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Impossibility of distinguishing between identical particles in quantum collision processes
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The very successful convergent close-coupling~CCC! method@I. Bray and D. V. Fursa, Phys. Rev. A54,
2991~1996!# for calculating cross sections for the ionization of atoms by electron impact is examined for the
case of hydrogen ionization. The theory is recast in an operator theoretic form, allowing explicit formulas to be
given for the solutions of the truncated CCC equations. The limit to which these solutions tend as ever more
terms are included in the truncation is shown to be the exact transition operator for the system. This analytical
result is not consistent with the numerical CCC results, which yield amplitudes that violate the symmetrization
principle of quantum mechanics and which depend for success on treating the electrons as classically, rather
than quantally, indistinguishable particles. This new result is also inconsistent with the ‘‘step function hypoth-
esis’’ @I. Bray, Phys. Rev. Lett.78, 4721 ~1997!# that was introduced to restore the consistency of the CCC
calculations with the symmetrization postulate. In addition, the CCC method does not include long-range
effects of the Coulomb interaction that are expected to be important in certain kinematic configurations at low
energies. Consequently, it is not justified yet to interpret the numerical successes of the CCC method as
confirmation of a fundamental dynamical understanding of electron-induced atomic ionization.
@S1050-2947~99!03204-7#

PACS number~s!: 34.80.Bm, 34.80.Dp, 03.65.Nk
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Over the past five years Igor Bray and colleagues@1–8#
have performed a remarkable series of calculations of ph
cal observables for the ionization of hydrogen and helium
well as other atoms, by electron impact. Most recently th
have treated the double photoionization of helium@9#. Their
approach, which they call the convergent close-coupl
~CCC! method, introduces a finite expansion for the co
tinuum wave function of the ionized electrons. Thus, inste
of solving mathematically sound but multidimensional thre
body equations~e.g., Faddeev equations!, they solve a more
tractable set of coupled integral equations in a single v
able. Due to the finite expansion, the wave functions can
accurate only in a finite volume since the square integra
basis functions do not satisfy the proper scattering conditi
at large radii. Nevertheless, the results of the numerical
culations are in good agreement with experimental d
aside from an overall normalization factor for certain diffe
ential cross sections.

Presumably due to the spectacular phenomenological
cess of the CCC method, little attention has been paid to
fact that the calculations produce ionization amplitudes t
are very different from those of the standard quantum the
of such processes@10,11#. The purpose of this Comment is t
study these differences between the standard theory an
CCC results with more mathematical precision than has
viously been done.

Let us concentrate on the electron-hydrogen system,
simplest for which the theory of Brayet al. @1,3# can be
formulated. Following Refs.@1,3#, let us assume that the in
finitely massive proton is held fixed at the origin and that
long-range effects of the Coulomb interaction can be igno
to the extent that the scattering formalism for short-ran
forces can be employed. In atomic units the Hamiltonian
expressed as
PRA 591050-2947/99/59~4!/3129~4!/$15.00
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where r1 and r2 denote the electron position vectors. Th
exact spin-singlet (S50) and spin-triplet (S51) ionization
amplitudesFS are given in partial distorted-wave form by

FS~p,q;k!5^p,xq
~2 !uTS~E1 i0!uk,f&, ~2!

TS~z!5V@11~21!SP12#$I 1~z2H !21V%, ~3!

whereV52ur1u211ur22r1u21, P12 is the permutation op-
erator that interchangesr1 and r2 , while I denotes the iden-
tity operator. In the initial state,uk,f&, electron 1 has mo-
mentumk and electron 2 is bound to the proton~with bound
state wave functionf and bound state energye). In the final
state,up,xq

(2)&, electron 1 is described by a plane wave w
momentump and electron 2 by an eigenstate of the Ham
tonian2(1/2)D r2

2ur2u21 that satisfies incoming wave sca
tering boundary conditions corresponding to asymptotic m
mentumq. The amplitudes are to be evaluated on the ene
shell,E5e1uku2/25(upu21uqu2)/2. It is well known that the
following symmetry condition, required by the symmetriz
tion postulate@12#, is a consequence of the above definition

FS~q,p;k!5~21!SFS~p,q;k!. ~4!

The triple differential ionization cross section by electr
impact is given by@11#

ds

dVp dVq d«
5~2p!4

upuuqu
4uku $3uF1u21uF0u2%, ~5!
3129 ©1999 The American Physical Society
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3130 PRA 59COMMENTS
whereVp andVq denote the differential solid angle assoc
ated with the direction ofp and q, respectively, and«
5uqu2/2.

To this point, the theory has followed the standard tre
ment@10,11#, except for the ignoring of long-range effects
the Coulomb interaction.

In the CCC method the approximate ionization amp
tudesF̃S

(N) have the form

F̃S
~N!~p,q;k!5^p,xq

~2 !uT̃S
~N!~E1 i0!uk,f&, ~6!

where the transition operatorT̃S
(N)(z) is the solution of an

equation of the Lippmann-Schwinger type@3#,

T̃S
~N!5ṼS

~N!1ṼS
~N!~E1 i02@ h̃S

~N!# !21T̃S
~N! . ~7!

Here

ṼS
~N![I ~N!$V2~21!SP12~E2H !%I ~N!, ~8!

h̃S
~N![I ~N!~H2V!I ~N!. ~9!

The operatorI (N) has the form

I ~N!5I 1^ (
n51

N

ucn&^cnu, ~10!

where I 1 is the identity operator for ther1 variable and
(n51

N ucn&^cnu is a projection operator for ther2 variable,
ucn& being orthonormal basis vectors. The CCC method c
sists of choosing suitable basis vectors and subsequently
culating the amplitudesF̃S

(N) by solving Eq.~7! for increas-
ing values ofN until the results appear to be insensitive
the increase ofN.

To what limit F̃S
(`) do the amplitudesF̃S

(N) converge as
N→`? It is straightforward in our operator theoretic versi
of the CCC theory to show that

T̃S
~N!~z!5ṼS

~N!1ṼS
~N!~z2H̃S

~N!!21ṼS
~N! , ~11!

whereH̃S
(N)[h̃S

(N)1ṼS
(N) . That is,

H̃S
~N!5I ~N!$H2~21!SP12~E2H !%I ~N!. ~12!

Since the basis vectorsucn& are chosen to be complete
lim

N→`
I (N)5I @@3#, Eq. ~6! and following, and@5##. It fol-

lows that

F̃S
~`!~p,q;k!5^p,xq

~2 !uT̃S
~`!~E1 i0!uk,f&, ~13!

where

T̃S
~`!~z!5ṼS1ṼS~z2H̃S!21ṼS , ~14!

ṼS[V2~21!SP12~E2H !, ~15!

H̃S[H2~21!SP12~E2H !. ~16!
t-

-

-
al-

Due to the on-shell equalities (H2E)uk,f&5Vuk,f& and

^p,qu(H2E)5^p,quV, and becauseH̃S and P12 commute,
Eq. ~13! can be rewritten as

F̃S
~`!~p,q;k!5^p,xq

~2 !uT̂S~E1 i0!uk,f&, ~17!

T̂S~z!5V@ I 1~21!SP12#$I 12~z2H̃S!21V%. ~18!

Introducing the notationA(S)[@ I 1(21)SP12#/2 facilitates
the derivation of

~E1 i e2H̃S!215
1

i e
~ I 2A~S!!1

1

2
~ i e/21E2H !21A~S!.

~19!

Substituting the above expressions into Eqs.~17! and ~18!
yields the final result

lim
N→`

F̃S
~N!~p,q;k![F̃S

~`!~p,q;k!5FS~p,q;k!. ~20!

Equation~20! clearly implies that the approximate CC
amplitudesF̃S

(N) should be accurate approximations to t

exact amplitudesF̃S as N→`. However@6#, the calculated
complex amplitudes obtained so far are in gross violation
Eq. ~4!, which expresses a fundamental property of the ex
amplitudesFS . This is true of both the amplitudesF̃S

(N) and

their absolute valuesuF̃S
(N)u. The numerical CCC amplitude

have not, therefore, converged to accurate approximation
the exact amplitudes.

There is evidence that the CCC calculations not only h
not converged to the standard amplitudes, they have ap
ently converged to something else. It was noticed@5# that the
CCC amplitudes for the Temkin-Poet model@13# of electron-
hydrogen ionization appear to possess a step function p
erty when«5E/2, and it was conjectured that this behavi
is quite general. If the Temkin-Poet CCC amplitudes a
converging to the exact, consequently correctly symmetri
amplitudes, then the integrated cross section

ds

d«
5E dVp dVq

ds

dVp dVq d«
~21!

would vanish for«.E/2. This implies that the integrand
and hence the singlet and triplet amplitudes individually,
zero whenever«.E/2. Since«5uqu2/2, and because the am
plitudes are either antisymmetric or symmetric functions op
and q, it would follow that both amplitudes would have t
vanish identically on the energy shell. Clearly, the exact a
plitudes, which are~even in the Temkin-Poet model! sym-
metrized in accord with the symmetrization postulate, can
exhibit the step function behavior observed in the CCC c
culations. It follows that the numerical limits that the CC
amplitudes apparently approach are profoundly differ
from the exact, correctly symmetrized amplitudes expec
on the basis of Eq.~20!.

Bray and co-workers have recognized that there is a c
flict between the exact theory and the CCC method@5#:
‘‘ . . . the CCCtheory of ionization is inconsistent with for
mal ionization theory due to the fact that the CCC ionizati
cross sections are obtained from an incoherent sum of
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pairs of coherently summed direct and exchange amplitu
which is crucial for obtaining good agreement with expe
mental angular profiles. . . ’’ They have also justified thei
procedure as follows@6#: ‘‘An important, but surprising, fea-
ture of our approach is that we have a clear distinction
tween the primary~scattered! and the ejected~target! elec-
trons . . . .These two theoretically distinct processes can
be distinguished experimentally due to the indistinguisha
ity of the detected electrons. Therefore, when compar
theory with experiment, we form an incoherent sum of t
cross sections for the two theoretically distinct proces
. . . . Note that this has to be done regardless of whe
exchange between the projectile and target electrons ha
has not, been included in the close-coupling calculation.

In accord with the viewpoint stated above, Bray and c
leagues@3# use for the triple differential cross section not E
~5! but

ds̃~N!

dVp dVq d«
5~2p!4

upuuqu
4uku $3uF̃1

~N!u21uF̃0
~N!u2%

1~2p!4
upuuqu
4uku $3uG̃1

~N!u21uG̃0
~N!u2%,

~22!

whereG̃S
(N)(p,q)[F̃S

(N)(q,p). They justify this by an argu-
ment @3# similar to the one used by Messiah@@12#, Eq.
~XIV.52!# in obtaining an analog of Eq.~22! as an interme-
diate step in deriving an analog of Eq.~5!. Messiah points
out that the argument leading to that intermediate poin
classical in nature, so it does not contain the essence of w
distinguishes the quantum treatment of identical partic
from the classical one. The subsequent quantum deve
ment by Messiah~see also@10#!, which leads from the ana
log of Eq. ~22! to that of Eq.~5!, is missing from the CCC
method. Indeed, assuming again that Eq.~20! is correct, Eq.
~22! implies

lim
N→`

ds̃~N!

dVp dVq d«
52

ds

dVp dVq d«
, ~23!

so that the differential cross sections in the CCC method
not normalized in accord with those of standard atomic i
ization theory@10#.

Thus, the CCC method is a mixture of classical and qu
tum ideas. On the one hand, the presence of the projec
operatorP12 in the basic amplitudes defined by Eqs.~6!–~12!
has its roots in the quantum indistinguishability of electro
On the other hand, the cross sections defined in Eq.~22! are
justified by arguments that are classical rather than quan
mechanical, even in the limitN→`. The CCC method is
simply not consistent in the way it handles the identity~in-
distinguishability! of the electrons.

Recently, Bray@5# has introduced the ‘‘step function’
hypothesis as a way to resolve the difference between
CCC method and the standard theory. Although the hypo
esis was formulated in the relatively simple context of t
Temkin-Poet model@13#, in the present general context it
the assertion that
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lim
N→`

F̃S
~N!~p,q;k!5H̃S

~CCC!~p,q;k!, ~24!

whereH̃S
(CCC)(p,q;k) is zero forupu,uqu. This is clearly at

odds with our earlier analytical result, Eq.~20!.
While it is not stated directly by Bray, let us assume th

the step function hypothesis implies that the converged C
amplitudeFS

(CCC) is to be defined as

FS
~CCC!~p,q;k!5H̃S

~CCC!~p,q;k!u~ upu2uqu!

1~21!SH̃S
~CCC!~q,p;k!u~ uqu2upu!, ~25!

whereu(x)51 for x.0, 1/2 forx50, and 0 forx,0. This
new amplitude has the symmetries required by Eq.~4!, ex-
cept perhaps on the surfaceupu5uqu, where it is true only if
H̃S

(CCC) itself satisfies Eq.~4!. Moreover, usingH̃S
(CCC) to

calculate the right side of Eq.~22! andFS
(CCC) to calculate the

right side of Eq.~5! yields identical results. Thus, this pro
cedure simultaneously produces amplitudes that have
correct symmetries under interchange of electrons and
ders Eqs.~5! and ~22! compatible.

While the step function hypothesis, as stated above, p
duces amplitudes that have desirable properties, it isad hoc
in that it has no discernible dynamical roots. If the CC
method does not yield the result, Eq.~20!, expected from
mathematical analysis, how does one know how the num
cal limit H̃ (CCC) in the region uqu,upu is related to the
theory? The CCC answer so far has been that the calcul
amplitudes yield cross sections that agree so well with
perimental data that

FS
~CCC!5FS . ~26!

This answer is completely unsatisfactory precisely becaus
does not prove butassumesEq. ~26!, making it impossible
within the CCC method to decide whether or not the data
actually in disagreement with the dynamics represented
the HamiltonianH.

The partly classical and partly improvised reasoning
the CCC formalism is made even more puzzling by the f
that the mathematical scattering theory for quantum syst
containing identical particles is well developed. A gene
algebraic treatment of identical particles in quantum scat
ing processes was fully elaborated almost two decades
for particles with short range@14,15# and with Coulomb@16#
interactions. For approximate techniques, such as the DW
method, the nontrivial question of the definition and tre
ment of reaction mechanisms for systems containing ide
cal particles has also been worked out, including a numbe
important combinatorial results regarding practical proble
as the relative normalization of the various coherent am
tudes@17,18#.

Despite the above objections, however, one may ar
that the shape of the numerical differential cross section i
such good agreement with experimental data, even tho
the absolute normalization is wrong, that there must be so
morsel of truth in the empirical CCC process. The main iss
is whether the CCC calculations have truly converged to
reaction amplitudes dictated by the fundamental Hamilton
H. The arguments in favor of convergence are numerica
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nature. The argument against is based on the fact that,
the step function hypothesis is grafted onto the theory,
CCC amplitudes do not have the symmetries demanded
the symmetrization postulate and by Eq.~20!. What is miss-
ing is an understanding, rooted in the fundamental dynam
of why the CCC calculations produce the behavior of E
~24!, rather than the theoretically expected behavior of
~20!, as well as why the crucial Eq.~26! should be true.

Let us now turn to the treatment of the long-range effe
of the Coulomb interaction, in which the CCC method
applied is deficient in two ways. The various methods
including Coulomb effects have been reviewed by seve
authors@10,19,20#. One practical approach is to screen t
Coulomb potentials and then let the screening radius
proach infinity. Practical calculations for proton-deuter
scattering@21–23# have shown that surprisingly large scree
ing radii are needed for converged results, which has adv
implications for the size of the numerical mesh of the cal
lation. In another formalism Jones, Madison, and Konova
@24# studied various approximations to the three-body C
lomb wave function to calculate cross sections for electr
induced ionization of hydrogen. This study shows that
amplitudes are rather sensitive to the way in which the lo
range Coulomb effects are approximated.

The first deficiency of the CCC method is that it includ
the long-range Coulomb effects only in the asymptotic C
lomb wave function x (2). The complicated three-bod
asymptotic logarithmic phase structure that is known to
essential@10,24# is strikingly absent. Thus, the method mu
be considered as one in which the Coulomb interactions
,
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screened. Unfortunately, there have been no calculation
which the implicit screening has been studied nor any exp
rations of the sensitivity to the cutoff radius, which the wo
of Joneset al. @24# suggests might be considerable.

Second, the CCC method also makes use of an expan
of a Coulomb scattering amplitude in terms of eigenfun
tions of the angular momentum operators. It has been kno
for years@25,26# that such expansions have very bad conv
gence properties in the case of two-particle Coulomb sca
ing. There are no mathematical studies of convergence
analogous three-body problems, raising the possibility t
the CCC expansion does not converge at all.

On the basis of the above considerations we can o
conclude that the basic CCC results presented so far ar
compatible with the symmetrization postulate and w
known long-range effects of the Coulomb interaction. T
step function hypothesis used to restore the CCC metho
compatibility with the symmetrization postulate has
known dynamical justification. Consequently, the dynami
foundations of the CCC method as presented in the publ
tions cited are flawed, and any dynamical interpretation
the numerical successes of the method is not yet sou
justified.
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