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Impossibility of distinguishing between identical particles in quantum collision processes
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The very successful convergent close-coupli@g@C) method[l. Bray and D. V. Fursa, Phys. Rev. 34,
2991(1996)] for calculating cross sections for the ionization of atoms by electron impact is examined for the
case of hydrogen ionization. The theory is recast in an operator theoretic form, allowing explicit formulas to be
given for the solutions of the truncated CCC equations. The limit to which these solutions tend as ever more
terms are included in the truncation is shown to be the exact transition operator for the system. This analytical
result is not consistent with the numerical CCC results, which yield amplitudes that violate the symmetrization
principle of quantum mechanics and which depend for success on treating the electrons as classically, rather
than quantally, indistinguishable particles. This new result is also inconsistent with the “step function hypoth-
esis” [I. Bray, Phys. Rev. Lett78, 4721(1997] that was introduced to restore the consistency of the CCC
calculations with the symmetrization postulate. In addition, the CCC method does not include long-range
effects of the Coulomb interaction that are expected to be important in certain kinematic configurations at low
energies. Consequently, it is not justified yet to interpret the numerical successes of the CCC method as
confirmation of a fundamental dynamical understanding of electron-induced atomic ionization.
[S1050-294{@9)03204-1

PACS numbsg(s): 34.80.Bm, 34.80.Dp, 03.65.Nk

Over the past five years Igor Bray and colleag[es8] 1 1 1 1 1
have performed a remarkable series of calculations of physi- H=— EArl_ 58,7 m - m+ m
cal observables for the ionization of hydrogen and helium, as 1 2 2 1
well as other atoms, by electron impact. Most recently they h dr. denote the elect i ¢ Th
have treated the double photoionization of helilh Their wherer, andr, denote the electron position vectors. The
approach, which they call the convergent close-couplingexaq sp|n-smglet$_=0) _and SP'”“T'p'et §=1) ionization
(CCO method, introduces a finite expansion for the con-aMPplitudesFs are given in partial distorted-wave form by

tinuum wave function of the ionized electrons. Thus, instead

()

of solving mathematically sound but multidimensional three- Fs(p.a;k)=(p.xy I Ts(E+i0)[K, &), )
body equationge.g., Faddeev equationshey solve a more
tractable set of coupled integral equations in a single vari- Ts(2)=V[1+(—1)SP,l{l +(z—H) 1V}, 3)

able. Due to the finite expansion, the wave functions can be

accurate only in a finite volume since the square integrablgyhereV= —|r1|71+|r2—r1|71, P,, is the permutation op-
basis functions do not satisfy the proper scattering conditiongrator that interchanges andr,, while | denotes the iden-
at large radii. Nevertheless, the results of the numerical cakity operator. In the initial statek,¢), electron 1 has mo-
culations are in good agreement with experimental datgnentymk and electron 2 is bound to the protéwith bound
aside from an overall normalization factor for certain differ- -1 \wave functiors and bound state energy. In the final

ential cross sections. state,|p,x\ ), electron 1 is described by a plane wave with
Presumably due to the spectacular phenomenological su¢c-_ "’ P.Xq ") yap

cess of the CCC method, little attention has been paid to thgromentump and elect_r?n 2 by an eigenstate of the Hamil-
fact that the calculations produce ionization amplitudes tha{orTlan—(1/2)Ar2—|r2|- . that satisfies |.ncom|ng wave §cat-
are very different from those of the standard quantum theoryering boundary CO”Q'UOHS corresponding to asymptotic mo-
of such processd40,11]. The purpose of this Comment is to Mmentumg. The amplitudes are to be evaluated on the energy
study these differences between the standard theory and tggell,E= e+|k|%2=(|p|>+|q|?)/2. It is well known that the
CCC results with more mathematical precision than has prefollowing symmetry condition, required by the symmetriza-

viously been done. tion postulatd 12], is a consequence of the above definitions:
Let us concentrate on the electron-hydrogen system, the s
simplest for which the theory of Bragt al. [1,3] can be Fs(a,p;k)=(—1)°Fs(p,q;k). 4

formulated. Following Refd.1,3], let us assume that the in- _ _ S .

finitely massive proton is held fixed at the origin and that theThe triple differential ionization cross section by electron

long-range effects of the Coulomb interaction can be ignoredMpPact is given by{11]

to the extent that the scattering formalism for short-range 4 iplldl

forces can be employed. In atomic units the Hamiltonian is g _ 4!PIIY 2 2
= — +

expressed as dQ,dQ,de (2m) 4|k BIFa[*+[Fl% )
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where(), and (), denote the differential solid angle associ- Due to the on-shell equalitiesH(—E)|k,#)=V|k,¢) and
ated with the direction ofp and g, respectively, ande (p,ql(H—E)=(p,q|V, and becauséls and P;, commute,

=|q|?/2. Eq. (13 can be rewritten as

To this point, the theory has followed the standard treat-
ment[10,11], except for the ignoring of long-range effects of F&(pask) =(p.xy IT(E+i0) Kk, ), 17
the Coulomb interaction.

In the CCC method the approximate ionization ampli- To(2)=V[I1+(—1)SP,J{I +2(z—Hg) "1V}. (19

tudesF{" have the form
Introducing the notatio’A®®=[1+ (—1)5P,,]/2 facilitates

IE(SN)(p,q;k)=(p,xg’>ﬁ'(SN)(E+i0)|k,¢>, (6)  the derivation of

. TN (Y i ; L omaoa 1 SN —1p(S
where the transition operatdrs’(z) is the solution of an  (E+ie—Hg) 1=—(1-A®)+ §(|e/2+ E—H) A®,
equation of the Lippmann-Schwinger ty[@], le (19

T=V'+VQ(E+io—[hd") 1TV, (7)  Substituting the above expressions into E4s) and (18)
yields the final result
Here
- lim F&(p,q;k)=F§ (p.a;k)=Fs(p.q;k). (20
VEI=IMV=(—D)SPE-HHIM,  (®) N

Equation(20) clearly implies that the approximate CCC
amplitudesF{Y should be accurate approximations to the

The operatot ™ has the form exact amplitude$ s asN— . However[6], the calculated
complex amplitudes obtained so far are in gross violation of
Eq. (4), which expresses a fundamental property of the exact

N
IN=1,0 21 [ )l (10 amplitudesFg. This is true of both the amplituddsl" and
n= ~
their absolute value={¥|. The numerical CCC amplitudes
where I, is the identity operator for the, variable and Nave not, therefore, converged to accurate approximations of

Ew=1|'//f‘><"/’”| Is a projectiO_n operator for the, variable, theTE)é?gtis ?\ﬁg?r?ce: :chat the CCC calculations not only have

ll#”) being orthonorr_nal basis vectors. The CCC method con, ot converged to the standard amplitudes, they have appar-

sists of choosing suitable basis vectors and subsequently cal 9 ) P » (NEY PP

culating the amplitudeE( by solving Eq.(7) for increas- ently convgrged to somethlng_else. It was notifgldhat the

. 9 PitL S 9 E9Q. ; " CCC amplitudes for the Temkin-Poet modi&8] of electron-

ing yalues ofN until the results appear to be insensitive to hydrogen ionization appear to possess a step function prop-

the |ncrease.oll\l.~(w) _ =(\) erty whene =E/2, and it was conjectured that this behavior
To what limit Fs™ do the amplitudes=s™ converge as s quite general. If the Temkin-Poet CCC amplitudes are

N—o0? It is straightforward in our operator theoretic version converging to the exact, consequently correctly symmetrized

hV=1MN(H-Vv)IN), 9)

of the CCC theory to show that amplitudes, then the integrated cross section
T =V V- AN WY, ap do _ [ do
ds ) 9% 9% Go 40, ds @D

HMN) =), {(N) i
whereHs"=hs"+Vs". Thats, would vanish fore>E/2. This implies that the integrand,
and hence the singlet and triplet amplitudes individually, are
zero wheneves >E/2. Sinces =|q|?%/2, and because the am-

. . plitudes are either antisymmetric or symmetric functionp of
3'”09 ﬂgﬁ) basis vectorsy;,) are cho;en to be complete, andq, it would follow that both amplitudes would have to
limy .17 =1 [[3], Eq. (6) and following, and5]]. It fol- vanish identically on the energy shell. Clearly, the exact am-
lows that plitudes, which argeven in the Temkin-Poet modetym-
metrized in accord with the symmetrization postulate, cannot
K, ), (13 exhibit the step function behavior observed in the CCC cal-
culations. It follows that the numerical limits that the CCC
where amplitudes apparently approach are profoundly different
from the exact, correctly symmetrized amplitudes expected
T (2)=Vs+Vg(z—Hg) Vs, (149  On the basis of Eq20). _ _

Bray and co-workers have recognized that there is a con-
~ s flict between the exact theory and the CCC metth&d
Ve=V—(=1)"P(E—H), (15 “... the CCCtheory of ionization is inconsistent with for-
~ mal ionization theory due to the fact that the CCC ionization
Hs=H—(—1)SP;5(E—H). (16)  cross sections are obtained from an incoherent sum of two

AN =1M{H - (—1)SP(E-HHN. (12

F&(p.aik)=(p.xy TS (E+i0)
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pairs o_f coher_ently sumnje_d direct and exchange_amplltud_es, lim I~:<SN)(p,q;k)=?I(SCCC)(p,q;k), (24)
which is crucial for obtaining good agreement with experi- N0
mental angular profiles .. ” They have also justified their

procedure as followf5]: “An important, but surprising, fea- whereﬁ(sccc)(p,q;k) is zero for|p|<|q|. This is clearly at
ture of our approach is that we have a clear distinction bepdds with our earlier analytical result, EO).
tween the primary(scatterefl and the ejectedtarge} elec- While it is not stated directly by Bray, let us assume that

trons ... .These two theoretically distinct processes cannothe step function hypothesis |mp||es that the Converged CCC
be distinguished experimentally due to the indistinguishabil-amp"tude,:(SCCC) is to be defined as

ity of the detected electrons. Therefore, when comparing

theory with experiment, we form an incoherent sum of thegp(Cco y 4-k)=F O p, g;k) 6(|p| —|q|)

cross sections for the two theoretically distinct processes

... . Note that this has to be done regardless of whether +(_1)SH(SCCC)(q,p;k)9(|q|_|p|), (25)

exchange between the projectile and target electrons has, or

has not, been included in the close-coupling calculation.” wheref(x)=1 for x>0, 1/2 forx=0, and 0 forx<0. This
In accord with the viewpoint stated above, Bray and col-new amplitude has the symmetries required by @y. ex-

leagued 3] use for the triple differential cross section not Eq. cept perhaps on the surfagg=|q|, where it is true only if

(5) but HECO) tself satisfies Eq.(4). Moreover, usingH ) to
calculate the right side of E22) andF £ to calculate the

dg'™ —(2 4Pl JEN|24 [EN|2 right side of Eq.(5) yields identical results. Thus, this pro-
dequdg_( ) 4k {BIF7 I+ [Fo%} cedure simultaneously produces amplitudes that have the
correct symmetries under interchange of electrons and ren-
|pl|al ders Egs(5) and(22) compatible.

4 B2, [BIN)2
+(2m) 4/K| BIG 1P +Go I While the step function hypothesis, as stated above, pro-

duces amplitudes that have desirable properties,atlifioc

in that it has no discernible dynamical roots. If the CCC
_ _ method does not yield the result, EQ0), expected from
whereG{"(p,a)=F{"(q,p). They justify this by an argu- mathematical analysis, how does one know how the numeri-
ment [3] similar to the one used by Messidhl2], Eq. 4 limit H(CO in the region|q|<|p| is related to the

(XIV.52)] in obtaining an analog of E22) as an interme-  64ry2 The CCC answer so far has been that the calculated

diate step in deriving an analog of EGy). Messiah points  5pjitudes yield cross sections that agree so well with ex-
out that the argument leading to that intermediate point iSerimental data that

classical in nature, so it does not contain the essence of what
distinguishes the quantum treatment of identical particles |:<SCCC>=|:S_ (26)
from the classical one. The subsequent quantum develop-
ment by Messialisee alsd10]), which leads from the ana- This answer is completely unsatisfactory precisely because it
log of Eq. (22) to that of Eq.(5), is missing from the CCC does not prove buassumesEq. (26), making it impossible
method. Indeed, assuming again that &) is correct, Eq.  within the CCC method to decide whether or not the data are
(22) implies actually in disagreement with the dynamics represented by
the HamiltonianH.
doN) do The partly classical and partly improvised reasoning of
=2 , (23)  the CCC formalism is made even more puzzling by the fact

dQpdQqde  ~dQ,dQqde that the mathematical scattering theory for quantum systems
containing identical particles is well developed. A general
so that the differential cross sections in the CCC method aralgebraic treatment of identical particles in quantum scatter-
not normalized in accord with those of standard atomic ioning processes was fully elaborated almost two decades ago
ization theory[10]. for particles with short ranggl4,15 and with Coulomt16]

Thus, the CCC method is a mixture of classical and quaninteractions. For approximate techniques, such as the DWBA
tum ideas. On the one hand, the presence of the projectiamethod, the nontrivial question of the definition and treat-
operatorP 4, in the basic amplitudes defined by E€9—(12)  ment of reaction mechanisms for systems containing identi-
has its roots in the quantum indistinguishability of electrons.cal particles has also been worked out, including a number of
On the other hand, the cross sections defined in(E2).are  important combinatorial results regarding practical problems
justified by arguments that are classical rather than quantums the relative normalization of the various coherent ampli-
mechanical, even in the limil—o~. The CCC method is tudes[17,1§.
simply not consistent in the way it handles the idenfity Despite the above objections, however, one may argue
distinguishability of the electrons. that the shape of the numerical differential cross section is in

Recently, Bray[5] has introduced the “step function” such good agreement with experimental data, even though
hypothesis as a way to resolve the difference between thine absolute normalization is wrong, that there must be some
CCC method and the standard theory. Although the hypothmorsel of truth in the empirical CCC process. The main issue
esis was formulated in the relatively simple context of theis whether the CCC calculations have truly converged to the
Temkin-Poet mode]13], in the present general context it is reaction amplitudes dictated by the fundamental Hamiltonian
the assertion that H. The arguments in favor of convergence are numerical in

(22

lim

N— oo
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nature. The argument against is based on the fact that, un8creened. Unfortunately, there have been no calculations in
the step function hypothesis is grafted onto the theory, thevhich the implicit screening has been studied nor any explo-
CCC amplitudes do not have the symmetries demanded bytions of the sensitivity to the cutoff radius, which the work
the symmetrization postulate and by EBO). What is miss-  of Joneset al. [24] suggests might be considerable.

ing is an understanding, rooted in the fundamental dynamics, Second, the CCC method also makes use of an expansion
of why the CCC calculations produce the behavior of Eq.of a Coulomb scattering amplitude in terms of eigenfunc-
(24), rather than the theoretically expected behavior of Edtions of the angular momentum operators. It has been known
(20), as well as why the crucial E426) should be true. for years[25,26] that such expansions have very bad conver-

Let us now turn to the treatment of the long-range effectyence properties in the case of two-particle Coulomb scatter-
of the Coulomb interaction, in which the CCC method as;

lied is deficient i Th . thod flng. There are no mathematical studies of convergence in
applied Is deficient in two ways. The various methods 0?nalogous three-body problems, raising the possibility that
including Coulomb effects have been reviewed by several, . ~cc expansion does not converge at all
authors[10,19,2(Q. One practical approach is to screen the On the basis of the above consideration.s we can only

Coulomb pqtennals qnd then Iet.the screening radius aP%onclude that the basic CCC results presented so far are in-
proach infinity. Practical calculations for proton-deuteron

scatterind21—-23 have shown that surprisingly lar escreen-compatible with the symmetrization postulate and with
) . P gly 'arg known long-range effects of the Coulomb interaction. The
ing radii are needed for converged results, which has adver

S . h
implications for the size of the numerical mesh of the calcu—SGEeIO function hypothesis used to restore the CCC method to

lation. In another formalism Jones, Madison, and Konovalm{iompatibility with the symmetrization postulate has no
[24] studied various approximations to the three-body Cou- nown dynamical justification. Consequently, the dynamical

; . foundations of the CCC method as presented in the publica-
lomb wave function to calculate cross sections for electron:

: L ; tions cited are flawed, and any dynamical interpretation of
mduc_ed ionization of hydr(_)_gen. This stud_y shqws that th he numerical successes of the method is not yet soundly
amplitudes are rather sensitive to the way in which the long- ...

! justified.
range Coulomb effects are approximated.

The first deficiency of the CCC method is that it includes We thank many colleagues for several discussions, par-
the long-range Coulomb effects only in the asymptotic Coudicularly I. Bray, |I. E. McCarthy, and F. S. Levin. We are
lomb wave function (™). The complicated three-body grateful for support from the Hungarian Scientific Research
asymptotic logarithmic phase structure that is known to bd~oundationf OTKA Grant No. T01489y(Gy.B.) and the Na-
essentia[10,24 is strikingly absent. Thus, the method must tional Science FoundatioriGrant Nos. Int-9222354 and
be considered as one in which the Coulomb interactions arBHY-9505615% (C.C).
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