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Optimized Lieb-Oxford bound for the exchange-correlation energy
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Using the ideas of Lieb and Oxfofdint. J. Quantum Cheni9, 427 (1981)], we show that the exchange-
correlation energy, and indirect part of the Coulomb energy, are bounded from below by
—1.6358 p*3(x)dx, wherep(x) is the single-particle densityS1050-294{99)02003-X]

PACS numbd(s): 31.15.Ew, 71.15.Mb

In recent years, Kohn-Sham density-functional theory lo =E — (VT N—T 6
[1,2] has become the dominant computational method in ¥ = Bed 1= (Wl TV m) =T pD), ©

many-body physics. In its usual formulation, we are con- L . S
cern)e/d on)I/y F\)Ni{h antisymmetric wave functiods, and de- where the quantity in brackets, the correlation kinetic energy,

fine functionals in terms of the single-particle density is positive semidefinitg¢since T4 p] is defined through the

. , - minimization in Eq.(3)]. This gives the density-functional
namely, the total energl[ p], noninteracting kinetic energy . N
Tp], direct Coulomb repulsiond[p], and exchange- ‘ormulation of the Lieb-Oxford bound as
correlation energ¥,J p], through

Exc[P]Z_CJ p4/3(X)dX. (7)

E[p]= min<qf|?+\“/|x1f>+f p(X)v(x)dx 1)
T—p This introduces a new consta@t which is the constant of

interest in density-functional theory, and from equali6y,

B satisfiesC=<C, . Using additional data from the low-density

—Ts[p]-i-.][p]-i—Exc[p]-i-J’ p(X)v(x)dx, @ imit of jellium, Perdew found a lower bound fag, giving

1.43<C<1.68[7].

— i 2 The power of the Lieb-Oxford bound in density-
Tslp] S‘LT‘P'T'\I’)' @ functional theory lies in the fact that it is a direct bound on
the energy(rather than the scaling behavior BfJ p], say
1 p(X)p(y) and is simply a local integral of the density, in the form of
Jpl= —f f —————dxdy, (4)  the Dirac exchange functional for a plane-wave determinant
2 x=yl [8]. To our knowledge, it is the only constraint & p] of

. . this form. To illustrate its applicability, we consider the gen-
where v(x) is the external potentialT=—3%3V?, V  eralized gradient approximatiotGGA), ESSA functionals,
=Si<jlxi—x] % x,yeR®, and here and throughout this which are written as
work, we use Hartree atomic units. All correlation effects are
incorporated into the exchange-correlation functional . s
E.J p]l, whose form is unfortunately unknown. Exe Lp]=— Kf P (X)Fyd p,£1dXx, ®)

To make progress in density-functional theory, better

exchange-correlation functionals are required. For exampl&ynere x=0.7386 and§=|Vp|/p4’3. The flavor of GGA
current functionals have severe difficulties in predicting re-f,nctional is determined b¥ [ p,¢], which is an enhance-
action barrier heightg3], or long-range correlations between mant factor that corrects the Dirac exchange functional. We

molecules[4]. An important technique in developing New gee that the Lieb-Oxford bound imposes limits on acceptable
functionals is to construct expressions that obey rigoroug 1, r1 viz., for all p.¢

mathematical bounds. Many such bounds have been pro-
posed[5]. A particularly beautiful result was obtained by Fyo(p,0)<Clk. 9
Lieb and Oxford 6], who proved that the indirect part of the xelr

Coulomb energyty =(¥|V|¥)—J[p] is bounded from be-  ysing the value ofC given by Lieb and Oxford, we find
low, viz., F.o(p,{)=<2.27.

From the above, it is of some interest to density-
functional development to have the tightest form of the Lieb-
Oxford bound. This is the question we address in this paper.
The lower bound of Perdew suggests that the best val of
whereC, <1.68. However, the bound is not quite in the form in Eq. (7) requires only a small improvement in the Lieb-
we require for density-functional theory. For this, we mustOxford proof. In fact, by refining the original proof, we show
relately andE, [ p], by choosing¥ to beWV,,, the mini- that the best value & or C, is less than or equal to 1.6358,
mizing wave function in Eq(1), giving i.e., ly=E.[p]=—1.635g p*3(x)dx. This improvement is

ly=— CLJ p*(x)dx, (5)

1050-2947/99/5@1)/30753)/$15.00 PRA 59 3075 ©1999 The American Physical Society



3076 BRIEF REPORTS PRA 59

significant, as it lowers the uncertainty in the optim@hiy TABLE |. Optimized coefficientsa; for u.
almost 20%, and is of the order of the correlation energys;
which cannot be neglected. Qo 2 2] ag a, as

Our method addresses a small incompleteness in the origi-
nal work of Lieb and Oxford. However, for this paper, the
proof is too long to repeat, and many of the details are not

required. Instead we briefly sketch the proof, presenting onlyite tight. Thus we feel it is best to finish things properly
the relevant steps, and the reader is referred to the originghiner than by “trial and error,” to find the exact optimym

paper for further details. _ _ _in Eq. (10). It follows that a better optimizeg. leads to a
The Lieb-Oxford proof relies on a chain of three inequali- betterC, , and thus alsc.

ties to boundly, . For this work, the most important is the  ginceKk[ 4] involves a cutoff in the kernel, it is easiest to
first inequality, which bounds the operatér Earlier work of - approach the optimization problem numerically. To enforce
Onsagelf9] and Lieb[10], showed that a bound fof may the normalization and positivity constrairity and(iii ) on u,

be obtained if we replace the point chargesVirby hard ~ We write

spheres. This is because a boundYocannot be separated )
from the problem of closest approach of charges. Lieb and w(x)= a’(x)
Oxford used hard spheres with a density-dependent radius, 2 '
and a charge distribution inside the spheres generated by f a“(x)dx
scaling a functionu, satisfying the following(i) u=0, (ii)

w is spherically symmetric around the origin andx)=0 if  with x[0,1]. Next, we modela(x) in two ways, withn
Ix|>1, (i) fu(x)dx=1. This leads to the boun¥<V, parameters, as a polynomial of order 1,

where V involves double integrals of the fornd[f,g]
=3[[f(X)g(y)|x—y|~%, where f,g are combinations of
#(x) andp(x).

Next, we can bound the total Coulomb energy from abov
by (\IflT/|‘I’). Carrying out the integrations, and rearranging
the resulting expression to subtract the direct Coulomb repul-
sion, leads directly to a bound fog, involving the double a(X)
integralsD[ f,g]. However, it is not yet in the forn7). One
reduces this bound by applying Her's inequality, and an
inequality involving cutoffs in the kernel of the double inte-
grals. This yields the bound fag, in the form(7), where the
constantC, is in terms of the charge distribution functign
viz.,

2.1486 12.8945 3.5500 —63.9959 71.3860 —21.8137

(13

a(X)=ag+ax+---ay_x"" 1, (14)

Hr by a finite element model, i.en valuesa; at evenly
spaced points; , interjoined with straight line segments,

&j1+17 8,
= ————(X=x)+a;, XsSX=X+1. (19
n—1
By minimizing the prefactoiC, with respect to the coeffi-
cientsa; , we obtain the optimunu.

In our calculations, all integrals were performed analyti-
cally except for thex integration inK[ ] [see Eq.(11)],
where standard Romberg integratifitil] (accurate to 1 in

3 10°) was used. The minimization was carried out with two
ly=— E(GK[M]D[MM]Z)MJ p*¥(x)dx. (100  algorithms: multistart minimizations from randomly gener-
ated points (between 100-2Q0using the Nelder-Mead
K[ w] is a functional ofx, namely, downhill simplex, and conjugate gradient seath|, with a
convergence criterion of %10 8 in the function value.

Using six parameters, we found an optimym which
gave the upper boundC, <1.6407 with K=0.322 16,
D=0.822 84. Values ddy, . . . ,a5 for the polynomial model

F(a,r)=ax 1—a*3¢(a), (12  (14), corresponding to this value @ , are given in Table |
(solid line), and the corresponding is plotted in Fig. 1. The

where in Eq.(11) the + notation indicates cutoff, i.eh, optimum value ofC, did not change appreciably, even when
=hif h=0, h,=0if h<0, and in Eq.(12), ¢ is the Cou- we increased the number of parametert® 101, where we
lomb potential generated hy(x). found a best value ofC,<1.6358 with K=0.373 13,

So far the constant, = — 3 (6K[u]D[ 1,119 is not  D=0.763 01. It is hard to analyze the structureugfbut we
completely determined, for one needs to optimize the chargeote that the “large bump” exhibited by the polynomial ap-
distribution functionu. Lieb and Oxford proceed by saying proximation (the solid line in Fig. 1, betweenx=0.2 and
“. .. avariational argument shows that the optimum choicex=0.7, is also a feature of the finite element modkkle
of u would the uniform balif [ (d/9a)F(a,|z|)a=1]+ were dashed line in Fig. 1 As can be seen, the finite element
replaced by(d/da)F(a,|z]) ... however, trial and error model exhibits considerable noise.
indicates that this is approximately best with the cutoff. Also, due to the flatness of the surface, many different

The idea in this paper is simple. The largest part of thechoices ofa; yield similar C, . We attempted to optimize
work in obtaining a bound fofy and E,[p] has already using the downhill simplex simulated annealing algorithm
been done in the construction used to arrive at @d). [11], but did not find a lower value dE, . For these reasons,
Moreover the construction is sound, i.e., only three inequaliwe believe that, within the framework of the original Lieb-
ties are used to bounld, (four for E,J p]), and they are all Oxford proof, the upper bound @&, <1.6358 is optimized

1 9
K[MFL[%F(&IXI)al dx, (11
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FIG. 1. An optimized charge distribution. Quantities are in ’ ’ ’ ¢ ’ ’ ’
a.u. Solid line, six-parameter polynomial; dashed line, 101-
parameter finite element. FIG. 2. Plot of the enhancement factey.(rs,{) for the BLYP
functional. Quantities are in a.u. Dotted-dash=; solid, rg
. o . . =10; long dashrs=3; dotted,rs=0.
to approximately four significant figures. It follows, since
C_=C, that we have also determined an optimiz€d F,o(p,0)<2.2146. (16)
=1.6358. . L
How good is our improved Lieb-Oxford bound? Levy and For the exacE,J p], which also satisfies
Perdew conjectured that the optim@rin Eq. (7) is just the Fulp O=Folp',0), p>p', 17)

lower bound of 1.4312]. Our result does not contradict this,
since we have optimize@, , andC=<C, . However, since

the correlation kinetic energy¥ .| T|¥)—T{p] almost
certainly does not vanish at the extretig, and¥ that yield
equalities in Eqs(5) and(7), and typical values of the cor-
relation kinetic energy of the order of 10% &f [p], we
conjecture that the optimur@, and C differ by ~0.1. It,
therefore, seems likely that one should not hope to lower ou
value ofC; by very much. There may still be some room for
improvement over our value &. However, this will require
further insight into the difficult correlation kinetic energy
term in Eq.(6).

Finally, we finish with a brief test of our optimized Lieb-
Oxford bound. We hav€=<1.6358, which in the context of
the GGA [see EQ.(8)] requires the enhancement factor to
satisfy

it follows that bound(16) is most tight in the low density
limit p— 0.

Bound (16) is nontrivial. In Fig. 2 are some plots of
Foo(rs,), where re=(4mp/3)*3, using the common
exchange-correlation functional gE3] (BLYP). We see that
it clearly violates Eq(16). Other than the local-density ap-

roximation[14], we know of only two GGA functionals
hat satisfy Eq.(16) (PW9)), Ref. [15], which was con-
structed explicitly such thaf,.(p,{)<1.93 and PBEREef.
[16]) which was constructed such th&t(p,{)<2.273.

We advocate the use of our optimized bound as an updated

constraint for new functionals.
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