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Stability of polygonal Coulomb crystals
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The stability of polygonal patterns composed of a selgfoint charges in a potential well is studied. It is
shown that a right polygon is stable fNr<5. A right polygon with additional charge in its center is stable for
N=5,...,9.[S1050-294®9)09602-X]

PACS numbds): 32.80.Pj

I. INTRODUCTION where A=diag(1,1¢) and 1=<n<N. The prime over the
sum sign indicates that terms wik+n are omitted.
In recent experiments on the confinement of cold ionic This equation has a special class of solutions with all

systems, it was observed that a set of trapped ions selfyarticles moving in th&Oy plane. Let the projection af on

organizes to an intrinsically structured charged clgadl the xOV plane beq. Introducing the complex variable
With a small enough number of ions, these clouds take the . y'npstead ofE. (x.y), the iorrespondping equation of
P: ) 1

form of rather symmetrical patterns; e.g., under certain con—’L'y.Eg.I
ditions, ions can order into a right planar polygd. motion is of the form

As arule, small ion clouds are observed in the quadrupole
radio frequency Paul traf8] with the (averaged confining w
potential per particle dt? MEL |— G2

2 N

2 _
dgn+ 2gnZQ_z/ gn é’k

U= sMw?(X%+y2+ aZz?), (1)  Although generally there are the solutions to this equation
corresponding to a rotating polygon, the energy takes a mini-
wherem is the particle massy is defined by the pondero- rr_1a| value for alstationary polygon. To obtain the equilibrium
motive force intensity, and the parameter 0 describes the Size of a stationary polygon we séh,=Rz7", where 7
anisotropy of the trap. =exp(2#i/N), which results in
To describe the equilibrium state of a cold cloud one has
to find the minimum of the potential energy for a set of likely
charged particles inside the potential wilg. (1)]. A com-
plete analytical description was performed for a small hum- s o )
ber of particles,N<4 only [4]. As for larger ensembles, Herer“=q /mR is an analog of the plasma frequency, and

2

1
=75uN). ®

numerical methods were successfully implemerjt8]. we introduce a notation

Obviously, the structure of the cloud depends on the de- N—1 .
gree of anisotropy of the confining potential. There are two SN =S sin?(wkI1/N)
evident ultimate cases: as— 0, the particles are aligned in a &1 sir(ark/N)

string, while asa—o some planar structures are formed.

Classification of these two-dimensional “atoms” resemblingto denote some trigonometric sums in what follows.

the Mendeleev table was proposed in R¢&7]. It is of To investigate the stability of the polygonal atom, we lin-
interest that nearly the same problem was studied by Kelvigarize Eq. (2) with respect to small perturbations,,
[8] and Thomson9] in the context of a vortex model of an :(Enao)+(55n152n)- Then the perturbations perpendicular

atom. |
In the present Brief Report we study the stability of theto the polygon plane are governed by the equation

two simplest planar configurations bf charges in potential

(1). These configurations are a right polygon in @y

plane and the same polygon with an additional ion in its

center. We evaluate the spectrum of linear oscillations and

find the criteria for stability. The perturbation can be taken in the fodn,=Rez(t) 7",
wherel is analogous to the azimuthal wave number and takes

Il. RIGHT POLYGON the values 8I<N. For one particular harmonic this yields

the equation

d? N 5z,— 6z
— 0z,+ aw25zn=v22, o TR

Let N point particles with mass and chargey be placed
in potential(1). The classical equation of motion is 42z 1
— +aw?z= - 1’S(N)z.
27 2N dt? 4
dery, PP r =Tk
3 +w Arn=—2 s 3 2 ) . . .
dt M=1 |1, —ry Evidently, the right polygon is stable with respect to perpen-
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dicular deformations if there are only oscillating solutions tomust bea=1. The typical valuex=4 provides the stability
this equation, that isg=S(N)/S;(N). The stability can al- for all N<9.

ways be provided by increasing. To obtain the lowest Let us turn to perturbations in theDy plane. It is conve-
providing stability for a given number of particlel, it is  nient to write the equation for the perturbations in a complex
necessary to check all possiiils. For example, iN=3 it  form:

d? P, [ 60— 68 3(Ln— G2 )
— 8lnt 028t =2, + 8ln— 000 | =0.
dt? ¢ 2mE (4 —ad® 1= al® ‘ “ f

Since the latter equation contains b@,’thandz, two harmonics should be taken into account. Substituting
{nt 80=7"(R+wWy),  wo=u(t) 7" +o(t) 7",

where 0<I=<N/2, we obtain a set of coupled equations:

d2 E 1— 77(I+l)k 3V E' (1_77k)2(l_77(|71)k)
312 ,(1_7’—k) (1_77(I+1)k) d2 2 , 1_7]“ k|| o =0U.
2% 0 B e A

K 11— 7 dt Ko |1— 74

All sums here can be expressed in termsSpfN). By doing this and looking for the solution in the form ofv
~exp(—ivI't), we obtain the dispersion relation

—I?+3(SiN)+3511(N)) §(SUN)=S(N)) B
(S1(N)=S(N)) —I?+3(Si(N)+35-1(N))
|
resulting in two real values fdr2. To ensure the stability of .--+ry=0; that is, the coordinates of the central particle are

the polygon all eigenfrequencies should be real, that is proexpressed in terms of the coordinates of the peripheral par-

vided that ticles. The perturbations parallel to theaxis are now gov-
(S1(N)+38 1 1(N)(SUN) + 35 4(N) emed by the equation
=5(Si(N) =S (N)?, p L
where the inequality has to be held for BID<|<N/2. The Eézﬁaw 0zy=v*(82y= 520) + v El =
numerical calculations show that tigon is stable if and
only if N=<5. As in Sec. Il, we take the perturbation in the foraz,
=Re{z(t) »"}. Taking into account that the displacement of

lil. POLYGON WITH CENTRAL PARTICLE the central ion is

This section deals with another equilibrium pattern: a N
pglygon with an add|t.|9nal paru?le in its center. L(?t the ra- 520=— Re{ z(t)E 77'”] = —Re{N§, ,oZ(t)n'”},
dius vector of an additional particle bg. The equations of k=1
motion in this situation are given by E¢) but the sum is

taken overk=0, ... N. One can easily verify that the sta- we finally obtain the equation for the amplitude of the oscil-
tionary solution of the formio=0, = 1<sn<N lations,z(t),
exists if the following restrictions hold:
d2z N-1 o4 7
N w2 1 —2+aw z=1? 1+N5|0+2 — Z.
> p¢=o0, (—) =1+ >S,(N). dt =1 [1- 743
k=1 v 4

The first restriction results iN=2, and the second is similar The stability in thez direction is provided if

to Eq(3). 1
To explore the stability it is convenient to exclude the o= 1+N6 o+ 2S(N)
center-of-mass motion by imposing the constr:f'km F1+ 1+3S;(N)
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The result is very close to the previous one, and the instability is always suppresaemdngasing.
To investigate more dangerous perturbations in ey plane we use the substitutiafy+ 6{,= #"(R+w,) for 1<n
=N and §¢y,=wj, resulting in

d2 2

k My k—ny2
1—
Dt w2 W,= 2{ °( 7 )

T

T N —_—Y
(Wn=7”"Wo) +3(Wy— ")} = 3 (Wn— 7 "wy)

Looking for the solution in the form ofw,=u(t) 7" Of course, an investigation of small perturbations is an
+u(t)p~™™, and excluding the central particle incomplete alternative to a full nonlinear stability analysis.
To clear this subject let us compare our results with recently
7 "Wo=—N{& y_1un"+ 5|’1U_77*|n}, reported Monte Carlo studig$,7]. First, linearly unstable
configurations were never observed in computer simulations.
yields the set Second, in most cases the stable configurations were truly
d2 the ground states, but there are two exceptions.
— +12a v2cy (&) The linear analysis allows five particles to form both a
dt? u pentagon as well as a square with the central ion. However,
=0, the potential energy of the square configuration is a little
v°C, —+% larger, so it must be unstable under finite perturbations.
dt? (b) Similarly, the octagon with the central particle is bro-
ken by finite perturbations, and the real ground state is some-
where what like a heptagon with two central particles. This is the
_1 1 1 way the second circle shell begins to form. According to
=2BFN N1+ 25 (N +2544(N)), Refs.[5-7], the general planar equilibrium is a system of

b=21(3+N6& +1S,(N)+1S_,(N)), concentric quasicircles.
2( 117 25N +2S-4(N)) Although we considered the stability of the stationary
c1=3(1+N& 1+ :S1i(N)— 3S(N)), polygon only, our approach is applicable to a rotating one as
well. In this case, the dispersion relation depends on the ro-
Co=2(L+N8 N_1+3SI(N)—FS(N)). tation frequency. Rather cumbersome analysis shows that the

main conclusion remains the same: the polygon is stable for
The eigenfrequencies of this equation are realai  N<5. Also, the influence of the external magnetic field can
=c4C,. The numeric investigation of the latter inequality be taken into account with the same conclusion. This allows
show that configurations with<4N<8 (i.e., from five to  us to extend our results in another direction.

nine particleg are stable. IN=2 or 3 orN>8, a polygon The problem of a rotating polygon stability in the Paul
with the additional particle in the center is broken by thetrap can be shown to be closely related to the polygon sta-
perturbations. bility in the Penning trap, which is one of the widely used

confinement devices based on a combination of electrostatic
IV. CONCLUSION and magnetostatic fieldsee Ref[1] and references cited
To conclude, let us list our discoveries. A set of pointtherein. According to Ref[10] no more than a pentagon can
charges in the potential welEq. (1)] in the form of a right ~ be observed in the Penning trap.
polygon is stable only if a number of particlbis<5. Another
configuration consstmg dfl charges in the corners _of a right . ACKNOWLEDGMENT
polygon plus an additional charge in the center is stable if
4<N=8, that is, polygonal configurations can be observed This work was supported by the Russian Foundation for
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