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Fisher information and semiclassical methods
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Using the Frieden and Soffer principle of extreme physical information we present a method for the con-
struction of WKB wave functions that avoids the matching problem between the classically allowed and
forbidden regions. When this formalism is applied in conjunction with the semiclassical methddésionion
systems, it provides one with Thomas-Fermi and Wigner-Kirkwood densities, valid beyond the turning points
that also include shell effects. The method is illustrated with reference to both the sextic bistable and the Morse
potential.[ S1050-294{@9)01905-9

PACS numbgs): 03.65.Sq, 03.65.Ge, 89.76c

I. INTRODUCTION of validity (ii) that incorporate shell effects. The paper is
organized as follows. A brief review of the main ingredients
Semiclassical methods, already introduced in the earlpf the semiclassical approaches is given in Sec. Il. A sum-
days of quantum mechanics, still enjoy wide popularitymary of EPI is the subject of Sec. Ill. The present approach
[1-11] (see Ref[1] for an excellent recent reviewand are  and some applications are described in Sec. IV and, finally,
being applied to new subjects in quantum mechanics as, féifome conclusions are drawn in Sec. V.
instance, trapped Bose condensafé®], quantum dots
[13,14], and quantum wirefEl5,16. Il. THE SEMICLASSICAL APPROACHES
One of the most celebrated semiclassical methods is the . . .
Wentzel-Kramers-Brillouin (WKB) approximation, which The method proposed in Reffl7,1§ and reviewed in
clearly exhibits the similarity between the Setimger equa-  Ref- [22] provides for a rapid determination of the WKB
tion and its classical Hamilton-Jacobi counterpart. AlthoughSingle-particle energy eigenvalues. Nevertheless, the above
the Dunham formalisni17,1§ yields a practical recipe for @PProximation, based on the expansion of the quantized
evaluating expectation values using the WKB expansion, thé&Mmiclassical actiof22],
obtention of the WKB wave function becomes nevertheless 1
cumbersome due to the connection problem at the classical S(en,V.1)=(n+2)h, @

turning points[19). By recourse to the Shannon-Jaynes 'Ndoes not allow for the derivation of an explicit semiclassical
formation theory(IT) ideas[20,21], it has recently been expansion of the wave functions

shown that this troublesome matching procedure can be A nice trick exists that permits one, nevertheless, to ob-

nlc\?\llyr/]:r)]/p;ssle(ijn. semiclassical methods to man —fermiontain semiclassical expansiofiar the expectation value of a
pplying y ven operator Kx) without recourse to the pertinent wave

o i
systems, one dgcomposes thg level density into a smooth p% ctions[22]. For a given operatoF(x) one changes the
and an oscillating one. Keeping only the smooth part of th amiltonian Hy=T+V in the Ricatti equationassociated

level density and truncating the WKB expansion up to order . 2O : . . -
%, or up to order#2, the Thomas-FermiTF) and the with any Schrdinger equatio22]) in the fashionH,;=H,

Wigner-Kirkwood (WK) approaches are, respectively, ob- +}‘F(.X) (with A<1) so that, f’*ccord'“g to ellementary per-

tained[22]. turbation theory, the expectation value Fofx) in a state of
Within the strictures of these approach@$ and WK energye can be computed as

[1,23] the diagonal part of the one-body density matfiix 1

has a validity range restricted to the interval between the (FYwks=lim —{e[Ho+AF(x)]—e(Ho)}, 2)

classical turning points andi) lacks shell effects. This dif- r—o N

ficulty concerning the range of validity can be overcome by

recourse to special approaches: one is the energy-densityheree[Hqo+AF(X)] ande(H,y) are the eigenvalues of the

functional method24-26. Other treatments, based on the Ricatti equation when the Hamiltonians dde andH,, re-

Shannon-Jaynes information theory ideas, are also able &pectively. As shown ifi22], expanding the actio8 and the

include shell effect$27,28. energy eigenvalues up to a given orderiinone obtains an
The purpose of the present work is to present a still dif-explicit expression for the expectation value of our one-body

ferent alternative in this respect: to tackle the semiclassicabperator.

treatments either for single-particle orbitg/KB) or for Summing up, a procedure exists that easily allows one to

N-fermion system¢TF and WK), from a different angle, the find WKB eigenvalues. From these, the expectation values of

Frieden and Soffer principle of extrem@ishep information  a given operator can be obtained with recourse to (Bq.

(EPI) [29-31], it will be shown, provides WKB wave func- without explicitly using any wave function. Starting with

tions and TF or WK densitie) with an unrestricted range these WKB expectation values as input information, the
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method presented in Sec. Il allows for the inference, usindincluding quantum mechanics, relativity, and Maxwell's

Frieden and Soffer’s principle of extremal Fisher informa-electromagnetisincan be derivedi29-32.

tion, of associated wave functions. In particular, assuming for a quantal system that the prob-
The philosophy described above can be extended to thability density is p=* ¢, Schrainger's equation is ob-

guantum many-body realm to obtain densities according tdained by extremizing the actidr32]

the TF and WK approaches. The main ingredient of such a

formulation[22,27,28 is again the WKB expectation value L, 2m

(2) of relevant operator§, evaluated after a semiclassical A:4f V-V _?U('”EI'C energy. (6)
expansion up to a given order#n The correspondingF )¢

and(F)yx expectation valuegorder# or 7%, respectively We shall restrict our attention here to the one-dimensional

are obtained after integrating the approprig®wys . from  case, and we will consider the scenario discusse@tt a
the bottom of the potential wek, up to the Fermi energy particle of massn moving in a static real potential(x). In

eg, using a semiclassical smoothed level dengity), this case, what Frieden and Soffer call their “demon’s
knowledge” (reminiscent of Maxwell’'s demonis just the
expectation value of the kinetic energy.Hfis the system’s
energy, extremization of the actioWl is made without
changing the value af[E—(V(x))], with \ the associated
whereg(e) is computed by expanding the quantal level den-Lagrange muIt|pI|er2, which Frieden and Soffer have shown
sity by recourse of the Euler-McLaurin method and thent® be equal to &v#® [32]

dropping the oscillating terms. The Fermi enekgyis sim- [N Our case, we assume t_hat the knowledge of.the system
ply obtained by requiring is restricted to the expectation valuesMfcommuting op-

eratorsO,(k=1, ... M), computed(i) with the WKB ap-

(F)= fF<F>WKB 3(e)de, 3

F o~ proach according to Eq2), or (ii) within the framework of
LO g(e)de=N, @ the TF or WK approximations, with recourse to Eg). The
principle of extremal physical information leads to the prob-
whereN is the correct number of particles. lem of extremizing Fisher's information measufEIM)

Going up to Ordeﬁz in Eq(3), the exp|icit expression for [29,3(] It should be remarked that the EPI uses a rather

the expectation value of our one-body operator in the WkSPecial version of FIM, namely, one that is applicable in the
approach is readily obtained, case of translation familig83]. Such a FIM is to be extrem-

ized subject to the constraints posed by kh&nown expec-

1 tation values plus normalization. The associated variational
(Flwk=p, 3€ FVer—Vdz problem involves the quantity
" 12 1 1/dp 2 M ~
L ( 3§ FV dz+§<ﬁLdz , Q=§f dx— | + 2 7Kf prOK(x)—Ef dxp.
4877\ (ep— V)32 4 J (eg—V)52 p\oX =1

)

5

® The first term above constitutes Fisher’s information mea-
where the first term in the sum corresponds to the TF apsure for translation familieg33], the second one imposes the
proach and the contour integration in the compkeglane  pertinent constraints through the corresponding Lagrange
encloses the segment of the real axis between the classiaalultipliers y,, and the third term is the normalization con-
turning points. As stated above, the range of validity of thedition, with Lagrange multiplieE, which can be regarded as
TF and WK densities is restricted to the interval betweena zeroth-order expectation valgiat is, a term for index
turning points. o _ =0 andOg=1). Assumingp=|¢(x)|> and42/m=1, ex-

Our goal here is the following(i) start with some TF or - yremjzation ofQ yields the Schidinger-like equation

WK expectation values computed according to Eg).and

(ii) with recourse not to the Shannon-Jaynes information 1 Py(x) M A
theory but to a totally different approach, namely, Frieden —3 5 +( > yKOK(x)> PY(X)=E(X), (8)
and Soffer’s principle of extremal Fisher informatiGaPI), X «=1
obtain an appropriate semiclassical one-body denGity .
valid everywhere andii) that includes shell effects. with the pseudopotential energy(x)==_;7,0,(x) im-
posed by the data constraints, while the Lagrange multiplier
IIl. THE FRIEDEN-SOFFER EPI PRINCIPLE corresponding to normalization is simply the level enegy

As shown in[34], the Lagrange multipliers that guarantee

Using the principle of extremal physicéFisher’s infor-  compliance with the constraints can be obtained by requiring
mation(EPI), it has been showf29-31 that the Lagrangian
describing a given physical scenario is notah hoc con- oE
struct. On the contrary, its integra&( action A) represents Y, =(0=d,. ©)
some definite physical information. The dynamics of the
concomitant physical process can be obtained by extremizing Using Bayesian statistical inference, SiN&83] has pro-
A. On such a basis, the most important equations of physiggosed a powerful method to obtain the Lagrange multipliers
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FIG. 1. The exact ground-state wave functigontinuous lingis compared to the WKB(Qotted ling and WKB2(dashed linginferred
ones for the Morse potentiél5).

v, in the case oMmixedstates. As sketched {134], the pur- (0)=d,; «k=1,...M. (10)
pose of the present work is to present a method, valid for

pure states, that, using only semiclassical expectation values

as input information, allows one to obtain, with recourse to  Starting with arbitrary initial values for the's, we re-
Egs.(8) and(9), “semiclassical wave functions or densities” peatedly solve Eq(8). At each () iteration step, we ob-

valid on the whole real axis, while properly including, at the tain a semiclassical wave functiof\(y;, - . .,ywm) and ex-
same time, shell effects. tremize the quantity
IV. PRESENT APPROACH AND APPLICATIONS A
. M X)O (X
We advance now a self-consistent procedure for deter- R - pr( 10 )—d
mining the Fisher Lagrange multipliens, . Our input infor- (Y1 oym) = Y Ak
mation is restricted to a few expectation values, that of op- f pn(X)
erators{O . (x)}, (19
3.0 T — T T [ A B T —
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FIG. 2. Exact densitycontinuous ling and inferred WKB densitie§/WKB0 = dotted line and WKB2= dashed ling for the Morse
potential(15) with N=5 occupied states.
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FIG. 3. The exact densiticontinuous ling is compared to the TFdashed ling and WK (dot-dashed linginferred ones for the same
example of Fig. 2. The standard TF dengitgptted ling is also shown for comparison purposes.

with pn(X)=|¥n(X)|2. Using the steepest-descent procedurewhere we taked=40 and assume foreknowledge of the glo-

one obtains theM optimal Lagrange multipliers that will, bal expectation value&™(m=1,...,4),
obviously, force the inferred potential to verify the virial
theorem. N
For technical reasons, it is convenient to use “zero (xXMy=>" (xM., (16)
=1 :

mean” operator§ O, (x) —d, ] in Eq. (7). Consequently, the
pseudopotential and the total energies are shifted according
to whereN is the number of occupied states and e@ach). is
computed in the WKB approach with recourse to E).for
eache; energy level.
E*=E- 21 Vi, (12 The solution of Eq.(8), subject to the constraintd6),
- yields a set ofN orthogonal approximate WKB wave func-
M tions, valid beyond the turning points, and in good agreement
* () _ with the exact ones. Assuming one particle per statend
Vi) =ViX) Zl VO (13 =5 occupied levels, we compare in Fig. 1 the exact ground-
state wave function with the WKBQorder#) and WKB2
Notice that with the above choid&* (x))=0 and, as a con- (order#?) inferred ones using the previously described ap-
sequence, the shifted total eneif§f{y corresponds only to the proach. Exact and inferred wave functions closely resemble

M

kinetic energy. Equatiof®) gets transformed then into each other. We depict in Fig. 2 the comparison between the
exact density and the inferred WKBO and WKB2 ones. In
JE* spite of the fact that usually the WKB approach fares rather
97, =0, k=1,... M, (14 poorly in the case of ground stat¢®2], in this instance
things are different. The input information obtained with re-
that leads to the desired selfconsistent values oftke course to Eq(2) has been used and, contrary to what hap-

As a test for the semiclassical approximations just delP€ns in the case of the rr}nethod' pr eselnted in E%Hﬂ,fher(rel
scribed, in the following subsection we will use as input'We do not need amad hoc variational treatment for the
information the expectation value of a fé (power of co- ground state. In the present scheme, the orthogonality of the

. ) inferred wave functions is guaranteed by construction.
ordinate operatolfscomputed accordng to E¢@) or Eq.(5) The present method was also tested within the framework
going up either to ordet or to order#i-.

of the Thomas-Fermi and Wigner-Kirkwood approaches. For
. this purpose we have assumed, as input information, the ex-
A. Morse potential pectation value$x™(m=1, ... ,4)computed with recourse

As a typical example of an asymmetric potential, we shallt® Eq.(5). The solution of Eq(8), with the constraints posed

use the Morse one, employed in modeling the interaction oY the TF or WK input expectation values, yields again a set
diatomic molecule$35,36], of orthogonal wave functions that allows for the inference of

TF or WK densities, valid everywhere, and including shell
V(x)=A[1—exp(—x)]?, (15 effects. The quality of the approach is exhibited in Fig. 3,
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TABLE |. Morse potential. Inferred Thomas-FerriTF) and 125 T — T T
Wigner-Kirkwood (IWK) single-particle energies, obtained from
the TF and WK global information corresponding k=5 par-

ticles, are compared to the quantal ones. 1.00 7 7
Quantal ITF IWK
0.75 -
€ 4.347 4.450 3.986 =
€ 12.29 12.93 12.07 >
€3 19.24 20.32 19.35 0.50 ] ]
€4 25.18 26.22 25.55
€5 30.12 30.74 30.28

0.25

where the exact density is compared to both the TF and WK

inferred ones. a0
Using only global input-information values, computed ei- X

ther in the TF or the WK approaches, the present method _ ) )

provides single-particle energies of rather good quality, as "'C- 4. The exact ground-state wave functiaontinuous ling

illustrated in Table I, where the quantal results are comparelf c0MPared to the inferred TF oridashed ling for the bistable

to the inferred ones for the potentidl5) assuming a number potential(17). See Sec. IV B for additional details.

of particlesN=>5. values, yields a set dfl orthogonal wave functions that al-
lows one to infer TF or WK densities for the potent{ar).

B. Sextic bistable potential We depict in Fig. 4 the comparison between the exact
ground-state wave function and the inferred Thomas-Fermi
one. The inclusion of th&? correction in the input informa-
tion (5) does not considerably improve upon this result. Fig-

V(x) = x84 x*— 30x2. (17) ure 5 displays, foiN=10, the TF density, our inferred
(ITF), and the exact quantal one. In our ITF density shell

The possible exact solutions for this sextic potential havesffects are clearly appreciable and quite well reproduesd
been recently discussed in Ref87,38. We have assumed compared to the quantal onelsy using as the only input
that our input information reduces to that @f) and(x*),  information (x?) and (x*), in turn obtained with the first
obtained with recourse to E@5) in both the TF and WK term of Eq.(5). The inferred potential exhibits also a rather
approaches. We shall talké= 10 particles, accommodating, good quality(see Fig. 6. The same applies for the inferred
for sake of simplicity, one particle per level. eigenenergies displayed in Fig. 6 for the first three eigenval-

As before, the self-consistent solution of Ef), subject ues, which correspond to the first six occupied states due to
to the constraints posed by the TF or WK input expectatiordegeneracy effects.

3.0

As an example of a bistable potential, we talg) to be
of the form

90—

3.5

3.0

2.5

2.0

P

0.5

3.0

FIG. 5. Comparison between the exact dengyntinuous ling and the inferred TF on@ashed lingfor the bistable potentidll7) with
N=10 particles. The standard TF densitiotted ling is also shown.
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FIG. 6. The inferred bistable potential using TF informatidashed lingis compared to the exact ofeontinuous ling In addition, the
inferred and exact eigenenergies for the first three degenerate levels are also shown.

V. CONCLUSIONS approximate single-particle wave functions and eigenener-
es of rather good quality.

The test presented in this effort for one-dimensional po-
tentials is of a rather satisfactory character and should en-

allows one to obtain WKB wave funchons, valid every'.courage application of the method to more realistic prob-
where, without the need of any matching procedure. For th"Fems

purpose we extremize Fisher's information for translation
families subject to the constraints posed by the expectation
values of a few commuting operators obtained in the WKB
approach, and then follow the recipes[22]. In the extrem-
ization process the Lagrange multipliers are self-consistently This work has been performed under the auspices of the
obtained. Spain—Spanish-America Scientific Cooperation Program and

The algorithm presented here has also been applied to thee agreement between La Plata and llles Balears Universi-
TF or WK approaches and yields one-body densities validies, and is partially supported by the DGES under Grant No.
everywhere and including shell effects. With a very modesPB95-0492(Spain. The authors are also indebted to the
informational input(only a few TF or WK expectation val- PROTEM Program of the National Research Council
ues that are easily evaluajeglr method is also able to infer (CONICET) of Argentina for partial financial support.

Based on Frieden and Soffer's principle of extremal?'
physical informationEPI) we have presented a method that
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