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Dynamics of the quantized radiation field in a cavity vibrating at the fundamental frequency
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We present a method to solve exactly a one-dimensional model of quantized radiations in a cavity oscillating
in the fundamental resonance, using the effective Hamiltonian derived by C. K[RhAys. Rev. A49, 433
(1994]. With this method, we derived explicit analytical expressions for the diagonalized Hamiltonian, the
time-varying annihilation, creation, and photon number operators for the radiation field, which completely
specify the dynamics of the systefig1050-294{@9)00604-§

PACS numbd(s): 42.50.Dv, 42.50.Lc, 03.65.w

[. INTRODUCTION Hamiltonian, the time-varying annihilation, creation, and
photon number operators for the radiation field. The exact
Since Moore’s pioneering work in 1970], there have analytical solution to this model provides a very convenient
been intensive studies focused on the quantum theory of theasis for studying the photon statistics as well as resonant
electromagnetic field in a cavity with moving boundariesPhoton emission and absorption properties of an atom placed
[2—8]. The topic is of fundamental theoretical interest in thatin such an oscillating cavity. Besides, the method presented
it reveals a number of delicate features of quantum physicgere will be helpful in solving other models for higher reso-
such as the dynamical modification of the Casimir fofgg ~ nances.
and the vacuum emission of photons with nonclassical pho- This paper is organized as follows. In Sec. I, we briefly
ton statistic§4—7]. On the other hand, the subject is also of describe the effective Hamiltonian formalism by L&} for
practical importance since it is closely related to sonolumithe quantized radiation modes a a one-dimensional cavity
nescencd8], high precision optical interferometi], the oscillating in resonances.with particular emphasis paid on
generation of Squeezed ||gm0:|, and quantum nondemoli- the rOtatIng wave apprOXImatlon. In Sec. I”, we deVeIOp a
tion measurementdl1], etc. method to exactly diagonalize the effective Hamiltonian
The dynamics of the electromagnetic field in a cavity with When the cavity boundary oscillates in the fundamental reso-
time-varying boundaries can be studied by constructing anf#ance. In Sec. IV, we investigate the corresponding dynam-
So|ving an effective Hamiltonian for the systéﬁl?], which ics by Obtaining eXp|ICIt|y the exact analytical eXpreSSionS of
allows for a Schidinger-picture description and provides a the time-varying annihilation, creation, and photon number
convenient basis for investigating the physics of the cavityoperators, and Sec. V concludes the paper with some discus-
field. Unfortunately, the derived Hamiltonians are usuallyS!Ons.
too complicated to allow one to obtain an explicit analytical
form of the state of the field. Although some progress has Il. HAMILTONIAN FORMALISM
been made in applying perturbation theory techniques to FOR AN OSCILLATING CAVITY
study the small-oscillation-amplitude regini®,12], to our
know|edge’ no one has succeeded in So'ving exacﬂy any one In inVeStigating the fleld quantization and the effective
of the models described by previously derived effectiveHamiltonian formalism, Law [6] considered a one-
Hamiltonians in the resonance cases. This greatly hinders @mensional cavity formed by two perfectly reflecting mir-
general understanding of the system, especially since pertufors with one of the mirrors fixed at the positior0 and
bation theory is expected to break down for a system orhe other moving in a prescribed trajectory q(t). Expand-
resonance at long time or for large oscillation amplitudednd the vector potential and its conjugate momentum in a set
[5,12), when interesting and nontrivial physics show up. Ex-Of “instantaneous” mode functione,(x;t)},
act solutions of the effective Hamiltonians will also greatly
facilitate the investigation of both the field statistics and the A N ]
resonant emission and absorption of photons by an atom A(X’t):% Qu(t) du(x;1),
placed in an oscillating cavity. It is therefore important and
desirable to develop a method to solve the effective Hamil-
tonians systema.tically and nonpertu.rbatively. . T(X)=€e(X,1) D Pu(t)dy(x;t), (1)
We make a first step towards this goal in this paper by 3
presenting an exact solution to the effective Hamiltonian of
the radiation fields in a cavity driven to oscillate in the fun- where e(x,t) is the dielectric constant, and,(x;t) are so-
damental resonance. The corresponding dynamics by explitdations of the wave equation subjected to the boundary con-
itly obtaining analytical expressions of the diagonalizedditions
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D (0;1)= ¢ (q(t);1)=0, then obtains the resonant effective Hamiltonians under the
RWA by neglecting all the terms which still have the factor
the system can be quantized by imposing the appropriatbelonging to the fast time-varying set expliot), n
commutation relations on the generalized position and mo=1,2,3 ..., andkeeping only all terms that are time inde-
mentum operator®, and P,. The equations of motion for pendent and/or slowly varying compared with the fast-
Qy and P, can be derived from the wave equation, and thevarying terms exptiot). In this way, it is easy to show that
effective Hamiltonian can then be constructed accordinglythe resulted Hamiltoniang@s Q=mo, m=1,2,3...) are
The final form of the effective Hamiltonian is given in terms Hrwa= ol o(qo/L)Skala,+HIY, m=1,23...  with
of the “instantaneous” creation and annihilation operatorsH i(m) (m=1,2,3) identical to Law’s Eq¥3.4)—(3.6), respec-
al, a, constructed from the appropriate linear combina-tively [6]. Law has claimed that the complicated form of the
tions of Q, and Py. In the case of(x,t)=1, the effective scattering terms in all three casem<1,2,3) forbade one
Hamiltonian read$6] from finding the analytic solution$] while we shall present
a method to solve exactly the effective model for the funda-

) q(t) mental resonance casen€ 1) which, as discussed above,
H=2 abalac+i 2 ——(aj*~a) reads
K k 4q(t)
i a(t) Tty ot t
+§% gjkw(akaj+akaj—ajak—ajak), 2)

w

H=owf k}_:l kalak+q4LL k}_:l Vk(k+1)[alag, 1 +aj . al,
where gj = (— 1) "*kkj/(j2—k?) ask#j, gj=0 for j 3
=k, q(t)=dq(t)/dt, and w,(t)=kw/q(t). Under the

rotating-wave approximatiolRWA), Law explicitly wrote

down the “interaction” part of the resonant effective Hamil- where fEIo(qolL)=f%Lexr[—qocos@t)/L]dt/(ZL), and |
toniansli.e., the part derived from Ed2) in the absence of is the modified Bessel function of order zero. In writing this
its first summation terrﬂkwk(t)alak] for a particular choice equation, we have ultilized the simplified expressigik)

of the prescribed trajectory, =\Jk(k+a) for the function f,(k)=Kk(k+a)(2k
B + @) " J(k+ a)/k+ JkI(k+ @)] in Eqg. (3.7) of Ref. [6].
q(t)=L expqo cos Qt)/L ], Let x=(k+ a)/k, one sees thax+x =k(x?+1)/(kx)

and forQ=ma/L, m=1,2,3 whereg, andQ characterize, =.(_2k+ a)/\./(k+ a)k which immediately leads to the sim-

respectively, the amplitude and frequency of the oscillatiorPlified relation.

around a natural cavity length Here we supply the expres-

sion for the “free” part of the resonant effective Hamilto-

nians under the RWA. It readglo(qO/L)Ekkalak, where lll. METHOD TO DIAGONALIZE THE HAMILTONIAN

w=/L, andly(ge/L) is the modified Bessel function of

order zero derived from the relationly(qq/L)=
2lexd —go cosQt)/L1dt/(2L) with Q=ma/L. Let us prove

this result. In order to get the resonant effective Hamiltonia

by applying the RWA to the Hamiltonian in Eq2), one

In order to diagonalize the effective Hamiltonian in the
fundamental resonance case, we first introduce a fictitious
harmonic oscillator described by the annihilation and cre-
"htion operatord aJrr1dAT as well as the corresTponding num-

. . ber operatoN=A'A. The operatordA and A" satisfy the
peeds to _expand. formally atnumber functions in Eq(2) usualpcommutation relatiof]:,AT]zl, and they cofrilwmute
Into Fogrler SEeries. Note. thag(t) enters the Ia§t two with all the operators, and al of the radiation field. Let
summations of Eq(2) only in the formq(t)/q(t), whichis |y n=0,12... denote the eigenkets of the number op-
already a purely sinusoidal form and equajét)/q(t)=  eratorN=A"A (not to be confused with the eigenkets of the
— o sin@QY)/L=iQ(qy/2L)[exp(t) —exp(-iQt)].  This  photon number operatoes a,), and use the relationa|n)

is the reason why Law made the above particular choice- \/njn—1) and Af|n)=\n+1|n+1), we can rewrite the

of q(t). The quantity @ (t)=km/q(t)  effective Hamiltonian in Eq(3) as follows:
=kw exf] —gpcost)/L] appears only in the first summation

in Eq. (2). It can be expressed as the Fourier series,
as) = mw, o= /L,

Hif=o S aln|| N+ 2 NA+ATN) [|m)a,,
nm=1 4L
(4)

o (1) = koZpZ 7 Bexp —inmot),

where By= 3" exy —qgocosQt)/L]1dt/(2L)=lo(qo/L) with Q

=m/L, and the other expansion coefficients can also .

be explicitly expressed. The RWA is to keep only thosewhereqy=q,/f. This is the key step towards the diagonal-
terms in Eq.(2) that are on resonance. This can be done aszation of the effective Hamiltonian, because it is then
follows: substituting the above Fourier series@f(t) and  straightforward to see from this equation that we have turned
q(t)/q(t), as well as the transformatiora,— a,exp thii problem into the diagonalization of the operafdr
(—iket); al—alexplkot), k=1,2,3... into Eq. (2), one  +qo(\NA+ATN)/AL, which can be put into another form,
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- — \2 © ©
q
N+ — (VNA+ATVN) Hif=w\/1- ﬁ) > | > alun(o) [(kINJ
4L 2L) =1 |h=1
J— 2 oo
2L ’ m=1
(5) ao © 0 T
=0\ 1|5 2 | 2 aUia(—6) | (KINID)
2L) =1 |a=1
where 295tanh*1(a0/2L). The proof of this relation is o
simple and is given in Appendix A. It suggests an appropri- X E amUim(— ) |. (8)
ate transformation for diagonalizing the effective Hamil- m=1
tonian.

We introduce a set of photonic operatots,b’,n  Itis then straightforward from Eqg6) and(8) and(k|N[I)
=1,2,... for theradiation field by the following unitary = Kdk o obtain the diagonal form of the effective Hamil-
transformation: tonian in the fundamental resonance case as follows:

_ T e[ Y0 . T
- H=1\ |50 >, kblby, 9
k=1
by= 2 Un(— 0)am, (63

wheref=14(qo/L), andl, is the modified Bessel function
of order zero. This equation, together with the photonic op-
o eratorsb, determined by Eq<6) and(7), is the central result
a,= >, Uym(6)bpm, (6b)  of this section.
m=1 We can easily obtain the eigenvalues and eigenkets of the
effective Hamiltonian, Eq(3), in the fundamental resonance
. . case since we have already diagonalized it. Furthermore, we
where the uTrntary trgnsformgﬂon operatorU(Q) can from the results of this section explicitly study the cor-
=exg 6(VNA-ATYN)] and its Tmatnx elements are defined (o5 0nding dynamics of the system, which will be discussed
by Unm(6)=(nlexd@(V\NA—A"YN)]jm). Note that the i, the next section. The operatoeg ,a; describe the bare

unitary operatotJ satisfiesU “(0) :,UT('Z):U(_ ‘9),; and photons of the radiation field whilke, ,b, describe in some
hen?‘i its matrix elements  satisf* ny(6) =Unm(6)  sense the corresponding dressed photoas the bare pho-
=Unm(60) =Unn(— 6). From the definition of the operators ons dressed by the mirror oscillation€quation(3) indi-

b, and b, one easily finds that they satisfy the relations cates that the mirror oscillation causes strong intermode cou-
[bn.bm]=[b}.bf]=0, and[by,,bf]=8,m by utilizing the  plings among bare photons, but there exists no interaction
counterparts for the operataiﬁ,a; and the properties of the among the dressed photons of different modes as governed
unitary operatold. We have in Appendix A calculated the by Eg.(9). It is also interesting to note that the diagonalized
explicit expression of all the matrix elements of the unitaryHamiltonian is identical in form to the one describing the
operatorU in several different forms. One of these forms radiation field in a cavity with an effective instantaneous

readsU(¢)=0 for n=0 or m=0, and lengthq(t)/~/1— (go/2L)2. In this sense, the oscillating mir-
ror in the fundamental resonance case has the function of
enlarging the effective cavity length and hence decreasing

min(n,m)
—(_1\ym-1_ [~ the corresponding eigenfrequencies of the radiation field
Unn(6)=(—1) mn g’o within the cavity.
—k— |
(n+m-k=- 1! (tanhg)3n+tm-2-2k (7 IV. DYNAMICS OF THE RADIATION FIELD

KM= (n—K)!
How the photon number operators as well as the annihi-
lation and creation operators of the field evolve with time
fornm=1,2,... .Here, determines completely the dynamics of the radiation field.
The time dependence of the dressed operators are easily ob-
tained from the Heisenberg equatidib/dt=—i[b,H] and

tanhd= (qo/2L)/[1+V1—(qe/2L)?] Eq. (9) as follows:

bi(t)=be ™V, bj(t) =bje* ), (10
if one takes tanh Q:EQIZL.

Substituting Eq(5) into Eq. (4) and using the complete- wherey(t)=[(m/L)\f2—(qo/2L)%]t, f=1o(qe/L), andl
ness relatior=_,|k)(k|=1 as well asUo(8)=Uq(— 6) is the modified Bessel function of order zero. Note that
=0, U*,(6)=Uy.(— ), we after a little manipulation ar- n(kb)((bt))zbl(t)bk(t) is constant in time,n{’(t)=n{"”(0)
rive at =ng’.
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Our purpose in this section is to find explicitly how both relations, can be obtained easily and explicitly from these
the dressed and bare operators of the radiation field vary witbxpressions once the corresponding initial statistical proper-
respect to time for given initial bare operat@r%(zaﬁ(O)) ties are given.
anda,(=a,(0)). They are easy to obtain from Eq$) and It can be seen from E@11) that both the bare and dressed
(10). The results are sets of photonic operators share a common vacuum state,

. implying the well-known conclusion that ndgbare and
i dressel photons can be generated from the vacuum state in
bi(t)=e .kw)mz:l Ukm( = 0)am, (113 the fundamental resonance cd88]. This conclusion was
rigorously proven previously only up to the first order of the
* small oscillating amplitude of the moving mirror, while ours
nff’)(t)= E Un(OU (= 0)alam, (11b is based on the exact solution of the resonant effective
m.n=1 Hamiltonian under the rotating-wave approximation. We em-
" phasize that the situation is quite different if the initial state
_ of the field is not the vacuum state. Then, the oscillating
ak(t)_mzzl Gl 0:1)am, (129 mirror causes photon exchanges between different field
modes, but the total photon number is conserved if there are
* no atoms in the cavity. These photon exchanges will signifi-
nd(H=af(Dat)= > G*n(6,1)Gn(f,)alan, cantly alter the transitions as well as photon emission and
mn=1 (12b) absorption of an atom placed in such an oscillating cavity, if
the atom can resonately interact with some of the quantized
where field modes of the corresponding unperturbed cavity. Our
results here provide a sound basis for such investigations in
* the fundamental resonance case.
Gian(6:0)= 2, Uien( 0)Unn( — O)exiL ~iny(1)].

In this form, G, is rather complicated since it involves a V. CONCLUSIONS AND DISCUSSIONS

triple summation after substituting the expression (Hm_or In summary, we have investigated the dynamics of a one-
matrix elementsU,, and Up,. Its simplification requires  gimensional oscillating cavity in the fundamental resonance
some skill and is done in Appendix B. Here we only list its .aqe by means of an effective resonant Hamiltonian derived
simplified form as follows: by Law[6]. We have developed a method to solve this quan-

1-ic\K/ i \k+m-2 tized model and obtained exact analytical expressions of the
Gu(60.1)=Vmk i i diagonalized Hamiltonian, the time-varying annihilation and
a(61) 1+iC) \1+iC i iati
creation as well as photon number operators for the radiation

min(k,m) field.
X > (=1)mn The method presented here manifests its power in solving
=0 exactly the effective resonant Hamiltonian describing an os-
(K+m—n—1)! g |k cillating cavity in the fundamental resonance case. It may

, (13  also be useful in other harmonic resonance cases and hence

XA (m—n) 1 (k—n)!

1+C? may finally provide a way to solve analytically a class of

such effective resonant Hamiltonians. The exact analytical

where expressions for the time-varying annihilation, creation and
o photon number operators for the quantized field modes give

) P(t)| g tarm¥(t)/2] explicitly not only all the information of the dynamics of the
SES'”WZH)ta"{T}:ZfZ' field modes but also the time evolution of the statistical
V1-(qe/2L) quantities of the field modes such as various kinds of inter-
(14 mode and intramode correlations in the fundamental reso-

W(t) tar{ ¥(t)/2] nance case. We have explicitly shown that for the particular

CECOSNZH)ta"{ > } = — : choice of the trajectoryg(t) = Lexgd gocost)/L] of the mov-
V1-(go/2L)? ing mirror, no(bare or dressgghoton can be generated out

. . of the vacuum regardless of the oscillation amplitude so long
where qo=0o/f, f=15(go/L), and 20=tanh }(qy/2L). as the rotating-wave approximation is a valid. These results
We have now expressed exactly all the time-varying barean be utilized to study situations where the initial state of
and dressed operators of the quantized field modes explicitithe field is not the vacuum state. They also provide a very
in terms of the initial bare operators of the field. These anaeonvenient basis for studying the resonant photon emission
lytical expressions completely and explicitly describe the dy-and absorption of an atom placed in such an oscillating cav-
namics of the electromagnetic fields in an one-dimensionaity. Our results may also be useful in studies of sonolumi-
oscillating cavity in the fundamental resonance case. Thaescence, high precision optical interferometry, the genera-
time evolution of the statistics of the quantized field modestion of squeezed light, and quantum nondemolition
such as the photon statistics of intermode and intramode comeasurements.
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APPENDIX A - .
it is then easy to obtain another form,

In this appendix, we prove E@4) and calculate the ex-
licit forms of the matrix elements of the unitary operaitbr

P We begin with the proof of Eq(4). Let Wi=p(JNA Un(6)=(—=1)™*Jmn kzo
+A"/N) and X=exp(®W_)X exp(— AW_). We can easily
show that dN/do=[W_,N]=W. and d2N/de? o (nFm—k=-1)!
=[W_,W,]=4N, which combine to give the relatioN kt(m—k)!(n—k)!
=N cosh &+ W, sinh 29, or NV1—tanif(26)=N (A7)
+1W, tanh . Taking tanh 2=(qy/2L), we arrive at Eq(4)
and hence complete its proof.

We now calculate the explicit forms of the matrix ele-

min(n,m)

(tanh0)3”+m_2_2k

which is the form in Eq(7) in the main text.

ments U ,(6) = (n|exd 8(VNA—ATN)]|m). Using A|m) APPENDIX B
=Jm/m-1), Afjm)=m+1|m+1) and introducing We simplify the expression of G.(6,t)
_ =371 Ukn(0)U (= O)exd —ing(t)] in this Appendix. In
Fam( 0)= \/EU“"‘( 0), (A1) ordgr to reach this goal, we rewrite it as
we find %
d Gin( 6:0)= 2, (KIU(O)INKnU(=6)|m)exd —iny(1)]
ﬁfnm: M(frm-1=fams+ 1), (A2)
wheref o= fo,=0. From this equation and the definition 2,21 (klU(@)exr —iNy(t)][n)(n[U (= 6)[m)
- =(klU(@)exd —iN#(t)JU(—6)|m)
Fa(00= 2, Fom(6) (A3)

" = (klexd —iNy(t)]|m), (BD)
one easily obtainsf(),=x[(x—x 1) f,],, where (), de-

notes the partial derivative dfwith respect to variablg. By whereN=U(6)NU(—#6), and uses have heen made of the

completeness relatior®,_,/n){n|=1, Ugn(—6) and U

defining ot AN .
(—6)=U"*(6). At the beginning of the Appendix A, we
x=tanh¢, R,=(x—xHf,, (A4)  have shown

we arrive at Ry) ;= — (Ry) ;, Which is easily solved to give N=N cosh 6+ %(NA+AT{N)sinh 26. (B2)
R,(6,X)=F,(é—60). The functional form ofF, is deter-
mined by Introducing

d Win(7) = m(kexp(7N)|m), (B3)

R,(0=0x)=—Jnx""L(1-x¥)=— dgtanﬁ‘g k7
\/— wherer=—iy(t), and
which is obtained by using,,(6=0)= 6, and Eqs(Al), o
(A3), and(A4). It is then straightforward to obtain Wn(T,X):le W, (7)X™, (B4)
f(6,x)= \/_ I tanH‘(tanh X—0). (A5)  we can, following the same routine as the one for calculating

U,m in Appendix A, obtain

After some manipulations, we obtain from Ed#1) and
(A3—A5) one of the two simple expressions of the needed (W,) =X
matrix elements as follows:

S, - '
Cit 5 (x+x Hlw,|
X
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where 6/\/))’, denotes the partial derivative ¥ with respect
to variabley, C;=cosh® andS,;=sinh 24. By defining

S
Ry=|Ci+>

tanl’(g/Z)Eslif‘Cl, 2

Ci+ W,

(B5)

1
X+ =
X

we arrive at R,) .= —(R)}, which is easily solved to give

R,(7.X)=F,(é— 7). The functional form ofF, is deter-
mined by

Ry(r=0x)= — = b0

= !X :___X Ll

n T \/ﬁ dg

which is obtained by usingV,m(7=0)=hé&,, and Egs.
(B3—B5). Noting thatW,,= —xR,d&/dx and x=[tanh/2)
—C4.1/S;, m=—iy(t) and tanhify)=itan(y), it is then
straightforward from Eqs(B1,B3—B5 to obtain

[ dm /x(l—ic:)—is)k

Gym(0,t)= \/H(m—l)!{dxm\ 11iCTiSx X=O,
(B6)
wherek,m=1,2,3 ..., Gyo(6,t)=Ggy(0,t1)=0, and
S= sinﬂza)tar{@} = E —tar[ wHa
2] 2L \1-(qy20)?
P(t) tar{ 4(t)/2]
C= coshZB)tar{ } = — . (B7)
2 1 1-(qpfaL)?
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Note that Eq. (B6) gives Gy (0=0t)=

SkmeXA —ig(t)m], km=1,2,3 ..., which is identical to the

result directly calculated from its definition as it should be.
Equation(B6) can be put into another form,

s (et)—(l_ic k 1 [dm/x+gx K
e kmm-1)[dxml1+ox) |
(B8)
whereg=iS/(1+iC). Using this equation and
1 _(_g)kfl dk*l 1
(1+gx)k  (K=1)! gyk=1 1+gx’
it is then easy to obtain
1-iC k iS k+m—2
Gin(0:0=NMK 1356 | 157
m"%k'm) ym-n_(k¥m—n-1)!
& O T ke
82 k—n
X B9
1+C? (89)

whereS,C are given by Eq(B7). Equations(B9) and (B7)
are, respectively, Eq$13) and(14) in the main text.
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