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Ambiguities of arrival-time distributions in quantum theory

J. Finkelstein*
Department of Physics, San Jose State University, San Jose, California 95192

~Received 29 September 1998!

We consider the definition that might be given, in quantum theory, to the time at which a particle arrives at
a given place. We discuss an ambiguity that arises in three, but not in one, spatial dimensions. We first express
this ambiguity within the ontology of Bohmian quantum theory, but we also show that it can be expressed
independently of that ontology.@S1050-2947~99!02505-6#

PACS number~s!: 03.65.Bz, 03.65.Ca
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I. INTRODUCTION

In classical mechanics, a particle can be said to follow
definite trajectory, and so it is clear what is meant by
time at which a particle arrives in a given place. If one co
siders an ensemble of particles, it is then easy to say wh
meant by a distribution of arrival times. In standard quant
theory, on the other hand, particles are not said to foll
trajectories, and so the meaning of arrival time in quant
theory has been rather controversial. Some elements of
controversy include statements such as ‘‘the time of arr
cannot be precisely defined and measured in quantum
chanics’’ ~quoted from@1#; see also@2–4#!; statements tha
time of arrival must be definable, for example ‘‘Since th
distribution of arrival times at a given spatial point is,
principle, a measurable quantity that can be determined v
time-of-flight experiment, it is reasonable to ask for
apparatus-independent theoretical prediction’’@5#; specific
proposals for defining a time-of-arrival distribution~for ex-
ample, in@6–8#!, and suggestions~for example, in@7,9#! that
experiments could determine which if any of these propos
is correct. Time-of-arrival distributions in quantum theo
are reviewed in@10,11#.

In the causal theory of Bohm@12,13#, particlesdo follow
definite trajectories, and so the definition of arrival-time d
tributions is again unambiguous. Leavens, most recentl
@14#, has studied the arrival-time distribution of a free pa
ticle in Bohmian theory, and found results which differ fro
the proposal made in@7#. Deotto and Ghirardi@15#, and also
Holland @16# have proposed what I shall call Bohm-lik
theories: theories in which particles follow trajectories whi
differ from the trajectories of Bohmian theory, but whic
nevertheless reproduce all of the observational results
standard quantum theory, in the same way that Bohm
theory does. In this paper I will study a simple example o
Bohm-like theory, and demonstrate that in certain cases
theory will produce arrival-time distributions which are di
ferent than those produced by~standard! Bohmian theory. I
will also use this same demonstration to discuss an amb
ity in the meaning of arrival-time distributions for three
dimensional problems that does not depend on the adop
of the ontology of Bohmian~or of Bohm-like! theories.
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I begin by using terminology which is appropriate in cla
sical mechanics. Consider a particle with position coor
nates (x,y,z), which at the initial timet50 hasx,0. LetS1

denote the region of space in whichx>0, S2 the region in
which x,0, andS0 the x50 plane. LetT be the first time
after t50 at which the particle arrives atS0 ~equivalently,
crosses fromS2 to S1); by definition,T.0. I will mostly be
concerned with the integrated arrival-time distributio
which I denote asP(t); that is, P(t) is the probability that
T<t.

The question to be discussed is whether this distributioP
can be precisely and unambiguously defined in quan
theory. If it can be, it could be expected to satisfy, at lea
the following properties~see also the discussion in@17#!.

~i! P(t) is monotonically increasing:P(t)>P(t8) for t
>t8>0.

~ii ! Define A(t)5dP(t)/dt; from ~i!, we haveA(t)>0.
ThenA(t)dt represents the probability thatT5t.

~iii ! Let T̄ be the average value ofT ~averaged over those
cases in which the particle does eventually arrive atS0).
From ~ii !, this is given by

T̄5

E
0

`

tA~ t !dt

E
0

`

A~ t !dt

. ~1!

This can be rewritten, withP`ª limt→` P(t), as

T̄5

E
0

`

dt@P`2P~ t !#

P`
. ~2!

~iv! Now let Q(t) be the probability that the particle
would be found, at timet, in S1 ; that is,

Q~ t !5EEE uC~x,y,z,t !u2u~x!dx dy dz. ~3!

The initial condition we are assuming means thatQ(t50)
50. We expect that

P~ t !>Q~ t !. ~4!
.
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PRA 59 3219AMBIGUITIES OF ARRIVAL-TIME DISTRIBUTIONS . . .
If the particle could surely be found inS1 at time t if it had
arrived there at timet8 ~with 0<t8<t), then the relation~4!
could be replaced by an equality.

~v! From ~i! and ~iv!, we have

P~ t !> max
t>t8>0

Q~ t8!. ~5!

In the next section I will present an example in which
Bohm-like theory produces a different result forP(t) than
does the usual Bohmian theory. The implications of this
ample are discussed in the final section.

II. EXAMPLE

Consider a free (V50) particle which, at the initial time
t50, is described by the following minimum-uncertain
wave packet centered at the pointx52x1 , y50, z50:

C~x,y,z,t50!5F 1

p3a2b2c2G 1/4

exp@ ikx#

3expF2
~x1x1!2

2a2 GexpF2
y2

2b2G
3expF2

z2

2c2G , ~6!

where a, b, c, and k are positive constants, and where
have set both the mass of the particle and the value of\ to
one. We want the particle to start out withx,0; this corre-
sponds tox1.0. Strictly speaking, this wave packet does n
satisfy the conditionQ(t50)50, because its tail extends t
positive values ofx. However,Q(0) can be made arbitrarily
small by taking (x1 /a) large @see Eq.~9! below#.

Define a5(a21 i t )1/2; b5(b21 i t )1/2; g5(c21 i t )1/2.
Then

C~x,y,z,t !5Fa2b2c2

p3 G 1/4
exp@ i ~kx2k2t/2!#

abg

3expF2
~x1x12kt!2

2a2 GexpF2
y2

2b2G
3expF2

z2

2g2G . ~7!

At time t, the center of the wave packet is atx52x11kt
~with x1.0 andk.0), y5z50. It is straightforward to cal-
culate

Q~ t !5 1
2 erfc~h!, ~8!

where hªa(x12kt)/uau2, and erfc is the complementar
error function: erfc(h)52p21/2*h

`exp(2j2) dj. It follows
from Eq. ~8! that

Q~0!5 1
2 erfc~x1 /a!, ~9!

and that

lim
t→`

Q~ t !5 1
2 erfc~2ak!. ~10!
-

t

We see from Eq.~10! that Q does not approach one even
t→`; this is because the wave packet spreads out as
center moves toward largex, so that a finite fraction of the
tail of the packet remains inS2 .

In Bohmian theory@12,13# the particle is considered to
have a definite position, which will be denoted asr
5(X,Y,Z). Let vb denote the Bohmian velocity of the pa
ticle ~that is,vb5dr /dt); then if we writeC5Rexp(iS), in
Bohmian theoryvb is given by

vb5“S. ~11!

It then follows that

“•~ uCu2vb!52
]uCu2

]t
. ~12!

In fact, the product (uCu2vb) is just the usual quantum prob
ability current, and Eq.~12! is just the equation of conserva
tion of probability in standard quantum theory. One asso
ates with a given wave functionC an ensemble of particles
whose distribution agrees with the quantum probability d
sity uCu2; Eq. ~12! assures that this agreement, if it exists
the initial time, persists for all time, and this in turn mea
that Bohmian theory will reproduce all of the experimen
predictions of standard quantum theory@18#. Thus Bohmian
theory is not in conflict with, but rather is a completion o
standard quantum theory.

Since each particle in the Bohmian ensemble follows
definite trajectory, the interpretation of arrival-time distrib
tions is unambiguous. The quantityP(t) defined above is
simply the fraction of particles in the ensemble which ha
X>0 for any timet8 with 0<t8<t, and of courseQ(t) is
the fraction which haveX>0 at timet. For the wave func-
tion in Eq.~7!, the components of the Bohmian velocity tu
out to be

vbx~X,Y,Z,t !5@k1~X1x1!t#/uau4, ~13!

vby~X,Y,Z,t !5Yt/ubu4, ~14!

vbz~X,Y,Z,t !5Zt/ugu4. ~15!

Sincex1.0, we see from Eq.~13! that, for all t>0,

vbx~X50,Y,Z,t !.0. ~16!

This means that if the particle does enterS1 , it can never
leave. Since that was the condition which gives equality
the relation~4!, we see that in this example, Bohmian theo
gives

P~ t !5Q~ t !, ~17!

whereQ(t) is given by Eq.~8!.
Because of the factorized form ofC in this example, the

x component of the Bohmian motion is the same as in
one-dimensional example of a minimum-uncertainty pac
studied in@14#. In fact we can, without having to solve fo
the Bohmian trajectories in detail, recover one of the m
results of@14#, namely, that a finite fraction of the Bohmia
ensemble never makes it to the regionS1 . That fraction is
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3220 PRA 59J. FINKELSTEIN
just (12P`); by Eq. ~17! this equals@12 limt→`Q(t)#,
which we saw in Eq.~10! is not zero.

It is Eq. ~12! which ensures, for Bohmian theory, that a
ensemble of particles with initial distribution given byuCu2

reproduces the experimental predictions of standard quan
theory. One can formulate an alternative theory, which I w
refer to as a Bohm-like theory, in which a particle again h
a definite position, but in which the velocity~call it vbl) may
differ from the Bohmian velocityvb @given in Eq.~11!#. Let
dv denote the difference betweenvbl andvb :

vbl5vb1dv. ~18!

Then in order for this Bohm-like theory to agree with sta
dard quantum theory in the same sense that Bohmian th
does, one must require thatvbl also satisfy Eq.~12!; that is,
one must require

“•~ uCu2dv!50. ~19!

Deotto and Ghirardi@15# have shown that it is possible t
choosevbl in such a way as to satisfy several requireme
that one may reasonably expect, in particular what they
‘‘genuine’’ Galilean covariance. I will consider a simplifie
form of the theory suggested in@15#; I will take

dv5l~“uCu2!3vb , ~20!

wherel is a constant andvb is still given by Eq.~11!; vbl is
then given by Eq.~18!. This vbl will certainly not satisfy all
of the requirements imposed in@15#; I will argue in the next
section that this makes this simple example of a Bohm-
theory implausible, but not demonstrably incorrect. For no
I will proceed to discuss the consequences of the choice~20!.
This choice does at least satisfy Eq.~19!; to see that, note
thatvb5“S and that“•(uCu2

“uCu23“S) vanishes identi-
cally for any uCu2 and anyS.

It is possible to discuss the distributionP(t) that this
Bohm-like theory will imply for the example given by Eq
~7! without having to find the trajectories explicitly. If i
were the case that thex component ofvbl were positive ev-
erywhere on the planeS0 for all times t>0, we could con-
clude thatP(t)5Q(t), just as we did in Eq.~17! for the
standard Bohmian theory. As we shall see below, if this c
dition on thex component ofvbl is not satisfied, then this
Bohm-like theory will necessarily imply adifferentdistribu-
tion P(t) than does standard Bohmian theory. From Eqs.~7!,
~14!, ~15!, and~20!, thex component ofdv at X50 is

dvx~0,Y,Z,t !52luC~0,Y,Z,t !u2~c22b2!YZt/~ ubu4ugu4!,
~21!

while from Eq.~13!,

vbx~0,Y,Z,t !5~k1x1t !/uau4. ~22!

Let me now takel.0 and (c22b2),0. Then in the two
quadrants of the planeS0 with the productYZ negative,dvx
will be positive, and sincevbx is positive everywhere onS0,
we will havevblx(5vbx1dvx).0. On the other hand, in th
quadrants withYZ positive,dvx is negative, and sovblx will
be positive if and only ifudvxu<vbx . For a fixed value oft,
m
l
s

-
ry

s
ll

e
,

-

the maximum value ofudvx(0,Y,Z,t)u occurs at the pointsY
56ubu2/(A2b), Z56ugu2/(A2c). This maximum value is

udvxumax5l
a~b22c2!t

p3/2euau2ubu4ugu4
expF2a2~x12kt!2

uau4 G .

~23!

From Eq.~23!, udvxumax is zero att50 and is proportional to
t24 ast→`, while from Eq.~22!, vbx is nonzero att50 and
is proportional tot21 as t→`. Therefore it is possible to
have a value ofl sufficiently small so thatudvxumax,vbx for
all times t>0. In that case,vblx would be positive every-
where onS0 for all t>0, and so the values ofP(t) in this
Bohm-like theory and in the standard Bohmian theory wo
agree.

Now let me takel to be sufficiently large so tha
udvxumax.vbx for some timet.0. This means that, for som
values ofY, Z, andt, vblx(0,Y,Z,t),0, which implies that
some members of the Bohmian ensemble are returning f
S1 to S2 . Let t r be within an interval of time in which this
return is occurring. At any timet, the fraction of the en-
semble inS1 equalsQ(t), but at t r there is an additiona
fraction of ‘‘returned’’ members, which are inS2 at t r but
were inS1 at some time prior tot r . This means thatP(t r)
~which is the total fraction of ensemble members that were
S1 at any time t8<t) must be greater thanQ(t r).

To be certain of this conclusion, we must show that,
the ensemble members which returned fromS1 prior to t r ,
at least a finite fraction still are inS2 at t r . Let D be an
open, bounded region of the planeS0, such that at every
point of D and for an interval of time aroundt r , vblx is
negative; such a region must exist, ifl is sufficiently large.
For sufficiently smalle, it must be possible to find a subs
De,D such that the distance between any point inDe and
any point onS0 not in D is at leaste. Now it can be shown
that, for Y andZ bounded, the magnitude of the compone
of vbl parallel toS0 is bounded, independently ofX and t;
call such a bounduv iumax. Thus any member of the ensemb
which returns toS2 through De must spend at least a
amount of timet5e/uv iumax in S2 ~because it takes at leas
time t for it to clear the regionD). Thus all members of the
ensemble which return toS2 throughDe in the time interval
@ t r2t,t r # will still be in S2 at time t r .

We therefore see that, with the wave function as given
Eq. ~7!, the Bohm-like theory defined by Eq.~20! with a
sufficiently large value ofl will imply that P(t).Q(t), for
some values oft. Since with this wave function the standa
Bohmian theory givesP(t)5Q(t) for all t, we conclude that
these two theories can give different arrival-time distrib
tions P(t).

III. DISCUSSION

The choice fordv made in Eq.~20! does not respect man
of the conditions set out by Deotto and Ghirardi@15#. For
example, the cross product of two vectors is a pseudovec
although a velocity must of course be a true vector. To ta
this choice seriously, one would have to say that Eq.~20! is
only valid in a particular coordinate system; if you want
know dv in some other coordinate system, use Eq.~20! to
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calculate it in the particular system, and then transfo
Deotto and Ghirardi require that there not be any prefer
coordinate system; while this requirement is certainly qu
reasonable, it is not, strictly speaking, necessary. As lon
the Bohm-like theory reproduces the observational con
quences of standard quantum theory, the preferred coo
nate system remains hidden; its existence can be neither
firmed nor refuted by any experimental result.

Still, Deotto and Ghirardi, and in a different way Hollan
@16#, have shown that it is possible to formulate a Bohm-li
theory which is considerably more plausible than the o
defined by Eq.~20!. It is certainly an important question fo
the program of studying Bohmian theories, to judge which
the possible alternatives for the particle velocity is the m
plausible@and the alternative given by Eq.~20! is surelynot
the most plausible#. One could certainly criticize the calcu
lations presented here, because of the implausibility of
choice ~20! or for that matter because the conditionQ(0)
50 is not strictly satisfied. The calculation presented h
does have the virtue of simplicity, and it is hard to belie
that the result obtained@that P(t) differs from that implied
by the standard Bohmian theory# is an artifact either of the
transformation properties of Eq.~20! or of the ~arbitrarily
small! tail of the initial wave function. Rather, this resu
gives one confidence to conjecture that forany Bohm-like
theory~with nontrivial dv) there exists an example of a wav
function with Q(0)50 exactly, for which that theory and
standard Bohmian theory yield differentP(t).

The example presented here does not imply any additio
ambiguity within the Bohmian program, beyond that alrea
recognized in@15,16#. It is obvious that, when theories mak
different choices fordv, there will be some quantities fo
which those theories will imply different results. What th
example does show is that such theories will differ on
quantity, namely, the distribution of arrival times, that o
might have hoped would be definable strictly in terms of
wave function, and so would be independent of any parti
lar completion of standard quantum theory.

Of course, if one asks about the results of a particu
experiment designed to measure times of arrival, quan
theory should be able to give an unambiguous answer,
Bohmian theory as well as any Bohm-like theory shou
agree with that answer. The issue we are considerin
whether that answer can be stated, within standard quan
theory, in a way which is independent of the particular w
in which the arrival times are to be measured. In stand
quantum theory, no result is meaningful unless it is m
sured; the quantityQ(t) defined in Eq.~3! must be inter-
preted as the probability that the particle be found inS1 at
time t, rather than the probability that itis there. Neverthe-
less, we do not have to consider the particular way in wh
the particle’s position is measured; in terms of Bohm-li
theories, we can say that they all must agree on the qua
Q(t). One might have thought thatP(t) would enjoy the
same status; after all,P(t) is, roughly speaking, like the
conjunction ofQ(t8) for 0<t8<t. Unfortunately, a determi-
nation of position at one time will disturb the determinati
at any other time, and different Bohm-like theories, wh
constrained to have identical ensembles of positions at
one time, differ precisely because they have different tra
tories.
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The ambiguity in the time-of-arrival distribution reveale
by the example discussed here would not be present
one-dimensional example. The analog of Eq.~19! for one
dimension, namely,](uCu2dv)/]x50, together with suit-
able boundary conditions, would requiredv50. One would
expect that general arguments for or against the definab
of the arrival-time distribution, such as those quoted at
beginning of this paper, would be equally cogent in one a
in three dimensions. It does seem, however, that there i
ambiguity in three dimensions which is not apparent if o
only considers one-dimensional examples. Perhaps one
mension is misleadingly simple; one may be tempted by
isomorphism between configuration space and temp
space to ignore the special role played by time in nonrela
istic quantum mechanics.

The discussion above has been within the context of
hmian and Bohm-like theories, but many of the same po
can be discussed independently of the Bohmian ontology
considering the quantum probability current~to be denoted
J). As Squires has pointed out@19#, the freedom to choose
alternative expressions for the velocity in Bohm-like theor
is a direct reflection of the underdetermination of the qu
tum probability current in more than one spatial dimensio
Mielnik @3# suggested that a reasonable first guess for a ti
of-arrival density would be the component ofJ normal to the
arrival surface; in our case this would mean identifyi
Jx(x50,y,z,t) as the probability for arriving at the poin
(0,y,z) at time t. Mielnik then went on to show that this
could not be correct in general, since there must exist
amples in which this component becomes negative. I
sometimes suggested~for example, in@20#! that Jx does in-
deed give the correct arrival-time density, in those case
which it is always positive.

Let Jc denote the customary form for the quantum pro
ability current @which is just the product ofuCu2 with vb
which is given in Eq.~11!#; then without now identifyingvb
as the velocity of anything, we can see from Eq.~16! that for
the wave function given in Eq.~7!, Jcx is indeed positive
everywhere on the planeS0. So, if we follow the above sug
gestion, we would say thatJcx(x50,y,z,t) does indeed give
the arrival-time density for this wave function.

Now defineJl to be (uCu2vbl), wherevbl is given by Eqs.
~18! and~20! ~and also need not be identified as the veloc
of anything!. Then from Eqs.~12! and ~19! it follows that

“•Jl52
]uCu2

]t
, ~24!

which means that we can, if we wish, violate custom and c
Jl ~instead ofJc) the quantum probability current. So w
might as well say thatJlx gives the arrival-time density, in
those cases in whichJlx is always positive.

The calculations of the preceding section show that,
the wave function given in Eq.~7!, if l happens to be smal
enough, thenJlx is positive everywhere onS0. So, for small
enoughl, the two possibilities for the probability current (Jc
andJl) give us two possibilities for the arrival-time densi
(Jcx andJlx) which disagree with each other@21#. One cer-
tainly can make an arbitrary choice betweenJc andJl , that
is, one can pick either one of them and choose to define
one to be the probability current. That choice, however, d



ta

o
e
e

n
ie

l
tly

d
ha

ss

t
e-
v-
red
e-

ce

3222 PRA 59J. FINKELSTEIN
not have any experimental implications—no experimen
result can depend upon which definition one happens
make—so it would not make sense to expect the choice t
either confirmed or refuted by any experiment. For larg
values ofl, we have seen that the Bohm-like theory defin
by Eq. ~20! gives a different distributionP(t) than does the
standard Bohm theory; still, we would not expect that a
experiment could discriminate between these two theor
since they are constructed~more precisely, their multiparticle
generalizations are constructed! to agree on all observationa
results. Similarly, in discussing time of arrival independen
of the Bohmian ontology, one certainly can~and sometimes
one does@7#! identify some quantity which can be calculate
purely in terms of the wave function, and choose to call t
. G

ru
l
to
be
r
d

y
s,

t

quantity a time-of-arrival distribution. One can then discu
the question of whether this quantity does have@7# or does
not have@22# properties that one might intuitively expec
such a distribution to have. However, it might be that som
one else would prefer a different choice, which would ne
ertheless lead to identical predictions for actually measu
distributions, so that experiment could not discriminate b
tween these different choices.
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