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Photon wave functions in a localized coordinate space basis

Margaret Hawton*
Department of Physics, Lakehead University, Thunder Bay, Ontario, Canada P7B 5E1

~Received 13 November 1998!

A first quantized theory of the photon is developed that incorporates all of the usual rules of quantum
mechanics. The state vector is argued to be proportional to the four-vector potential. Scalar products and the
probability amplitude are invariant under gauge transformations that satisfy the Lorentz gauge condition. The
eigenvectors of a recently constructed Hermitian position operator with commuting components provide a
basis for the position representation.@S1050-2947~99!02605-0#

PACS number~s!: 03.65.Ca, 03.65.Bz, 14.70.Bh
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I. INTRODUCTION

In interactions with matter where photons are created
destroyed a second quantized formalism is required. H
ever, where annihilation and creation are not involved, a fi
quantized description should exist. There have been sev
attempts to construct a first quantized description of the p
ton, but none of these allow full use of the formal structu
of quantum mechanics. Considering the current interes
one-photon states and localizability@1–3#, it is timely to
make yet another attempt to solve this long standing pr
lem.

If position is to be an observable, the formal structure
quantum mechanics requires a position operator. It has
been claimed that there is no suitable position operator
the photon@4#. Recently a photon position operator wi
commuting components has been constructed@5#. This re-
moves a very significant obstacle to the full realization
photon quantum mechanics.

It is a fluke of nature that Planck’s constant occurs to
same power in all the terms of Maxwell’s equations and th
\ does not appear explicitly. For nonrelativistic particle
energy occurs to the first power while momentum is squa
and\ cannot be divided out. In the case of massive rela
istic particles, E22p2c25m2c4 again results in a wave
equation in which\ cannot be eliminated. In spite of th
absence of\, by analogy with massive particles, the nin
teenth century Maxwell equations should describe the w
mechanics of a photon.

Pryce constructed a six-component wave function fr
the electric and magnetic fieldsE and B @6#, rejecting the
vector potentialA based on the need for gauge invarian
UsingE andB, Maxwell’s theory in vacuum can be stated
a form that closely parallels Dirac’s theory of the electr
@7#. Recently, there has been renewed interest in this
proach @8–11#. The wave function was written by
Bialynicki-Birula as the six-vector

c[AeS E~1 !1 icB~1 !

E„1…2 icB~1 ! D , ~1!

where1 and2 describe photon helicity@8# and the super-
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script (1) denotes the positive energy part. In this and
related three-vector formulation due to Sipe@9# where the
61 helicity components are added, the concept of pho
probability density is given up, and replaced with ener
density.

State vectors can be defined inp space using the Landau
Peierls wave function@12# that differs from the fields by a
factorAp. Expectation values then take the familiar quantu
mechanical form@13#. However, since these functions a
not fundamental to the electromagnetic field, the sou
terms become nonlocal functions of the charge and cur
densities@14# and the photon probability and current den
ties do not transform as Lorentz objects@8# and are not gauge
invariant.

Photon quantum mechanics based on Eq.~1! has been
explored in considerable detail@11#. If Ĥ is the Hamiltonian,
a scalar product

^cuf&BB5E d3rc†Ĥ21f ~2!

can be defined and momentum and angular momen
eigenvectors found.~Here the subscript BB denotes th
Bialynicki-Birula scalar product, and is used to distinguish
from the scalar product defined in the present paper.! The
limitation is that a position operator was assumed not to e
and, as a consequence, no projection operator onto a re
of r space was available. Probability density was defined
c†c divided by the average energy, as in@9#.

The wave function given by Eq.~1! is a natural choice if
it is thought necessary to base probability amplitudes on
ergy density, which equalsc†c. The existence of a position
operator whose eigenvectors define a projection oper
ur &^r u suggests that it may be possible to base photon qu
tum mechanics on number density as is usual. Since cha
are coupled to the vector potential in the photon-ma
Hamiltonian, A may provide a simpler basis for photo
quantum mechanics thanE6 icB, provided problems associ
ated with gauge invariance can be overcome.

In this paper a case is first presented for use of the ve
potential as the wave function of the photon. The sca
product of two state vectors and the expectation value
adjoint of an operator are defined in Sec. II. It is then de
onstrated in Sec. III that the eigenvectors of the posit
operator form a basis for the position representation. In S
3223 ©1999 The American Physical Society
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IV the relationship to second quantized photon operators
other photon wave functions is examined. Syste`me Interna-
tional units are used throughout.

II. EXPECTATION VALUES

Expressions for momentum and angular momentum of
field based on symmetries of the standard Lagrangian ar
the form

O5(
j 51

3
i e0

\ E d3rE jÔAj ~3!

@15#. Here Aj and Ej are the Cartesian components of t
vector potential and electric field, respectively, and2e0Ej
arises as the variable conjugate toAj . In the absence o
matter,E is transverse and thus only real photons contribu
The densityi e0E„2…

•A(1)/\ was examined previously@16#
and arguments presented for its use as a number ope
also apply to a first quantized theory.

A covariant formalism will be used here, both for fund
mental reasons and to allow flexibility in the calculation
potentials and fields in the presence of current sources.
stein notation where repeated indices are summed over
be used for conciseness. The four-vector potential isAm

5(A0,A) where cA0 is the scalar potential andA is the
vector potential. A covariant four-vector is obtained from
contravariant counterpart asAm5gmnAn. The metric tensorg
is diagonal with zeroth entry11 and first to third entry
21 and attaches a minus sign to the first to third terms o
covariant-contravariant product. The gradient four-vecto
]m5„(1/c)]/]t,“… so that the derivative with respect to co
travariant components gives a covariant vector.

The Lorentz gauge condition

]mAm50 ~4!

will be imposed to ensure thatA transforms as a four-vector
The Lagrangian densityL52 1

2 «0c2(]mAn)(]mAn) gives the
equations of motion]m]mAn50 in a charge and current fre
region. Analogous arguments to those in@15# based on trans
lational and rotational invariance of this covariant Lagran
ian then result in conserved quantities of the form

O5
i e0

\ E d3r
]Am

]t
ÔAm. ~5!

In the Coulomb gauge,“•A50 requiresA to be trans-
verse and the zeroth equation of motion becomes¹2A050
which impliesA050 for a free photon. Then (]Am /]t)Am

reduces toE–A, making Eqs.~3! and ~5! the same. Free
photon expressions in the Coulomb gauge can be obtaine
setting the longitudinal and scalar components of the fo
vector potential equal to zero.

As with the versions of photon quantum mechanics d
cussed in the introductory paragraphs, the positive ene
components will be used here. The notationA(1)m will de-
note the positive frequency part of the four-vector potent
The Schro¨dinger equation

ĤA~1 !m5 i\]A~1 !m/]t, ~6!
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with Hamiltonian

Ĥ5cAp̂–p̂ ~7!

will be used to eliminate the time dependence.
A state vector, proportional to the four-vector potent

but normalized to give unity, will be defined as

ucm&[
A2e0

\
uA~1 !m&, ~8!

where the factorA2 comes from the reduction to positiv
frequencies. It will be assumed that Maxwell’s equations
satisfied and thatB5“3A and E52]A/]t2c“A0. This
together with Eq.~4! ensures that the field vectors have t
usual orthogonality properties. Since they are based onA, the
state vectors are transverse in the Coulomb gauge, bu
clude the possibility of longitudinal and scalar compone
in the Lorentz gauge.

The scalar product will be written as

^cuf&[2^cmuĤufm&, ~9!

which equals2^fmuĤucm&* , as suggested by Eq.~5! and
the complex conjugate of Eq.~6!. The minus sign is required
since the spacelike components ofAm are negative. In mo-
mentum spaceĤ becomes just the measurepc and Eq.~9!
reduces to

^cuf&52E d3pcm* ~p,t !pcfm~p,t !. ~10!

Conservation of total probability is achieved ifcmĤcm is
the first component of a four-vector satisfying a continu
equation. Inr space, the four-vector

j n[2
i\c

2
@cm* ~]ncm!2~]ncm* !cm# ~11!

is a candidate. Evaluation of]n j n using the equation of mo
tion, ]m]mAn50, gives]n j n50. This shows thatj n is a con-
served four-current density, making the spatial integral of
0th component time independent. While the first and sec
terms of Eq.~11! are not identical, their integrals overr
space are equal, and the integral ofj 0 reduces to Eq.~9!.
This can be verified by substitution of the general free p
ton wave function,cm(r ,t)}*d3pcm(p)ei (p–r2pct)/\. Thus
an equivalent scalar product to Eq.~9! is the integral ofj 0.

The longitudinal and scalar contributions to Eq.~10! can-
cel, leaving only the transverse components, and^cuf& can
be seen to be invariant under gauge transformations that
isfy the Lorentz gauge condition. For a free particle who
wave function goes asei (p–r2pct)/\, a general gauge transfor
mation is necessarily of the Lorentz form.

Following Eq. ~5! and using Eq.~9! with f5Ôx, the
expectation value of an operator,Ô, becomes

^cuÔux&[2^cmuĤÔn
muxn&. ~12!
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The operatorÔ can be scalar or vector, and in general is
matrix. The 434 unit matrix is implied if none is explicitly
written. Adjoints will be required to satisfy the usual rel
tionship,

^xuÔ†uc&5^cuÔux&* . ~13!

We will show that these definitions result in a first quantiz
description of the photon consistent with all the rules
quantum mechanics.

III. EIGENVECTORS

The momentum observable will be considered first. In
position representation,p̂52 i\“ and themth component of
its eigenfunction with eigenvaluep8 and polarizationl8 is

fp8l8
m

~r !5e
p8l8
m

eip8–r /\/Ap8c~2p\!3. ~14!

These functions have been normalized according to Eq.~9!.
The two transverse unit vectors will be calledep1 and ep2,
while ep3[p/p ande0 denotes the scalar component. In m
mentum space,p̂5p and the probability amplitude for find
ing the photon with momentump and polarizationl is, by
Eq. ~9!,

^plup8l8&5d~p2p8!dl,l8 ~15!

as expected. Thed-function normalized state vector is

fp8l8
m

~p!5ep8l8
m d~p2p8!/Ap8c. ~16!

There is clearly a problem with the zeroth basis vect
since its norm is negative and it represents a negative p
ability density. This is a well-known difficulty associate
with the nonphysical scalar photons@15#. Here the problem
will be dealt with in the following way: In the referenc
frame wheref35f050 the Coulomb gauge condition i
satisfied and there are only two photon polarizations or, a
taking linear combinations, two photon helicities. View
from an arbitrary inertial frame, the states have equal lon
tudinal and scalar components but they still describe o
photon states. Eigenvectors with a nonzerol51 or l52
component and with equall50 andl53 components de
scribe the above two transverse states in a general ine
reference frame and have positive norms. This basis is c
plete for the description of real photon states in the Coulo
or the Lorentz gauge. The gauge condition reduces the n
ber of independent vectors to three, while the remaining
thogonal vector with zerol51 and 2 components has ze
norm and is equivalent to the vacuum.

In the case of the position operator, the usual momen
space choicer̂5 i\“p , where“p is the gradient operator in
p space, is not Hermitian and does not have transverse ei
vectors. Since normalization according to Eq.~9! results in a
factor p21/2 and the states are vectors,r̂ must differentiate
epl andp21/2, and this produces unwanted terms that mus
subtracted. The position operator

r̂5 i\¹p1 i\
p

2p2
1

\

p2
p3S2

\

p
cotupep2Sp3 ~17!
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was obtained in@5# for the casea52 1
2 that applies here.

This operator is Hermitian and its eigenvectors are tra
verse, longitudinal or scalar.

In momentum space the normalized eigenvectors or̂
given by Eq.~17!, ur 8l8&, with eigenvaluesr 8 are

c
r 8l8
m

~p!5epl8
m e2 ip–r8/\/Apc~2p\!3. ~18!

These functions describe physical photons forl51 and 2.
They satisfy

^r 8l8ur 9l9&5d~r 82r 9!dl8l9, ~19!

that is, they are orthogonal andd-function normalized.
State vectors can be expanded in a position or momen

basis using the unit closure operator in the usual way. Si
the photon’s energy is known in the momentum basis,

uc~ t !&5 (
l561

E d3pupl&^pluc~0!&e2 ipct/\. ~20!

The scalar product̂pluc& is the probability amplitude for
finding it with momentump. Similarly, the scalar produc
^rluc& is the probability amplitude for finding a photon a
positionr with polarizationl, anduc(t)& can be expanded in
a position basis as

uc~ t !&5 (
l561

E d3r url&^rluc~ t !&. ~21!

The probability amplitudê rluc& is consistent with any
photon wave function whose transverse components give
above scalar product and whose longitudinal and scalar c
ponents are equal. Since the longitudinal and scalar com
nents must be equal to satisfy the gauge condition, Eq.~4!,
epg

m 5ep3
m 1d0

m will be defined. If a gauge term proportional t
this four-vector is added to any state vector, scalar produ
are unaffected, implying that the new vector is equivalen
the original one. Here equivalence refers to the equality
scalar products in quotient space@17#.

In a position basis, using Eqs.~20! and ~14! and

^plur 8l8&5dll8e2 ip–r8/\/A~2p\!3, ~22!

the localized states become

c r8l8
m

~r !5E d3pepl8
m eip•~r2r8!/\/@Apc~2p\!3#. ~23!

If the spherical polar unit vectorsûp and f̂p are defined as
the two transverse directions 1 and 2, respectively, the n
malized state vector

c
r 8z

m
~p!5c

r 81

m
~p!2cotupepg

m e2 ip–r8/\/Apc~2p\!3

~24!

has a fixed directionẑ in space such as would result from
current source of known direction. The state described
Eq. ~24!, while not an eigenfunction ofr̂ , is equivalent to
one. In the position representation the space part ofc r 8z goes
asẑur2r 8u25/2, implying an extended wave function@18,19#.
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IV. DISCUSSION

In this section, the photon wave function will be discuss
in relation to the one- to zero-photon transition amplitude
the annihilation operator and the use of positive frequenc
The present vector potential based wave function will
compared with photon wave functions based onE6 icB and
the Landau-Peierls wave function. Gauge invariance and
photon probability density will be discussed and the res
summarized.

Following second quantized theory, a photon’s wa
function in the momentum representation can be obtai
from the positive frequency part of the field operator
c r8l85^0uĉ r8

(1)upl8& @20#. For photons the annihilation op
erator is the usual vector potential operator rescaled u
Eq. ~8! to give

ĉ r8
~1 !

5 (
l51,2

E d3pepleip•r8/\apl /Apc~2p\!3. ~25!

Then c r8l8(p) agrees with Eq.~18!. The operator given by
Eq. ~25! destroys a photon atr 8 while its adjoint creates one
in the usual position space photon-matter Hamiltonian.
field theory an interaction Hamiltonian creates particles ar 8
which propagate tor 9 where they are destroyed. This is co
sistent with the physical picture obtained here, that Eq.~18!
describes a photon localized atr 8.

The validity of the Hamiltonian, Eq.~7!, requires that
uc(t)& include strictly positive energies. For a free photo
Eq. ~25! generates only positive energies. However, a r
current source drives both positive and negative freque
oscillations ofapl . When interactions with charged matt
are included, the correct positive frequency part discusse
@21,22# must be used.

The expectation value of a field operator such as is
fined by Eq.~25! is zero for a state with a definite number
photons, in particular for one photon. Thus while the wa
function of a localized photon is nonlocal inr space, the
average field is zero and a state that is known to con
exactly one photon does not interact with charged mat
Fields are nonzero during emission and absorption bec
the number of photons is uncertain.

If a photon with momentump is emitted atr 8, time t8, its
electric field must go asAp to give the correct energy. At th
instant of emission the fields for eachp are in phase and thei
sum is nonlocal. The meaning of the nonlocal fields a
wave functions associated with newly created and locali
photons is not yet clear. However, it has been concluded
the field generated by a spontaneously emitting atom
causal@21,9#.

There are alternative wave functions and operators
result in the same expectation value, Eq.~12!, and hence the
same predictions as the present theory. For exam

^cmuĤÔn
mufn& can be written as

^c̃uỖuf̃&[^Ĥ1/2cmuĤ1/2Ôn
mĤ21/2uĤ1/2fn&. ~26!

In p space and the Coulomb gauge, this gives the Land
Peierls wave function,f pa;(pc)1/2fa(p), considered in
@13#. The advantage of the approach in@13# and Eq.~26! is
that Ĥ5pc is eliminated to give the familiar form
d
f
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*d3p fpa* Ỗ f pa where f pa is the probability amplitude. How-
ever, fp does not bear any direct relationship to Maxwel
equations, and its relationship to the matter current densit
complicated and nonlocal. It has no simple gauge and L
entz transformation properties@8#. A second vector can be
defined to give the analog of Maxwell’s equations and pro
ability four-current density@14#, but its components are no
gauge invariant and it is not a four-vector@19#.

The scalar product,

^c̃uỖuf̃&[^ĤcmuĤ21~ĤÔn
mĤ21!uĤfn&, ~27!

is of the same form as Eq.~2! and results in the wave func

tion c̃5Ĥc, and new operatorsỖ. The Hamiltonian and
momentum operators are unchanged, and the new pos
operator acquires a term2 i\p/p2 so thatr̂ has eigenvectors
proportional toAp as in Eq.~1!. This corresponds toa5 1

2 in
@5#.

If c and Eq.~9! are replaced byc̃;Ĥc5 i\]c/]t and
Eq. ~27!, an alternative version of photon quantum mecha
ics is obtained. Calculation ofĤ21c̃ is problematic in the
Lorentz gauge, and the resulting formalism is probably b
restricted to the Coulomb gauge. For a free photon,c̃ is then
proportional to the electric field vector, and is equivalent
the wave function defined by Scully and Zubairy@23#. It is
invariantly normalized, and some may prefer to treatc̃ as the
primary photon wave function.

Recent advocates of the photon wave function conc
@8,9# have based it onA«(E(1)6 icB(1)). The relationship
of wave functions of this form to the present theory will no
be considered. The Hamiltonian used in@8,10,11#, cS•p̂,
takes the curl of the vector on which it operates. Bialynic
Birula’s wave function, Eq.~1!, describes photons with he
licity 11 and21. In p space, this implies that the electr
field vector E6

(1) is proportional toep16 iep2. Once ep1 is
selected,ep25ep33ep1 and it follows that B, given by
ivpB5“3E, must go as6(ep16 iep2). This gives E6

(1)

6 icB6
(1)52E6

(1) andE6
(1)7 icB6

(1)50, that is, the61 he-
licity states can be equivalently described byE6

(1)

6 icB6
(1) , E6

(1) , or B6
(1) ~but not by E6

(1)7 icB6
(1)). The

Bialynicki-Birula scalar product, Eq.~2!, requires H21c
56E6

(1)/ ipc which equals6A6
(1) . Thus Eqs.~2! and ~27!

are equivalent to Eq.~9! in the Coulomb gauge.
The four-vectorj n in Eq. ~11! is not gauge invariant, and

this might be perceived as a fatal flaw in the present vec
potential based formalism. However, expectation values
culated using Eq.~12! are independent of gauge. The res
of a measurement of position is predicted by the expecta
value of the projection operatorurl&^rlu. Thus the probabil-
ity density for finding a photon in stateuc& at r with helicity
l is ^curl& ^rluc& and the densityj 0 has no direct physica
significance.

The vector potential plays a unique role in quantum m
chanics. Using the minimal coupling Hamiltonian, intera
tion with a charged particle is described byA, and an ardu-
ous transformation is required to express the interaction
terms ofE andB. The Aharanov-Bohm effect demonstrat
that an electron can be affected by a magnetic field w
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PRA 59 3227PHOTON WAVE FUNCTIONS IN A LOCALIZED . . .
which it has no local contact through a nonzero vector
tential. While gauge invariance must be respected,A appears
to have some physical significance. In the present formal
the state of the photon is also described by the vector po
tial.

In summary, using states proportional to the four-vec
potential, a first quantized theory of the photon was dev
oped. Expectation values and adjoints can be defined in
usual way. The eigenvectors of Hermitian momentum a
position operators were shown to form a basis in momen
and position space, respectively. Scalar products and p
ability amplitudes are invariant under gauge changes
satisfy the Lorentz condition. State vectors consistent w
this probability amplitude can be written in the Coulomb
n

,

-

-

m
n-

r
l-
he
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at
h

the Lorentz gauge. The former choice results in strictly tra
verse components, while the latter form is covariant and
lows a vector potential with a fixed direction in space. F
eigenvectors with a definite helicity described in the Co
lomb gauge, the Bialynicki-Birula-Sipe wave function an
Bialynicki-Birula scalar product are regained and extend
to include a configuration space basis. This new formali
provides a description of a single photon that is consist
with all of the usual formal rules of quantum mechanics.
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