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Quantum effect for an electric dipole
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The behavior of a particle possessing a permanent or induced electric dipole moment and interacting with
external electromagnetic fields is described. For a special configuration of the fields, a quantum effect is
obtained for a moving dipole. The experimental observation of this effect is within reach of atom or molecular
interferometry [S1050-294{@9)00704-0

PACS numbd(s): 03.65.Bz, 39.20:-q, 03.30:+p
I. INTRODUCTION II. QUANTUM PHASE OF AN ELECTRIC DIPOLE

For the purpose of obtaining a quantum effect for an elec-
tric dipole, we first derive the phase directly from the AB
rP)hase and recall that in the AB effect the canonical momen-
tum of interaction is given byQ=(qg/c)A, whereq is the
electric charge and\ is the vector potential of a solenoid.
Thus, from expressiofil),

The electromagnetitem) interaction is an important fea-
ture of several quantum effects such as the Aharonov-Boh
(AB) [1] effect, where charged particles moving with uni-
form velocity interact with the vector potential of a solenoid.
In the Aharonov-CashefAC) [2] effect, a magnetic dipole
interacts with an electric field, while in the electrostatic ef-
fect of Matteucci and PozZi3] charged particles interact
with an electric field. Another quantum effect is that consid- q
ered by Colella, Overhauser, and Werf&}, where gravita- ¢AB:%f A-dx. )
tional interaction is involved.

An approach to derive the quantum phase of an electric
dipole has been proposed by Spav[&i, who discusses the ~ An electric dipole of total massi=m; +m, moving with
recent works of Wilkeng6] and of Weiet al. [7] on the & nonrelativistic velocity may be thought of as being com-
same subject. As shown below, this approach may be elab@osed of two charges:q of massm; andm, separated by
rated to obtain a new quantum effect where moving particleghe small distance’ =x;—x,. Let the position of the center
possessing an electric dipole moment interact with em fielddf mass bex=(m;x; +myx;)/m and consider the expansion

All these effects foresee an observable displacement dh(x)=A(x)+(x;—x)-VA. A simple way to obtain the
the interference pattern related to the phase shift of the waviehase for an electric dipole consists in summing the AB
function of the system, phases of the two chargesq in the dipole approximation

1
Adp=— é -dx, 1
S v o= e[ At dx— [ A ax,
where the quantity) is related to the canonical momentum
of interaction. Most of them have either been already tested
[8] or are within the possibility of experimental verification.
Effects for quadrupoles or a higher order are unfeasible be-
cause they either require that the particle move in a medium hered=ar’ is the electric diool ¢
or field strengths well beyond experimental reggh w Sre | %r IS the elec EC |po|_e mome][‘ h AB pha®
In Sec. Il we derive the phase of an electric dipole as ar% eSL: t(t)' redpresl,ents(; © 3pp_ |cz:\jt|(t))n|0 t € pdéffé t
application of the AB effect to a system composed of two 0 an €electric dipole and Is derived below using a ditteren
charges. In Sec. lll we analyze the behavior of an electri@pproaCh'
dipole using a Lagrangian approach to obtain once more the
same expression for phase and dedicate Sec. IV to some|; | AGRANGIAN FORMULATION FOR THE PHASE
aspects of the observable phase shift. Finally, in Sec. V we
devise a field configuration which leads to a quantum effect Let us consider a dipole that moves with veloaityn the
for an electric dipole and in Sec. VI we discuss its experi-presence of a time-independent scalar potedtigt) and a
mental verification. vector potentialA(x). In our simple nonrelativistic model,
the two charges of the dipole are held together by internal
forces and the corresponding self-interaction potemtial’)
*Electronic address: spavieri@ciens.ula.ve may depend on the relative coordinate

1
=ﬁ—cf (d-V)A(x) - dx, 3)
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A. The Lagrangian for the angular momentur =r’ X (m,r'). The termE’

For a charge the standard gauge-independent interactiore=E+c~'vXB in Egs. (9) and (10) represents the electric
Lagrangian is—q®(x) + ¢~ 1v-gA(x). Its application to the field experienced by the dipole in its rest frame.

two charges of the dipole leads to the Lagrangian In the two equations of motiofY) and(9) the variables’
_ _ and x are coupled and it is cumbersome to find a simple
L=2mpE+imyxa—q[®(x1)— D(Xp)] solution forqr’ =d except for special cases. For example, if
_ _ the dipole moves in a region of space where the fields are
+(g/c)[Xq- A(X1) —Xo- A(X2) = U(r"), uniform, (d-V)E+c vXx[VX(Bxd)]=0 in Eq. (7) and

this reads ¢/dt)(mv+c~!Bxd)=0. In this case, the quan-
which may be written as a function of the position of thetity v=—(1/mc)Bx d+ const may be substituted in E¢Q),
center of masx and relative coordinates’. In the dipole  \yhich becomes an equation in the variableonly. In most
approximation, wittv= 3(m;x,+m,x,)/m, our Lagrangian cases the solution of this equation represents a bound oscil-
becomes latory motion and will contain terms of the type sin(- )
or cospt+ ), wherew is the frequency and is a constant
phase. The average of a dynamical variable is obtained by
performing the average over the phase constants and one
may expect that the variabte=qr’ oscillated about the con-

T %qf’ A—(qr’-V)d—U(r"), @) stant average equilibrium position

L_l 2 1 e 1\ 2 1 ".V)A
= oMV om ()% cv-[(ar’- V)A]

(d)y=do=a(E+c~vXB)+qx, (12)
wherem, =m;m,/(m;+m,) is the reduced mass adg and o
A are evaluated at. wherea is the polarizability anc is the equilibrium position
The canonical momentum for the center of mass reads in the absence of external fields. For the purpose of this

paper, in a nonrelativistic approximation, one may take

P= ﬁz mv+ E(Qrf -V)A=mv+Q. (55  =«aE for induced dipoles ofwith E=0)dy=x for perma-
v c nent dipoles.
_ ] i A drastic simplification for the Lagrangia#) is obtained
Expression4) leads to the equation of motion by neglecting the oscillations or by using fbits averaged,

over the phase constait, whered, is parallel to the field

d 1. d -
F(M)=V|—(d-V)®+_d-A+v-Q/— =Q. (6) E+c™'vXB so that

=0. (12)

%
With d/dt=d,+Vv-V, the identitiesV(v-Q)=(v-V)Q dox | E+ - %xB
+vX(VXQ), andVXVd=0, the right-hand sidéRHS)

of Eq. (6) assumes the formd V)(—V<I>)+c*1V(d~A) Because of Eq11), dg is constant and independentobnly
+vX[VXQ]-4Q. By making use of Eq(5), the RHS when the fields are uniform. In this caseis no longer a
becomes ¢-V)(—V®—c 19A)+c HYvx[VX(Bxd)] dynamical variable and, wite,=— V&, the Lagrangian as-

—BXd}, and in terms of fields, Eq6) reads sumes the simple form
d 1 1. Lo= 2+ v (do- V) AT+ do- E (13
a(mv):(d-V)E+va[Vx(Bxd)]—EBxd. (7) 072 c 0 0" =0-

The same result can be obtained starting from the expression B. The Hamiltonian and the quantum phase

of the Lorentz force applied to the two charges and making By means of the expressions of the canonical momenta

use of the dipole approximation. ) ) (5) and (8), the HamiltonianH may be derived from the
The canonical momentum for relative coordinates reads Lagrangian(4). For time-independent potentials, the corre-
sponding Schrdinger equatiorH¥ =E¥ reads

JL .
P’=f=mrr’+qA. (8 q 2 q \2
or (P——(r’~V)A P ——A
c c
Proceeding in the same manner as for the derivation of Eq. m + 2m,
(7), one obtains the equation of motion
d ) v ’ ’
gi(Mr)=a{ E+ -XB[-V'U(r") 9 +qr’-VO+U(r') | P =EW. (14)
for the momentum and Using the commutation relations, one finds, after lengthy
q but straightforward calculations, that the laws of motion
u v of the mean values of the quantum observalfes(q/
agr-=IX|EF o xB), 10 (- V)A, P~ (q/c)A, and ' X[P'—(q/c)A] obey




3196 GIANFRANCO SPAVIERI PRA 59

equations of motions formally identical to E(), (9), and Using the Lagrangiath. of Eq. (13), valid for uniform
(10) of the corresponding classical quantities. This result idields, one obtains directly the result

not surprising since it may be deduced from Ehrenfest's

theorem applied to a time-independent Hamiltonian of this ¢=(1/fic)f(dy- V)A-dx.

type[10]. It follows that the quantum behavior of the dipole
maintains a certain analogy with its classical behavior. Th
mean value(F) of a gquantum variablé=- generally corre-

sponds to the averad€ )y over the constant phask of the — (1) [ Qq- dX= (1/1.0) [ (dy- V)A-dx, _coincident with

corresponding classical variall20]. : ;
The main difference between classical and quantum bet—hat given by Eq(3) with d replaced byd,.

havior is due to the existence of the quantum phAas# the
wave function which, through the process of interference,

may lead to an observable phase shitb. _ In the interference experiments with particles possessing
As can be shown by direct substitution or following the 5y glectric dipole moment, the observable quantity is the

proce_dure of Bayni11], the solution of the Sch'ctbnger phase shift (#c)$Q- dx=(1/4c)$(d- V)A-dx. Since
equation(14) has the form

n fact, the canonical momentum due to interaction of the
agrangiarlL g is Qg=1/c(dy- V)A. Thus, the wave function
of the corresponding Hamiltonian possesses a phase

IV. OBSERVABLE PHASE SHIFT

(¥|$(d-V)A-dx| W)= ((¥'|d|]T")- V)A-dx

W = gl Q dxy  — gli/he)[(d-V)A-dxpp
=¢(dy- V)A-dx,

whereQ=(1/c)(qr’'- V)A from Eq. (5) and ¥, solves the

equation withA=0. Thus, the quantum phasg coincides

with Eq. (3). This result has general validity, since the only 1 1

approximation made so far on the potentials is that they are Ap=— § Q- dx=-— § (do- V)A-dx

time independent. h hc

With ¥=exp(¢)¥,, the Schrdinger equationHW¥ 1
=EW reduces tH ¥V ,=EV¥,, i.e., =7 § [BXdg+V(dg-A)]-dx. a7

its expectation value reads

PZ P72

R +qr’-VO+U(r')|¥,=E¥,, (15 By using vector identities, we have made explicit in Ety)
2m  2m; the relevant ternBxd, known as the Ratgen interaction

12].
whereH, is obtainable also by the unitary transformation[ I]t can be shown that the phase shifi is gauge indepen-
—THT with T=e- | ;
Ho=THT with T=e 9. . dent. In a gauge transformation one l&ts= A+ V y, where
Equation(15) may be used to obtaid and calculate the g 4 scalar function. Using expressi@) in order to point
phase(3). However, sincelo="¥o(x,r’), the center of mass oyt some properties of the AB phase shift, we write the con-

and relative variables are still coupled, and it is difficult t0 ipytion to the phase shift due to the gauge transformation as
find a meaningful solution and a manageable expression for

the phase unless the behavior of the dipole is given or some 1
approximations are made. Sb=72 jg (do- V)V x-dx
We consider here only the special case of a uniform elec-
tric field Eo= — V® =const, which will be used in Sec. V to q q
find a quantum effect for electric dipoles. In this case, the % fﬁ (Vax)-dxy— #e fﬁ (Vax)-dx,.
variablesx andr’ in Eq. (15 may be decoupled by separa-
tion of variables settingWo(x,r")=¢(x)¥'(r'), where The gauge independence of the AB phase shift is based on

¥’ (r") represents the solution of the fact that the scalar functigp is a monovalued function
) for which $(Vx)-dx=0. Thus, one obtains immediately

P/ ! ! ! ! ! 6¢:0'
2m, —ar'-BotU(r) W =E"Y", (16) Our result(17) for the phase shift of an electric dipole

differs from that proposed by other authgf§] and[7]) for
and  g(x)=exd(iPy-x)/2] solves the equation the presence of the extra term £&)$[V(do-A)]- dx. Be-
(P212m) y(x) =(E—E’) (X). fore dealing with this aspect, we recall that the properties of
The wave function assumes the final form the AB effect allow us to write the corresponding phase shift
as
\If:ei‘ﬁei(PO'x)/h \I,I(r/).

B B qd B qd
Since in Eq.(16) the electric fieldE, is uniform, the expec- Adne=7c § A-dx= 77 3€ (VO)-dx= 500 % do
tation value

_a® s

= e o™

<d>=f W (d)W d3x=(¥|d|W¥)=(¥'|d¥')=dy=const
where® is the magnetic flux and, for a solenoid along the
does not depend ox axis,V 6= Vtan 1(x/y) = (—iy+]x)/(x2+y?) andén is the
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difference between the topological winding numbeisf the a)
Feynman paths encircling the singularibere, the solenojd
Thus, one can see that the mentioned difference is not |

trivial because, if the quantity (dy- A) turns out to be pro- /__/
-+

portional to the gradient of the multivalued functi@(x), L

the integra$ V (dy- A) - dx=$V 8- dx=$d 6 does not vanish. L./)

A physical example wher¥ (dy- A) - dx=V € is mentioned %

in Ref.[5] and is obtained with the field configuration pro-

posed by Wilkeng6]. In order to show that with Wilkens’ J,___/f

configuration$V (dy-A)-dx#0, we expand here the rel- 7

evant argument. # <_/ X
Wilkens considers a distribution of currents that does not y

depend orz and that generates a magnetic field with cylin-

drical symmetry on the closed path of the particle encircling b)

the singularity. On the path of the particles there are no magnetic sheet

sources and the fields satisfy Maxwell's equati®hsB=0 :

andV X B=0. The magnetic field obtained by Wilkens reads in v : out
o 9&_ 9 (ix+jy)

= —= , beam of
27 r 2w r2 particles
whereg is a constant an@=V XA(X,y) =13,A,— oA, . FIG. 1. (a) A magnetic sheet covers thyez semiplanefrom y

=0 toy=). Its magnetic fieldB is oriented in thez direction and
is confined within the sheet. The edge of the sheet coincident with
thez axis corresponds to a singularity for the interaction momentum
PN Qo (dg- V)A contributing to the phase. Particles have their electric
(—iy+jx) : S .
Ay [BXdo]-dxex ¢ dx- —————= dx-V e momentd, oriented along the direction and move on opposite
W 0 2 . . - ) ) . .
r sides of the singularity. For induced dipoles, the uniform electric
field E; must be presentb) Interferometric path of particles pos-
#0, (18 sessing the electric dipole momety. The incoming beam of par-

. ) ticles is split on the plane of motion before reaching the magnetic
has topological properties analogous to those of the ABeet The path encircles the singulazignd one of the arms of the

With a dipoledy= Rdo oriented in thez direction and moving
in the x-y plane, the phase shift obtained by Wilkens,

phase shift. _ . interferometric path goes through a hole in the magnetic sheet. Par-
~ However, the quar!tlt)ﬁ[V(do-_A)]-dx does not vanish ticles moving on opposite sides of the singularity acquire opposite
in this case. In fact, since there is malependence, phases and the phase of the outcoming beam is shifted by the ob-

servable amour ¢.

V(do-A)]-dx= 3@ do(ia,A,+]8,A,)]- dx

% [ oA [o(i6uA+15,A2)] We look for a current distribution which generates a phase
shift A ¢ with a topology equivalent to that of the AB effect.

=— é (BXdp) - dx=oc— é de+0 The restriction to a uniform electric field, made to obtain
Eq. (17) rules out also the configuration of fields proposed by
and in Eq.(17) A¢x$ded,A(X,y)-dx=0. Wei et al. [7] because it implies the use of dipoles induced

Another way to realize, intuitively, that the phase shift Py @ nonuniform field(x). _ o
(17) is zero for Wilkens’ configuration consists in relating ~ FOr our purpose, we extend the line of magnetic dipoles
A to the sum of the AB phase shifts of the charges of theOr solenoid producing the AB effect to form a sheet cover-
dipole. According to Eq. (2), A¢as=(g/ch)$A-dx N9 a sgmlplane perpendlc_ular to the d!rectlon of motion of
— (q/ch)®, whered is the magnetic flux through the loop the particle, as shown in Fig(d. Choosing the velocity of
of areaSformed by the path of the particle moving in they the particle along the axis, the sheet will be covering the

plane and encircling the singularity. In this case, the normay-zt's%r.nipllane(f_ror? )C’i:. Otr:gc?/':oot') Witl?tLhe,“?e? of m?@!'
7 netic dipoles oriented in thedirection. If the interferometric
to the area of the loop ie=k, and®=B-nS=A ¢,g=0.

. A _ path of the particle has to encircle thaxis, a segment of the
Ihous, also for the dipoled p=A g+ A ppp> (P~ P-) path will have to intersect the magnetic sheet and a hole in

the sheet must be left through which the particles may travel
In conclusion, the phase shift given by E47) derived d P Y

ndisturbed(a small hole leaves potential and field practi-
here is physically different from that of E¢L8) proposed by LISt ( ves p I I pract

cally unchange
Wilkens and by Weiet al. For the experiment devised by y ged

. . - If mis the magnetic dipole per unit of volume ands the
Wilkens[6], result(17) predicts the null resul ¢=0. thickness of the sheet, then the magnetic field inside the

sheet (B=x=<7) is B=k47m and the corresponding vector

potential is Ag=j4mm(— 7/2+x). Outside the sheet, the
Let us now apply resultl7) to dipoles moving in the magnetic field is zero. However, to obtain the total vector
presence of a vector potential and the uniform fieldg,. potentialA(x) we have to add t@\ g the contribution due to

V. QUANTUM EFFECT FOR AN ELECTRIC DIPOLE
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the lines of magnetic dipolesAy(x)=fyd3x, [mXx(x asin EQ.(20).

—Xm) 1/|X—xm|3, that can be calculated integrating the el-  To interpret intuitively the physical resul0), we relate

ementary expression for a magnetic dipole over the volumé& once more to the sum of the AB phase shifts of the charges

V of the magnetic sheet. Actually, what one needs are onl@f the dipole. According to Eq2), A¢g=(a/chi)$A-dx

the derivativesiA,,/dx and dA,/dy which turn out to be =(qg/ct)®, where®=B-nS is the magnetic flux through
the loop formed by the path of the particle encircling the
singularity. Referring to Fig. (), one can see that the mag-

' netic field is localized inside the sheet in the regipa0

(19 and, thus, for a dipole momedg=d,, , the path of the outer
charge encircles a greater flux. Sirdg=qr’, while cross-

whereVXA,=0andVXxXA=V X (Ag+A,)=B. ing the uniform fieldB at the intersection with the sheet,

At the inter_sectio_n with the magnetic sheet the_ (_jipolethe dipole sweeps the area differenc®, ¢ S_)n-B=(r’

crosses a region wit+0. However, from Eq.(17) itis xdx)-B=r’dy—r/dx, and the quantity Bxr’)-dx=(r’

apparent that the topology of our effect depends on the sin- Y _

gular behavior 0Qy=c~1(d,- V)A regardless of the distri- X dx)-B=ASn-B represents the. elementary magnetic flux

bution of fields and sources of potentials. Takihgparallel ~ through the area swept by the dipole. Thus, vdte=7,

to the mXxv direction (here they direction, one finds

(d0~V)AB=d0&yAB=O and _ q q o q ~ _ q ’
A¢—%dn—%(b,—%B-n(&—S,)—%Brr

aAm_ 5 fx+fy
ax M T

aAm_Z —7y+fx
s W_ mr 2

r r

Qo=c¢ Y(dg- V)A,=c 2dgmr(—iy+]jx)/r?

1
:C_ldemTV 6. = %doBT,
Thus, our phase shift has a topology equivalent to that of the
AB effect, and from Eq(17) in agreement with Eq20).
1 1 om7
A=+ fﬁ Qo-dx=5— 4; (do- V)A-dx=— 4; 0 VI. ANALYSIS OF POSSIBLE EXPERIMENTAL
VERIFICATION OF THE PHASE SHIFT
on
= %doB T, (20 To discuss the experimental verification of the phase shift,

it is convenient to express E(RO) as

where, in most experimental conditions, we may take
=1. A phase shift twice that of Eq20) is achieved by do T B 2ak,™B
adding another magnetic she@tith opposite magnetic mo- A~ 4'O(e ) (mm) (kG) - A

)
men) in the othery-z semiplane.

Note that the componentd,, and dg, [if they do not
vanish, the ternd, in Eq. (20) readsd,,], do not contribute
to the phase shift because they lead to terms of the integra
which are either perpendicular to the path of the particle o
are of the typef[ V(1/r)]-dx=0.

We derive now resul20) using the equivalent expression

These two equivalent expressions fog are given in physi-
nc&ﬂ and mks units, respectively, and the last term has a form
uitable for induced dipoles.
To test the quantum phase, one needs first to prepare a
beam of dipoles in the stat@)=d,# 0, moving with uni-
form velocity and withdy in the direction of the fieldg,
1 +c~lvxB. If the vectord, is not completely parallel to
A</>=% é [BXdy+V(dg-A)]-dx Eo+c lvxB, the quantityd, in Eq. (20) stands for the
component ofd) parallel to the field. For induced dipoles

on the right-hand side of E¢17). First, we show that for our With do=aEo, the arrangement needed to prepare the men-
configurationg V (do- A)] - dx=0. Since the contribution of tioned peam is relat|\{ely simpler because- thg orientation is
both A, and Az have to be taken into accourf,(dy-A) detNerTw;ﬁdtb%/ tht?w uniform, eXtem‘:‘i:Mel‘iﬁt”C f"iﬁt; 12
s . ote that, for the average quantitly, the condition
;Izdr%i-?ﬁAB;(vll(goJ;gm%.a]U:Ic??hatEq (19, V(do-Am)  gptained in the discussion of the classical behavior of the
Ox RAREE dipole readslyX E' =dox (Eq+ ¢~ *vx B)=0. Furthermore,
(do- V)Ep=0 and alsoV X (Bx dy) = —jdy3,B=0 because
jg [V(dg-A)]-dx=—4mdom7+2dymr 35 V6-dx=0. B depends orx only. Thus, the equation of motiof¥) im-
plies dv/dt=0, so that the particle moves with the uniform
Thus, the phase shift is given by velocity v=v, even when the em interaction is switched on
[13].
To measure the phase, one may employ interferometers in
which the incoming beam of particles of Fig(bl is split
into two coherent beams that pass on opposite sides of the
singularity and then recombine. When the em interaction is
switched on, particles on opposite sides of the interferomet-

1 1 - -
A¢=% jg (B><d0)-dx=% § (—idoyB+]jdoB)-dx

1
= EdoyBT
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ric path acquire opposite phases and the outcoming beam is An even simpler configuration would arise if it were pos-
phase shifted by the amount¢ to be measured by the in- sible to prepare a beam of particles formed by two coherent
terferometer. beams, not spatially separated, possessimgpositeelectric
Some atom interferometers can detect phases of 0.1 radoments and made to pass through shememagnetic field.
[14], and atomic beam splitters may reach the supermillimein order to experimentally detect the AC phase, Sangster
ter rangd 15]. Thus, the thickness may be of the order of 1 et al.[17] have developed such an arrangemennfiagnetic
mm and both moleculardy~4ea;) or atomic dy<ea,)  dipoles, which has proved effective for determining the in-
interferometers may be used. If only moderate magneticlependence of the quantum phase from velocity and its pro-
fields are achievable, it is convenient to use polar moleculeportionality to the electric field.
with a large permanent dipole moment, since for single at- With the last two configurations both and B may be
oms and nonpolar molecules the induced dipoles are rathéncreased, leading to a value of the phase shift greater than

small even when a strong electric field is applied. that of the magnetic sheet configuration.
For our configuration, thé8 field may reach relatively
high values because the solenoids extend fmm-« to z VIl. CONCLUSIONS

= and, as in the AB effect with a toroid, need not be open.
By using material with high permeability or superconducting
magnetic sheets, the field strength may be well above the k
range. For alkali-metal atoms~10x 10 Fn?, and with

B~1T andEy~10° V/cm it is possible to achieve a phase
shift greater thanr/2. Thus, the verification of the proposed

quantum effect for an electric dipole is feasible. In order to observe a quantum effect for electric dipoles,

_However, other field conﬁguratlo_ns may tum out to bewe have devised the current distribution corresponding to the
suitable for the purpose of observation. For example, for the

experimental verification of the AC effect, different configu- magnetic sheet §howr1 n F|g(al.. This configuration pro-
) vides a phase shift which is path-independent, a property that
rations have been propos¢di6] and, by analogy, can be

extended to the present effect. A suitable configuration conr—eCaIIS the topological features of the AB effect. However,

; . X ) - , A the present effect is not a nonlocal topological effect of the
Sists .Of a uniformB f'.eld con.flne(_j within a tiny toroid V\."th AB type because the Regen interaction is effective when
its axis of symmetry in th& direction and physically cut into

two halves by the plane of motion. If the outer radius of thethe particles cross the magnetic sheet and are in the presence
S y P ¥ . of the fieldB, while in the AB effect the particles move in a
toroid is R, the two cuts are placed =+ R in correspon-

. . : field-free region.
EE?SC:erget-giaspgg rgzarﬁ;sc};g:?(?ﬁe@r?ottr\:v; égiutl)téné:]" hl In conclusion, this quantum effect for electric dipoles may
separated to all%w the %eam of e?rticles o pass through gl' ISX observed in atom or molecular interferometry and its veri-
epar P P 9n- hf??ation is within reach of present experimental technique.
field in the gap between the magnets penetrates the plane 0
motion and has opposite signs at the position of the cuts.
With 7 being now the inner diameter of the toroid, particles
passing through the gaps travel a distamda the presence This work was made possible by a grant from the CDCHT
of the magnetic field of strengtB and generate the shift (Grant No. C-828-97, ULA, Meda, Venezuelgpand the sup-

We have considered a simple model of an electric dipole
nd analyzed its behavior. Although the quantum behavior of
e mean values of the relevant observables is analogous to
that of the corresponding classical variables, a quantum di-
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