become

reference frame and have positive norms. This basis is com-

plete for the description of real photon states in the Coulomb . ,

or the Lorentz gauge. The gauge condition reduces the num- lﬂfrw(r)=J d®pef, e/P T Jpc(2mh)®]. (29
ber of independent vectors to three, while the remaining or-

thogonal vector with zera =1 and 2 components has zero it yne gpherical polar unit vectorg, and ¢, are defined as

norm and is equivalent to the vacuum. the two transverse directions 1 and 2, respectively, the nor-
In the case of the position operator, the usual momentun, 5 jized state vector

space choicé=iﬁVp, whereV , is the gradient operator in

i iti i - " -y —ip-r'/h 3
p space, is not Hermitian and does not have transverse eigen-  y* (p)=y/ (p)—cotd,ese P/ \pc(2mh)
vectors. Since normalization according to ). results in a (24)
factor p~*2 and the states are vectorsmust differentiate R
€ andp~ %2 and this produces unwanted terms that must béias a fixed directioz in space such as would result from a
subtracted. The position operator current source of known direction. The state described by
Eq. (24), while not an eigenfunction of, is equivalent to
one. In the position representation the space pa#t gfgoes

asz|r—r’|~%2 implying an extended wave functi¢as,19.

There is clearly a problem with the zeroth basis vecto

(22

. P h f
rZIﬁVp+|fL2—p2+EpXS_BCOtGpepZSp:S (17)



3226 MARGARET HAWTON PRA 59

V. DISCUSSION fd3pf;a6fpa wheref,, is the probability amplitude. How-

In this section, the photon wave function will be discussedever, f, does not bear any direct relationship to Maxwell's
in relation to the one- to zero-photon transition amplitude ofequations, and its relationship to the matter current density is
the annihilation operator and the use of positive frequenciesomplicated and nonlocal. It has no simple gauge and Lor-
The present vector potential based wave function will beentz transformation propertidS]. A second vector can be
compared with photon wave functions basedfonicB and  defined to give the analog of Maxwell's equations and prob-
the Landau-Peierls wave function. Gauge invariance and thability four-current density14], but its components are not
photon probability density will be discussed and the resultgauge invariant and it is not a four-vec{d].

summarized. The scalar product,
Following second quantized theory, a photon’s wave
function in the momentum representation can be obtained <~¢|6|Zb>5<|:|¢ ||:|—1(|:|©u|:|—1)||:|¢v> (27)
12 v !

from the positive frequency part of the field operator as

e =0l |p\") [20]. For photons the annihilation op- s of the same form as E¢2) and resuits in the wave func-
erator is the usual vector potential operator rescaled usin

Eq. (8) to give flon Tp=|3|¢, and new operatoré). The Hamiltonian and

momentum operators are unchanged, and the new position
. - operator acquires a termifp/p? so thatr has eigenvectors
wﬁfEFElz f d*pepeP " ap, /\pe(2mh)®.  (25) proportional to\/p as in Eq.(1). This corresponds ta= % in
' [5].
Then ¢,,,,(p) agrees with Eq(18). The operator given by If  and Eq.(9) are replaced b;?ﬁ~l3|zp=ih¢9¢/at and
Eqg. (25) destroys a photon at while its adjoint creates one EQq. (27), an alternative version of photon quantum mechan-
in the usual position space photon-matter Hamiltonian. Irics is obtained. Calculation dfi %y is problematic in the
flel_d theory an interaction Hamiltonian creates part_lcl_eis’ at Lorentz gauge, and the resulting formalism is probably best
which propagate to” where they are destroyed. This is con- reqtricted to the Coulomb gauge. For a free phofis then
sistent with the physical picture obtained here, that@8)  ronortional to the electric field vector, and is equivalent to
describes a photon localized it the wave function defined by Scully and Zubaj&g]. It is

The validity of the Hamiltonian, Eq(7), requires that . . . ~
|4(t)) include strictly positive energies. For a free photon,'m./a”alntly normalized, and_some may prefer to tngats the
primary photon wave function.

Eq. (25 generates only positive energies. However, a rea Recent advocates of the photon wave function concept
current source drives both positive and negative frequenc . . : .
P 9 g ¥8,9] have based it on/e(E(Y) +icB(™). The relationship

oscillations ofa,, . When interactions with charged matter £ wave functions of this form to the oresent theory will now
are included, the correct positive frequency part discussed il wave functions ot this form {o the prese eory 0

[21,22 must be used. be considered. The Hamiltonian used [#,10,11, cS-p,

The expectation value of a field operator such as is detékes the curl of the vector on which it operates. Bialynicki-
fined by Eq.(25) is zero for a state with a definite number of Birula’s wave function, Eq(1), describes photons with he-
photons, in particular for one photon. Thus while the wavdlicity +1 and—1. In p space, this implies that the electric
function of a localized photon is nonlocal inspace, the field vector EL") is proportional toe,;*iey,. Onceey, is
average field is zero and a state that is known to contaiselected,e,,=e€,3X €, and it follows thatB, given by
exactly one photon does not interact with charged mattei.w,B=V XE, must go as* (e, *i€,,). This gives E(;)
Fields are nonzero during emission and absorption becauseicB!")=2E(") andE("”)*icB{)=0, that is, thex 1 he-
the number of photons is uncertain. _ _ licity states can be equivalently described k")

If a photon with momenturp is emitted at’, timet’, its +icB(), EY, or B (but not by ESVFicB(H). The

electric field must go agp to give the correct energy. At the Bialynicki-Birula scalar product, Eq(2), requiresH 1y
instant of emission the fields for eaplare in phase and their _ EC)/ipe which equals= AT . Thus Eqs(2) and (27)

sum is nonlocal. The meaning of the nonlocal fields an%re equivalent to Eq9) in the Coulomb gauge.
wave functions associated with ne_vvly created and localized |} 4 four-vectorj ” in Eq. (11) is not gauge invariant, and
photqns Is not yet clear. However, it has been g:o_ncluded thﬁﬁis might be perceived as a fatal flaw in the present vector
the field generated by a spontaneously emitting atom if,ential based formalism. However, expectation values cal-
causal21,9. . . culated using Eq(12) are independent of gauge. The result
There are alternative wave functions and operators thal¢ 5 measyrement of position is predicted by the expectation
result in the_s?‘me expectation value, FIp), and hence the value of the projection operat@r\ ){r\|. Thus the probabil-
same predictions as the present theory. For examplqt,y density for finding a photon in state/) atr with helicity

(#,/[HO%|$") can be written as N is (¢]r\) (r\|¢) and the density® has no direct physical
. R o R significance.
($]O]y=(H"2y, |HV2OLHVAHY2p").  (26) The vector potential plays a unique role in quantum me-

o chanics. Using the minimal coupling Hamiltonian, interac-
In p space and the Coulomb gauge, this gives the Landaujon with a charged particle is described By and an ardu-
Peierls wave functionf,,~(pc)"’¢*(p), considered in ous transformation is required to express the interaction in
[13]. The advantage of the approach[i8] and Eq.(26) is  terms ofE andB. The Aharanov-Bohm effect demonstrates
that H=pc is eliminated to give the familiar form, that an electron can be affected by a magnetic field with
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which it has no local contact through a nonzero vector pothe Lorentz gauge. The former choice results in strictly trans-
tential. While gauge invariance must be respecfedppears verse components, while the latter form is covariant and al-
to have some physical significance. In the present formalisnfows a vector potential with a fixed direction in space. For
the state of the photon is also described by the vector potergigenvectors with a definite helicity described in the Cou-
tial. lomb gauge, the Bialynicki-Birula-Sipe wave function and
In summary, using states proportional to the four-vectorBialynicki-Birula scalar product are regained and extended
potential, a first quantized theory of the photon was develto include a configuration space basis. This new formalism
oped. Expectation values and adjoints can be defined in thgrovides a description of a single photon that is consistent
usual way. The eigenvectors of Hermitian momentum andvith all of the usual formal rules of quantum mechanics.
position operators were shown to form a basis in momentum
and position space, respectively. Scalar products and prob-
ability amplitudes are invariant under gauge changes that
satisfy the Lorentz condition. State vectors consistent with The author wishes to thank the Natural Sciences and En-
this probability amplitude can be written in the Coulomb or gineering Research Council of Canada for financial support.
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