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Density of states of particles in a generic power-law potential in any dimensional space
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An ideal gas trapped in a generic power-law potential in any dimensional space is studied. The density of
states of this system is derived. Both Fermi and Bose gases are discussed, and their properties are derived
straightforwardly from the density of states.@S1050-2947~99!02204-0#

PACS number~s!: 03.75.Fi, 32.80.Pj
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Since the observations of Bose-Einstein condensa
~BEC! in ultracold trapped atomic gases in 1995@1–3#, there
have been studies analyzing the effects of external pote
@4#, interaction between particles@4#, space dimensionality
@5#, and finite particle number@6# on a Bose system. How
ever, the density of states of this system has rarely b
studied. In most textbooks of statistical mechanics, the d
sity of states is formulated for free noninteracting system
three-dimensional space. The density of states takes an
portant role in statistical physics, so we think it deserv
further investigation.

Although interactions are extremely important in a re
system, the problems are made tractable and the esse
physics is retained by assuming an ideal system of nonin
acting particles. Furthermore, experiment@7# shows that the
influence of the interaction between particles on the B
transition temperature is about several percent, so that su
system is taken approximately as an ideal system. Bes
theoretical studies have revealed that space dimension
has a significant effect on the properties of the system@5,8#.
Although the harmonic potential is a good approximation
the cases of recent experiments, for the sake of universa
here we shall derive an expression for the density of state
particles in a generic power-law potential in any dimensio
space.

Let us consider an ideal gas in a generic power-law
tential in n-dimensional space with a single-particle Ham
tonian

H5«0S p

p0
D s

1(
i 51

n

UiU r i

Li
U t i

, ~1!

where e0 , p0 , s, Ui , Li , and t i are all positive constant
andp and r i are the momentum and coordinate of particl
respectively. When the particle number of the system is la
and the energy level spacing of the trapping potentia
much smaller thankT5b21 ~this condition is often satis
fied!, the Thomas-Fermi semiclassical approximation is va
@9#. Thus sums over quantum states may be replaced by
tegrals over phase space. The total number of quantum s
may then be expressed as
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whereh is the Planck constant andg is the spin degenerat
factor. The volume of ann-dimensional sphereVn5CnRn

5@pn/2/G(n/211)#Rn implies that

dnR5Sn~R!dR5nCnRn21dR, ~3!

where Sn(R) is the surface of then-dimensional sphere
By using Eq. ~3! and the beta function B(x,y)
5*0

1ux21(12u)y21du5G(x)G(y)/G(x1y), the total num-
ber of quantum states Eq.~2! may be expressed as

S~«!5F~n,«0 ,p0 ,s,Ui ,Li ,t i !«
l, ~4!

where
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1
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, ~5!

F~n,«0 ,p0 ,s,Ui ,Li ,t i !
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hn
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«0
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G~n/s11!

G~l11! )
i 51

n
LiG~1/t i11!

Ui
1/t i

,

~6!

and G( l )5*0
`u l 21e2udu is the gamma function. Equatio

~4! gives the density of states as

D~«!5
]S~«!

]«
5lF~n,«0 ,p0 ,s,Ui ,Li ,t i !«

l21. ~7!

For the case of an isotropic power-law potential, i.e.
system with a single-particle HamiltonianH5«0(p/p0)s

1U0(r /L0) t, along similar lines, the total number of qua
tum states may be written as

S~«!5F0~n,«0 ,p0 ,s,U0 ,L0 ,t !«l0, ~8!

where

l05n/s1n/t, ~9!

F0~n,«0 ,p0 ,s,U0 ,L0 ,t !

5
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n/t

G~n/s11!G~n/t11!

G~n/s1n/t11!
. ~10!
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Consequently, we have the density of states as

D~«!5l0F0~n,«0 ,p0 ,s,U0 ,L0 ,t !«l021. ~11!

This is not trivial; Eq.~7! may be reduced to Eq.~11! only if
n51 or t i52 or t i→`.

Although only particles in an external potential have be
studied, the above results may be used to describe a
system. As long as the external potential in Eq.~1! is chosen,
when t→`, U→`, andU→0 in the regionsr i.Li and r i
,Li , respectively. This is just the condition of a free syste
confined in ann-dimensional container with a length 2Li of
each side. Applying this condition, Eq.~7! gives the form for
a free system as

D~«!5F g

hn

n

s
CnVn

p0
n

«0
n/sG«n/s21. ~12!

If we further let n53, g51, s52, and «05p0
2/2m, Eq.

~12! may be reduced to

D~«!5
2pV3

h3
~2m!3/2«1/2. ~13!

Equation ~13! describes a nonrelativistic free ideal gas
three-dimensional space, and coincides with the result in
rent textbooks of statistical mechanics@10# as it should.

For the case of nonrelativistic spinless gas trapped i
generic power-law potential in three-dimensional spacen
53, g51, and«05p0

2/2m, the density of states Eq.~7! then
gives

D~«!5
V3

h3
~2pm!3/2

3
G~1/t111!G~1/t211!G~1/t311!

U1
1/t1U2

1/t2U3
1/t3G~3/211/t111/t211/t3!

3«1/211/t111/t211/t3. ~14!

Reference@11# gives an expression of density of states,
fact, if we finish the integrations in it, we may obtain a res
that coincides with this specific case.

With the density of states, one can obtain the thermo
namic quantities of systems straightforwardly. We sh
show some examples.

From first principles of statistical mechanics, we have
distribution function

n«5
1

e~«2m!/kT1d
, ~15!

whered is 21, 1, and 0 for the case of the Bose, Fermi, a
classical system, respectively. The total particle numbeN
may be expressed as

N5E
0

`

D~«!n«d«

5F~n,«0 ,p0 ,s,Ui ,Li ,t i !G~l11!I l~z!~kT!l, ~16!
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where z5exp(m/kT) is the fugacity; I l(z) is equal to
gl(z), f l(z), andz, respectively, for the Bose, Fermi, an
classical systems; andgl(z)5@1/G(l)#*0

`@(ul21du)/
(z21eu21)#, f l(z)5@1/G(l)#*0

`@(ul21du)/(z21eu11)#
are, respectively, the Bose and Fermi integrations. Simila
the total energyE of the system may be written as

E5E
0

`

«D~«!n«d«

5lF~n,«0 ,p0 ,s,Ui ,Li ,t i !G~l11!I l11~z!~kT!l11

5NkTl
I l11~z!

I l~z!
. ~17!

For an ideal Bose gas, Eq.~16! illustrates the number o
particles in the gaseous state. The zero momentum state
become macroscopically occupied, and the system then
dergoes a phase transition — BEC at the critical tempera
Tc . The chemical potential cannot be positive and is a mo
tonically decreasing function of temperature. WhenT
→Tc ,m→0, the particle number of the ground state is s
macroscopically negligible. Therefore, Eq.~16! gives

kTc5S N

F~n,«0 ,p0 ,s,Ui ,Li ,t i !G~l11!z~l! D
1/l

, ~18!

where z(l)5gl(1)5(J51
` J2l(l>1) is the Riemann zeta

function. At a temperatureT belowTc , from Eq.~16! we can
obtain the fraction of condensation

N0

N
512

Ne

N
512S T

Tc
D l

. ~19!

The total energy~17! gives a jump of heat capacity at critica
temperature as

DCT5Tc
[CT

c
22CT

c
15Nkl2

gl~1!

gl21~1!
, ~20!

where we have made use of

]gl11~z!

]~ ln z!
5gl~z!, ~21!

and

]N

]T
50, ~22!

at a temperatureT aboveTc . We can obtain a general crite
rion for BEC occurrence from Eq.~18! to be

l[
n

s
1(

i 51

n
1

t i
.1. ~23!

That is, BEC may take place only when criterion~23! is
satisfied. Criterion~23! mirrors the fact that it relates no
only to the dimensionality of space and kinematic charac
istics of particles, but also to the shape~not the strength! of
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the external potential. Similarly, Eq.~20! implies a criterion
on the continuity of heat capacity at the critical temperatu
If

l[
n

s
1(

i 51

n
1

t i
.2, ~24!

there is a jump of heat capacity at critical temperature, o
erwise, there exists no jump if 1,l<2 or even no BEC if
l<1.

At low temperatures, the Fermi integration may be writt
as a quickly convergent series by using the Sommer
lemma@10#,

f l~z!5
~ ln z!l

G~l11!F11l~l21!
p2

6

1

~ ln z!2

1l~l21!~l22!~l23!
7p4

360

1

~ ln z!4
1•••G .

~25!

For an ideal Fermi gas, whenT50 K, there is only the first
term in Eq.~25!. Substituting it into Eq.~16! gives

N5F~n,«0 ,p0 ,s,Ui ,Li ,t i !EF
l . ~26!

Consequently, the Fermi energy may be expressed as

EF5S N

F~n,«0 ,p0 ,s,Ui ,Li ,t i !
D 1/l

. ~27!

WhenT.0 K and, however, the temperature is very low, t
an

ys

n,
.

-

ld

chemical potential in the limit of low temperatures may
derived from Eq.~17! and Eq.~25! to be

m5EFF12~l21!
p2

6 S kT

EF
D 2G . ~28!

Integrationsgl(z) and f l(z) may be expanded as serie

gl~z!5(
i 51

`
zi

i l
, ~29!

f l~z!5(
i 51

`

~21! i 21
zi

i l
. ~30!

At high temperatures,z is very small, and both of the abov
series are quickly convergent. Consequently, in the limit
high temperatures,I l(z)→z, and both Eq.~16! and Eq.~17!
unify at their respective classical limits

N5F~n,«0 ,p0 ,s,Ui ,Li ,t i !G~l11!z~kT!l, ~31!

and

E5NkTlz. ~32!

Letting t→`, the above thermodynamic quantities m
be used to describe a free system. Equations~7! and~11! are
general, they favor discussing the effects of external pot
tial, space dimensionality, and kinematic characteristics
particles.
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