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Quantum effect for an electric dipole

Gianfranco Spavieri*
Dipartimento di Matematica, Politecnico di Milano, Italy

and Centro de Astrofı´sica Teo´rica, Facultad de Ciencias, Universidad de Los Andes, Me´rida, 5101 Venezuela
~Received 13 August 1998!

The behavior of a particle possessing a permanent or induced electric dipole moment and interacting with
external electromagnetic fields is described. For a special configuration of the fields, a quantum effect is
obtained for a moving dipole. The experimental observation of this effect is within reach of atom or molecular
interferometry.@S1050-2947~99!00704-0#

PACS number~s!: 03.65.Bz, 39.20.1q, 03.30.1p
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I. INTRODUCTION

The electromagnetic~em! interaction is an important fea
ture of several quantum effects such as the Aharonov-Bo
~AB! @1# effect, where charged particles moving with un
form velocity interact with the vector potential of a soleno
In the Aharonov-Casher~AC! @2# effect, a magnetic dipole
interacts with an electric field, while in the electrostatic e
fect of Matteucci and Pozzi@3# charged particles interac
with an electric field. Another quantum effect is that cons
ered by Colella, Overhauser, and Werner@4#, where gravita-
tional interaction is involved.

An approach to derive the quantum phase of an elec
dipole has been proposed by Spavieri@5#, who discusses the
recent works of Wilkens@6# and of Wei et al. @7# on the
same subject. As shown below, this approach may be el
rated to obtain a new quantum effect where moving partic
possessing an electric dipole moment interact with em fie

All these effects foresee an observable displacemen
the interference pattern related to the phase shift of the w
function of the system,

Df5
1

\ R Q•dx, ~1!

where the quantityQ is related to the canonical momentu
of interaction. Most of them have either been already tes
@8# or are within the possibility of experimental verificatio
Effects for quadrupoles or a higher order are unfeasible
cause they either require that the particle move in a med
or field strengths well beyond experimental reach@9#.

In Sec. II we derive the phase of an electric dipole as
application of the AB effect to a system composed of t
charges. In Sec. III we analyze the behavior of an elec
dipole using a Lagrangian approach to obtain once more
same expression for phase and dedicate Sec. IV to s
aspects of the observable phase shift. Finally, in Sec. V
devise a field configuration which leads to a quantum eff
for an electric dipole and in Sec. VI we discuss its expe
mental verification.

*Electronic address: spavieri@ciens.ula.ve
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II. QUANTUM PHASE OF AN ELECTRIC DIPOLE

For the purpose of obtaining a quantum effect for an el
tric dipole, we first derive the phase directly from the A
phase and recall that in the AB effect the canonical mom
tum of interaction is given byQ5(q/c)A, whereq is the
electric charge andA is the vector potential of a solenoid
Thus, from expression~1!,

fAB5
q

\cE A•dx. ~2!

An electric dipole of total massm5m11m2 moving with
a nonrelativistic velocityv may be thought of as being com
posed of two charges6q of massm1 andm2 separated by
the small distancer 85x12x2 . Let the position of the cente
of mass bex5(m1x11m2x2)/m and consider the expansio
A(xi).A(x)1(xi2x)•“A. A simple way to obtain the
phase for an electric dipole consists in summing the
phases of the two charges6q in the dipole approximation

f5
q

\cE A~x1!•dx12
q

\cE A~x2!•dx2

5
1

\cE ~d•“ !A~x!•dx, ~3!

whered5qr 8 is the electric dipole moment.
Result~3! represents the application of the AB phase~2!

to an electric dipole and is derived below using a differe
approach.

III. LAGRANGIAN FORMULATION FOR THE PHASE

Let us consider a dipole that moves with velocityv in the
presence of a time-independent scalar potentialF(x) and a
vector potentialA(x). In our simple nonrelativistic model
the two charges of the dipole are held together by inter
forces and the corresponding self-interaction potentialU(r 8)
may depend on the relative coordinater 8.
3194 ©1999 The American Physical Society
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PRA 59 3195QUANTUM EFFECT FOR AN ELECTRIC DIPOLE
A. The Lagrangian

For a chargeq the standard gauge-independent interact
Lagrangian is2qF(x)1c21v•qA(x). Its application to the
two charges of the dipole leads to the Lagrangian

L5 1
2 m1ẋ1

21 1
2 m2ẋ2

22q@F~x1!2F~x2!#

1~q/c!@ ẋ1•A~x1!2 ẋ2•A~x2!#2U~r 8!,

which may be written as a function of the position of t
center of massx and relative coordinatesr 8. In the dipole
approximation, withv5 1

2 (m1ẋ11m2ẋ2)/m, our Lagrangian
becomes

L5
1

2
mv21

1

2
mr~ ṙ 8!21

1

c
v•@~qr 8•“ !A#

1
1

c
qṙ 8•A2~qr 8•“ !F2U~r 8!, ~4!

wheremr5m1m2 /(m11m2) is the reduced mass andF and
A are evaluated atx.

The canonical momentum for the center of mass read

P5
]L

]v
5mv1

1

c
~qr 8•“ !A5mv1Q. ~5!

Expression~4! leads to the equation of motion

d

dt
~mv!5“H 2~d•“ !F1

1

c
ḋ•A1v•QJ 2

d

dt
Q. ~6!

With d/dt5] t1v•“, the identities“(v•Q)5(v•“)Q
1v3(“3Q), and“3“F50, the right-hand side~RHS!

of Eq. ~6! assumes the form (d•“)(2“F)1c21
“(ḋ•A)

1v3@“3Q#2] tQ. By making use of Eq.~5!, the RHS
becomes (d•“)(2“F2c21] tA)1c21$v3@“3(B3d)#

2B3ḋ%, and in terms of fields, Eq.~6! reads

d

dt
~mv!5~d•“ !E1

1

c
v3@“3~B3d!#2

1

c
B3ḋ. ~7!

The same result can be obtained starting from the expres
of the Lorentz force applied to the two charges and mak
use of the dipole approximation.

The canonical momentum for relative coordinates rea

P85
]L

] ṙ 8
5mr ṙ 81qA. ~8!

Proceeding in the same manner as for the derivation of
~7!, one obtains the equation of motion

d

dt
~mr ṙ 8!5qS E1

v

c
3BD2“8U~r 8! ~9!

for the momentum and

d

dt
L5d3S E1

v

c
3BD , ~10!
n

ion
g

q.

for the angular momentumL5r 83(mr ṙ 8). The term E8
.E1c21v3B in Eqs. ~9! and ~10! represents the electri
field experienced by the dipole in its rest frame.

In the two equations of motion~7! and~9! the variablesr 8
and x are coupled and it is cumbersome to find a sim
solution forqr 85d except for special cases. For example,
the dipole moves in a region of space where the fields
uniform, (d•“)E1c21v3@“3(B3d)#50 in Eq. ~7! and
this reads (d/dt)(mv1c21B3d)50. In this case, the quan
tity v52(1/mc)B3d1const may be substituted in Eq.~9!,
which becomes an equation in the variabler 8 only. In most
cases the solution of this equation represents a bound o
latory motion and will contain terms of the type sin(vt1q)
or cos(vt1q), wherev is the frequency andq is a constant
phase. The average of a dynamical variable is obtained
performing the average over the phase constants and
may expect that the variabled5qr 8 oscillated about the con
stant average equilibrium position

^d&q.d0.a~E1c21v3B!1qx̄, ~11!

wherea is the polarizability andx̄ is the equilibrium position
in the absence of external fields. For the purpose of
paper, in a nonrelativistic approximation, one may taked0

.aE for induced dipoles or~with E50)d05 x̄ for perma-
nent dipoles.

A drastic simplification for the Lagrangian~4! is obtained
by neglecting the oscillations or by using ford its averaged0
over the phase constantq, whered0 is parallel to the field
E1c21v3B so that

d03S E1
v

c
3BD50. ~12!

Because of Eq.~11!, d0 is constant and independent ofx only
when the fields are uniform. In this cased is no longer a
dynamical variable and, withE052“F, the Lagrangian as-
sumes the simple form

L05
1

2
mv21

1

c
v•@~d0•“ !A‡1d0•E0 . ~13!

B. The Hamiltonian and the quantum phase

By means of the expressions of the canonical mome
~5! and ~8!, the HamiltonianH may be derived from the
Lagrangian~4!. For time-independent potentials, the corr
sponding Schro¨dinger equationHC5EC reads

S S P2
q

c
~r 8•“ !AD 2

2m
1

S P82
q

c
AD 2

2mr

1qr 8•“F1U~r 8!D C5EC. ~14!

Using the commutation relations, one finds, after leng
but straightforward calculations, that the laws of moti
of the mean values of the quantum observablesP2(q/
c)(r 8•“)A, P82(q/c)A, and r 83@P82(q/c)A# obey
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3196 PRA 59GIANFRANCO SPAVIERI
equations of motions formally identical to Eq.~7!, ~9!, and
~10! of the corresponding classical quantities. This resul
not surprising since it may be deduced from Ehrenfe
theorem applied to a time-independent Hamiltonian of t
type @10#. It follows that the quantum behavior of the dipo
maintains a certain analogy with its classical behavior. T
mean valuê F& of a quantum variableF generally corre-
sponds to the average^F&q over the constant phaseq of the
corresponding classical variable@10#.

The main difference between classical and quantum
havior is due to the existence of the quantum phasef of the
wave function which, through the process of interferen
may lead to an observable phase shiftDf.

As can be shown by direct substitution or following th
procedure of Baym@11#, the solution of the Schro¨dinger
equation~14! has the form

C5e~ i /\!*Q•dxC05e~ i /\c!*~d•“ !A•dxC0 ,

whereQ5(1/c)(qr 8•“)A from Eq. ~5! and C0 solves the
equation withA50. Thus, the quantum phasef coincides
with Eq. ~3!. This result has general validity, since the on
approximation made so far on the potentials is that they
time independent.

With C5exp(if)C0, the Schro¨dinger equationHC
5EC reduces toH0C05EC0 , i.e.,

S P2

2m
1

P82

2mr
1qr 8•“F1U~r 8! DC05EC0 , ~15!

where H0 is obtainable also by the unitary transformati
H05THT† with T5e2 if.

Equation~15! may be used to obtaind and calculate the
phase~3!. However, sinceC05C0(x,r 8), the center of mass
and relative variables are still coupled, and it is difficult
find a meaningful solution and a manageable expression
the phase unless the behavior of the dipole is given or s
approximations are made.

We consider here only the special case of a uniform e
tric field E052“F5const, which will be used in Sec. V t
find a quantum effect for electric dipoles. In this case,
variablesx and r 8 in Eq. ~15! may be decoupled by separ
tion of variables settingC0(x,r 8)5c(x)C8(r 8), where
C8(r 8) represents the solution of

S P82

2mr
2qr 8•E01U~r 8! DC85E8C8, ~16!

and c(x)5exp@(iP0•x)/\# solves the equation
(P2/2m)c(x)5(E2E8)c(x).

The wave function assumes the final form

C5eifei ~P0•x!/\ C8~r 8!.

Since in Eq.~16! the electric fieldE0 is uniform, the expec-
tation value

^d&5E C* ~d!C d3x5^CuduC&5^C8uduC8&5d05const

does not depend onx.
s
s
s

e

e-

,
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e
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Using the LagrangianL0 of Eq. ~13!, valid for uniform
fields, one obtains directly the result

f5~1/\c!*~d0•“ !A•dx.

In fact, the canonical momentum due to interaction of t
LagrangianL0 is Q051/c(d0•“)A. Thus, the wave function
of the corresponding Hamiltonian possesses a phasf
5(1/\)*Q0•dx5(1/\c)*(d0•“)A•dx, coincident with
that given by Eq.~3! with d replaced byd0 .

IV. OBSERVABLE PHASE SHIFT

In the interference experiments with particles possess
an electric dipole moment, the observable quantity is
phase shift (1/\c)rQ•dx5(1/\c)r(d•“)A•dx. Since

^Cur~d•“ !A•dxuC&5r~^C8uduC8&•“ !A•dx

5r~d0•“ !A•dx,

its expectation value reads

Df5
1

\ R Q0•dx5
1

\c R ~d0•“ !A•dx

5
1

\c R @B3d01“~d0•A!#•dx. ~17!

By using vector identities, we have made explicit in Eq.~17!
the relevant termB3d0 known as the Ro¨ntgen interaction
@12#.

It can be shown that the phase shiftDf is gauge indepen-
dent. In a gauge transformation one letsA85A1“x, where
x is a scalar function. Using expression~3! in order to point
out some properties of the AB phase shift, we write the c
tribution to the phase shift due to the gauge transformation

df5
1

\c R ~d0•“ !“x•dx

5
q

\c R ~“1x!•dx12
q

\c R ~“2x!•dx2 .

The gauge independence of the AB phase shift is based
the fact that the scalar functionx is a monovalued function
for which r(“x)•dx50. Thus, one obtains immediatel
df50.

Our result~17! for the phase shift of an electric dipol
differs from that proposed by other authors~@6# and @7#! for
the presence of the extra term (1/\c)r@“(d0•A)#•dx. Be-
fore dealing with this aspect, we recall that the properties
the AB effect allow us to write the corresponding phase s
as

DfAB5
q

\c R A•dx5
qF

2p\c R ~“u!•dx5
qF

2p\c R du

5
qF

\c
dn,

whereF is the magnetic flux and, for a solenoid along thez

axis,“u5“tan21(x/y)5(2 îy1 ĵx)/(x21y2) anddn is the
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difference between the topological winding numbersn of the
Feynman paths encircling the singularity~here, the solenoid!.

Thus, one can see that the mentioned difference is
trivial because, if the quantity“(d0•A) turns out to be pro-
portional to the gradient of the multivalued functionu(x),
the integralr“(d0•A)•dx}r“u•dx5rdu does not vanish.
A physical example where“(d0•A)•dx}“u is mentioned
in Ref. @5# and is obtained with the field configuration pr
posed by Wilkens@6#. In order to show that with Wilkens
configuration r“(d0•A)•dxÞ0, we expand here the re
evant argument.

Wilkens considers a distribution of currents that does
depend onz and that generates a magnetic field with cyl
drical symmetry on the closed path of the particle encircl
the singularity. On the path of the particles there are
sources and the fields satisfy Maxwell’s equations“•B50
and“3B50. The magnetic field obtained by Wilkens rea

B5
g

2p

er

r
5

g

2p

~ îx1 ĵy!

r 2
,

where g is a constant andB5“3A(x,y)5 î]yAz2 ĵ]xAz .
With a dipoled05 k̂d0 oriented in thez direction and moving
in the x-y plane, the phase shift obtained by Wilkens,

DfW} R @B3d0#•dx} R dx•
~2 îy1 ĵx!

r 2
5 R dx•“u

Þ0, ~18!

has topological properties analogous to those of the
phase shift.

However, the quantityr@“(d0•A)#•dx does not vanish
in this case. In fact, since there is noz dependence,

R @“~d0•A!#•dx5 R @d0~ î]xAz1 ĵ]yAz!#•dx

52 R ~B3d0!•dx5}2 R duÞ0

and in Eq.~17! Df}rd0]zA(x,y)•dx50.
Another way to realize, intuitively, that the phase sh

~17! is zero for Wilkens’ configuration consists in relatin
Df to the sum of the AB phase shifts of the charges of
dipole. According to Eq. ~2!, DfAB5(q/c\)rA•dx
5(q/c\)F, whereF is the magnetic flux through the loo
of areaSformed by the path of the particle moving in thex-y
plane and encircling the singularity. In this case, the norm
to the area of the loop isn5 k̂, and F5B•nS5DfAB50.
Thus, also for the dipoleDf5DfAB

1 1DfAB
2 }(F12F2)

50.
In conclusion, the phase shift given by Eq.~17! derived

here is physically different from that of Eq.~18! proposed by
Wilkens and by Weiet al. For the experiment devised b
Wilkens @6#, result~17! predicts the null resultDf50.

V. QUANTUM EFFECT FOR AN ELECTRIC DIPOLE

Let us now apply result~17! to dipoles moving in the
presence of a vector potentialA and the uniform fieldE0 .
ot

t

g
o

B

e

l

We look for a current distribution which generates a pha
shift Df with a topology equivalent to that of the AB effec
The restriction to a uniform electric fieldE0 made to obtain
Eq. ~17! rules out also the configuration of fields proposed
Wei et al. @7# because it implies the use of dipoles induc
by a nonuniform fieldE(x).

For our purpose, we extend the line of magnetic dipo
~or solenoid! producing the AB effect to form a sheet cove
ing a semiplane perpendicular to the direction of motion
the particle, as shown in Fig. 1~a!. Choosing the velocity of
the particle along thex axis, the sheet will be covering th
y-z semiplane~from y50 to y5`) with the lines of mag-
netic dipoles oriented in thez direction. If the interferometric
path of the particle has to encircle thez axis, a segment of the
path will have to intersect the magnetic sheet and a hole
the sheet must be left through which the particles may tra
undisturbed~a small hole leaves potential and field prac
cally unchanged!.

If m is the magnetic dipole per unit of volume andt is the
thickness of the sheet, then the magnetic field inside
sheet (0<x<t) is B5 k̂4pm and the corresponding vecto
potential is AB5 ĵ4pm(2t/21x). Outside the sheet, th
magnetic field is zero. However, to obtain the total vec
potentialA(x) we have to add toAB the contribution due to

FIG. 1. ~a! A magnetic sheet covers they-z semiplane~from y
50 to y5`). Its magnetic fieldB is oriented in thez direction and
is confined within the sheet. The edge of the sheet coincident w
thez axis corresponds to a singularity for the interaction moment
Q}(d0•“)A contributing to the phase. Particles have their elec
momentd0 oriented along they direction and move on opposit
sides of the singularity. For induced dipoles, the uniform elec
field E0 must be present.~b! Interferometric path of particles pos
sessing the electric dipole momentd0 . The incoming beam of par-
ticles is split on the plane of motion before reaching the magn
sheet. The path encircles the singularityz and one of the arms of the
interferometric path goes through a hole in the magnetic sheet.
ticles moving on opposite sides of the singularity acquire oppo
phases and the phase of the outcoming beam is shifted by the
servable amountDf.
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3198 PRA 59GIANFRANCO SPAVIERI
the lines of magnetic dipoles,Am(x)5*Vd3xm@m3(x
2xm)#/ux2xmu3, that can be calculated integrating the e
ementary expression for a magnetic dipole over the volu
V of the magnetic sheet. Actually, what one needs are o
the derivatives]Am /]x and]Am /]y which turn out to be

]Am

]x
522mtS îx1 ĵy

r 2 D ,
]Am

]y
52mtS 2 îy1 ĵx

r 2 D ,

~19!

where“3Am50 and“3A5“3(AB1Am)5B.
At the intersection with the magnetic sheet the dip

crosses a region withBÞ0. However, from Eq.~17! it is
apparent that the topology of our effect depends on the
gular behavior ofQ05c21(d0•“)A regardless of the distri
bution of fields and sources of potentials. Takingd0 parallel
to the m3v direction ~here the y direction!, one finds
(d0•“)AB5d0]yAB50 and

Q05c21~d0•“ !Am5c212d0mt~2 îy1 ĵx!/r 2

5c212d0mt“u.

Thus, our phase shift has a topology equivalent to that of
AB effect, and from Eq.~17!

Df5
1

\ R Q0•dx5
1

\c R ~d0•“ !A•dx5
2d0mt

\c R du

5
~dn!

\c
d0Bt, ~20!

where, in most experimental conditions, we may takedn
51. A phase shift twice that of Eq.~20! is achieved by
adding another magnetic sheet~with opposite magnetic mo
ment! in the othery-z semiplane.

Note that the componentsd0x and d0z @if they do not
vanish, the termd0 in Eq. ~20! readsd0y], do not contribute
to the phase shift because they lead to terms of the integ
which are either perpendicular to the path of the particle
are of the typer@“(1/r )#•dx50.

We derive now result~20! using the equivalent expressio

Df5
1

\c R @B3d01“~d0•A!#•dx

on the right-hand side of Eq.~17!. First, we show that for our
configurationr“(d0•A)] •dx50. Since the contribution o
both Am and AB have to be taken into account,“(d0•A)
5 îd0y]xAB1“(d0•Amy). Using Eq. ~19!, “(d0•Amy)
52mt@d0x“(1/r )1d0y“u#, so that

R @“~d0•A!#•dx524pd0mt12d0mt R “u•dx50.

Thus, the phase shift is given by

Df5
1

\c R ~B3d0!•dx5
1

\c R ~2 îd0yB1 ĵd0xB!•dx

5
1

\c
d0yBt
e
ly

n-

e

nd
r

as in Eq.~20!.
To interpret intuitively the physical result~20!, we relate

it once more to the sum of the AB phase shifts of the char
of the dipole. According to Eq.~2!, DfAB5(q/c\)rA•dx
5(q/c\)F, whereF5B•n̂S is the magnetic flux through
the loop formed by the path of the particle encircling t
singularity. Referring to Fig. 1~a!, one can see that the mag
netic field is localized inside the sheet in the regiony>0
and, thus, for a dipole momentd05d0y , the path of the outer
charge encircles a greater flux. Sinced05qr 8, while cross-
ing the uniform fieldB at the intersection with the shee
the dipole sweeps the area difference (S12S2)n̂•B̂5(r 8
3dx)•B̂5r x8dy2r y8dx, and the quantity (B3r 8)•dx5(r 8
3dx)•B5DSn̂•B represents the elementary magnetic fl
through the area swept by the dipole. Thus, withdx5t,

Df5
q

\c
F12

q

\c
F25

q

\c
B•n̂~S12S2!5

q

\c
Btr 8

5
1

\c
d0Bt,

in agreement with Eq.~20!.

VI. ANALYSIS OF POSSIBLE EXPERIMENTAL
VERIFICATION OF THE PHASE SHIFT

To discuss the experimental verification of the phase sh
it is convenient to express Eq.~20! as

Df; 4.0
d0

~eao!

t

~mm!

B

~kG!
;

2aE0tB

\
.

These two equivalent expressions forDf are given in physi-
cal and mks units, respectively, and the last term has a f
suitable for induced dipoles.

To test the quantum phase, one needs first to prepa
beam of dipoles in the statêd&5d0Þ0, moving with uni-
form velocity and withd0 in the direction of the fieldE0
1c21v3B. If the vector d0 is not completely parallel to
E01c21v3B, the quantityd0 in Eq. ~20! stands for the
component of̂ d& parallel to the field. For induced dipole
with d05aE0 , the arrangement needed to prepare the m
tioned beam is relatively simpler because the orientation
determined by the uniform, external electric fieldE0 .

Note that, for the average quantityd0 , the condition~12!
obtained in the discussion of the classical behavior of
dipole readsd03E85d03(E01c21v3B)50. Furthermore,
(d0•“)E050 and also“3(B3d0)52 ĵd0]zB50 because
B depends onx only. Thus, the equation of motion~7! im-
plies dv/dt50, so that the particle moves with the unifor
velocity v5v0 even when the em interaction is switched
@13#.

To measure the phase, one may employ interferomete
which the incoming beam of particles of Fig. 1~b! is split
into two coherent beams that pass on opposite sides of
singularity and then recombine. When the em interaction
switched on, particles on opposite sides of the interferom
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PRA 59 3199QUANTUM EFFECT FOR AN ELECTRIC DIPOLE
ric path acquire opposite phases and the outcoming bea
phase shifted by the amountDf to be measured by the in
terferometer.

Some atom interferometers can detect phases of 0.1
@14#, and atomic beam splitters may reach the supermillim
ter range@15#. Thus, the thicknesst may be of the order of 1
mm and both molecular (d0;4ea0) or atomic (d0<ea0)
interferometers may be used. If only moderate magn
fields are achievable, it is convenient to use polar molecu
with a large permanent dipole moment, since for single
oms and nonpolar molecules the induced dipoles are ra
small even when a strong electric field is applied.

For our configuration, theB field may reach relatively
high values because the solenoids extend fromz52` to z
5` and, as in the AB effect with a toroid, need not be op
By using material with high permeability or superconducti
magnetic sheets, the field strength may be well above the
range. For alkali-metal atomsa;1031040 Fm2, and with
B;1T andE0;106 V/cm it is possible to achieve a phas
shift greater thanp/2. Thus, the verification of the propose
quantum effect for an electric dipole is feasible.

However, other field configurations may turn out to
suitable for the purpose of observation. For example, for
experimental verification of the AC effect, different config
rations have been proposed@16# and, by analogy, can b
extended to the present effect. A suitable configuration c
sists of a uniformB field confined within a tiny toroid with
its axis of symmetry in thev direction and physically cut into
two halves by the plane of motion. If the outer radius of t
toroid is R, the two cuts are placed aty56R in correspon-
dence to the split beams of Fig. 1~b!. The two resulting
horseshoe-shaped magnets facing one another can be sl
separated to allow the beam of particles to pass through.
field in the gap between the magnets penetrates the plan
motion and has opposite signs at the position of the c
With t being now the inner diameter of the toroid, particl
passing through the gaps travel a distancet in the presence
of the magnetic field of strengthB and generate the shif
~20!.
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An even simpler configuration would arise if it were po
sible to prepare a beam of particles formed by two coher
beams, not spatially separated, possessingoppositeelectric
moments and made to pass through thesamemagnetic field.
In order to experimentally detect the AC phase, Sang
et al. @17# have developed such an arrangement formagnetic
dipoles, which has proved effective for determining the
dependence of the quantum phase from velocity and its
portionality to the electric field.

With the last two configurations botht and B may be
increased, leading to a value of the phase shift greater
that of the magnetic sheet configuration.

VII. CONCLUSIONS

We have considered a simple model of an electric dip
and analyzed its behavior. Although the quantum behavio
the mean values of the relevant observables is analogou
that of the corresponding classical variables, a quantum
pole is characterized by the phase given by expression~3!
that is an application of the AB phase.

In order to observe a quantum effect for electric dipol
we have devised the current distribution corresponding to
magnetic sheet shown in Fig. 1~a!. This configuration pro-
vides a phase shift which is path-independent, a property
recalls the topological features of the AB effect. Howev
the present effect is not a nonlocal topological effect of
AB type because the Ro¨ntgen interaction is effective whe
the particles cross the magnetic sheet and are in the pres
of the fieldB, while in the AB effect the particles move in
field-free region.

In conclusion, this quantum effect for electric dipoles m
be observed in atom or molecular interferometry and its v
fication is within reach of present experimental technique
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