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Density of states of particles in a generic power-law potential in any dimensional space
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An ideal gas trapped in a generic power-law potential in any dimensional space is studied. The density of
states of this system is derived. Both Fermi and Bose gases are discussed, and their properties are derived
straightforwardly from the density of statd§1050-294{©9)02204-0

PACS numbsg(s): 03.75.Fi, 32.80.Pj

Since the observations of Bose-Einstein condensatiowhereh is the Planck constant arglis the spin degenerate
(BEC) in ultracold trapped atomic gases in 1995-3], there  factor. The volume of am-dimensional spher&/,,=C,R"
have been studies analyzing the effects of external potentiat[ 7"4T (n/2+ 1)]R" implies that
[4], interaction between particldgl], space dimensionality
[5], and finite particle numbei6] on a Bose system. How- d"R=S,(R)dR=nC,R""'dR, 3
ever, the density of states of this system has rarely been ) ) ]
studied. In most textbooks of statistical mechanics, the denvhere Sy(R) is the surface of ther-dimensional sphere.
sity of states is formulated for free noninteracting systems iBY _ uUsing Eg. (3) and the beta functionB(x,y)
three-dimensional space. The density of states takes an im0 (1= 6)Y " 'do=T(x)['(y)/T (x+y), the total num-
portant role in statistical physics, so we think it deservedoer of quantum states E(Z) may be expressed as
further investigation. N

Although interactions are extremely important in a real 2(8)=F(n,g0,p0,8,Uj L ti)e", (4)
system, the problems are made tractable and the essentia{1
physics is retained by assuming an ideal system of noninterY €€
acting particles. Furthermore, experimént shows that the
influence of the interaction between particles on the BEC A=
transition temperature is about several percent, so that such a
system is taken approximately as an ideal system. Besides,
theoretical studies have revealed that space dimensionality F(n,eq,Po,S,Uj,L; 1)
has a significant effect on the properties of the sy<t&s8l. N
Although the harmonic potential is a good approximation in g2"C,, py I'(n/s+1) 11 Lil(1/4+1)
the cases of recent experiments, for the sake of universality, o hn @ F(N+1) =% y M ’
here we shall derive an expression for the density of states of :
particles in a generic power-law potential in any dimensional (6)
space.

Let us consider an ideal gas in a generic power-law poand I'(1)=J56'~*e~%d¢ is the gamma function. Equation
tential in n-dimensional space with a single-particle Hamil- (4) gives the density of states as
tonian
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For the case of an isotropic power-law potential, i.e., a
system with a single-particle HamiltoniaH = &y(p/pg)*
where e, po, S, U;, L, andt; are all positive constants +Uy(r/Ly)t, along similar lines, the total number of quan-
andp andr, are the momentum and coordinate of particles,lUm States may be written as
respectively. When the particle number of the system is large B N
and the energy level spacing of the trapping potential is 2()=Fo(n,£0,Po,8,Uo,Lo.t)e™, ®
much smaller tharkT=8""1 (this condition is often satis-

. f . : L . where

fied), the Thomas-Fermi semiclassical approximation is valid

[9]. Thus sums over quantum states may be replaced by in- An=n/s+ n/t 9)

tegrals over phase space. The total number of quantum states 0 '

may then be expressed as Fo(N,&0,P0,5 Uo,Lost)
_9Ch py Lg T(n/s+D1)I(n/t+1)

n
g 0 0
=— : |1:[1 (dridpy), 2 hn epsupt T(n/s+nit+1) (10)

B h"J(H<e

S(8)
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Consequently, we have the density of states as where z=exp(/kT) is the fugacity; I,(z) is equal to
- o,(2), f\(2), andz respectively, for the Bose, Fermi, and
D(e)=NoFo(Nn,e0,P0,S,Ug,Lo,t)e™0 " (11 classical systems; andg,(z)=[1T(\)]/5[(6" 1da)/
o i, o (Z7e=1)], H(@=[UTM)]1S[(6" 1de)/(z 'e’+1)]
This is not trivial, Bq.(7) may be reduced to Eq11) only if are, respectively, the Bose and Fermi integrations. Similarly,

n=1ort;=2 ort;—oo,. ;
Although only particles in an external potential have beenthe total energyE of the system may be written as

studied, the above results may be used to describe a free

system. As long as the external potential in Ekj.is chosen, E= f eD(g)n de
whent—oo, U—o, andU—0 in the regiong;>L; andr; 0
<L, respectively. This is just the condition of a free system —\E(n sU: L tT O+ DI (kTN L
confined in am-dimensional container with a lengtt_2of (M20,Po, 8, Ui Li )T+ Dl a(2)(KT)
each side. Applying this condition, E€}) gives the form for Ihv+1(2)
a free system as =NkT\ (2 (17)
A
D(e)= gﬂc Vv p_S nis—1 (12) For an ideal Bose gas, E(L6) illustrates the number of
. pns " “88/5 € ' particles in the gaseous state. The zero momentum state can

become macroscopically occupied, and the system then un-
If we further letn=3, g=1, s=2, and g,=p2/2m, Eq. dergoes a phqse transiti_on — BEC at the_gritical temperature
(12) may be reduced to T.. The chemical potential cannot be positive and is a mono-
tonically decreasing function of temperature. Whén

27V, —T.,u—0, the particle number of the ground state is still
D(g)= e (2m)32g 12, (13)  macroscopically negligible. Therefore, E3.6) gives
N i7)N
Equation (13) describes a nonrelativistic free ideal gas in =
q ( ) g kTC F(n1801pO=SauiaLi ,L)F()\"Fl)g()\) ' (18)

three-dimensional space, and coincides with the result in cur-

rent textbooks of statistical mechanid®] as it should. PN . .
For the case of nonrelativistic spinless gas trapped in &/Nere¢{(\)=g,(1)==,-,J*(A=1) is the Riemann zeta

generic power-law potential in three-dimensional space, Unction. Atatemperaturg belowT,, from Eq.(16) we can

=3, g=1, andey= p3/2m, the density of states E({7) then obtain the fraction of condensation
gives Nq N, T\
—= - . (19
VA N N
D(g)=—(2mm)3?
h The total energyl7) gives a jump of heat capacity at critical

temperature as
(1t + 1T (Lt T (1t +1) peratu

1fy, 1y, (1f5
U, U, 20 o0 (3/2+4 Lty + ity + 1hty) ACy_; =Cy —Cri=NKA? gx(l)l | 20
o U2+ 1y + 1+ 11y (14) ¢ ¢ 9h-1(1)
Referenceg 11] gives an expression of density of states, inWhere we have made use of
fact, if we finish the integrations in it, we may obtain a result 99, +1(2)
that coincides with this specific case. ————=0,(2), (21
With the density of states, one can obtain the thermody- d(In 2)
namic quantities of systems straightforwardly. We shall
show some examples. and
From first principles of statistical mechanics, we have the IN
distribution function = 0, (22)
nEZ;, (15 at a temperatur@ aboveT.. We can obtain a general crite-
e(S*p,)/kT_i_ S

rion for BEC occurrence from E18) to be

whereé is —1, 1, and 0 for the case of the Bose, Fermi, and n g
classical system, respectively. The total particle nunider A==+, —>1. (23
may be expressed as S =1
o That is, BEC may take place only when criteri¢®3) is
N:J D(e)n.de satisfied. Criterion(23) mirrors the fact that it relates not
only to the dimensionality of space and kinematic character-
=F(n,g0,P0,S,U;,Li, tHh C(N+1)1,(2)(kT)*, (16) istics of particles, but also to the shafret the strengthof

0
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the external potential. Similarly, EG20) implies a criterion  chemical potential in the limit of low temperatures may be
on the continuity of heat capacity at the critical temperaturederived from Eq(17) and Eq.(25) to be
If

772 T 2
n =E 1—()\—1)—(—) . (28
n 1 M F E
)\E§+E 2, (24) 61
L Integrationsg, (z) andf,(z) may be expanded as series
there is a jump of heat capacity at critical temperature, oth- o
iriwlse, there exists no jump if<IN<2 or even no BEC if g)\(z):;l 5 (29)

At low temperatures, the Fermi integration may be written

as a quickly convergent series by using the Sommerfeld * 4
lemmal[10], f)\(z)=21 (-1t (30)
i= i
(In z)* 2 , ,
fo(2)= o 1+ NN —1) — 5 At high temperatures is very small, and both of the above
(A +1) 6 (In 2 series are quickly convergent. Consequently, in the limit of
241 high temperatures, (z) —z, and both Eq(16) and Eq.(17)
- 4 . ) . -
A= 1)()\_2)()\_3)% — . unify at their respective classical limits
(n Z) N:F(n1801p0151Ui1Li1ti)F()\+1)Z(kT))\v (31)
(25)
] ) ] . and
For an ideal Fermi gas, whéh=0 K, there is only the first
term in Eqg.(25). Substituting it into Eq(16) gives E=NKkT\z. (32
N=F(n,e0,P0,SU;,L; tj)EE. (26) Letting t—, the above thermodynamic quantities may

) be used to describe a free system. Equati@hsnd(11) are
Consequently, the Fermi energy may be expressed as  general, they favor discussing the effects of external poten-
N N tial, space dimensionality, and kinematic characteristics of

(27)  particles.
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