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in quantum collision processes”
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Bencze and Chandler, in the preceding paper, are highly critical of the convergent close-coupling method as
applied to the calculation of differential ionization processes. We argue that the criticism is unwarranted and
arises from a misunderstanding of the close-coupling thd&3050-2947®9)03404-4

PACS numbd(s): 34.80.Bm, 34.80.Dp

There are many criticisms offered by Bencze andof only discrete transitions, but following the pioneering
Chandler of the convergent close-couplif@CC) approach work of Curran and Walter§11] we have taken the CCC
to the calculation of electron-impact ionization of atoms. Inmethod further and applied it to differential ionization pro-
order to address these with maximal clarity we will enumer-cesses. Thus, we wish to distinguish between the close-
ate and restatéin italics) them first, give a brief response, coupling theory, of which the CCC method is one of many
and follow up with a more detailed one later. examples, and the CCC specific application to ionization. It

(i) The CCC method does not yield results consistent withs the latter that Bencze and Chandler criticize so strongly.
the symmetrization postulate, but should due to the presented L€t us first concentrate on the CCC implementation of the
analytical formalism It is true that the CCC ionization am- Cl0S€-coupling theory. For each total sgBnsolution of the
plitudes do not satisfy the symmetrization postulate, norclc’)\ls)e-coupllng gqu_atlonBlO] yields ?ﬁ)atte_:rlng amplltz,l,\ges
should they. The analytical formalism presented by Bencz&s ~ for the excitation of the stategy \ with energy e,
and Chandler resembles, but is not, the CCC method. ~ (1=1, ... N) from some initial states{",

(i) The step-function hypothesis was introduced to re- .
store the consistency of the CCC amplitudes with the sym- F§V (ke ,n k) =(ki b | TS(E+i0)] $Vk), D
metrization postulateNot true: the “step-function hypoth-
esis” has nothing to do with the CCC approach to ionization.
It is inconsistent with the symmetrization postulate, but is

applicable to all implementations of the close-coupling,e se our usual convention that the target-space electron is

theory. _ on either side of th& operator, unlike Bencze and Chandler.
(iii) The CCC method does not include long-range effectSrhg resylt in Eq(1) is independent of the numerical imple-

of the Coulomb interactianThere are only one-electron | entation of the close-coupling theory. The total eneEgy

Coulomb phases in the CCC application to ionization. related to the energies of the electrof@omic units as-
(iv) The CCC method is a mixture of classical and quan-symed in the initial and final states via

tum mechanical ideaNot true: only a consistent usage of

guantum mechanics is applied. E=eV+k22=eN+K2/2, 2)
Now let us address the points in more detail. Before doing

so, it is important that some terminology is clearly defined.and soe(\)<E. The total cross sectioa; may be obtained

First, there is the close-coupling theory that began with Masy;i5 the optical theorertclose-coupling is a unitary theargr
sey and Mohr[1], which presently has many numerical 535 3 sum of all cross sections,

implementations such as tiRematrix approach of Burke and
Robb [2], the variational approach of Callawdy], the N \
intermediate-energR-matrix method of Burke, Noble, and o >(S)=f d0; > [F& (k.0 k)2
Scott[4], the eigenchanndR-matrix method of Greengs], ne<E

the R-matrix method with pseudostates of Bartsobiaal. [6]

and Badnell and Gorczydd], the pseudostate approach of :j de(

with antisymmetry of the total wave function fully imple-
mented, i.e.F{ is a coherent combination of the corre-
sponding direct and exchange amplitudeSdsctates. Note,

FSV (ks.n k)2
van Wyngaarden and Waltef8], the hyperspherical close- 0
coupling method of Watanabe, Hosada, and K&ph the
CCC method of Bray and Stelbovi€$0], and others. If the S IEM (K 0ok )2
electron-atom scattering wave function at total enefgig , S AT
expanded using the same set of square-integrable states S
#V), then all these methods should yield the same results. —aN(9)+a(N(S), 3)
Traditionally these methods were applied to the calculation
whereoyg is the total nonbreakup cross section ands the
total ionization cross section. It is the spectacular agreement
*Electronic address: |.Bray@flinders.edu.au between the CCC-calculated and experiment for the-H
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system[12] that encouraged us to look in the area of ioniza-ideas. Now we turn to the extension of the close-coupling
tion in more detail. The above relations are also used in otheheory to the calculation of differential ionization cross sec-
implementations of the close-coupling theory with equal suctions. The CCC approach to differential ionizatif6] de-

cess[13-15. fines the ionization amplitudes as
Now, let us closely examine the definition @fN)(S). Let
us suppose that the energie$” happen to be symmetric FEU (ke kn k) =(x' (k) [ YF (k¢ 0 ki), (6)

aboutE/2 (in practice this almost never happens and some
interpolation is requiref16]), i.e., for every pair €N k?/2) wherex(7)(k,) is, in the case of hydrogen, a pure Coulomb
there is another pairef"),k?/2) for f#n with {N=k?2  wave of energyk?/2= €™ . In other words, ionization is
and hencesgN): k?/2. Then we may write identified with excitation of the positive-energy pseudostates
with the overlap in Eq(6) restoring the true continuum nor-
() ) ) malization and introducing a one-electron Coulomb phase.
g (S)—f dQy EN [Fs (ke ,n,ki)l (4)  This definition is then used in a manner consistent with Eq.

n0=en<F (5), i.e., cross sections are defined using
=fde > (IFV (ke ,nkp)|? de'ég\l):“:m)(k Ky k) |24 [F (K, ke k)2
n:o<eN<gr dQ;dQ, dE; s (Ki,Kp,K; s (Kn.Kks k)|
+HFL Ky, KO, ® "

) ) After integration oveK},, in Eq. (7), and taking care over the
Both terms in Eq(5) have one electron with energf'/z and normalization, we recover the two terms in E&). Spin-

the other withk?/2. However, they have very different ori- averaged results are obtained using the usual statistical
gins. The first term comes from the excitation of the pseuweights.
dostate with energy)=k2/2<E/2 and the boundary con-  Now, let us return to the criticisms of Bencze and
dition that the fastekfz/z electron is a plane wave shielded Chandler. For clarity of reference we will label their equa-
completely from the atom by the slow electron. The secondionsn as BCf).
term comes from excitation of the pseudostate with energy (i) The analytic formalism that begins with B2} and
e§N)=kf2/2> E/2 and the unphysical boundary condition ends at BC20) is entirely irrelevant. Consider B2) and the
where the slowk?/2 electron is a plane wave shielded com-claim that the CCC amplitudes are given by B Compare
pletely by the fast electron. The incoherent sum in By. this with Eq.(6) above. The two are very different. For ex-
indicates the theoretical distinguishability of the two pro-ample, we have specified close-coupling boundary condi-
cesses. In fact, in the close-coupling theory all amplitudegions for the evaluation " (k¢ ,n,k;), i.e., the same as for
FgN)(kf,n,ki), which are a coherent combination of the di- inelastic scattering. This point is ignored by Bencze and
rect and the exchange amplitude depending on the total spfahandler, and is very different from having two continuum
S are distinguishable frorf® (ks ,n’ k) for n#n’. electrops_ in the outgoing ghannels. Rudd®] shows that
The distinguishability is not due to an incorrect imposi-the definition BQ2) yields divergent pha;e factors, and thus
tion of antisymmetry since both amplitudes in H§) are W€ have stated16] that we do not believe that the CCC
already a coherent combination of their own direct and ex!onization amplitudes(6) converge to B(2). There is no
change amplitudes, but due to the inelastic scattefiigr ~ requirement for the amplitudes in E@) to satisfy the sym-
crete excitationboundary conditions imposed by the Cbse_metnzaﬂqn postulate. In the limit of infinitt we would
coupling theory irrespective of the energy of the target stat@nly obtain nonzgrcF(S”)(kf kn,ki) for ky=<k;. These have
¢§1N)_ The close-coupling “detector” positioned at “infin- all of the mformauon abogt all poss[ble |on|zat|(_)n processes.
ity” only detects the true continuum electrdk|. The step- The correct implementation of. antisymmetry in evaluat_lng
function hypothesi§17], deduced from a numerical investi- Eqg. (1) ensures that Eche numerical results become restrl_cted
gation, says that for infinit&l the second term in Eq5) is  t0 the energy range!”) e [0,E/2]. One could make a defi-
zero. The consequence of this is that the distinguishabilityition analogous to B@5), but why? We know that anti-
between the two electrons disappears, since for infiNite Symmetry has already been imposed in the solution of the
even the functionss(") also extend to infinity. This hypoth- close-coupling equations. We have all we need &’
esis, if true, is a complete reconciliation of E&) with for-  €[0,E/2]. There is no new information in trying to construct
mal ionization theory, where the total ionization cross secamplitudes that satisfy the symmetrization postulate by tak-
tion is obtained with the energy integration over the intervaling what has been calculated to the bigger energy range
[0,E/2]. For finiteN we have to use both terms in E&) as €~ €[0.E].
dictated by Eq.4). In practice, the second term is usually (i) We have explained here that the “step-function hy-
much smaller than the first, but considerable unphysical ogpothesis” applies to all implementations of the close-
cillation in the |:(SN)(|<f ,n.k;) as a function ofN typically ~ coupling method, whether applied to calculate ionization or
occurs at small to intermediaf and accurate convergence just elastic scattering. It suggests that &) >k?/2 the ex-
is only able to be achieved at lar§ewhere the cross section citation amplitude(k;p"| Ts(E+i0)| {Vk;) goes to zero
atE/2 is very small[16,18. with increasingN as calculated within the close-coupling
All of the discussion thus far has related solely to thetheory. We invite the interested reader to attempt to prove
close-coupling theory and with no reference to classicathis.
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(iii) It is true that there are only one-electron Coulombthe close-coupling amplituded) for e")>E/2 is that they
phases in the CCC amplitudes, which come from the overlagre (if nonzerg numerical “leftovers” due to an incomplete
in Eq. (6), and which have an enormous effect on the angulaconvergence withN.
distributions. It is also true that there are other theories which Another counterexample is obtained by taking laEgeo
show how the introduction of the three-body Coulombthat Eq.(1) may be accurately obtained by the Born approxi-
phases considerably improve angular agreement with expernation. In other words, we may readily drop exchange with-
ment. However, we typically find that the CCC theory getsout significantly altering the results of the close-coupling

even better angular agreement with experiment, and thus wieory or the CCC approach to ionizatisee Fig. 7 of Ref.
find this criticism somewhat curious. [16], for examplg. Convergence for the dominant cross sec-

(IV) The accusation of the imposition of classical ideastions atEgN)< E/2 is readily obtained as the cross section at

comes from our Eq(7). The suggestion is that it is used to E/2. is particularly small. Without imposition. of _antisymme-
somehow remedy an incorrect symmetrization procedurdy in the total wave function, the symmetrization postulate
Not so. All stems from the simple relatiq#). In the close- cannot be satisfied but the results are still correct, and this is

coupling theory electron flux is distributed between all statedVNY We say that Eq(7) has to be used irrespective of
with eﬁ,N)SE without any double-counting problems. Thus whether exchange is or is not included in the close-coupling

there are always two independent estimates of the ionizatio%art of the calculation.
. ) Y3 indep ) o The biggest misunderstanding exhibited by Bencze and
kinematics on either side &/2. The incoherent combination C

- . o . Chandler is that of the close-coupling theory. This theory
of these is just a consistent application of the close-couplingraats all excitations as if they were just inelastic scattering

theory to ionization processes. Just becauseBidooks like  yith only one electron being allowed to escape to true infin-
a classical statement does not mean that it was derived using. As such, any direct comparison with theories that have
classical ideas. Objection to E) is an objection to Eq4),  two electrons in the continuum is very difficult. The fact that
and so the ability of the close-coupling theory to obtain corthe CCC approach to ionization works better than any other
rect total ionization cross sectiof$2]. existing theory is simply a reflection of the fact that the ion-

The criticisms of Bencze and Chandler are very generaization information is extracted consistently from the close-
and so may be refuted by taking specific counterexamplegoupling method, which attempts to solve the equations gov-
Take the triplet §=1) part of the modele-H ionization erning the electron-atom scattering system. For the case of
problem presented in Fig. 2 of RgfL7]. Excellent conver- ionization it is not without problem§l7], but current indi-
gence is demonstrated, with the “step-function hypothesis”cations are that it is able to yield accurate ionization cross-
being trivially satisfied for alN due to the fact that correct section angular distributions in all kinematical regions, from
antisymmetrization ensures that the size of the step is zero. Aear [20] to far [16] from threshold, from asymmetric to
similar result is also obtained using tRematrix with pseu-  symmetric energy-sharinfl8]. The problem of a lack of
dostates implementation of the close-coupling thel@y]. convergence in the magnitude is due to the inability of a
The lack of symmetry in the presented cross section clearlfinite N calculation to describe a step function which has a
indicates incompatibility with the symmetrization postulate.substantial step size. This has been discussed in detail previ-
So, is the implementation of the close-coupling theoryously and may be remedied approximately semiempirically
wrong? No, what is wrong is Bencze and Chandler’s attempfi17]. This latter part is the weakest point of the CCC appli-
to relate the close-coupling amplitudes on either sid&/@f  cation to ionization, and not any criticisms raised by Bencze
via the symmetrization postulate. A correct interpretation ofand Chandler.
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