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Optimized Lieb-Oxford bound for the exchange-correlation energy
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~Received 14 September 1998!

Using the ideas of Lieb and Oxford@Int. J. Quantum Chem.19, 427 ~1981!#, we show that the exchange-
correlation energy, and indirect part of the Coulomb energy, are bounded from below by
21.6358*r4/3(x)dx, wherer(x) is the single-particle density.@S1050-2947~99!02003-X#

PACS number~s!: 31.15.Ew, 71.15.Mb
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In recent years, Kohn-Sham density-functional theo
@1,2# has become the dominant computational method
many-body physics. In its usual formulation, we are co
cerned only with antisymmetric wave functionsC, and de-
fine functionals in terms of the single-particle densityr,
namely, the total energyE@r#, noninteracting kinetic energy
Ts@r#, direct Coulomb repulsionJ@r#, and exchange-
correlation energyExc@r#, through

E@r#5 min
C→r

^CuT̂1V̂uC&1E r~x!v~x!dx ~1!

5Ts@r#1J@r#1Exc@r#1E r~x!v~x!dx, ~2!

Ts@r#5 min
C→r

^CuT̂uC&, ~3!

J@r#5
1

2E E r~x!r~y!

ux2yu
dxdy, ~4!

where v(x) is the external potential,T̂52( i
1
2 ¹ i

2 , V̂
5( i , j uxi2xj u21, x,yPR3, and here and throughout th
work, we use Hartree atomic units. All correlation effects a
incorporated into the exchange-correlation functio
Exc@r#, whose form is unfortunately unknown.

To make progress in density-functional theory, bet
exchange-correlation functionals are required. For exam
current functionals have severe difficulties in predicting
action barrier heights@3#, or long-range correlations betwee
molecules@4#. An important technique in developing ne
functionals is to construct expressions that obey rigor
mathematical bounds. Many such bounds have been
posed@5#. A particularly beautiful result was obtained b
Lieb and Oxford@6#, who proved that the indirect part of th
Coulomb energyI C5^CuV̂uC&2J@r# is bounded from be-
low, viz.,

I C>2CLE r4/3~x!dx, ~5!

whereCL<1.68. However, the bound is not quite in the for
we require for density-functional theory. For this, we mu
relate I C and Exc@r#, by choosingC to be Cm , the mini-
mizing wave function in Eq.~1!, giving
PRA 591050-2947/99/59~4!/3075~3!/$15.00
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I Cm
5Exc@r#2~^CmuT̂uCm&2Ts@r#!, ~6!

where the quantity in brackets, the correlation kinetic ener
is positive semidefinite@sinceTs@r# is defined through the
minimization in Eq.~3!#. This gives the density-functiona
formulation of the Lieb-Oxford bound as

Exc@r#>2CE r4/3~x!dx. ~7!

This introduces a new constantC, which is the constant of
interest in density-functional theory, and from equality~6!,
satisfiesC<CL . Using additional data from the low-densit
limit of jellium, Perdew found a lower bound forC, giving
1.43<C<1.68 @7#.

The power of the Lieb-Oxford bound in density
functional theory lies in the fact that it is a direct bound
the energy~rather than the scaling behavior ofExc@r#, say!
and is simply a local integral of the density, in the form
the Dirac exchange functional for a plane-wave determin
@8#. To our knowledge, it is the only constraint onExc@r# of
this form. To illustrate its applicability, we consider the ge
eralized gradient approximation~GGA!, Exc

GGA functionals,
which are written as

Exc
GGA@r#52kE r4/3~x!Fxc@r,z#dx, ~8!

where k50.7386, andz5u¹ru/r4/3. The flavor of GGA
functional is determined byFxc@r,z#, which is an enhance
ment factor that corrects the Dirac exchange functional.
see that the Lieb-Oxford bound imposes limits on accepta
Fxc@r,z#, viz., for all r,z,

Fxc~r,z!<C/k. ~9!

Using the value ofC given by Lieb and Oxford, we find
Fxc(r,z)<2.27.

From the above, it is of some interest to densi
functional development to have the tightest form of the Lie
Oxford bound. This is the question we address in this pa
The lower bound of Perdew suggests that the best valueC
in Eq. ~7! requires only a small improvement in the Lieb
Oxford proof. In fact, by refining the original proof, we sho
that the best value ofC or CL is less than or equal to 1.6358
i.e., I C>Exc@r#>21.6358*r4/3(x)dx. This improvement is
3075 ©1999 The American Physical Society
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3076 PRA 59BRIEF REPORTS
significant, as it lowers the uncertainty in the optimumC by
almost 20%, and is of the order of the correlation ener
which cannot be neglected.

Our method addresses a small incompleteness in the o
nal work of Lieb and Oxford. However, for this paper, th
proof is too long to repeat, and many of the details are
required. Instead we briefly sketch the proof, presenting o
the relevant steps, and the reader is referred to the orig
paper for further details.

The Lieb-Oxford proof relies on a chain of three inequa
ties to boundI C . For this work, the most important is th
first inequality, which bounds the operatorV̂. Earlier work of
Onsager@9# and Lieb@10#, showed that a bound forV̂ may
be obtained if we replace the point charges inV̂ by hard
spheres. This is because a bound forV̂ cannot be separate
from the problem of closest approach of charges. Lieb
Oxford used hard spheres with a density-dependent rad
and a charge distribution inside the spheres generated
scaling a functionm, satisfying the following:~i! m>0, ~ii !
m is spherically symmetric around the origin andm(x)50 if
uxu.1, ~iii ! *m(x)dx51. This leads to the boundṼ<V̂,
where Ṽ involves double integrals of the formD@ f ,g#
5 1

2 ** f (x)g(y)ux2yu21, where f ,g are combinations of
m(x) andr(x).

Next, we can bound the total Coulomb energy from abo
by ^CuṼuC&. Carrying out the integrations, and rearrangi
the resulting expression to subtract the direct Coulomb re
sion, leads directly to a bound forI C involving the double
integralsD@ f ,g#. However, it is not yet in the form~7!. One
reduces this bound by applying Ho¨lder’s inequality, and an
inequality involving cutoffs in the kernel of the double int
grals. This yields the bound forI C in the form~7!, where the
constantCL is in terms of the charge distribution functionm,
viz.,

I C>2
3

2
~6K@m#D@m,m#2!1/3E r4/3~x!dx. ~10!

K@m# is a functional ofm, namely,

K@m#5E
0

1F ]

]a
F~a,uxu!a51G

1

dx, ~11!

F~a,r !5ax212a4/3f~a1/3x!, ~12!

where in Eq.~11! the 1 notation indicates cutoff, i.e.,h1

5h if h>0, h150 if h<0, and in Eq.~12!, f is the Cou-
lomb potential generated bym(x).

So far the constantCL52 3
2 (6K@m#D@m,m##2)1/3 is not

completely determined, for one needs to optimize the cha
distribution functionm. Lieb and Oxford proceed by sayin
‘‘ . . . a variational argument shows that the optimum cho
of m would the uniform ballif @(]/]a)F(a,uzu)a51#1 were
replaced by(]/]a)F(a,uzu) . . . however, trial and error
indicates that this is approximately best with the cutoff.’’

The idea in this paper is simple. The largest part of
work in obtaining a bound forI C and Exc@r# has already
been done in the construction used to arrive at Eq.~10!.
Moreover the construction is sound, i.e., only three inequ
ties are used to boundI C ~four for Exc@r#), and they are all
,
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quite tight. Thus we feel it is best to finish things proper
rather than by ‘‘trial and error,’’ to find the exact optimumm
in Eq. ~10!. It follows that a better optimizedm leads to a
betterCL , and thus alsoC.

SinceK@m# involves a cutoff in the kernel, it is easiest t
approach the optimization problem numerically. To enfor
the normalization and positivity constraints~i! and~iii ! on m,
we write

m~x!5
a2~x!

E a2~x!dx

, ~13!

with xP@0,1#. Next, we modela(x) in two ways, withn
parameters, as a polynomial of ordern21,

a~x!5a01a1x1•••an21xn21, ~14!

or by a finite element model, i.e.,n values ai at evenly
spaced pointsxi , interjoined with straight line segments,

a~x!5
ai 112ai

n21
~x2xi !1ai , xi<x<xi 11 . ~15!

By minimizing the prefactorCL with respect to the coeffi-
cientsai , we obtain the optimumm.

In our calculations, all integrals were performed analy
cally except for thex integration inK@m# @see Eq.~11!#,
where standard Romberg integration@11# ~accurate to 1 in
108) was used. The minimization was carried out with tw
algorithms: multistart minimizations from randomly gene
ated points ~between 100–200! using the Nelder-Mead
downhill simplex, and conjugate gradient search@11#, with a
convergence criterion of 531026 in the function value.

Using six parameters, we found an optimumm, which
gave the upper boundCL<1.6407 with K50.322 16,
D50.822 84. Values ofa0 , . . . ,a5 for the polynomial model
~14!, corresponding to this value ofCL , are given in Table I
~solid line!, and the correspondingm is plotted in Fig. 1. The
optimum value ofCL did not change appreciably, even whe
we increased the number of parametersn to 101, where we
found a best value ofCL<1.6358 with K50.373 13,
D50.763 01. It is hard to analyze the structure ofm, but we
note that the ‘‘large bump’’ exhibited by the polynomial a
proximation ~the solid line in Fig. 1!, betweenx50.2 and
x50.7, is also a feature of the finite element model~the
dashed line in Fig. 1!. As can be seen, the finite eleme
model exhibits considerable noise.

Also, due to the flatness of theai surface, many different
choices ofai yield similar CL . We attempted to optimize
using the downhill simplex simulated annealing algorith
@11#, but did not find a lower value ofCL . For these reasons
we believe that, within the framework of the original Lieb
Oxford proof, the upper bound ofCL<1.6358 is optimized

TABLE I. Optimized coefficientsai for m.

a0 a1 a2 a3 a4 a5

22.1486 12.8945 3.5500 263.9959 71.3860 221.8137
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to approximately four significant figures. It follows, sinc
CL>C, that we have also determined an optimizedC
<1.6358.

How good is our improved Lieb-Oxford bound? Levy an
Perdew conjectured that the optimumC in Eq. ~7! is just the
lower bound of 1.43@12#. Our result does not contradict thi
since we have optimizedCL , andC<CL . However, since

the correlation kinetic energŷCmuT̂uCm&2Ts@r# almost
certainly does not vanish at the extremeCm andC that yield
equalities in Eqs.~5! and ~7!, and typical values of the cor
relation kinetic energy of the order of 10% ofExc@r#, we
conjecture that the optimumCL and C differ by ;0.1. It,
therefore, seems likely that one should not hope to lower
value ofCL by very much. There may still be some room f
improvement over our value ofC. However, this will require
further insight into the difficult correlation kinetic energ
term in Eq.~6!.

Finally, we finish with a brief test of our optimized Lieb
Oxford bound. We haveC<1.6358, which in the context o
the GGA @see Eq.~8!# requires the enhancement factor
satisfy

FIG. 1. An optimized charge distributionm. Quantities are in
a.u. Solid line, six-parameter polynomial; dashed line, 1
parameter finite element.
s
,

dy
ur

Fxc~r,z!<2.2146. ~16!

For the exactExc@r#, which also satisfies

Fxc~r,z!>Fxc~r8,z!, r.r8, ~17!

it follows that bound~16! is most tight in the low density
limit r→0.

Bound ~16! is nontrivial. In Fig. 2 are some plots o
Fxc(r s ,z), where r s5(4pr/3)1/3, using the common
exchange-correlation functional of@13# ~BLYP!. We see that
it clearly violates Eq.~16!. Other than the local-density ap
proximation @14#, we know of only two GGA functionals
that satisfy Eq.~16! ~PW91!, Ref. @15#, which was con-
structed explicitly such thatFxc(r,z)<1.93 and PBE~Ref.
@16#! which was constructed such thatFxc(r,z)<2.273.
We advocate the use of our optimized bound as an upd
constraint for new functionals.

G.K.-L.C. acknowledges Subrown Daitou and Roman
Daniel for useful discussions, and Aron J. Cohen for help
us produce Fig. 2.

-
FIG. 2. Plot of the enhancement factorFxc(r s ,z) for the BLYP

functional. Quantities are in a.u. Dotted-dash,r s5`; solid, r s

510; long dash,r s53; dotted,r s50.
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