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Dynamics of the quantized radiation field in a cavity vibrating at the fundamental frequency
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We present a method to solve exactly a one-dimensional model of quantized radiations in a cavity oscillating
in the fundamental resonance, using the effective Hamiltonian derived by C. K. Law@Phys. Rev. A49, 433
~1994!#. With this method, we derived explicit analytical expressions for the diagonalized Hamiltonian, the
time-varying annihilation, creation, and photon number operators for the radiation field, which completely
specify the dynamics of the system.@S1050-2947~99!00604-6#

PACS number~s!: 42.50.Dv, 42.50.Lc, 03.65.2w
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I. INTRODUCTION

Since Moore’s pioneering work in 1970@1#, there have
been intensive studies focused on the quantum theory o
electromagnetic field in a cavity with moving boundari
@2–8#. The topic is of fundamental theoretical interest in th
it reveals a number of delicate features of quantum phy
such as the dynamical modification of the Casimir force@3#
and the vacuum emission of photons with nonclassical p
ton statistics@4–7#. On the other hand, the subject is also
practical importance since it is closely related to sonolu
nescence@8#, high precision optical interferometry@9#, the
generation of squeezed light@10#, and quantum nondemoli
tion measurements@11#, etc.

The dynamics of the electromagnetic field in a cavity w
time-varying boundaries can be studied by constructing
solving an effective Hamiltonian for the system@6,7#, which
allows for a Schro¨dinger-picture description and provides
convenient basis for investigating the physics of the cav
field. Unfortunately, the derived Hamiltonians are usua
too complicated to allow one to obtain an explicit analytic
form of the state of the field. Although some progress h
been made in applying perturbation theory techniques
study the small-oscillation-amplitude regime@5,12#, to our
knowledge, no one has succeeded in solving exactly any
of the models described by previously derived effect
Hamiltonians in the resonance cases. This greatly hinde
general understanding of the system, especially since pe
bation theory is expected to break down for a system
resonance at long time or for large oscillation amplitud
@5,12#, when interesting and nontrivial physics show up. E
act solutions of the effective Hamiltonians will also grea
facilitate the investigation of both the field statistics and
resonant emission and absorption of photons by an a
placed in an oscillating cavity. It is therefore important a
desirable to develop a method to solve the effective Ham
tonians systematically and nonperturbatively.

We make a first step towards this goal in this paper
presenting an exact solution to the effective Hamiltonian
the radiation fields in a cavity driven to oscillate in the fu
damental resonance. The corresponding dynamics by ex
itly obtaining analytical expressions of the diagonaliz
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Hamiltonian, the time-varying annihilation, creation, an
photon number operators for the radiation field. The ex
analytical solution to this model provides a very convenie
basis for studying the photon statistics as well as reson
photon emission and absorption properties of an atom pla
in such an oscillating cavity. Besides, the method presen
here will be helpful in solving other models for higher res
nances.

This paper is organized as follows. In Sec. II, we brie
describe the effective Hamiltonian formalism by Law@6# for
the quantized radiation modes in a a one-dimensional cavit
oscillating in resonances with particular emphasis paid
the rotating wave approximation. In Sec. III, we develop
method to exactly diagonalize the effective Hamiltoni
when the cavity boundary oscillates in the fundamental re
nance. In Sec. IV, we investigate the corresponding dyna
ics by obtaining explicitly the exact analytical expressions
the time-varying annihilation, creation, and photon numb
operators, and Sec. V concludes the paper with some dis
sions.

II. HAMILTONIAN FORMALISM
FOR AN OSCILLATING CAVITY

In investigating the field quantization and the effecti
Hamiltonian formalism, Law @6# considered a one
dimensional cavity formed by two perfectly reflecting mi
rors with one of the mirrors fixed at the positionx50 and
the other moving in a prescribed trajectoryx5q(t). Expand-
ing the vector potential and its conjugate momentum in a
of ‘‘instantaneous’’ mode functions$fk(x;t)%,

Â~x,t !5(
k

Q̂k~ t !fk~x;t !,

p̂~x,t !5e~x,t !(
k

P̂k~ t !fk~x;t !, ~1!

wheree(x,t) is the dielectric constant, andfk(x;t) are so-
lutions of the wave equation subjected to the boundary c
ditions
3032 ©1999 The American Physical Society
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fk~0;t !5fk„q~ t !;t…50,

the system can be quantized by imposing the appropr
commutation relations on the generalized position and m
mentum operatorsQ̂k and P̂k . The equations of motion fo
Q̂k and P̂k can be derived from the wave equation, and
effective Hamiltonian can then be constructed according
The final form of the effective Hamiltonian is given in term
of the ‘‘instantaneous’’ creation and annihilation operato
ak

† , ak , constructed from the appropriate linear combin

tions of Q̂k and P̂k . In the case ofe(x,t)51, the effective
Hamiltonian reads@6#

H5(
k

vk~ t !ak
†ak1 i (

k

q̇~ t !

4q~ t !
~ak

†22ak
2!

1
i

2 (
j ,k

gjk

q̇~ t !

q~ t !
~ak

†aj
†1ak

†aj2ajak2aj
†ak!, ~2!

where gjk5(21) j 1kkAk j /( j 22k2) as kÞ j , gjk50 for j

5k, q̇(t)5dq(t)/dt, and vk(t)5kp/q(t). Under the
rotating-wave approximation~RWA!, Law explicitly wrote
down the ‘‘interaction’’ part of the resonant effective Ham
tonians@i.e., the part derived from Eq.~2! in the absence o
its first summation term(kvk(t)ak

†ak# for a particular choice
of the prescribed trajectory,

q~ t !5L exp@q0 cos~Vt !/L#,

and forV5mp/L, m51,2,3 whereq0 andV characterize,
respectively, the amplitude and frequency of the oscillat
around a natural cavity lengthL. Here we supply the expres
sion for the ‘‘free’’ part of the resonant effective Hamilto
nians under the RWA. It readsvI 0(q0 /L)(kkak

†ak , where
v5p/L, and I 0(q0 /L) is the modified Bessel function o
order zero derived from the relationI 0(q0 /L)5
*0

2Lexp@2q0cos(Vt)/L#dt/(2L) with V5mp/L. Let us prove
this result. In order to get the resonant effective Hamilton
by applying the RWA to the Hamiltonian in Eq.~2!, one
needs to expand formally allc-number functions in Eq.~2!
into Fourier series. Note thatq(t) enters the last two
summations of Eq.~2! only in the formq̇(t)/q(t), which is
already a purely sinusoidal form and equalsq̇(t)/q(t)5
2q0V sin(Vt)/L5iV(q0/2L)@exp(iVt)2exp(2iVt)#. This
is the reason why Law made the above particular cho
of q(t). The quantity vk(t)5kp/q(t)
[kv exp@2q0cos(Vt)/L# appears only in the first summatio
in Eq. ~2!. It can be expressed as the Fourier ser
asV 5 mv, v 5 p/L,

vk~ t ! 5 kv(n 5 2`
n 5 ` Bn exp~2 inmvt !,

where B05*0
2L exp@2q0cos(Vt)/L#dt/(2L)[I0(q0 /L) with V

5mp/L, and the other expansion coefficients can a
be explicitly expressed. The RWA is to keep only tho
terms in Eq.~2! that are on resonance. This can be done
follows: substituting the above Fourier series ofvk(t) and
q̇(t)/q(t), as well as the transformationak→ak exp
(2ikvt); ak

†→ak
†exp(ikvt), k51,2,3, . . . into Eq. ~2!, one
te
-

e
.

s
-

n

n

e

,

o

s

then obtains the resonant effective Hamiltonians under
RWA by neglecting all the terms which still have the fact
belonging to the fast time-varying set exp(6invt), n
51,2,3, . . . , andkeeping only all terms that are time inde
pendent and/or slowly varying compared with the fa
varying terms exp(6ivt). In this way, it is easy to show tha
the resulted Hamiltonians~as V5mv, m51,2,3, . . . ) are
HRWA5vI 0(q0 /L)(kkak

†ak1He f f
(m) , m51,2,3, . . . with

Hint
(m) (m51,2,3) identical to Law’s Eqs.~3.4!–~3.6!, respec-

tively @6#. Law has claimed that the complicated form of th
scattering terms in all three cases (m51,2,3) forbade one
from finding the analytic solutions@6# while we shall present
a method to solve exactly the effective model for the fund
mental resonance case (m51) which, as discussed abov
reads

H5v f (
k51

`

kak
†ak1

q0v

4L (
k51

`

Ak~k11!@ak
†ak111ak11

† ak#,

~3!

where f [I 0(q0 /L)5*0
2Lexp@2q0cos(vt)/L#dt/(2L), and I 0

is the modified Bessel function of order zero. In writing th
equation, we have ultilized the simplified expressionf a(k)
5Ak(k1a) for the function f a(k)5k(k1a)(2k
1a)21@A(k1a)/k1Ak/(k1a)# in Eq. ~3.7! of Ref. @6#.
Let x5A(k1a)/k, one sees thatx1x215k(x211)/(kx)
5(2k1a)/A(k1a)k which immediately leads to the sim
plified relation.

III. METHOD TO DIAGONALIZE THE HAMILTONIAN

In order to diagonalize the effective Hamiltonian in th
fundamental resonance case, we first introduce a fictiti
harmonic oscillator described by the annihilation and c
ation operatorsA andA† as well as the corresponding num
ber operatorN5A†A. The operatorsA and A† satisfy the
usual commutation relation@A,A†#51, and they commute
with all the operatorsak and ak

† of the radiation field. Let
un&, n50,1,2, . . . denote the eigenkets of the number o
eratorN5A†A ~not to be confused with the eigenkets of th
photon number operatorsak

†ak), and use the relationsAun&
5Anun21& and A†un&5An11un11&, we can rewrite the
effective Hamiltonian in Eq.~3! as follows:

H/ f 5v (
n,m51

`

an
†^nuFN1

q̄0

4L
~ANA1A†AN!G um&am ,

~4!

whereq̄0[q0 / f . This is the key step towards the diagona
ization of the effective Hamiltonian, because it is th
straightforward to see from this equation that we have tur
this problem into the diagonalization of the operatorN

1q̄0(ANA1A†AN)/4L, which can be put into another form
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N1
q̄0

4L
~ANA1A†AN!

5A12S q̄0

2L
D 2

eu~ANA2A†AN!Ne2u~ANA2A†AN!,

~5!

where 2u[tanh21(q̄0/2L). The proof of this relation is
simple and is given in Appendix A. It suggests an approp
ate transformation for diagonalizing the effective Ham
tonian.

We introduce a set of photonic operatorsbn ,bn
† ,n

51,2, . . . for theradiation field by the following unitary
transformation:

bn5 (
m51

`

Unm~2u!am , ~6a!

an5 (
m51

`

Unm~u!bm , ~6b!

where the unitary transformation operatorU(u)
[exp@u(ANA2A†AN)# and its matrix elements are define
by Unm(u)[^nuexp@u(ANA2A†AN)#um&. Note that the
unitary operatorU satisfiesU21(u)5U†(u)5U(2u), and
hence its matrix elements satisfyU* mn(u)5Unm

† (u)
5Unm

21(u)5Unm(2u). From the definition of the operator
bn and bn

† , one easily finds that they satisfy the relatio
@bn ,bm#5@bn

† ,bm
† #50, and @bn ,bm

† #5dnm by utilizing the
counterparts for the operatorsan ,an

† and the properties of the
unitary operatorU. We have in Appendix A calculated th
explicit expression of all the matrix elements of the unita
operatorU in several different forms. One of these form
readsUnm(u)50 for n50 or m50, and

Unm~u!5~21!m21Amn (
k50

min~n,m!

3
~n1m2k21!!

k! ~m2k!! ~n2k!!
~ tanhu!3n1m2222k, ~7!

for n,m51,2, . . . .Here,

tanhu5~ q̄0/2L !/@11A12~ q̄0 /2L !2#

if one takes tanh 2u5q̄0/2L.
Substituting Eq.~5! into Eq. ~4! and using the complete

ness relation(k50
` uk&^ku51 as well asUn0(u)5U0l(2u)

50, U* nk(u)5Ukn(2u), we after a little manipulation ar
rive at
i-

H/ f 5vA12S q̄0

2L
D 2

(
k,l 51

` F (
n51

`

an
†Unk~u!G ^kuNu l &

3F (
m51

`

amUlm~2u!G
5vA12S q̄0

2L
D 2

(
k,l 51

` F (
n51

`

anUkn~2u!G†

^kuNu l &

3F (
m51

`

amUlm~2u!G . ~8!

It is then straightforward from Eqs.~6! and ~8! and ^kuNu l &
5kdkl to obtain the diagonal form of the effective Hami
tonian in the fundamental resonance case as follows:

H5
p

L
Af 22S q0

2L D 2

(
k51

`

kbk
†bk , ~9!

where f 5I 0(q0 /L), and I 0 is the modified Bessel function
of order zero. This equation, together with the photonic o
eratorsbk determined by Eqs.~6! and~7!, is the central result
of this section.

We can easily obtain the eigenvalues and eigenkets of
effective Hamiltonian, Eq.~3!, in the fundamental resonanc
case since we have already diagonalized it. Furthermore
can from the results of this section explicitly study the co
responding dynamics of the system, which will be discus
in the next section. The operatorsak ,ak

† describe the bare
photons of the radiation field whilebk ,bk

† describe in some
sense the corresponding dressed photons~i.e., the bare pho-
tons dressed by the mirror oscillations!. Equation~3! indi-
cates that the mirror oscillation causes strong intermode c
plings among bare photons, but there exists no interac
among the dressed photons of different modes as gove
by Eq. ~9!. It is also interesting to note that the diagonaliz
Hamiltonian is identical in form to the one describing th
radiation field in a cavity with an effective instantaneo

lengthq(t)/A12(q̄0/2L)2. In this sense, the oscillating mir
ror in the fundamental resonance case has the functio
enlarging the effective cavity length and hence decreas
the corresponding eigenfrequencies of the radiation fi
within the cavity.

IV. DYNAMICS OF THE RADIATION FIELD

How the photon number operators as well as the ann
lation and creation operators of the field evolve with tim
determines completely the dynamics of the radiation fie
The time dependence of the dressed operators are easil
tained from the Heisenberg equationdb/dt52 i @b,H# and
Eq. ~9! as follows:

bk~ t !5bke
2 ikc~ t !, bk

†~ t !5bk
†eikc~ t !, ~10!

wherec(t)[@(p/L)Af 22(q0/2L)2#t, f [I 0(q0 /L), andI 0
is the modified Bessel function of order zero. Note th
nk

(b)(t)[bk
†(t)bk(t) is constant in time,nk

(b)(t)5nk
(b)(0)

[nk
(b) .
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Our purpose in this section is to find explicitly how bo
the dressed and bare operators of the radiation field vary
respect to time for given initial bare operatorsak

†
„[ak

†(0)…
andak„[ak(0)…. They are easy to obtain from Eqs.~6! and
~10!. The results are

bk~ t !5e2 ikc~ t ! (
m51

`

Ukm~2u!am , ~11a!

nk
~b!~ t !5 (

m,n51

`

Unk~u!Ukm~2u!an
†am , ~11b!

ak~ t !5 (
m51

`

Gkm~u,t !am , ~12a!

nk
~a!~ t ![ak

†~ t !ak~ t !5 (
m,n51

`

G* nk~u,t !Gkm~u,t !an
†am ,

~12b!

where

Gkm~u,t !5 (
n51

`

Ukn~u!Unm~2u!exp@2 inc~ t !#.

In this form, Gkm is rather complicated since it involves
triple summation after substituting the expression Eq.~7! for
matrix elementsUkn and Umn . Its simplification requires
some skill and is done in Appendix B. Here we only list
simplified form as follows:

Gkm~u,t !5AmkS 12 iC

11 iC D kS iS

11 iC D k1m22

3 (
n50

min~k,m!

~21!m2n

3
~k1m2n21!!

n! ~m2n!! ~k2n!! S S2

11C2D k2n

, ~13!

where

S[sinh~2u!tanFc~ t !

2 G5
q̄0

2L

tan@c~ t !/2#

A12~ q̄0/2L !2
,

~14!

C[cosh~2u!tanFc~ t !

2 G5
tan@c~ t !/2#

A12~ q̄0/2L !2
.

where q̄05q0 / f , f 5I 0(q0 /L), and 2u5tanh21(q̄0/2L).
We have now expressed exactly all the time-varying b
and dressed operators of the quantized field modes expli
in terms of the initial bare operators of the field. These a
lytical expressions completely and explicitly describe the
namics of the electromagnetic fields in an one-dimensio
oscillating cavity in the fundamental resonance case.
time evolution of the statistics of the quantized field mod
such as the photon statistics of intermode and intramode
th

e
tly
-
-
al
e
,
r-

relations, can be obtained easily and explicitly from the
expressions once the corresponding initial statistical prop
ties are given.

It can be seen from Eq.~11! that both the bare and dresse
sets of photonic operators share a common vacuum s
implying the well-known conclusion that no~bare and
dressed! photons can be generated from the vacuum stat
the fundamental resonance case@5,8#. This conclusion was
rigorously proven previously only up to the first order of th
small oscillating amplitude of the moving mirror, while ou
is based on the exact solution of the resonant effec
Hamiltonian under the rotating-wave approximation. We e
phasize that the situation is quite different if the initial sta
of the field is not the vacuum state. Then, the oscillat
mirror causes photon exchanges between different fi
modes, but the total photon number is conserved if there
no atoms in the cavity. These photon exchanges will sign
cantly alter the transitions as well as photon emission
absorption of an atom placed in such an oscillating cavity
the atom can resonately interact with some of the quanti
field modes of the corresponding unperturbed cavity. O
results here provide a sound basis for such investigation
the fundamental resonance case.

V. CONCLUSIONS AND DISCUSSIONS

In summary, we have investigated the dynamics of a o
dimensional oscillating cavity in the fundamental resonan
case by means of an effective resonant Hamiltonian deri
by Law @6#. We have developed a method to solve this qu
tized model and obtained exact analytical expressions of
diagonalized Hamiltonian, the time-varying annihilation a
creation as well as photon number operators for the radia
field.

The method presented here manifests its power in solv
exactly the effective resonant Hamiltonian describing an
cillating cavity in the fundamental resonance case. It m
also be useful in other harmonic resonance cases and h
may finally provide a way to solve analytically a class
such effective resonant Hamiltonians. The exact analyt
expressions for the time-varying annihilation, creation a
photon number operators for the quantized field modes g
explicitly not only all the information of the dynamics of th
field modes but also the time evolution of the statistic
quantities of the field modes such as various kinds of in
mode and intramode correlations in the fundamental re
nance case. We have explicitly shown that for the particu
choice of the trajectoryq(t)5Lexp@q0cos(Vt)/L# of the mov-
ing mirror, no~bare or dressed! photon can be generated o
of the vacuum regardless of the oscillation amplitude so lo
as the rotating-wave approximation is a valid. These res
can be utilized to study situations where the initial state
the field is not the vacuum state. They also provide a v
convenient basis for studying the resonant photon emis
and absorption of an atom placed in such an oscillating c
ity. Our results may also be useful in studies of sonolum
nescence, high precision optical interferometry, the gen
tion of squeezed light, and quantum nondemoliti
measurements.
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APPENDIX A

In this appendix, we prove Eq.~4! and calculate the ex
plicit forms of the matrix elements of the unitary operatorU.

We begin with the proof of Eq.~4!. Let W65(ANA

6A†AN) and X̃5exp(uW2)X exp(2uW2). We can easily
show that dÑ/du5@W2 ,Ñ#5W̃1 and d2Ñ/du2

5@W2 ,W̃1#54Ñ, which combine to give the relationÑ
5N cosh 2u11

2W1 sinh 2u, or ÑA12tanh2(2u)5N

11
2W1 tanh 2u. Taking tanh 2u5(q̄0/2L), we arrive at Eq.~4!

and hence complete its proof.
We now calculate the explicit forms of the matrix el

ments Unm(u)5^nuexp@u(ANA2A†AN)#um&. Using Aum&
5Amum21&, A†um&5Am11um11& and introducing

f nm~u![AmUnm~u!, ~A1!

we find

d

du
f nm5m~ f nm212 f nm11!, ~A2!

where f n05 f 0m50. From this equation and the definition

f n~u,x!5 (
m51

`

f nm~u!xm, ~A3!

one easily obtains (f n)u85x@(x2x21) f n#x8 , where (f )y8 de-
notes the partial derivative off with respect to variabley. By
defining

x[tanhj, Rn[~x2x21! f n , ~A4!

we arrive at (Rn)u852(Rn)j8 , which is easily solved to give
Rn(u,x)5Fn(j2u). The functional form ofFn is deter-
mined by

Rn~u50,x!52Anxn21~12x2!52
1

An

d

dj
tanhn j,

which is obtained by usingUnm(u50)5dnm and Eqs.~A1!,
~A3!, and~A4!. It is then straightforward to obtain

f n~u,x!5
1

An
x

d

dx
tanhn~ tanh21 x2u!. ~A5!

After some manipulations, we obtain from Eqs.~A1! and
~A3–A5! one of the two simple expressions of the need
matrix elements as follows:
-
d

e
d

e

d

Unm~u!5
1

Anm~m21!!
F dm

dxmS x2tanhu

12x tanhu D nG
x50

,

~A6!

wheren,m51,2,3, . . . andUn0(u)5U0m(u)50. Using this
equation and

1

~12x tanhu!n
5

~ tanhu!n21

~n21!!

dn21

dxn21

1

12x tanhu
,

it is then easy to obtain another form,

Unm~u!5~21!m21Amn (
k50

min~n,m!

3
~n1m2k21!!

k! ~m2k!! ~n2k!!
~ tanhu!3n1m2222k,

~A7!

which is the form in Eq.~7! in the main text.

APPENDIX B

We simplify the expression of Gkm(u,t)
5(n51

` Ukn(u)Unm(2u)exp@2inc(t)# in this Appendix. In
order to reach this goal, we rewrite it as

Gkm~u,t !5 (
n51

`

^kuU~u!un&^nuU~2u!um&exp@2 inc~ t !#

5 (
n51

`

^kuU~u!exp@2 iNc~ t !#un&^nuU~2u!um&

5^kuU~u!exp@2 iNc~ t !#U~2u!um&

5^kuexp@2 iÑc~ t !#um&, ~B1!

whereÑ5U(u)NU(2u), and uses have been made of t
completeness relation(n50

` un&^nu51, U0m(2u) and U
(2u)5U21(u). At the beginning of the Appendix A, we
have shown

Ñ5N cosh 2u1 1
2 ~ANA1A†AN!sinh 2u. ~B2!

Introducing

Wkm~t!5Am^kuexp~tÑ!um&, ~B3!

wheret52 ic(t), and

Wn~t,x!5 (
m51

`

Wnm~t!xm, ~B4!

we can, following the same routine as the one for calculat
Unm in Appendix A, obtain

~Wn!t85xF S C11
S1

2
~x1x21! DWnG

x

8
,
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where (W)y8 denotes the partial derivative ofW with respect
to variabley, C15cosh 2u andS15sinh 2u. By defining

tanh~j/2![S1x1C1 , R̄n[FC11
S1

2 S x1
1

xD GWn ,

~B5!

we arrive at (R̄n)t852(R̄n)j8 , which is easily solved to give

R̄n(t,x)5F̄n(j2t). The functional form ofF̄n is deter-
mined by

R̄n~t50,x!52
1

An

d

dj
xn,

which is obtained by usingWnm(t50)5Andnm and Eqs.
~B3–B5!. Noting thatWn52xRndj/dx and x5@ tanh(j/2)
2C1#/S1 , t52 ic(t) and tanh(iy)5i tan(y), it is then
straightforward from Eqs.~B1,B3–B5! to obtain

Gkm~u,t !5
1

Akm~m21!!
F dm

dxmS x~12 iC !2 iS

11 iC1 iSx D kG
x50

,

~B6!

wherek,m51,2,3, . . . , Gk0(u,t)5G0m(u,t)50, and

S5sinh~2u!tanFc~ t !

2 G5
q̄0

2L

tan@c~ t !/2#

A12~ q̄0/2L !2
,

C5cosh~2u!tanFc~ t !

2 G5
tan@c~ t !/2#

A12~ q̄0/2L !2
. ~B7!
-

e,

s.

.
,

Note that Eq. ~B6! gives Gkm(u50,t)5
dkmexp@2ic(t)m#, k,m51,2,3, . . . , which is identical to the
result directly calculated from its definition as it should b

Equation~B6! can be put into another form,

Gkm~u,t !5S 12 iC

11 iC D k 1

Akm~m21!!
F dm

dxmS x1gx

11gxD
kG

x50

,

~B8!

whereg5 iS/(11 iC). Using this equation and

1

~11gx!k
5

~2g!k21

~k21!!

dk21

dxk21

1

11gx
,

it is then easy to obtain

Gkm~u,t !5AmkS 12 iC

11 iC D kS iS

11 iC D k1m22

3 (
n50

min~k,m!

~21!m2n
~k1m2n21!!

n! ~m2n!! ~k2n!!

3S S2

11C2D k2n

, ~B9!

whereS,C are given by Eq.~B7!. Equations~B9! and ~B7!
are, respectively, Eqs.~13! and ~14! in the main text.
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