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Fisher information and semiclassical methods
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Using the Frieden and Soffer principle of extreme physical information we present a method for the con-
struction of WKB wave functions that avoids the matching problem between the classically allowed and
forbidden regions. When this formalism is applied in conjunction with the semiclassical methods forN-fermion
systems, it provides one with Thomas-Fermi and Wigner-Kirkwood densities, valid beyond the turning points
that also include shell effects. The method is illustrated with reference to both the sextic bistable and the Morse
potential.@S1050-2947~99!01905-8#

PACS number~s!: 03.65.Sq, 03.65.Ge, 89.70.1c
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I. INTRODUCTION

Semiclassical methods, already introduced in the e
days of quantum mechanics, still enjoy wide popular
@1–11# ~see Ref.@1# for an excellent recent review!, and are
being applied to new subjects in quantum mechanics as
instance, trapped Bose condensates@12#, quantum dots
@13,14#, and quantum wires@15,16#.

One of the most celebrated semiclassical methods is
Wentzel-Kramers-Brillouin ~WKB! approximation, which
clearly exhibits the similarity between the Schro¨dinger equa-
tion and its classical Hamilton-Jacobi counterpart. Althou
the Dunham formalism@17,18# yields a practical recipe fo
evaluating expectation values using the WKB expansion,
obtention of the WKB wave function becomes neverthel
cumbersome due to the connection problem at the clas
turning points@19#. By recourse to the Shannon-Jaynes
formation theory~IT! ideas @20,21#, it has recently been
shown that this troublesome matching procedure can
nicely bypassed .

When applying semiclassical methods to many-ferm
systems, one decomposes the level density into a smooth
and an oscillating one. Keeping only the smooth part of
level density and truncating the WKB expansion up to or
\, or up to order\2, the Thomas-Fermi~TF! and the
Wigner-Kirkwood ~WK! approaches are, respectively, o
tained@22#.

Within the strictures of these approaches~TF and WK!
@1,23# the diagonal part of the one-body density matrix~i!
has a validity range restricted to the interval between
classical turning points and~ii ! lacks shell effects. This dif-
ficulty concerning the range of validity can be overcome
recourse to special approaches: one is the energy-de
functional method@24–26#. Other treatments, based on th
Shannon-Jaynes information theory ideas, are also abl
include shell effects@27,28#.

The purpose of the present work is to present a still d
ferent alternative in this respect: to tackle the semiclass
treatments either for single-particle orbitals~WKB! or for
N-fermion systems~TF and WK!, from a different angle, the
Frieden and Soffer principle of extremal~Fisher! information
~EPI! @29–31#, it will be shown, provides WKB wave func
tions and TF or WK densities~i! with an unrestricted range
PRA 591050-2947/99/59~5!/3211~7!/$15.00
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of validity ~ii ! that incorporate shell effects. The paper
organized as follows. A brief review of the main ingredien
of the semiclassical approaches is given in Sec. II. A su
mary of EPI is the subject of Sec. III. The present approa
and some applications are described in Sec. IV and, fina
some conclusions are drawn in Sec. V.

II. THE SEMICLASSICAL APPROACHES

The method proposed in Refs.@17,18# and reviewed in
Ref. @22# provides for a rapid determination of the WK
single-particle energy eigenvalues. Nevertheless, the ab
approximation, based on the\ expansion of the quantize
semiclassical action@22#,

S~en ,V,\!5~n1 1
2 !h, ~1!

does not allow for the derivation of an explicit semiclassic
expansion of the wave functions.

A nice trick exists that permits one, nevertheless, to
tain semiclassical expansionsfor the expectation value of a
given operator F(x) without recourse to the pertinent wav
functions@22#. For a given operatorF(x) one changes the
Hamiltonian H05T1V in the Ricatti equation~associated
with any Schro¨dinger equation@22#! in the fashionH15H0
1lF(x) ~with l!1) so that, according to elementary pe
turbation theory, the expectation value ofF(x) in a state of
energye can be computed as

^F&WKB5 lim
l→0

1

l
$e@H01lF~x!#2e~H0!%, ~2!

wheree@H01lF(x)# ande(H0) are the eigenvalues of th
Ricatti equation when the Hamiltonians areH1 andH0 , re-
spectively. As shown in@22#, expanding the actionSand the
energy eigenvalues up to a given order in\, one obtains an
explicit expression for the expectation value of our one-bo
operator.

Summing up, a procedure exists that easily allows one
find WKB eigenvalues. From these, the expectation value
a given operator can be obtained with recourse to Eq.~2!,
without explicitly using any wave function. Starting wit
these WKB expectation values as input information, t
3211 ©1999 The American Physical Society
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method presented in Sec. III allows for the inference, us
Frieden and Soffer’s principle of extremal Fisher inform
tion, of associated wave functions.

The philosophy described above can be extended to
quantum many-body realm to obtain densities according
the TF and WK approaches. The main ingredient of suc
formulation @22,27,28# is again the WKB expectation valu
~2! of relevant operatorsF, evaluated after a semiclassic
expansion up to a given order in\. The correspondinĝF&TF
and ^F&WK expectation values~order\ or \2, respectively!
are obtained after integrating the appropriate^F&WKB , from
the bottom of the potential welle0 up to the Fermi energy
eF , using a semiclassical smoothed level densityg̃(e),

^F&5E
e0

eF

^F&WKB g̃~e!de, ~3!

whereg̃(e) is computed by expanding the quantal level de
sity by recourse of the Euler-McLaurin method and th
dropping the oscillating terms. The Fermi energyeF is sim-
ply obtained by requiring

E
e0

eF
g̃~e!de5N, ~4!

whereN is the correct number of particles.
Going up to order\2 in Eq. ~3!, the explicit expression for

the expectation value of our one-body operator in the W
approach is readily obtained,

^F&WK5
1

h R FAeF2Vdz

1
\

48pS R FV9

~eF2V!3/2
dz1

3

4 R FV82

~eF2V!5/2
dzD ,

~5!

where the first term in the sum corresponds to the TF
proach and the contour integration in the complexz plane
encloses the segment of the real axis between the clas
turning points. As stated above, the range of validity of
TF and WK densities is restricted to the interval betwe
turning points.

Our goal here is the following:~i! start with some TF or
WK expectation values computed according to Eq.~5! and
~ii ! with recourse not to the Shannon-Jaynes informat
theory but to a totally different approach, namely, Fried
and Soffer’s principle of extremal Fisher information~EPI!,
obtain an appropriate semiclassical one-body density~i!
valid everywhere and~ii ! that includes shell effects.

III. THE FRIEDEN-SOFFER EPI PRINCIPLE

Using the principle of extremal physical~Fisher’s! infor-
mation~EPI!, it has been shown@29–31# that the Lagrangian
describing a given physical scenario is not anad hoccon-
struct. On the contrary, its integral ([ actionA) represents
some definite physical information. The dynamics of t
concomitant physical process can be obtained by extremi
A. On such a basis, the most important equations of phy
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~including quantum mechanics, relativity, and Maxwel
electromagnetism! can be derived@29–32#.

In particular, assuming for a quantal system that the pr
ability density is r5c* c, Schrödinger’s equation is ob-
tained by extremizing the action@32#

A54E ¹c•¹c* 2
2m

\2
^Kinetic energy&. ~6!

We shall restrict our attention here to the one-dimensio
case, and we will consider the scenario discussed in@32#: a
particle of massm moving in a static real potentialV(x). In
this case, what Frieden and Soffer call their ‘‘demon
knowledge’’ ~reminiscent of Maxwell’s demon! is just the
expectation value of the kinetic energy. IfE is the system’s
energy, extremization of the actionA is made without
changing the value ofl@E2^V(x)&#, with l the associated
Lagrange multiplier, which Frieden and Soffer have sho
to be equal to 2m/\2 @32#.

In our case, we assume that the knowledge of the sys
is restricted to the expectation values ofM commuting op-
eratorsÔk(k51, . . . ,M ), computed~i! with the WKB ap-
proach according to Eq.~2!, or ~ii ! within the framework of
the TF or WK approximations, with recourse to Eq.~5!. The
principle of extremal physical information leads to the pro
lem of extremizing Fisher’s information measure~FIM!
@29,30#. It should be remarked that the EPI uses a rat
special version of FIM, namely, one that is applicable in t
case of translation families@33#. Such a FIM is to be extrem
ized subject to the constraints posed by theM known expec-
tation values plus normalization. The associated variatio
problem involves the quantity

Q5
1

8E dx
1

rS ]r

]xD 2

1 (
k51

M

gkE dx rÔk~x!2EE dx r.

~7!

The first term above constitutes Fisher’s information m
sure for translation families@33#, the second one imposes th
pertinent constraints through the corresponding Lagra
multipliers gk , and the third term is the normalization con
dition, with Lagrange multiplierE, which can be regarded a
a zeroth-order expectation value~that is, a term for indexk
50 and Ô051). Assumingr5uc(x)u2 and \2/m51, ex-
tremization ofQ yields the Schro¨dinger-like equation

2
1

2

]2c~x!

]x2
1S (

k51

M

gkÔk~x!Dc~x!5Ec~x!, ~8!

with the pseudopotential energyV(x)5(k51
M gkÔk(x) im-

posed by the data constraints, while the Lagrange multip
corresponding to normalization is simply the level energyE.

As shown in@34#, the Lagrange multipliers that guarante
compliance with the constraints can be obtained by requir

]E

]gk
5^Ôk&5dk . ~9!

Using Bayesian statistical inference, Silver@33# has pro-
posed a powerful method to obtain the Lagrange multipli
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FIG. 1. The exact ground-state wave function~continuous line! is compared to the WKB0~dotted line! and WKB2~dashed line! inferred
ones for the Morse potential~15!.
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gk in the case ofmixedstates. As sketched in@34#, the pur-
pose of the present work is to present a method, valid
pure states, that, using only semiclassical expectation va
as input information, allows one to obtain, with recourse
Eqs.~8! and~9!, ‘‘semiclassical wave functions or densities
valid on the whole real axis, while properly including, at t
same time, shell effects.

IV. PRESENT APPROACH AND APPLICATIONS

We advance now a self-consistent procedure for de
mining the Fisher Lagrange multipliersgk . Our input infor-
mation is restricted to a few expectation values, that of
erators$Ôk(x)%,
r
es

r-

-

^Ôk&5dk; k51, . . . ,M . ~10!

Starting with arbitrary initial values for theg ’s, we re-
peatedly solve Eq.~8!. At each (Nth) iteration step, we ob-
tain a semiclassical wave functioncN(g1 , . . . ,gM) and ex-
tremize the quantity

R~g1 , . . . ,gM !5E2 (
k51

M

gkS E rN~x!Ôk~x!

E rN~x!

2dkD ,

~11!
FIG. 2. Exact density~continuous line! and inferred WKB densities~WKB0 [ dotted line and WKB2[ dashed line! for the Morse
potential~15! with N55 occupied states.
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FIG. 3. The exact density~continuous line! is compared to the TF~dashed line! and WK ~dot-dashed line! inferred ones for the same
example of Fig. 2. The standard TF density~dotted line! is also shown for comparison purposes.
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with rN(x)5ucN(x)u2. Using the steepest-descent proced
one obtains theM optimal Lagrange multipliers that will
obviously, force the inferred potential to verify the viria
theorem.

For technical reasons, it is convenient to use ‘‘ze
mean’’ operators@Ôk(x)2dk# in Eq. ~7!. Consequently, the
pseudopotential and the total energies are shifted accor
to

E* 5E2 (
k51

M

gk dk , ~12!

V* ~x!5V~x!2 (
k51

M

gk dk . ~13!

Notice that with the above choice^V* (x)&50 and, as a con-
sequence, the shifted total energyE* corresponds only to the
kinetic energy. Equation~9! gets transformed then into

]E*

]gk
50, k51, . . . ,M , ~14!

that leads to the desired selfconsistent values of theg ’s.
As a test for the semiclassical approximations just

scribed, in the following subsection we will use as inp
information the expectation value of a fewx̂n ~power of co-
ordinate operators!, computed according to Eq.~2! or Eq.~5!
going up either to order\ or to order\2.

A. Morse potential

As a typical example of an asymmetric potential, we sh
use the Morse one, employed in modeling the interaction
diatomic molecules@35,36#,

V~x!5A@12exp~2x!#2, ~15!
e

ng

-
t

ll
f

where we takeA540 and assume foreknowledge of the gl
bal expectation valueŝxm&(m51, . . .,4),

^xm&5(
i 51

N

^xm&e i
, ~16!

whereN is the number of occupied states and each^xm&e i
is

computed in the WKB approach with recourse to Eq.~2! for
eache i energy level.

The solution of Eq.~8!, subject to the constraints~16!,
yields a set ofN orthogonal approximate WKB wave func
tions, valid beyond the turning points, and in good agreem
with the exact ones. Assuming one particle per state anN
55 occupied levels, we compare in Fig. 1 the exact grou
state wave function with the WKB0~order \) and WKB2
~order \2) inferred ones using the previously described a
proach. Exact and inferred wave functions closely resem
each other. We depict in Fig. 2 the comparison between
exact density and the inferred WKB0 and WKB2 ones.
spite of the fact that usually the WKB approach fares rat
poorly in the case of ground states@22#, in this instance
things are different. The input information obtained with r
course to Eq.~2! has been used and, contrary to what ha
pens in the case of the method presented in Ref.@21#, here
we do not need anyad hoc variational treatment for the
ground state. In the present scheme, the orthogonality of
inferred wave functions is guaranteed by construction.

The present method was also tested within the framew
of the Thomas-Fermi and Wigner-Kirkwood approaches. F
this purpose we have assumed, as input information, the
pectation valueŝxm&(m51, . . . ,4)computed with recourse
to Eq.~5!. The solution of Eq.~8!, with the constraints posed
by the TF or WK input expectation values, yields again a
of orthogonal wave functions that allows for the inference
TF or WK densities, valid everywhere, and including sh
effects. The quality of the approach is exhibited in Fig.
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where the exact density is compared to both the TF and
inferred ones.

Using only global input-information values, computed e
ther in the TF or the WK approaches, the present met
provides single-particle energies of rather good quality,
illustrated in Table I, where the quantal results are compa
to the inferred ones for the potential~15! assuming a numbe
of particlesN55.

B. Sextic bistable potential

As an example of a bistable potential, we takeV(x) to be
of the form

V~x!5x61x4230x2. ~17!

The possible exact solutions for this sextic potential ha
been recently discussed in Refs.@37,38#. We have assumed
that our input information reduces to that of^x2& and ^x4&,
obtained with recourse to Eq.~5! in both the TF and WK
approaches. We shall takeN510 particles, accommodating
for sake of simplicity, one particle per level.

As before, the self-consistent solution of Eq.~8!, subject
to the constraints posed by the TF or WK input expectat

TABLE I. Morse potential. Inferred Thomas-Fermi~ITF! and
Wigner-Kirkwood ~IWK ! single-particle energies, obtained fro
the TF and WK global information corresponding toN55 par-
ticles, are compared to the quantal ones.

Quantal ITF IWK

e1 4.347 4.450 3.986
e2 12.29 12.93 12.07
e3 19.24 20.32 19.35
e4 25.18 26.22 25.55
e5 30.12 30.74 30.28
K

d
s
d

e

n

values, yields a set ofN orthogonal wave functions that a
lows one to infer TF or WK densities for the potential~17!.
We depict in Fig. 4 the comparison between the ex
ground-state wave function and the inferred Thomas-Fe
one. The inclusion of the\2 correction in the input informa-
tion ~5! does not considerably improve upon this result. F
ure 5 displays, forN510, the TF density, our inferredr
~ITF!, and the exact quantal one. In our ITF density sh
effects are clearly appreciable and quite well reproduced~as
compared to the quantal ones! by using as the only inpu
information ^x2& and ^x4&, in turn obtained with the first
term of Eq.~5!. The inferred potential exhibits also a rath
good quality~see Fig. 6!. The same applies for the inferre
eigenenergies displayed in Fig. 6 for the first three eigenv
ues, which correspond to the first six occupied states du
degeneracy effects.

FIG. 4. The exact ground-state wave function~continuous line!
is compared to the inferred TF one~dashed line! for the bistable
potential~17!. See Sec. IV B for additional details.
FIG. 5. Comparison between the exact density~continuous line! and the inferred TF one~dashed line! for the bistable potential~17! with
N510 particles. The standard TF density~dotted line! is also shown.
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FIG. 6. The inferred bistable potential using TF information~dashed line! is compared to the exact one~continuous line!. In addition, the
inferred and exact eigenenergies for the first three degenerate levels are also shown.
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V. CONCLUSIONS

Based on Frieden and Soffer’s principle of extrem
physical information~EPI! we have presented a method th
allows one to obtain WKB wave functions, valid ever
where, without the need of any matching procedure. For
purpose we extremize Fisher’s information for translat
families subject to the constraints posed by the expecta
values of a few commuting operators obtained in the W
approach, and then follow the recipes of@22#. In the extrem-
ization process the Lagrange multipliers are self-consiste
obtained.

The algorithm presented here has also been applied to
TF or WK approaches and yields one-body densities v
everywhere and including shell effects. With a very mod
informational input~only a few TF or WK expectation val
ues that are easily evaluated! our method is also able to infe
a
d

l
t

is

n

ly

he
d
t

approximate single-particle wave functions and eigenen
gies of rather good quality.

The test presented in this effort for one-dimensional p
tentials is of a rather satisfactory character and should
courage application of the method to more realistic pro
lems.
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