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Reply to ‘‘Possibility of distinguishing between identical particles
in quantum collision processes’’
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Bencze and Chandler, in the preceding paper, are highly critical of the convergent close-coupling method as
applied to the calculation of differential ionization processes. We argue that the criticism is unwarranted and
arises from a misunderstanding of the close-coupling theory.@S1050-2947~99!03404-6#
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There are many criticisms offered by Bencze a
Chandler of the convergent close-coupling~CCC! approach
to the calculation of electron-impact ionization of atoms.
order to address these with maximal clarity we will enum
ate and restate~in italics! them first, give a brief response
and follow up with a more detailed one later.

(i) The CCC method does not yield results consistent w
the symmetrization postulate, but should due to the prese
analytical formalism. It is true that the CCC ionization am
plitudes do not satisfy the symmetrization postulate,
should they. The analytical formalism presented by Ben
and Chandler resembles, but is not, the CCC method.

(ii) The step-function hypothesis was introduced to
store the consistency of the CCC amplitudes with the s
metrization postulate. Not true: the ‘‘step-function hypoth
esis’’ has nothing to do with the CCC approach to ionizatio
It is inconsistent with the symmetrization postulate, but
applicable to all implementations of the close-coupli
theory.

(iii) The CCC method does not include long-range effe
of the Coulomb interaction. There are only one-electro
Coulomb phases in the CCC application to ionization.

(iv) The CCC method is a mixture of classical and qua
tum mechanical ideas. Not true: only a consistent usage
quantum mechanics is applied.

Now let us address the points in more detail. Before do
so, it is important that some terminology is clearly define
First, there is the close-coupling theory that began with M
sey and Mohr@1#, which presently has many numeric
implementations such as theR-matrix approach of Burke and
Robb @2#, the variational approach of Callaway@3#, the
intermediate-energyR-matrix method of Burke, Noble, an
Scott @4#, the eigenchannelR-matrix method of Greene@5#,
theR-matrix method with pseudostates of Bartschatet al. @6#
and Badnell and Gorczyca@7#, the pseudostate approach
van Wyngaarden and Walters@8#, the hyperspherical close
coupling method of Watanabe, Hosada, and Kato@9#, the
CCC method of Bray and Stelbovics@10#, and others. If the
electron-atom scattering wave function at total energyE is
expanded using the same set of square-integrable s
fn

(N) , then all these methods should yield the same res
Traditionally these methods were applied to the calculat
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of only discrete transitions, but following the pioneerin
work of Curran and Walters@11# we have taken the CCC
method further and applied it to differential ionization pr
cesses. Thus, we wish to distinguish between the clo
coupling theory, of which the CCC method is one of ma
examples, and the CCC specific application to ionization
is the latter that Bencze and Chandler criticize so strong

Let us first concentrate on the CCC implementation of
close-coupling theory. For each total spinS, solution of the
close-coupling equations@10# yields scattering amplitude
FS

(N) for the excitation of the statesfn
(N) with energyen

(N)

(n51, . . . ,N) from some initial statef1
(N) ,

FS
~N!~kf ,n,ki !5^kffn

~N!uTS~E1 i0!uf1
~N!ki&, ~1!

with antisymmetry of the total wave function fully imple
mented, i.e.,FS

(N) is a coherent combination of the corre
sponding direct and exchange amplitudes asSdictates. Note,
we use our usual convention that the target-space electro
on either side of theT operator, unlike Bencze and Chandle
The result in Eq.~1! is independent of the numerical imple
mentation of the close-coupling theory. The total energyE is
related to the energies of the electrons~atomic units as-
sumed! in the initial and final states via

E5e1
~N!1ki

2/25en
~N!1kf

2/2, ~2!

and soen
(N)<E. The total cross sectionsT may be obtained

via the optical theorem~close-coupling is a unitary theory! or
as a sum of all cross sections,

sT
~N!~S!5E dV f (

n:en
~N!<E

uFS
~N!~kf ,n,ki !u2

5E dV fS (
n:en

~N!
,0

uFS
~N!~kf ,n,ki !u2

1 (
n:0<en

~N!<E

uFS
~N!~kf ,n,ki !u2D

5sNB
~N!~S!1s I

~N!~S!, ~3!

wheresNB is the total nonbreakup cross section ands I is the
total ionization cross section. It is the spectacular agreem
between the CCC-calculateds I and experiment for thee-H
3133 ©1999 The American Physical Society
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3134 PRA 59COMMENTS
system@12# that encouraged us to look in the area of ioniz
tion in more detail. The above relations are also used in o
implementations of the close-coupling theory with equal s
cess@13–15#.

Now, let us closely examine the definition ofs I
(N)(S). Let

us suppose that the energiesen
(N) happen to be symmetri

aboutE/2 ~in practice this almost never happens and so
interpolation is required@16#!, i.e., for every pair (en

(N) ,kf
2/2)

there is another pair (e f
(N) ,kn

2/2) for f Þn with e f
(N)5kf

2/2
and henceen

(N)5kn
2/2. Then we may write

s I
~N!~S!5E dV f (

n:0<en
~N!<E

uFS
~N!~kf ,n,ki !u2 ~4!

5E dV f (
n:0<en

~N!<E/2

~ uFS
~N!~kf ,n,ki !u2

1uFS
~N!~kn , f ,ki !u2!. ~5!

Both terms in Eq.~5! have one electron with energykf
2/2 and

the other withkn
2/2. However, they have very different or

gins. The first term comes from the excitation of the ps
dostate with energyen

(N)5kn
2/2,E/2 and the boundary con

dition that the fasterkf
2/2 electron is a plane wave shielde

completely from the atom by the slow electron. The seco
term comes from excitation of the pseudostate with ene
e f

(N)5kf
2/2.E/2 and the unphysical boundary conditio

where the slowkn
2/2 electron is a plane wave shielded com

pletely by the fast electron. The incoherent sum in Eq.~5!
indicates the theoretical distinguishability of the two pr
cesses. In fact, in the close-coupling theory all amplitu
FS

(N)(kf ,n,ki), which are a coherent combination of the d
rect and the exchange amplitude depending on the total
S, are distinguishable fromFS

(N)(kf 8 ,n8,ki) for nÞn8.
The distinguishability is not due to an incorrect impo

tion of antisymmetry since both amplitudes in Eq.~5! are
already a coherent combination of their own direct and
change amplitudes, but due to the inelastic scattering~dis-
crete excitation! boundary conditions imposed by the clos
coupling theory irrespective of the energy of the target s
fn

(N) . The close-coupling ‘‘detector’’ positioned at ‘‘infin
ity’’ only detects the true continuum electron^ku. The step-
function hypothesis@17#, deduced from a numerical invest
gation, says that for infiniteN the second term in Eq.~5! is
zero. The consequence of this is that the distinguishab
between the two electrons disappears, since for infiniteN
even the functionsfn

(N) also extend to infinity. This hypoth
esis, if true, is a complete reconciliation of Eq.~5! with for-
mal ionization theory, where the total ionization cross s
tion is obtained with the energy integration over the inter
@0,E/2#. For finiteN we have to use both terms in Eq.~5! as
dictated by Eq.~4!. In practice, the second term is usua
much smaller than the first, but considerable unphysical
cillation in the FS

(N)(kf ,n,ki) as a function ofN typically
occurs at small to intermediateE, and accurate convergenc
is only able to be achieved at largeE where the cross sectio
at E/2 is very small@16,18#.

All of the discussion thus far has related solely to t
close-coupling theory and with no reference to class
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ideas. Now we turn to the extension of the close-coupl
theory to the calculation of differential ionization cross se
tions. The CCC approach to differential ionization@16# de-
fines the ionization amplitudes as

FS
~N!~kf ,kn ,ki !5^x~2 !~kn!ufn

~N!&FS
~N!~kf ,n,ki !, ~6!

wherex (2)(kn) is, in the case of hydrogen, a pure Coulom
wave of energykn

2/25en
(N) . In other words, ionization is

identified with excitation of the positive-energy pseudosta
with the overlap in Eq.~6! restoring the true continuum nor
malization and introducing a one-electron Coulomb pha
This definition is then used in a manner consistent with E
~5!, i.e., cross sections are defined using

d3sS
~N!

dV f dVn dEf
5uFS

~N!~kf ,kn ,ki !u21uFS
~N!~kn ,kf ,ki !u2.

~7!

After integration overVn in Eq. ~7!, and taking care over the
normalization, we recover the two terms in Eq.~5!. Spin-
averaged results are obtained using the usual statis
weights.

Now, let us return to the criticisms of Bencze an
Chandler. For clarity of reference we will label their equ
tions n as BC(n).

~i! The analytic formalism that begins with BC~2! and
ends at BC~20! is entirely irrelevant. Consider BC~2! and the
claim that the CCC amplitudes are given by BC~6!. Compare
this with Eq.~6! above. The two are very different. For ex
ample, we have specified close-coupling boundary con
tions for the evaluation ofFS

(N)(kf ,n,ki), i.e., the same as fo
inelastic scattering. This point is ignored by Bencze a
Chandler, and is very different from having two continuu
electrons in the outgoing channels. Rudge@19# shows that
the definition BC~2! yields divergent phase factors, and th
we have stated@16# that we do not believe that the CC
ionization amplitudes~6! converge to BC~2!. There is no
requirement for the amplitudes in Eq.~6! to satisfy the sym-
metrization postulate. In the limit of infiniteN we would
only obtain nonzeroFS

(`)(kf ,kn ,ki) for kn<kf . These have
all of the information about all possible ionization process
The correct implementation of antisymmetry in evaluati
Eq. ~1! ensures that the numerical results become restric
to the energy rangeen

(`)P@0,E/2#. One could make a defi
nition analogous to BC~25!, but why? We know that anti-
symmetry has already been imposed in the solution of
close-coupling equations. We have all we need foren

(`)

P@0,E/2#. There is no new information in trying to constru
amplitudes that satisfy the symmetrization postulate by t
ing what has been calculated to the bigger energy ra
en

(`)P@0,E#.
~ii ! We have explained here that the ‘‘step-function h

pothesis’’ applies to all implementations of the clos
coupling method, whether applied to calculate ionization
just elastic scattering. It suggests that foren

(N).kf
2/2 the ex-

citation amplitude^kffn
(N)uTS(E1 i0)uf1

(N)ki& goes to zero
with increasingN as calculated within the close-couplin
theory. We invite the interested reader to attempt to pro
this.



b
rla
la
ic
b
e
ts
w

a
to
ur

te
s,
tio
n
lin

s

or

r
le

is
t
o.

ar
te
r

o

xi-
th-
ng

c-
at
-
te

is is
f

ling

and
ry

ing
n-
ve
at
her
n-
e-
ov-
e of

ss-
m

f a
a

revi-
lly
li-
ze

PRA 59 3135COMMENTS
~iii ! It is true that there are only one-electron Coulom
phases in the CCC amplitudes, which come from the ove
in Eq. ~6!, and which have an enormous effect on the angu
distributions. It is also true that there are other theories wh
show how the introduction of the three-body Coulom
phases considerably improve angular agreement with exp
ment. However, we typically find that the CCC theory ge
even better angular agreement with experiment, and thus
find this criticism somewhat curious.

~iv! The accusation of the imposition of classical ide
comes from our Eq.~7!. The suggestion is that it is used
somehow remedy an incorrect symmetrization proced
Not so. All stems from the simple relation~4!. In the close-
coupling theory electron flux is distributed between all sta
with en

(N)<E without any double-counting problems. Thu
there are always two independent estimates of the ioniza
kinematics on either side ofE/2. The incoherent combinatio
of these is just a consistent application of the close-coup
theory to ionization processes. Just because Eq.~7! looks like
a classical statement does not mean that it was derived u
classical ideas. Objection to Eq.~7! is an objection to Eq.~4!,
and so the ability of the close-coupling theory to obtain c
rect total ionization cross sections@12#.

The criticisms of Bencze and Chandler are very gene
and so may be refuted by taking specific counterexamp
Take the triplet (S51) part of the modele-H ionization
problem presented in Fig. 2 of Ref.@17#. Excellent conver-
gence is demonstrated, with the ‘‘step-function hypothes
being trivially satisfied for allN due to the fact that correc
antisymmetrization ensures that the size of the step is zer
similar result is also obtained using theR matrix with pseu-
dostates implementation of the close-coupling theory@21#.
The lack of symmetry in the presented cross section cle
indicates incompatibility with the symmetrization postula
So, is the implementation of the close-coupling theo
wrong? No, what is wrong is Bencze and Chandler’s attem
to relate the close-coupling amplitudes on either side ofE/2
via the symmetrization postulate. A correct interpretation
e
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the close-coupling amplitudes~1! for en
(N).E/2 is that they

are~if nonzero! numerical ‘‘leftovers’’ due to an incomplete
convergence withN.

Another counterexample is obtained by taking largeE, so
that Eq.~1! may be accurately obtained by the Born appro
mation. In other words, we may readily drop exchange wi
out significantly altering the results of the close-coupli
theory or the CCC approach to ionization~see Fig. 7 of Ref.
@16#, for example!. Convergence for the dominant cross se
tions aten

(N)!E/2 is readily obtained as the cross section
E/2 is particularly small. Without imposition of antisymme
try in the total wave function, the symmetrization postula
cannot be satisfied but the results are still correct, and th
why we say that Eq.~7! has to be used irrespective o
whether exchange is or is not included in the close-coup
part of the calculation.

The biggest misunderstanding exhibited by Bencze
Chandler is that of the close-coupling theory. This theo
treats all excitations as if they were just inelastic scatter
with only one electron being allowed to escape to true infi
ity. As such, any direct comparison with theories that ha
two electrons in the continuum is very difficult. The fact th
the CCC approach to ionization works better than any ot
existing theory is simply a reflection of the fact that the io
ization information is extracted consistently from the clos
coupling method, which attempts to solve the equations g
erning the electron-atom scattering system. For the cas
ionization it is not without problems@17#, but current indi-
cations are that it is able to yield accurate ionization cro
section angular distributions in all kinematical regions, fro
near @20# to far @16# from threshold, from asymmetric to
symmetric energy-sharing@18#. The problem of a lack of
convergence in the magnitude is due to the inability o
finite N calculation to describe a step function which has
substantial step size. This has been discussed in detail p
ously and may be remedied approximately semiempirica
@17#. This latter part is the weakest point of the CCC app
cation to ionization, and not any criticisms raised by Benc
and Chandler.
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