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Ambiguities of arrival-time distributions in quantum theory
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We consider the definition that might be given, in quantum theory, to the time at which a particle arrives at
a given place. We discuss an ambiguity that arises in three, but not in one, spatial dimensions. We first express
this ambiguity within the ontology of Bohmian quantum theory, but we also show that it can be expressed
independently of that ontologyS1050-294{@9)02505-9

PACS numbds): 03.65.Bz, 03.65.Ca

I. INTRODUCTION | begin by using terminology which is appropriate in clas-
sical mechanics. Consider a particle with position coordi-
In classical mechanics, a particle can be said to follow anates &,y,z), which at the initial timeé =0 hasx<0. LetS,.
definite trajectory, and so it is clear what is meant by thedenote the region of space in whigk=0, S_ the region in
time at which a particle arrives in a given place. If one con-which x<0, andS, the x=0 plane. LetT be the first time
siders an ensemble of particles, it is then easy to say what &fter t=0 at which the particle arrives &, (equivalently,
meant by a distribution of arrival times. In standard quantunrcrosses frons_ to S, ); by definition,T>0. | will mostly be
theory, on the other hand, particles are not said to follonconcerned with the integrated arrival-time distribution,
trajectories, and so the meaning of arrival time in quantumwhich | denote ad(t); that is, P(t) is the probability that
theory has been rather controversial. Some elements of thibs<t.
controversy include statements such as “the time of arrival The guestion to be discussed is whether this distribugion
cannot be precisely defined and measured in quantum mean be precisely and unambiguously defined in quantum
chanics” (quoted from[1]; see alsd2—4]); statements that theory. If it can be, it could be expected to satisfy, at least,
time of arrival mustbe definable, for example “Since the the following propertiegsee also the discussion [iti7]).
distribution of arrival times at a given spatial point is, in (i) P(t) is monotonically increasingP(t)=P(t’) for t
principle, a measurable quantity that can be determined via z&t'=0.
time-of-flight experiment, it is reasonable to ask for an (ii) Define A(t)=dP(t)/dt; from (i), we haveA(t)=0.
apparatus-independent theoretical predictid®B]; specific  ThenA(t)dt represents the probability that=t.

proposa}ls for defining a timg—of—arrival distriputicﬁfor ex- (iii) Let T be the average value af(averaged over those
ample, in[6-8]), and suggestiondor example, if7,9)) that  c4ses in which the particle does eventually arriveSgkt
experiments could determine which if any of these proposalgom (ji), this is given by

is correct. Time-of-arrival distributions in quantum theory
are reviewed if10,11. -

In the causal theory of Bohifil2,13], particlesdo follow f tA(t)dt
definite trajectories, and so the definition of arrival-time dis- 7=2°
tributions is again unambiguous. Leavens, most recently in 0 '
[14], has studied the arrival-time distribution of a free par- fo A(Ddt
ticle in Bohmian theory, and found results which differ from
the proposal made if¥]. Deotto and Ghirardil5], and also
Holland [16] have proposed what | shall call Bohm-like
theories: theories in which particles follow trajectories which .
differ from the trajectories of Bohmian theory, but which f di[P..—P(1)]
nevertheless reproduce all of the observational results of — Jo
standard quantum theory, in the same way that Bohmian = P.. . 2
theory does. In this paper | will study a simple example of a
Bohm-like theory, and demonstrate that in certain cases this
theory will produce arrival-time distributions which are dif-
ferent than those produced lggtandargl Bohmian theory. |
will also use this same demonstration to discuss an ambigu-
ity in the meaning of arrival-time distributions for three- Q(t):fjj |W(x,y,z,t)|20(x)dx dy dz (3)
dimensional problems that does not depend on the adoption
of the ontology of Bohmiarfor of Bohm-like) theories.

@

This can be rewritten, with,:=lim,_,.. P(t), as

(iv) Now let Q(t) be the probability that the particle
would be found, at time, in S, ; that is,

The initial condition we are assuming means tigt=0)
=0. We expect that

*Participating guest at Lawrence Berkeley National Laboratory.
Electronic address: JLFinkelstein@Ibl.gov P(t)=Q(t). 4
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If the particle could surely be found i, at timet if it had
arrived there at time’ (with 0<t’<t), then the relatiori4)
could be replaced by an equality.

(v) From (i) and(iv), we have

P(t)= max Q(t’).

t=t'=0

©)

In the next section | will present an example in which a
Bohm-like theory produces a different result fB(t) than

IME DISTRIBUTIONS ... 3219

We see from Eq(10) thatQ does not approach one even as
t—oo; this is because the wave packet spreads out as its
center moves toward large so that a finite fraction of the
tail of the packet remains i6_ .

In Bohmian theory[12,13 the particle is considered to
have a definite position, which will be denoted as
=(X,Y,Z). Let v, denote the Bohmian velocity of the par-
ticle (that is,v,=dr/dt); then if we write ¥ =Rexp(S), in
Bohmian theoryvy, is given by

does the usual Bohmian theory. The implications of this ex-

ample are discussed in the final section.

II. EXAMPLE

Consider a free\{=0) particle which, at the initial time
t=0, is described by the following minimum-uncertainty
wave packet centered at the point —x;, y=0, z=0:

1/4
v(x,y,z,t=0)= m exgikx]
(X+xq)? y?
Xexg —————|expg — ——
2a? 2b?

Z2
xXexg - —
2c

(6)

wherea, b, c, andk are positive constants, and where |
have set both the mass of the particle and the value tf
one. We want the particle to start out witk<O; this corre-
sponds to¢;>0. Strictly speaking, this wave packet does not
satisfy the conditiorQ(t=0)=0, because its tail extends to
positive values ok. However,Q(0) can be made arbitrarily
small by taking &, /a) large[see Eq.9) below].

Define a=(a?+it)¥% B=(b?+it)¥% y=(c?+it)'2
Then

1/

a2b2c?|M* exdi(kx—Kk2t/2)]
v(x,y,z,t)=
(X,y,z,t) 3 aBy
(x+x;—kt)? y?
Xexgp ————|expg — ——
2a? 232
"
xexg — —|. 7)
272

At time t, the center of the wave packet isat — x; +kt
(with x;>0 andk>0),y=z=0. It is straightforward to cal-
culate

Q(t)=3 erfd »), (8

where 7:=a(x,—kt)/|a|?, and erfc is the complementary
error function: erfcg) =272 exp(-£) dé. It follows
from Eq. (8) that

Q(0)=3 erfa(x, /a), (9)
and that

limQ(t)=3 erf —ak).

t—o

(10

Vb:VS. (11)
It then follows that

w2
ot

V- (|P[Pv) = - (12

In fact, the product|@|?v,) is just the usual quantum prob-
ability current, and Eq(12) is just the equation of conserva-
tion of probability in standard quantum theory. One associ-
ates with a given wave functiolr an ensemble of particles,
whose distribution agrees with the quantum probability den-
sity |W|?; Eq. (12) assures that this agreement, if it exists at
the initial time, persists for all time, and this in turn means
that Bohmian theory will reproduce all of the experimental
predictions of standard quantum thedf8]. Thus Bohmian
theory is not in conflict with, but rather is a completion of,
standard quantum theory.

Since each particle in the Bohmian ensemble follows a
definite trajectory, the interpretation of arrival-time distribu-
tions is unambiguous. The quantiB(t) defined above is
simply the fraction of particles in the ensemble which have
X=0 for any timet’ with 0<t’<t, and of cours&Q(t) is
the fraction which have&X=0 at timet. For the wave func-
tion in Eq.(7), the components of the Bohmian velocity turn
out to be

VX, Y, Z,0) =[ K+ (X+x)t]/| a|?, (13
vhy(X,Y,Z,t)=YU|B]*, (14
vpAX,Y,Z,t)=2Zt/|y|% (15)

Sincex;>0, we see from Eq(13) that, for allt=0,
vpd X=0Y,Z,t)>0. (16)

This means that if the particle does eng&r, it can never
leave. Since that was the condition which gives equality in
the relation(4), we see that in this example, Bohmian theory
gives
P(t)=Q(1), 17

whereQ(t) is given by Eq.(8).

Because of the factorized form &f in this example, the
X component of the Bohmian motion is the same as in the
one-dimensional example of a minimum-uncertainty packet
studied in[14]. In fact we can, without having to solve for
the Bohmian trajectories in detail, recover one of the main
results of{ 14], namely, that a finite fraction of the Bohmian
ensemble never makes it to the regidn. That fraction is
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the maximum value ofév,(0,Y,Z1t)| occurs at the point¥
==+|B|%/(\)2b), Z=*]|y|?/(\2c). This maximum value is

r{

From EQ.(23), | vy maxiS zero att=0 and is proportional to
t~4 ast— o, while from Eq.(22), vy is nonzero at=0 and
is proportional tot ! ast—oe. Therefore it is possible to
have a value of sufficiently small so thaltév | max< vy for
all timest=0. In that caseyy, would be positive every-

Then in order for this Bohm-like theory to agree with stan-Where onS, for all t=0, and so the values d#(t) in this
dard quantum theory in the same sense that Bohmian theoBohm-like theory and in the standard Bohmian theory would

does, one must require thay, also satisfy Eq(12); that is, adree. o
one must require Now let me takeh to be sufficiently large so that

| 80 4| max> Vbx fOr some timet>0. This means that, for some
values ofY, Z, andt, vy,(0,Y,Z,t)<0, which implies that
some members of the Bohmian ensemble are returning from
Deotto and Ghirard[15] have shown that it is possible to S, to S_. Lett, be within an interval of time in which this
choosevy, in such a way as to satisfy several requirementgeturn is occurring. At any time, the fraction of the en-
that one may reasonably expect, in particular what they cakemble inS, equalsQ(t), but att, there is an additional
“genuine” Galilean covariance. | will consider a simplified fraction of “returned” members, which are i8_ att, but

just (1-P.); by Eq. (17) this equals[1—Ilim,_.Q(t)],
which we saw in Eq(10) is not zero.

It is Eq. (12) which ensures, for Bohmian theory, that an
ensemble of particles with initial distribution given by |2
reproduces the experimental predictions of standard quantum
theory. One can formulate an alternative theory, which | will
refer to as a Bohm-like theory, in which a particle again has
a definite position, but in which the velociggall it v,,;) may
differ from the Bohmian velocityy, [given in Eq.(11)]. Let
év denote the difference betweep, andv,:

a(b?>—c?)t

N —a?(x;—kt)?
ex
7% al?| % y|*

|al®

|5vx|max:

(23

Vp=Vp+ ov. (18)

V.- (|¥|?6v)=0. (19

form of the theory suggested [A5]; | will take

SV=N(V[W[?) X vy, (20)
where\ is a constant and, is still given by Eq.(11); vy, is
then given by Eq(18). This vy, will certainly not satisfy all
of the requirements imposed [it5]; | will argue in the next

section that this makes this simple example of a Bohm-likepoint of D and for an interval of time arount}

theory implausible, but not demonstrably incorrect. For now
| will proceed to discuss the consequences of the ch@ae
This choice does at least satisfy H49); to see that, note
thatv,= VS and thatV - (| ¥|?V|¥|?>X VS) vanishes identi-
cally for any|¥|2 and anysS.

It is possible to discuss the distributidA(t) that this
Bohme-like theory will imply for the example given by Eqg.
(7) without having to find the trajectories explicitly. If it
were the case that thecomponent ofv,,, were positive ev-
erywhere on the plang, for all timest=0, we could con-
clude thatP(t)=Q(t), just as we did in Eq(17) for the
standard Bohmian theory. As we shall see below, if this con
dition on thex component ofvy,, is not satisfied, then this
Bohm-like theory will necessarily imply differentdistribu-
tion P(t) than does standard Bohmian theory. From Edk.
(14), (15), and(20), thex component ofév at X=0 is

v, (0,Y,Z,t)=2\|P(0,Y,Z,t)|2(c®?—b?)Y Z¢(| B|*| 7|*),
(22)

while from Eq.(13),

vpx(0.Y,Z,t) = (k+x;t)/|a|*. (22
Let me now takeA>0 and €2—b?%)<0. Then in the two
guadrants of the plang, with the producty Z negative,év
will be positive, and since, is positive everywhere 08y,
we will havev i, (=v g+ dvy)>0. On the other hand, in the
guadrants withy Z positive, v is negative, and soy,, will
be positive if and only iff Sv,|<v,y. For a fixed value of,

were inS, at some time prior td, . This means thaP(t,)
(which is the total fraction of ensemble members that were in
S, atanytimet’<t) must be greater tha@(t,).

To be certain of this conclusion, we must show that, of
the ensemble members which returned frBmprior to t, ,
at least a finite fraction still are i5_ att,. Let D be an
open, bounded region of the plasg, such that at every
» Uplx IS
negative; such a region must existaifis sufficiently large.
For sufficiently smalle, it must be possible to find a subset
D _CD such that the distance between any poinDipand
any point onSy not in D is at leaste. Now it can be shown
that, for Y andZ bounded, the magnitude of the component
of v, parallel toS, is bounded, independently &f andt;
call such a boundb|max. Thus any member of the ensemble
which returns toS_ through D, must spend at least an
amount of timer= e/|v||max in S_ (because it takes at least
time 7 for it to clear the regioD). Thus all members of the
ensemble which return t8_ throughD. in the time interval
[t,—7.t,] will still be in S_ at timet, .

We therefore see that, with the wave function as given in
Eqg. (7), the Bohm-like theory defined by Eq20) with a
sufficiently large value ok will imply that P(t)>Q(t), for
some values of. Since with this wave function the standard
Bohmian theory give®(t) =Q(t) for all t, we conclude that
these two theories can give different arrival-time distribu-
tions P(t).

Ill. DISCUSSION

The choice fordv made in Eq(20) does not respect many
of the conditions set out by Deotto and Ghirafdb]. For
example, the cross product of two vectors is a pseudovector,
although a velocity must of course be a true vector. To take
this choice seriously, one would have to say that @€q) is
only valid in a particular coordinate system; if you want to
know v in some other coordinate system, use Ef) to
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calculate it in the particular system, and then transform. The ambiguity in the time-of-arrival distribution revealed
Deotto and Ghirardi require that there not be any preferredy the example discussed here would not be present in a
coordinate system; while this requirement is certainly quiteone-dimensional example. The analog of EtQ) for one
reasonable, it is not, strictly speaking, necessary. As long adimension, namely(|¥|25v)/dx=0, together with suit-
the Bohm-like theory reproduces the observational conseable boundary conditions, would requiée =0. One would
quences of standard quantum theory, the preferred coordgXxpect that general arguments for or against the definability
nate system remains hidden; its existence can be neither cofit the arrival-time distribution, such as those quoted at the
firmed nor refuted by any experimental result. beginning of this paper, would be equally cogent in one and

Still, Deotto and Ghirardi, and in a different way Holland in three dimensions. It does seem, however, that there is an
[16], have shown that it is possible to formulate a Bohm-likeambiguity in three dimensions which is not apparent if one
theory which is considerably more plausible than the onénly considers one-dimensional examples. Perhaps one di-
defined by Eq(20). It is certainly an important question for mension is misleadingly simple; one may be tempted by the
the program of studying Bohmian theories, to judge which ofisomorphism between configuration space and temporal
the possible alternatives for the particle velocity is the mosgpace to ignore the special role played by time in nonrelativ-
plausible[and the alternative given by E(R0) is surelynot  istic quantum mechanics.
the most plausible One could certainly criticize the calcu- ~ The discussion above has been within the context of Bo-
lations presented here, because of the implausibility of thémian and Bohm-like theories, but many of the same points
choice (20) or for that matter because the conditi@{0)  can be discussed independently of the Bohmian ontology, by
=0 is not strictly satisfied. The calculation presented heréonsidering the quantum probability currefd be denoted
does have the virtue of simplicity, and it is hard to believed). As Squires has pointed o{it9], the freedom to choose
that the result Obtaine[j:hat P(t) differs from that |mp||ed alternative eXpreSSionS for the VE|OCity in Bohm-like theories
by the standard Bohmian thedris an artifact either of the is a direct reflection of the underdetermination of the quan-
transformation properties of quo) or of the (arbitrar”y tum pl’ObabIlIty current in more than one Spatial dimension.
smal) tail of the initial wave function. Rather, this result Mielnik [3] suggested that a reasonable first guess for a time-
gives one confidence to conjecture that &ty Bohm-like ~ of-arrival density would be the componentbformal to the
theory(with nontrivial 6v) there exists an example of a wave arrival surface; in our case this would mean identifying
function with Q(0)=0 exactly, for which that theory and Jx(x=0y,zt) as the probability for arriving at the point
standard Bohmian theory yield differeR(t). (0y,z) at timet. Mielnik then went on to show that this

The examp'e presented here does not |mp|y any additionaould not be correct in general, since there must exist ex-
ambiguity within the Bohmian program, beyond that already2mples in which this component becomes negative. It is
recognized if15,16]. It is obvious that, when theories make sometimes suggestétbr example, in[20]) that J, does in-
different choices fordv, there will be some quantities for deed give the correct arrival-time density, in those cases in
which those theories will imply different results. What this Which it is always positive.
example does show is that such theories will differ on a LetJc denote the customary form for the quantum prob-
quantity, namely, the distribution of arrival times, that oneability current[which is just the product of¥|* with v,
might have hoped would be definable strictly in terms of thewhich is given in Eq(11)]; then without now identifyings,
wave function, and so would be independent of any particuas the velocity of anything, we can see from Exf) that for
lar completion of standard quantum theory. the wave function given in Eq7), J. is indeed positive

Of course, if one asks about the results of a particulagverywhere on the plar®. So, if we follow the above sug-
experiment designed to measure times of arrival, quanturgestion, we would say thdt,(x=0y,z,t) does indeed give
theory should be able to give an unambiguous answer, anide arrival-time density for this wave function.
Bohmian theory as well as any Bohm-like theory should Now defineJ; to be (¥|?vy), wherevy, is given by Egs.
agree with that answer. The issue we are considering i€18) and(20) (and also need not be identified as the velocity
whether that answer can be stated, within standard quantu@f anything. Then from Eqs(12) and(19) it follows that
theory, in a way which is independent of the particular way )
in which the arrival times are to be measured. In standard V.J=_ V|
guantum theory, no result is meaningful unless it is mea- ! at
sured; the quantityQ(t) defined in Eq.(3) must be inter-
preted as the probability that the particle be foundsinat ~ which means that we can, if we wish, violate custom and call
time t, rather than the probability that i there. Neverthe- J, (instead ofJ.) the quantum probability current. So we
less, we do not have to consider the particular way in whickmight as well say thaf,, gives the arrival-time density, in
the particle’s position is measured; in terms of Bohm-likethose cases in whichy, is always positive.
theories, we can say that they all must agree on the quantity The calculations of the preceding section show that, for
Q(t). One might have thought tha(t) would enjoy the the wave function given in Ed7), if A happens to be small
same status; after alR(t) is, roughly speaking, like the enough, therd,, is positive everywhere 08,. So, for small
conjunction ofQ(t’) for 0=<t’=<t. Unfortunately, a determi- enough\, the two possibilities for the probability current,(
nation of position at one time will disturb the determinationandJ,) give us two possibilities for the arrival-time density
at any other time, and different Bohm-like theories, while(J., andJ,,) which disagree with each othg21]. One cer-
constrained to have identical ensembles of positions at aninly can make an arbitrary choice betweknandJ;, that
one time, differ precisely because they have different trajecis, one can pick either one of them and choose to define that
tories. one to be the probability current. That choice, however, does

(24)
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not have any experimental implications—no experimentauantity a time-of-arrival distribution. One can then discuss
result can depend upon which definition one happens tthe question of whether this quantity does havkor does
make—so it would not make sense to expect the choice to beot have[22] properties that one might intuitively expect
either confirmed or refuted by any experiment. For largersuch a distribution to have. However, it might be that some-
values of\, we have seen that the Bohm-like theory definedone else would prefer a different choice, which would nev-
by Eq.(20) gives a different distributioP(t) than does the ertheless lead to identical predictions for actually measured

standard Bohm theory; still, we would not expect that anygistributions, so that experiment could not discriminate be-
experiment could discriminate between these two theoriegyween these different choices.

since they are constructéchore precisely, their multiparticle

generalizations are constructad agree on all observational

results. S|m|[arly, in discussing tlme_of arrival |ndeper_1dently ACKNOWLEDGMENTS
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