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Stability of polygonal Coulomb crystals
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The stability of polygonal patterns composed of a set ofN point charges in a potential well is studied. It is
shown that a right polygon is stable forN<5. A right polygon with additional charge in its center is stable for
N55, . . . ,9.@S1050-2947~99!09602-X#

PACS number~s!: 32.80.Pj
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I. INTRODUCTION

In recent experiments on the confinement of cold io
systems, it was observed that a set of trapped ions s
organizes to an intrinsically structured charged cloud@1#.
With a small enough number of ions, these clouds take
form of rather symmetrical patterns; e.g., under certain c
ditions, ions can order into a right planar polygon@2#.

As a rule, small ion clouds are observed in the quadrup
radio frequency Paul trap@3# with the ~averaged! confining
potential per particle

Ueff5
1
2 mv2~x21y21az2!, ~1!

wherem is the particle mass,v is defined by the pondero
motive force intensity, and the parametera.0 describes the
anisotropy of the trap.

To describe the equilibrium state of a cold cloud one h
to find the minimum of the potential energy for a set of like
charged particles inside the potential well@Eq. ~1!#. A com-
plete analytical description was performed for a small nu
ber of particles,N<4 only @4#. As for larger ensembles
numerical methods were successfully implemented@4,5#.

Obviously, the structure of the cloud depends on the
gree of anisotropy of the confining potential. There are t
evident ultimate cases: asa→0, the particles are aligned in
string, while asa→` some planar structures are forme
Classification of these two-dimensional ‘‘atoms’’ resembli
the Mendeleev table was proposed in Refs.@6,7#. It is of
interest that nearly the same problem was studied by Ke
@8# and Thomson@9# in the context of a vortex model of a
atom.

In the present Brief Report we study the stability of t
two simplest planar configurations ofN charges in potentia
~1!. These configurations are a right polygon in thexOy
plane and the same polygon with an additional ion in
center. We evaluate the spectrum of linear oscillations
find the criteria for stability.

II. RIGHT POLYGON

Let N point particles with massm and chargeq be placed
in potential~1!. The classical equation of motion is

d2rWn

dt2
1v2ArWn5

q2

m(
k51

N

8
rWn2rWk

urWn2rWku3
, ~2!
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where A5diag(1,1,a) and 1<n<N. The prime over the
sum sign indicates that terms withk5n are omitted.

This equation has a special class of solutions with
particles moving in thexOy plane. Let the projection ofrW on
the xOy plane berW . Introducing the complex variablex
1 iy[z instead ofrW 5(x,y), the corresponding equation o
motion is of the form

d2zn

dt2
1v2zn5

q2

m(
k51

N

8
zn2zk

uzn2zku3
.

Although generally there are the solutions to this equat
corresponding to a rotating polygon, the energy takes a m
mal value for a stationary polygon. To obtain the equilibriu
size of a stationary polygon we setzn5Rhn, where h
5exp(2pi/N), which results in

S v

n D 2

5
1

4
S1~N!. ~3!

Heren2[q2/mR3 is an analog of the plasma frequency, a
we introduce a notation

Sl~N!5 (
k51

N21
sin2~pkl/N!

sin3~pk/N!

to denote some trigonometric sums in what follows.
To investigate the stability of the polygonal atom, we li

earize Eq. ~2! with respect to small perturbations,rWn

5(rW n,0)1(drW n ,dzn). Then the perturbations perpendicul
to the polygon plane are governed by the equation

d2

dt2
dzn1av2dzn5n2(

k51

N

8
dzn2dzk

uhn2hku3
.

The perturbation can be taken in the formdzn5Rez(t)h ln,
wherel is analogous to the azimuthal wave number and ta
the values 0< l<N. For one particular harmonic this yield
the equation

d2z

dt2
1av2z5

1

4
n2Sl~N!z.

Evidently, the right polygon is stable with respect to perpe
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dicular deformations if there are only oscillating solutions
this equation, that is,a>Sl(N)/S1(N). The stability can al-
ways be provided by increasinga. To obtain the lowesta
providing stability for a given number of particles,N, it is
necessary to check all possiblel ’s. For example, ifN53 it
f
r

a
a

-

r

he
must bea>1. The typical valuea54 provides the stability
for all N<9.

Let us turn to perturbations in thexOy plane. It is conve-
nient to write the equation for the perturbations in a comp
form:
d2

dt2
dzn1v2dzn1

q2

2m(
k51

N

8 H dzn2dzk

uzn2zku3
1

3~zn2zk!
2

uzn2zku5
~dzn2dzk!̄J 50.

Since the latter equation contains bothzn and z̄n , two harmonics should be taken into account. Substituting

zn1dzn5hn~R1wn!, wn5u~ t !h ln1 v̄~ t !h2 ln,

where 0< l<N/2, we obtain a set of coupled equations:

F d2

dt2
1v21

n2

2 (
k

8
12h~ l 11!k

u12hku3

3n2

2 (
k

8
~12hk!2~12h~ l 21!k!

u12hku5

3n2

2 (
k

8
~12h2k!2~12h~ l 11!k!

u12hku5
d2

dt2
1v21

n2

2 (
k

8
12h~ l 21!k

u12hku3

G S u

v D 50.

All sums here can be expressed in terms ofSl(N). By doing this and looking for the solution in the form ofu,v
;exp(2inGt), we obtain the dispersion relation

U2G21 1
4 „S1~N!1 1

2 Sl 11~N!… 3
8 „S1~N!2Sl~N!…

3
8 „S1~N!2Sl~N!… 2G21 1

4 „S1~N!1 1
2 Sl 21~N!…

U50,
re
par-

of

il-
resulting in two real values forG2. To ensure the stability o
the polygon all eigenfrequencies should be real, that is p
vided that

„S1~N!1 1
2 Sl 11~N!…„S1~N!1 1

2 Sl 21~N!…

> 9
4 „S1~N!2Sl~N!…2,

where the inequality has to be held for alll :0< l<N/2. The
numerical calculations show that theN-gon is stable if and
only if N<5.

III. POLYGON WITH CENTRAL PARTICLE

This section deals with another equilibrium pattern:
polygon with an additional particle in its center. Let the r
dius vector of an additional particle berW0 . The equations of
motion in this situation are given by Eq.~2! but the sum is
taken overk50, . . . ,N. One can easily verify that the sta
tionary solution of the formz050, zn5hnR, 1<n<N
exists if the following restrictions hold:

(
k51

N

hk50, S v

n D 2

511
1

4
S1~N!.

The first restriction results inN>2, and the second is simila
to Eq ~3!.

To explore the stability it is convenient to exclude t
center-of-mass motion by imposing the constraintrW01rW11
o-

-

•••1rWN[0; that is, the coordinates of the central particle a
expressed in terms of the coordinates of the peripheral
ticles. The perturbations parallel to theẑ axis are now gov-
erned by the equation

d2

dt2
dzn1av2dzn5n2~dzn2dz0!1n2( 8

k51

N dzn2dzk

uhn2hku3
.

As in Sec. II, we take the perturbation in the formdzn
5Re$z(t)h ln%. Taking into account that the displacement
the central ion is

dz052ReH z~ t !(
k51

N

h lnJ 52Re$Nd l ,0z~ t !h ln%,

we finally obtain the equation for the amplitude of the osc
lations,z(t),

d2z

dt2
1av2z5n2H 11Nd l ,01 (

k51

N21
12hkl

u12hku3J z.

The stability in theẑ direction is provided if

a>
11Nd l ,01

1
4 Sl~N!

11 1
4 S1~N!

.
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The result is very close to the previous one, and the instability is always suppressed bya increasing.
To investigate more dangerous perturbations in thexOy plane we use the substitutionzn1dzn5hn(R1wn) for 1<n

<N anddz05w0, resulting in

d2wn

dt2
1v2wn52

n2

2
$~wn2h2nw0!13~wn2h2nw0!%2

n2

2 ( 8
k51

N H wn2hk2nwk

u12hk2nu3
13

~12hk2n!2

u12hk2nu5
~wn2hk2nwk!J .
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Looking for the solution in the form ofwn5u(t)h ln

1 v̄(t)h2 ln, and excluding the central particle

h2nw052N$d l ,N21uh ln1d l ,1v̄h2 ln%,

yields the set

F d2

dt2
1n2a n2c1

n2c2
d2

dt2
1n2b

G S u

v D 50,

where

a5 1
2 „31Nd l ,N211 1

2 S1~N!1 1
4 Sl 11~N!…,

b5 1
2 „31Nd l ,11

1
2 S1~N!1 1

4 Sl 21~N!…,

c15 3
2 „11Nd l ,11

1
4 S1~N!2 1

4 Sl~N!…,

c25 3
2 „11Nd l ,N211 1

4 S1~N!2 1
4 Sl~N!….

The eigenfrequencies of this equation are real ifab
>c1c2 . The numeric investigation of the latter inequali
show that configurations with 4<N<8 ~i.e., from five to
nine particles! are stable. IfN52 or 3 or N.8, a polygon
with the additional particle in the center is broken by t
perturbations.

IV. CONCLUSION

To conclude, let us list our discoveries. A set of po
charges in the potential well@Eq. ~1!# in the form of a right
polygon is stable only if a number of particlesN<5. Another
configuration consisting ofN charges in the corners of a righ
polygon plus an additional charge in the center is stabl
4<N<8, that is, polygonal configurations can be observ
for no more than nine particles.
s.

. J
t

if
d

Of course, an investigation of small perturbations is
incomplete alternative to a full nonlinear stability analys
To clear this subject let us compare our results with rece
reported Monte Carlo studies@6,7#. First, linearly unstable
configurations were never observed in computer simulatio
Second, in most cases the stable configurations were t
the ground states, but there are two exceptions.

~a! The linear analysis allows five particles to form both
pentagon as well as a square with the central ion. Howe
the potential energy of the square configuration is a li
larger, so it must be unstable under finite perturbations.

~b! Similarly, the octagon with the central particle is br
ken by finite perturbations, and the real ground state is so
what like a heptagon with two central particles. This is t
way the second circle shell begins to form. According
Refs. @5–7#, the general planar equilibrium is a system
concentric quasicircles.

Although we considered the stability of the stationa
polygon only, our approach is applicable to a rotating one
well. In this case, the dispersion relation depends on the
tation frequency. Rather cumbersome analysis shows tha
main conclusion remains the same: the polygon is stable
N<5. Also, the influence of the external magnetic field c
be taken into account with the same conclusion. This allo
us to extend our results in another direction.

The problem of a rotating polygon stability in the Pa
trap can be shown to be closely related to the polygon
bility in the Penning trap, which is one of the widely use
confinement devices based on a combination of electros
and magnetostatic fields~see Ref.@1# and references cited
therein!. According to Ref.@10# no more than a pentagon ca
be observed in the Penning trap.
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