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The interaction is considered between a two-level atom and the continuum of electric field modes falling
within the profile of one of the resonance modes of a dielectric microsplaevehispering gallery mode
Subject to minimal assumptions, simple equations are obtained on first principles, which describe the spectral
properties of the one-photon continuum and the relaxation processes occurring therein. If the initial state of the
atom is excited, a doublet structure is formed in the emitted photon spectrum, provided that the interaction is
strong enough. If it is the microsphere that is excited at the initial instant, the excited photon spectrum depends
substantially on the excitation method used. When excitation is optimal, the atom is effectively excited, and a
Rabi-doublet is then formed in the fluorescence spectrum. When the excitation conditions are other than
optimal, the spectrum becomes of triplet character, and when the deviation from the optimal excitation con-
ditions is strong enough, the atom practically fails to get excited, and the fluorescence spectrum is of singlet
type. A considerable part of the results obtained is of a general nature and can easily be applied to other cases
of strong interaction between atoms and resonaf@%050-294{®9)05103-3

PACS numbds): 42.55.Sa, 42.50.Ct

I. INTRODUCTION tentially important for experimental realization of
“controlled-NOT” gates for quantum computef&1-14.

There are several reasons why the interaction between an When considering the problem of interaction between an
atom and a microsphere is of interest. First, the microspheratom and a dielectric microsphere, it is convenient to treat
is a high-quality closed cavity with a low mode density in thetwo cases: the case of weak nonresonance interaction and
optical rangg 1-3]. That this is true has been experimentally that of strong resonance interaction. The case of weak inter-
demonstrated using silica microspheres whose quality factaiction occurs when the atom is far away from the surface of
for the whispering gallery mode®VGM) reaches as high a the microsphere or when the atomic transition frequency is
value as 18 [4]. Such a microsphere is essentially a top-far from the resonance frequencies of the microsphere. In
quality microcavity for photons: even a single photon pro-that case, the perturbation theory is applicable, and the char-
duces a field of perceptible strength in the vicinity of its acteristics of the system atom plus microsphere plus electro-
surface(both inside and outside Second, the atom in the magnetic field is only quantitatively different from those in
region of increased field strengtinside and outside of the the case where the atom and the microsphere are infinitely
microspherg can be rather strongly coupled to a resonancear from each other. This case was analyzed in detail in a
mode of the microsphere even at a small number of photonsumber of workd15-18.

[5], and can even be coupled to the vacuum figldcuum The case of strong interaction occurs when the atom
Rabi splitting [6]). Third, there have been proposed andcomes close to the microsphere or when the atomic transition
implemented very interesting applications of such atom plusrequency coincides with a resonance mode of the micro-
microsphere couples. Specifically, it becomes possible to ephere. In that case, the situation changes qualitatively, and
fect nondemolition detection of trapped photons and deterin particular, there becomes possible an efficient absorption
mination of their numbefFock’s statesby monitoring the by the microsphere of a photon emitted by the atom and vice
ponderomotive action of the evanescent wave of the microversa[19-21].
sphere near its surface on the atom, resulting in a change of The interaction between a classical oscillator and classical
the phase of the atomic wave functipn,8]. Moreover, the electromagnetic field in the presence of a dielectric micro-
high-quality microsphere is a microlaser with a very low sphere was examined [22], where the vacuum Rabi split-
lasing threshold 9] and an interesting object for QED ex- ting of the emission frequency of the atom located outside
perimentq10]. The strong atom-microsphere coupling is po-the microsphere was analyzed in the strong resonance inter-
action approximation.
With the problem in the classical formulation treated, the
*Electronic address: klimov@rim.phys.msu.su need arises in its consideration from the standpoint of quan-
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tum mechanics. The point is that one might expect, because  atom
of the smallness of the number of quarighotons in the
systems, a substantial deviation of the observable character-
istics of the system from the classical ones. The solution of
the quantum-mechanical problem proves more difficult than
that of its classical counterpart, which in the final analysis
reduces to the solution of a complex transcendental equation.
In the quantum-mechanical case, the problem formulation
itself poses considerable difficulties because of the interac-
tion of the atom with a great numbésontinuum of electro-
magnetic modes modified by the presence of the micro-
sphere.

From the quantum-mechanical point of view, the sponta-
neous emission of an atom in a one-dimensional cavity simi-
lar to the Fabry-Pet type was analyzed if23]. The
guantum-mechanical treatment of the resonance interaction
between an atom and a dielectric microsphere was started in
our work reported if24], where we suggested on the basis
of not very rigorous considerations an approach to the deter-
mination and calculation of the so-called vacuum electric
field and the finding on its basis of the vacuum splitting of quantization wall
the levels of the system atom plus dielectric microsphere. (perfect conductor)

In the present worksee alsd25]), this problem is ana-
lyzed more rigorously, and the vacuum field emerges as a FIG. 1. Geometry of the quantum-mechanical problem of the
result of rigorous calculations. interaction between a two-level atom and a microsphere.

The structure of the rest of the paper is as follows. Section
Il describes the quantization of an electromagnetic field in .
the presence of a dielectric microsphere. Section Ill consid- B=S asb(s,r)+asb*(s,r) 2.1)
ers the dynamic properties of the one-photon continuum, S o) ' '
which is a subspace of states corresponding to a single pho-
ton in a quantized moder in the form of the energy of the
excited atom The spectrum of the Hamiltonian of the one- . c
photon continuum is found here, and it is demonstrated that A= —2 o
two discrete components are formed in it, which are respon- s s
sible for the vacuum Rabi splitting. The formation dynamics
of the singlet, doublet, and triplet photon spectrum are also The eigenfunctions(s,r),e(s,r) obey a set of equations:
examined in this section for various methods of excitation of
the system atom plus microsphere. In Sec. IV and V, the

ase(s,r)+ale*(sr)
V2

results obtained are used to find explicit expressions for the _. s
. . . . VXe(s,r)=i—b(s,r),
vacuum field and vacuum Rabi frequency for various orien- c
tations and positions of the atom. Section VI presents the (2.2
results of numerical calculations for various problem param-
w
eters. —i ?Sse(s,r), r<a,
V Xb(s,r)=

Il. QUANTIZATION OF ELECTROMAGNETIC FIELD IN

. Wg
—i—e(s,r), r=a,
THE PRESENCE OF A DIELECTRIC MICROSPHERE C

By and large the quantization procedure for electromag-
netic field in spherical geometry is well knowW@6], but a  with an appropriate boundary conditionrat A.
special approach is required in each particular case. In our Hereag anda;r are the respective photon annihilation and
problem, the quantization volume may be taken in the forncreation coefficients in the corresponding modes with ordi-
of an ideally conducting sphere of finite but large radus  nary communication relations anad are the frequencies of
—o (the geometry of the problem is shown in Fig. The  these modes.
final results will be independent d&f. The expansion of elec- In the case of electric dipole transitions, it is both trans-
tromagnetic field and its vector potential over the completeyerse magneti€TM) and transverse electri@E) modes that
set of eigenfunctions of the classical problem may be reprecan be excited, and where the transition dipole moment is
sented in the fornj26] radially oriented, it is only the TM modes that can get ex-
cited. It is not very difficult to obtain expressions for the
ae(s,r)—ale* (sr) electri_c field strengtt‘e(s,r) of the s.th mode in terms of
E:E sA > s iy spherical harmonicsY(,,) and spherical Bessel and Hankel
s iv2 functions(j,h) [27]:
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(2.3
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sphere. Note that with the wave functions normalized, the
contribution from the region inside the dielectric micro-
sphere is negligibly small in comparison with that from the

wave vectors outside and inside the sphere, respectilely, region withr~A.

=—irXV is the orbital momentum operator, aadis the
radius of the microsphere. The quantum number sgh(v)
forms the vector indes=(n,m,v) used above.

To study the interaction between an atomic oscillator and
the continuum of electromagnetic modes modified by the
presence of a dielectric microsphere, it is also necessary to

The coefficientsa,, and 3, are found in the usual way know the density of final states. The requirement that the
such that the tangential field components at the microsphef@ngential electric field components of the TM modes should
boundary are continuous and the wave functions in th&anish on the inside surface of the quantization sphere leads
sphere of radius\ are normalized to a single photon in a to the transcendental equation

guantized mode:
(1)

ATV )
— 1720
™
B1m 2ieq, 2.5
a({i} Ka[£(Z2)n(22)) 1n(Z1) = (Z1)n(21)) [n(Z2) ]’ '
ol
(2) 1 2pn1
Bte 2ip, 2.6
OZ(TZE) Ka[(Z2)n(22)) Jn(Z1) = (Z4jn(21)) " Jn(Z2) ]’ '
d d _ _
Sd_[zzln(zz)]ln(zl) —[z1)n(z1)1in(22)
Z dz
" d 1 d . 1 ’
o (2N (2)]in(z0) — [ Zidn(20 10 (22)
Z dz
2.7
d d
_[Zzln(zz)]ln(zl)_ [len(zl)]ln(zz
Pn= d ) . d ' ) )
3 [ (@) in(z0) = - [21in(z0) 0 (22)
Z dz
(2.8
R 2l o o= e
TE,n TE,n TM,n TM n A n(n+ 1) .
(2.9

Here g, and p, are the Mie reflection coefficien{®8], z;

d (rZ) 0
—_ r = ,
dr oA
(2.10
w
7= i 0 2 i 2] 2 ||
which has the asymptotic solutions
n+1\ @c
wWg= 1/+T T‘l‘"', (21])

wherev is the radial quantum number. Hence it follows that
the density of the final states will be defined by the simple
expression

dv B
d(hws)

p(w)= (2.12

mhc’

In the case of TE modes, we have the same density of states.
Note the density of the final states is independent of the
presence of the microspher& {-o). It is in agreement with
Courant’s theorenh29].

The discussion up until now has been concerned with ar-
bitrary quantized modes with equidistant frequen¢z4l).
But if the resonance conditions are satisfied, there arise whis-
pering gallery mode§1,30,31. The behavior of the energy
of interaction between the atom and the quantized modes
[see Eq(3.8)] falling within the profile of a whispering gal-
lery mode is qualitatively illustrated in Fig. 2.

From the physical standpoint, the development of a whis-

=k,a, z,=ka, ande is the dielectric constant of the micro- pering gallery mode is associated with the effect of total
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Ai/(_21/3t) v 1/3
de(n,m,v,r) ’ 2 —| _ _in2v(a—tha)
*de(n,m,v: VWPJ o« qn((o(v)] Ai(— 2173[) 2 \/gSha(l e )

! (TM cass, (2.1
09 Ai'(—2V3%) [\ V31|12 o
0.8} . . E ——m— =5 _ Sha(l—le 2v(a tha))

whispering gallery Ai(—2%) \2) \e
o7t mode contour
06l (TE case. (2.1
o} ] Here v=n+1/2, t=(z,— v)/v*® cha=\e(v/z;), and Ai
o4l L | is the Airy function[27].

’ In the case of large(v), these equations can be solved
03 7 1 by iteration with respect ta As a result, the expressions for
ozl g T the resonant frequencies assume the f32]

o=
0.1} A ]
0 c [. 1 €
5 0 5 wrefﬁ inrzm -\ 5o (TM casse,
(©-0.)T. (2.18
FIG. 2. lllustrating the resonance enhancement of the energy of
interaction between an atom and quantized mddes Eq.(3.9)] c |. €
falling within the profile of a whispering gallery mode. wres:ﬁ Inv127 \ g1 (TE case, (2.19

internal reflection from the surface of the microsphere, and
the frequency of the mode is approximately defined by theyhere j,,,, is one of the roots of the Bessel function

Bohr quantization equation Jni1/2-
When using in Eq(2.18 or (2.19 the first nontrivial root,
27a=N\, (2.13  there develops a whispering gallery mode having no zeros

inside the microsphere; when using the second root, the first
where\ is the wavelength in the dielectric microsphere. ~ Z€ro appears inside the microsphere, and so on. In this con-
From the formal standpoint, a whispering gallery moden€ction, whispering gallery modes can conveniently be clas-

arises when a pole appears in the Mie reflection coefficient§ified on the basis of three numbd@31]: the number of
(2.7) and (2.8), for it is only in this case that total internal Z€ros in the radial direction inside the microsphere, the order

reflection takes place. of the spherical Bessel function, and the azimuthal quantum
obtained from Egs(2.7) and (2.9): as a function of the parametka. The modes without zeros

in the radial direction inside the microsphere are clearly seen

2] _ 1 e o he radiative wi i
e — — (Je—/lle) To estimate the radiative width of the principal resonance
Invvdzy) 2z line, use can be made of the following formula obtained by

HW p iteration from Eqs(2.16 and(2.17) [32]:
\/—[ nt1222)] (TM case
HE11~21/2(22) ' 1—‘res: 1 - 2 E( € )UZeZTTM
(2.19 Ores Qv Jnt12ele—1 ,
: T (2.20
[Jn+1220)] 1 1’2[H%121/2(Zz)]’ TTM:V( arch\/g— \/1——1/2)—t0v1/3\/1——+—+-~~
— - =\Z| —gm - (TE case, € € &
‘]n+1/2(21) € Hn+1/2(22)
(2.19  for TM resonances and the formula
/
wherez;=k;a andz,=ka. Tes 12 & 12e,2TTE
In the case of whispering gallery modes, a whole number Wres QT Jnriple—1 '
of waves are present along the circumference, zgsn, (2.21)
z_2~n_/_\/§. Using this fact, Eqs(2.14 and (_2.15) can_be S arch\/g— 1_3 12 oy L l/2+1+...
simplified by means of the Debye asymptotic expansions for ' TE B 0 €

the Hankel functions and asymptotic expansions in the tran-

sitional region for the Bessel functiof€7]. As a result, for TE resonances. In formulg®.20 and(2.21), v=n+3,

instead of Eqs(2.14 and(2.15, we get to=(jn+ 10— v)/v*3. For sufficiently large microspheres
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FIG. 3. Positions of the TM whispering gallery modeslationship between the magnitude of the reflection coefficigntsf the TM
waves and the radius of the microsphere witls = 6).

(kga>100), the radiative linewidth$2.20 and (2.21) be- IM(Qed

come negligibly small in comparison with other types of loss qn~—I o0 (2.22
(absorption in the material, scattering by surface irregulari- res

ties, etc). In the case of small microspheres of interest to us,

radiative losses are predominant, and so we will give Nqyhere(),is the complex frequency characterizing the reso-
consideration for the other types of loss in the further discusnance mode€) o= w e i (I'1ed2), andl .sCharacterizes the

sion. width of the resonance mode and t@efactor of the cavity

In the vicinity of resonance, the Mie reflection coeffi- with this mode. Similar expressions are also valid for TE
cients assume the following simple form: modes:

pa |

FIG. 4. Positions of the TE whispering gallery modeslationship between the magnitude of the reflection coefficipptsf the TE
waves and the radius of the microsphere witle =6).
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IM(Qed and the symbol® denotes the direct multiplication of the
—a (2.23  atomic and photonic states.

Consider the parameters of this Hamiltonian. The magni-
tude of the dipole transition momedtshould be taken equal
to that in the absence of interaction. As for the atomic tran-

1. ONE-PHOTON CONTINUUM DYNAMICS sition frequencyw, , it seems quite logical that it allows for
the shift due to the purely electrostatic interaction with the
) ) microspherd17,18,22,24

In t_he case of resonance |nteract|on.betwe_en an atom and |, accordance with Eq<€2.22 and (2.23, the resonance
long-lived electromagnetic field modes in a microsptiéne  jinewidth is finite, and account should be taken of all the
so-called whispering gallery modgs,30,3%), which is of  giscrete modeso;,w,,ws,... falling within the resonance
interest to us, the effective dipolar atom-field interactionprof”e’ including the modes that are degenerate as to the
Hamiltonian may be represented in the fof&3,34] azimuthal quantum numbésee Fig. 2

Considering what has been said above, Hamiltoizat)
may be represented by a matrix of the form

Pr 0= Qres”

A. One-photon continuum Hamiltonian

H:HA+HF+H|, (31)

where the atomic Hamiltoniakl 5, field HamiltonianHg,

and interaction Hamiltoniahl, for the two-level atom under 0 0 X
consideration have the following form: [ 0 Hi 0O -
H * , (3.9
X 0 H, --
1
HA:fL(J)A O y
_ t where H; is the Hamiltonian corresponding to the one-
HF_ES hwsasas, (32 photon continuum,
H|—_a®é

ﬁwA Vl V2 V3

Vi #eo, O 0 3
Here al and ag are the ordinary creation and annihilation V3 0 Aw, 0O |7 39
Bose operators for photons with the frequensy in the V3 0 0 ‘tos

resonance mode of the microsphetds the dipole moment
operator given by

A:( 0 d) (3.3 H, is the Hamiltonian corresponding to the two-photon con-
d o)’ ' tinuum,
Ai(wat wq) 0 0 V2V, 0 0 V, Vs 0
0 h(wat wy) 0 0 v2v, O Vv, 0 Vs
0 0 filwpatwsz) 0 0 V2V, 0 v, Vv,
V2V¥ 0 0 2hiw, O 0 0 0 0
H,= 0 V2V3 0 0 2hw, O 0 0 0 ,
0 0 V2V3 0 0 2hws 0 0 0
V3 Vi 0 0 0 0 ‘f(witw,) 0 0
% 0 * 0 0 0 0 h(w1+ w3) 0
0 3 3 0 0 0 0 0 fi(wst+ ws3)

(3.6
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and the X terms describe transitions involving two-unit  In this work we consider a one-photon continuum, de-

changes in the number of photons, scribed by Hamiltoniari3.5). Hamiltonian(3.5) was consid-
o ered in general form in a number of papdfsr example,
X=(V; V, V30 0 0 0 0 0. (3.7 [19,34,39). Expressions for the line profile were found in

[36,37 with the assumption of frequency independence of
In writing expressions(3.5—(3.7), we adopted for clarity the matrix element¥,,,. In the present work, we will ana-
that the atomic oscillator interacts with three quantized|yze the dynamics of the system with Hamiltonis) sub-
modesw;, w,, and w;. The generalization to a greater ject to the condition that the coefficierts,, depend on fre-
number of modesthe continuum of modes in the limits  quency in a resonance fashion. To find the spectrum of this
not very difficult to make. The state vector of our system hagyamiltonian is a difficult task, but if the linewidth of the
the following structure: whispering gallery mode is smaithe smallness criterion
will be evident below, the energies of all the photons in
Hamiltonian (3.5 can be taken to be equal to the photon
energy in the case of resonancey, = ws. In that case, of
course, the nondiagonal elements describing the reso-

ground state

excited atom(w,)

one photon(w,) nance interaction will change greatly as a function of fre-
one photon(w,) } one-photon continuum quency. o . .

P nws P As a result of the above approximation, the interaction
one phototws) Hamiltonian for an atom and one-photon continuum will as-

sume the form

excited atom w,) +one photon ;) ) ﬁ“iA Vi Vs Vs

. \% hw 0 0
excited atom w,) +one photon w - ! res

Mwp) photon(w,) H, v 0 hon. 0 | (3.10
- V3 0 0 hwres

two photons(w,) two photon
o photons(w,) continuum It is not very difficult to verify that the spectrum of such a

P 2 Hamiltonian ham—1 degenerate eigenvalues, (n is the
two photongws) number of quantized modgand the two nontrivial eigenval-

ues

WiesT ®
%A * % \/(wres_ wA)2+ 4QZRabi

Note that only two-photon states are numbered as follows: (3.11

the states with two photons in the same state

2w1,2w5,2w3,... come first, and next come the states with Which point to the emergence of two discrete components
an energy ofw;+ w;, i<j. The interaction matrix elements instead of one aies=w,. In Eq. (3.11), the vacuum Rabi
Vj’m'vj’m have the usual form frequency is defined by the expression

etc. how,=

V. =V __de(n,m,y;,r) 120 %= 2 |Viml?=2 fd(fkﬂv)P(w)|Vm(w)|2
jm=Vmlwj)=— ——-—, h,m m
iv2 (3.12
B d*e(n,m, v, ,r) which is exact despite approximatid®.10).
Vim=— —J (3.8 Note that a similar expression for the vacuum Rabi fre-
iv2 guency was obtained if35] on the basis of another ap-

i o i proach. Since we are considering here the resonance interac-
wheree is the electric field strength of the quantized mode.;j5 then according to Eq€2.22 and (2.23, the relation
given by Egs(2.3) and(2.4). ’ ' ’

In the rotating-wave approximation, the matdxcan be ) 1
disregarded, and the interaction Hamiltonian for a two-level p(@p)|Vim|*= To— 0.2 (3.13
atom and a continuum of modes will then assume the form of ! e
the block-diagonal matrix holds true, and consequently one can easily get from expres-
sion (3.12 the general relation
o o0 o (312 the g
0 H, 0 - Tod2 %
H= , 3.9 , I|2= * —02%.,.
0 0 H, - (3.9 p(w.)% |Vm(‘1’|)| (wi_wres)z"‘rrzesmﬂ'ﬂRabr

(3.19

wherein the one-photon and two-photon continua with cor- Where the variation of the quantized mode frequencies
respondent atomic states do not interact and one can considsithin the limits of resonance cannot be neglected, the de-
them separately. generation in Eq(3.10 is removed. Nevertheless, if the Rabi
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frequency given by expressid3.12) exceeds the linewidth Excluding from expressiori3.17) the photon components
of the whispering gallery mode, the approximate Hamil-¢; (), we obtain the following expression for the Fourier
tonian will correctly define the vacuum Rabi splitting. componentfa(w):

Substituting expressiof8.8) into Eq.(3.12), one can eas-
ily obtain the following expression for the Rabi frequency in =i
terms of the electric field strength of the mode: Yalw)= w—wp—3a(®)’ (3.18

12| Qrap(r)[?=322 > |de(n,m,v;,r)[% (3159  where the mass operatdin(w) is defined by the expression
i m

1
Note that the above expression for the Rabi frequency Sa(w)=—=>, J

agrees with the following Rabi frequenayefinition pre- h
sented in 21,24 without proof:

do’p(@")[Vi(w")[?

o' —w—i0"

(3.19

Substituting expressiof8.14) into Eq.(3.19 and calculating
ﬁ2|QRab(r)|2:<Vad(a|§)2|vac> the resultant integral, we get the following relation for the
mass operator:

=13 S |de(n,m,» .12 (3.153 Oy

> 2| | Sp(0)= e (3.20
With Rabi frequency3.15 found, the estimation of the
spectrum of Hamiltoniaf3.5) can be considered to be com-
pleted. However, the presence of discrete components in th

spectrum is in no way a sufficient condition for the develop- (00,0
ment of a doublet structure in the emitted photon spectrum. Ya(w)= ( X Q'es) .
W= Wa)(W =3 Rabi

Accordingly, for the Fourier component of the atomic wave
gnctlon we have the following rather simple expression:

(3.29

B. Properties of the one-photon continuum

in the case where the atom is excited Going over into the time domain, one can easily find the

amplitude of the probability that the atom will be in an ex-
To describe the doublet structure of the emitted photonsjied state:

spectrum, one should analyze the dynamics of the system

described by the Schdinger equation with Hamiltonian _ _

(3.5). This problem was considered in the general form inya(t)= ———{e "0, ~Qd —e ' (w_—Q.d},

[19], but the approximations and assumptions made in this @y O- (3.22

work require further investigation. '
The Schrdinger equations for the coefficient of expan-

Lo ) ; o wherew , ,w_ are the solutions of the dispersion equation
sion in terms of eigenfunctions of the free Hamiltonian of the * P a

]?Or;trer;photon continuum(probability amplitudes have the (w_wA)(w_Qres)_QgeabizD(w)=01 (3.23
At Vim wpt+Qed T V(W +4052
U )_wA " E " wf( AT Qred £V (0a— Qred? Rabi (3o
(3.16

. 9P (1) V* Both dispersion equation3.23 and its solution (3.24
| — o m(O+ == TYa(t), m=0~1,.%n; largely coincide with the dispersion equation and solution of
the classical problem on the interaction between the classical

i=1,2,... oscillator and classical electromagnetic figR®]. Note that

in contrast to spectrum estimat®.11), dispersion equation
Here ya, i o, are the probability amplitudes to find an atom solution (3.24) contains imaginary parts which are respon-
or quantized mode with radial quantum numberand azi-  sible for the relaxation processes and can be obtained by the
muthal quantum numben in an excited state, respectively. substitutionwes—Q es.
Taking Fourier transforn{3.16) with due regard for the Now that the solution for the amplitude of the probability
fact that the atom was in an excited state at the initial instanof the atom in an excited state is known, it is not very diffi-

of time, we get the system cult to find the expression for the Fourier component of the
amplitude of the probability that the photon will be in tith
. de:
(0= wp) Yia(w) = ,Em S m(@) +i2, mode
. (3.17 V()= (0= Qe Vi*,m
Vi i,m - — — LY L int
(0= o)) ¢y m(w)= #m‘ﬂA(w), m=0,=1,..+n; (0= wp) (0= Qed —Qigp i@ w|+|0(; -

j=1,2,.... For the time dependence of this amplitude, we have
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1 e,iw+t(w+_ﬂres)_ ,iw_t(wf_ﬂres)
¢ _Vr’m Wi~ W (04— w; (04— w; 32
¢i,m( )_T +eiiw+t (wi_QreS) ( . @
(0= ®p) (0~ Qred — Vg,
|
Whent—oo, the first two exponentials in Eq3.26 go to  The width of the doublet lines in that case is
zero, and the spectral distribution of the emitted photons as- ) ’ ) )
sumes the form T Goubtet_ Lres (Rapi— I'red16) (330
) 4 16 (QRapT7ed8) '
dp(w)_Z _ 2 _ Fres  QRavi
dhe) = | m(t=20)]| P(wi)_—(zwﬁ) D(w)2 If the condition (3.29 is not fulfilled, there occurs the
Weisskopf-Wigner exponential decay regirf&8], and the
Q&L resl (2771) spontaneous emission spectrum is a singlet with the line-
[0~ 0p) (0= 0red = Qgapl*+ (0= 02) Tredd’ width
(3.27) I‘ginglet_ 4Qéeabi
4 Tis 8% (330
whereD(w) is defined in Eq(3.23. res =7 "Rabi

In the case of resonance, i.e., in the case where the atomic Naturally, expressiof3.31) is only valid for a sufficiently
transition frequency coincides with the whispering gallerystrong interaction, i.e., for the case where the Rabi frequency
mode frequency da=wd, one can easily find from Eq. substantially exceeds the atomic linewidgh in free space.
(3.27) that the position of the doublet lines is defined by the  Expressions(3.21)—(3.31) have been obtained on first

expression principles and are the main result of the present section. With
the concrete values of the Rabi frequer@y,,; and reso-
0=0a* Qi T'd8 (3.28 i
A Rabi + red©; . nance frequency) . found, they can be applied to the de-

scription of resonance interaction with any cavity. Note that
our results considerably refine the results obtainefil®,

where the actual cavity was approximated by a singlet pro-
viding for the origination of the Rabi frequency and nonreso-

from which it follows that the Rabi splitting is only possible
if

Rabi>r_"33_ (3.29  hance absorption in the cavity walls, i.e., use was made of
2v2 the model non-Hermitian Hamiltonian
|
h(wres= Sctiye) AQpap O 0 0
ﬁQRabi ﬁwA 0 0 0
~ vV, 0 hiw; O 0 3.3
Hy= v, 0 0 fw, O (3.32
0

which allowed simple diagonalization but could not help findIn the secondary quantization representafiire Fock rep-
concrete Rabi frequency and doublet linewidth values. resentatiol this is equivalent to the selection of the initial
state in the form

C. Properties of the one-photon continuum
in the case where the microsphere is excited | Wphotod t=0))= 2> o} ml 1)} m. (3.39
j.m

In this case, Eq9.3.16 defining the dynamics of the sys-
tem atom plus microsphere remain the same. A differencwhere|1>j'm is the one-photon Fock state with the energy
occurs in the formulation of the initial conditions. We will 7w; and mode structure™(n,m,v;,r) or €™(n,m,»; r),
assume that the excitation energy of the microsphere is dishe phase ofyq; n being reckoned with respect to that of

tributed among the quantized modes as follows: eTE(n,m,yj 1) or eTM(n,m,yj .1, so that the absolute phase
values of the interaction matrix elements appear nowhere.
G o(1=0)=thoi ms > lo: ml2=1. (3.33 The mean energy of any sta&34) is equal tofi w,es. TO
I o fm understand the physical meaning of the initial conditions
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(3.33 or (3.34, let us consider the mean value of the Assume that the excitation line shape is also of Lorentzian
squared radial component of the electric field operator of théorm:
TM mode:

Bm

SO(r):<¢photor{t:0)|ér2ad(r)|‘ﬁphotor{tzo»- (3.39 I,UOm(a))_ —Q*.

For not too large distances from the microsphere centeSubstituting Eqs(3.39 and(3.40 into Eq.(3.38, we get the
[(r/c)Tes<1], it is possible to find from Eq(3.35 the following expression for the fluorescence spectrum:
relationship between the squared electric field strength and
initial distribution (3.33: dP(w) am  Yal®)  Bm |°
d(T:P(w)E * tl—0"%
) -0 h ) Q¢,|

(3.40

res

, .
). (3.3 (3.4

For the Rabi doublet to form, it is necessary that there are no
Hereq(w) is defined by expressiof2.7) or (2.22. One can poles between its components in E§.41), i.e., there are no
see from the above expression that#f; Jiq(w;), the pole atw=Q,. One can easily see that it is only possible
squared electric field strengtand energyreaches its maxi- subject to the following conditions. First, the complex reso-
mum value near the microsphere. Butiif; oL q(w;), the  nance frequency of the excitation line must be equal to that
squared electric field strength and energy in the vicinity ofof the microsphere:
the microsphere are minimal. Thus, expres<8183 char-
acterizes the spatial structure of one-photon excitation. Q=0 (3.42

Subject to the above initial conditions, the equations for

the Fourier components of the probability amplitudes will Second, the spatial distribution of the excitation modes must

24

so<r)o<(%2 (o)) 2 (o)) ;.0

assume the form also agree with that of the atom-field interaction matrix ele-
ment:
(0= wp) Pal@)= sz = m(®), a o,
| 3.97 Bn=1 % Ua(Ded= 55— (343
(w_wj)’;bj,m(w):%‘//A(w)"_i‘/"o,j,my If conditions (3.42 and (3.43 are not satisfied, the addi-

tional poles will not cancel and the fluorescence spectrum
will be of triplet or singlet form.

To obtain concrete analytical results, assume that the ini-
tial excitation distribution among the microsphere modes has
the form

m=0,+x1,..xn; j=1.2,...

The solution of systent3.37) is a more difficult problem in
comparison with the case of an initially excited atom. The

point is that the initial conditions are described, generally [o\12 g* r
speaking, by the arbitrary functiopy; . and depending on Yom(@)= (_‘/’S) &* Q=i £
its form, the emitted photon spectrum and atomic excitation T Qpapi\ I'red 00— Q) 2
dynamics can assume different forms. In particular, the dou-

blet structure of the photon spectruiypical of the case of r,>o. (3.49

an initially excited atommwill rather be the exception than

the rule. This is due to the fact that when the choice of théExcluding from expressio8.37) the photon probability am-
excitation form of the microsphere is arbitrary, only part of plitudes, we obtain the following expression for the Fourier
the excitation energy is transformed into the Rabi doubletcomponent of the atomic probability amplitude:

the rest of the energy being reemitted without any change in

frequency. . Ogani VIred’y
To prove this fact, let us first consider the photon emis- Yalw)= D(w) —Qres—ﬂf},’ (3.45

sion spectrum in the case of an arbitrary microsphere excita-
tion line shape. From Eq3.37) one can easily find the ex- \yhereD(w) is defined in Eq(3.23.

pression for the fluorescence spectrunt-at=: It can be seen from this equation that the probability am-
dp( ( ) ) plitude of the excited state of the atom is proportional to the
a)
ey PO ) (@) + 1 on(0) factor
(3.39 VEred 'y (3.46
Qres— Q; ’ ‘

In our case, the matrix element,(») have the Lorentzian

line shape[see Eq(3.13] which is a maximum af) = Q. If this condition is satis-
fied, the atom gets fully excited by the microsphere and the

_ (3.39  Vvacuum Rabi splitting occurs. If conditial3.42) is not sat-

©— Qe isfied, then, as seen from E(B.46), the atom is excited

am

Vin(w)=~
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incompletely, and a central component appears in the fluo- Qpapi m
rescence spectrum along with the Rabi components, i.e., a Yalw)= D(w) o—0* '
triplet is formed. @35y

Next substituting Eq(3.45 into Eq.(3.38), one can find
the fluorescence spectrum:

(3.52

which explicitly contains three frequencies at a sufficiently
high Rabi frequencysee Eq.{(3.29].

2 2 In the case of antimatchin@.51), the fluorescence spec-
dP(w) - Ty QRai Tres +i 1 ‘ , trum is given by the following expressiomf= wJ:
d(hw) 27k |(0—QEJD(0) Qres— QO 0—Q}| . .

w y
(3.47 _ ,. (3.53
dhw) 27h |0—Q,

whereD(w) is defined in Eq(3.23. Here the triplet struc-

ture of the spectrum is expli(_:itly expressed. Note that tripletrpis spectrum is always of singlet type, and as the excitation
structure(3.47) bears no relation to Mollow’s tripldB9], for  |inewidth tends to zero, it is naturally reduced ddunction
in this work we consider the one-photon continuum, while(3 4g

Mollow’s spectrum develops at high intensities. The case of uniform distribution of the phase
As the width of the excitation line tends to zero, the fluo-
rescence spectrum naturally tends to &keinction, 1 T, V2 g%
Yom(w)= —(—j o
dP(w) _ T, | 1 |7 ia T el Tred 0= Q)
d(hw)p, o 27h |- QF| (@=wy). (348 r
Qy=w,~i5, T,>0 (3.54

In the optimum case given by Egé.42 and (3.43, the

expression for the Fourier component of the excited atoms . intermediate between cag@44 and (3.51) and can
probability amplitude will assume the following form: also be analyzed within the framework of our approach.

0 Above we have considered various cases differing in the
Rabi

_ 3.4 frequency distribution of the excitation line phase, the rela-
Ya(w) : (349 . : .
D(w) tive phase being taken to be actually independent of the azi-
muthal quantum numben. That is to say, we have assumed
whereD (w) is defined in Eq(3.23. a perfect match as to the azimuthal quantum number. Such

In the optimum case, one can easily get from B347  an approach is completely justified in the case of radial ori-
the following expression for the emitted photon spectrum: entation of the atomic dipole moment, for the atom here
interacts only with the mode havimg=0 (in the coordinate

dP(w) T w—wA‘Z system wherein the atom is situated on the polar)aaisl
d(hw) T onh D(w) | the phase problem is altogether absent. In the case of arbi-
trary orientation of the dipole moment, the atom interacts
_ (0= wp)?T regf (27H) with the modes havingh=0,*1, and, generally speaking, it
(0= wp) (00— wed— anbﬂ2+ (w— wA)eresm’ is necessary to make special efforts to ensure coherence as to

m [condition(3.43)]. Note that the modes witin# 0,+ 1 (in

(350 the coordinate system wherein the atom is located on the
polar axig do not interact at all with the atom and manifest
themselves in the fluorescence spectrum without any change.
It should be emphasized that the cases of excitation of the
crosphere modes considered above are characterized by a
' certain degree of coherence between various quantized

modes. Naturally no splitting takes place in the case of non-

even in the case OT the Weisskopf-wigner reg[rﬁﬁ]. . coherent excitation of the microsphdrandom phase distri-
Above we considered the case where excitation is to Pution among the quantized modes

greater or lesser extent phase-matched with the atom-field
interaction matrix elements. Other cases can also be analyzed

which is very close to expressid.27) for the doublet spec-
trum of photons emitted in the case of initially excited atom.
The essential difference from the case of an initially exciteo‘ﬂi
atom is that spectrur(8.47) is always of doublet character
even if interaction weakness conditi® 29 is satisfied, i.e.,

within the framework of the present approach. In particular, IV. VACUUM FIELD AND RABI FREQUENCY
if we use instead of Eq3.44) the initial condition IN THE CASE OF AN ATOM LOCATED OUTSIDE
OF THE MICROSPHERE
r, Y21 ap, T A. Radial dipole moment orientation
Yom(@=|F—| 7. o—qgr meytis . . .
re Rabi @ — 1y, We proceed to the direct calculation of the Rabi fre-

qguency. Consider first the case of an atom located outside of
r,>o (3.5) the microsphere. In the case where the transition dipole mo-
ment element is oriented along the radius of the dielectric
(phase antimatchingthe Fourier component of the excited microsphere, interaction is only possible with its TM modes
atom probability amplitude will be described by the expres-and it is then necessary to examine the mean square of the
sion radial electric field component in the TM mode:
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) o 12 ) malization procedure, i.e., omitted. As a result, the expres-
7% Qrap(1)| :Edradz %: le:(nm,»;, |2 (4.2 sjon for the vacuum field at the poinwill assume the form

i AN
The radial component of theth TM mode of the atom E2 _ —n(n+1)(2n+1 Th1 res y2 K
located outside the microsphere, which is of interest to us, rea = NN+ 1)( ) 53 [Ynewdkeed)].
can easily be found from expressi@h 3): 4.7
in(n+1) D @ Note that expressiod.7) is proportional to the resonance
&(nmv,r)=———[amynhy (k) width T s of the microsphere. This is due to the fact that in

the case under consideration the atom is located outside of
+a®) WP (kN]Yom(9,¢). (4.2 the microsphere and can only get excited by virtue of the
leakage of the vacuum energy from the microsphere.
Note thate,(n,m,v) is related to the radial quantum number  In addition to the origination of the Rabi frequency, the

v by the relation dielectric microsphere is also responsible for a purely quasi-
static shift of the atomic transition frequency. In our case, the
K(v)= ws_ o(nm) quasistatic frequency shift is defined by the exprespid
¢ ¢ 2_ 2 2
Wp= wo_ 5(1)0,
Summing the square of the absolute value of @) with (4.8
respect to the azimuthal quantum numbreby means of the a(e—1) & n(n+1)2 [a|"
well-known relation 23 —
R e TS
, 2n+1
% Yol “= e (4.3 Ifthe atom is very close to the microsphere, expres&iod
is simplified:
we get the following expression for the Rabi frequency:
2_§ e—1 Yowo 4.9
72| Qganf1)|2= 30 rad e “078 e+ 1 [ko(r—a)]*’ '
5 2k(v)he In expression(4.8), wq stands for the atomic transition fre-
Efagv=N(N+1)(2n+ 1)2 T“n(k(’/)r) quency in the absence of the microsphere,
2 3
—gah(P(k(v))|2. (4.4) 4d?0] »
10736 419
Using elementary relations, expressidm) can easily be
reduced to the form is the linewidth in the absence of the microsphere, kpd
= wO/C.
) 2k(v)hc )
Efamu=n(N+1)(2n+1) > —5—[jn(k(#)r)
v r B. Tangential dipole moment orientation
—Re(g,h P (k(v)r)?)]. (4.5 Now let us consider the case of a tangentially oriented

dipole. In that case, the dipole interacts with both TM and
Replacing with the help of Eq2.12 the summation over TE modes. This case can be analyzed in exactly the same
radial quantum number by integration over frequencies in way as the case of radial orientation.

the frequency band®w (Aw>T 9 and extending the lim- For the Rabi frequency, we have the expression
its of integration in the second term of E4..5) to the inter- 5 s 12 2
val —oo, +o0, we get the final expression for the mean square 72| Qran(1)|*= 2daEan
of the vacuum electric field: (4.11)
2 Th e 2 Etzan:E 2 |etan(n:m:Vj:r)|2-
Erad,TM:n(n+1)(2n+1)T Yot v Kred ) mo

Note that as the position of the TM and TE resonances are
' (4.6) determinedapproximately by the different expressiorisee
Egs.(2.18 and(2.19], interaction at a single frequency can
. ] take place either with a TM or with a TE mode. Therefore,
where J, and Y, are the Bessel functions of the first and \yhen calculating the Rabi frequency, consideration should

2 K 4Aw 1
+ 30+ v Kred ) P

second kind, respective27], andkres=wres/C. - only be given for the electric fields of the corresponding
For long-lived modesn is large and the term witl7 is  mode.
small compared with the term Wiﬂﬂﬁ. On the other hand, The tangential componerftve take it that this is thed

the terms proportional meﬁ are specific to vacuum in the component of the electric field outside of the microsphere
absence of the microsphere and must be subjected to a rendras the form
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€ N, M, v,1)=(erm)tan

i d
=— 1 —-rlafy hi k)

Kk ror
Y nm( D, @)
+af ohi2 (kD] ———— (4.12
for the TM resonance and the form
€ar(N,M, V) = (€18)tan
= —[afphi (kn)
MYy,
+a® hP(kn)] MYorl 0.0) -, 19

sing@

for the TE resonance. Note thagt,(n,m,v) is related tov by

the relatiork= ws/c= w(n,m,v)/c. Summing the squares of
Egs.(4.12 and(4.13 with respect to the azimuthal quantum

numberm and using the formulas

1 n(n+1)(2n+1
m% mzvnmvzm=%, (4.14
> Y am aY’,ﬁm: n(n+1)(2n+1) 415

m (99 (99 87T ’
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V. VACUUM FIELD AND RABI FREQUENCY
IN THE CASE OF AN ATOM LOCATED INSIDE
THE MICROSPHERE

By and large, the case of an atom located inside a dielec-
tric microsphere can be considered in absolutely the same
way as above. But in that case, account should be taken of
the local field factorf causing both a change in the matrix
elements

V=1V, (5.1
and a change in the quasistatic frequency shift
Swa=f26wa. (5.2

As usual, we will take the local field factor to be given by
[40]

(o 3¢
T 2e+1°

(5.3

What is more, owing to the interaction with the crystal lattice
of the microsphere material, the transition frequemgymay
differ from that in free space. We take no account of this
circumstance in the present work.

A. Radial dipole moment orientation

To find the Rabi frequency in the case where the atom is

we obtain, after averaging over frequencies in the intervajside the microsphere, use should be made of expression
2Aw (Aw>T 9 and renormalizing, the final expression for (2.3 for the electric field:

the effective tangential vacuum field.
In the case of TE resonance, we have the expression

whI’
Etzan,TE: (n+1/2) krzes— :

o Yacudked) (416
and in that of TM resonance, the expression
Efan, = (N+1/2) ”Zr;es[m +1)Yns vl Kred)
—Kred Y n+ 32 Kred ) 2. (4.17

As in the radial case, the vacuum field given by E@s16

and(4.17 is proportional to the linewidth of the microsphere

and vanishes as it is reduced.

In addition to the origination of the Rabi frequency, the
dielectric microsphere is also responsible for a purely quasi-
static shift of the atomic transition frequency. In our case, th

quasistatic frequency shift is defined by the expresgi@h

2__ 2 2
wa= wy— 0wy,

(4.18

n?(n+1) 2n

e+1)n+1

a
r

e—1
Su= %O)OYO(kOr)anl (

If the atom is very close to the surface, expressi8 is
simplified:

P 223 e—1 Yo@Wo
Y0716 e+1 [ko(r—a)°

(4.19

i +1
eratﬁnamavar): - %[ﬁTM,nj n(k\/gr)]Ynm(ﬂa‘P)-

(5.9

Making absolutely the same calculations as in the case of an
atom outside the microsphere, we obtain the following ex-
pression for the vacuum field inside the microsphere:

whT
Efaamv=n(N+ 120+ 1) 55530 1l Vekied)

2
Yn+ 1/2( kresa) )
J n+ 1/2( \/gkresa)

Note that in contrast to the derivation of Eg.7), no diverg-
ing expressions appear in deriving expresdibrb), and so

(5.9

4o need arises in renormalization. This circumstance is due
to the fact that the field inside the microsphere has in prin-
ciple no analogs in free space. Comparison between expres-
sion (5.5 and expressiorf4.7) for the vacuum field outside

of the microsphere shows that there is a discontinuity due to
the boundary conditions on the surface of the microsphere.
For the electric displacement vector, continuity remains. The
continuity of the electric displacement vector is evidence of
the correctness of the renormalization procedure carried out
in the case of an atom located outside of the microsphere.
Another important feature of expressi@b) is the fact that

the vacuum field does not decrease with the decreasing reso-
nance widthl" .s. Accordingly for the Rabi frequency, we
have
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we obtain, after averaging over frequencies, the final expres-
sion for the effective tangential vacuum field.
In the case of TE resonance, we have the expression

712 Qpanl1)]*= (5.6)

lf2dra rad, TM*
In addition to the origination of the Rabi frequency, the
dielectric microsphere is also responsible for a purely quasi-

static shift of the atomic transition frequency. In our case, the o ThIes Jn+ v Vekred)

guasistatic frequency shift is defined by the expresgiaft Eta” e (NF1/2)Kees 2r 32 (Jekied) Yo Kred)

5.1
wiz w%-ﬁ- 5(»%, .13
(5.77  and in that of TM resonance, the expression
1% n?(n+1)
2_3 € _ 7hl,
Swg Zwoyokfar2n=o (e+1)n+1\a Etan ™= (n+1/2) or 3es
If the atom is very close to the microsphere, expresg§on) [(N+1)Jn4 v Kred ) — Kred It a2 Kred )12
IS S|mpl|f|ed. [(n+ 1)Jn+ 1/2( kresa) - kresa‘]n+3/2( kresa)]z

wzzg e—1 Yo®Wo
7 8etllkee(a—n)]"

(5.9

In expression5.8), wq stands for the atomic transition fre-

guency in the absence of the microsphere,

4d%w3
3¢k

\/_ 2

Yo= (5.9

is the linewidth in the absence of the microsphere, i.e., in th

case of unbounded dielectric medium, dqg- wq/c.

B. Tangential dipole moment orientation

In that case, the dipole interacts with both TM and TE
modes. This case can be examined in exactly the same way

as the case of radial orientation.
The tangential componeritve take it that this is they

X [(n + 1)Yn+ 1/2( kresa) - kresaYn+3/2( kresa)]z-
(5.19

Note that the tangential vacuum field components suffer no
discontinuity on the surface of the microsphere, which points
to the correctness of the renormalization procedure in the
preceding section. Another important feature of expressions
(5.13 and(5.14 compared to the case of an atom outside of
the microsphere is that the vacuum field does not decrease
with the decreasing resonance width.s. Another specific
eature of the tangential case is the fact that the electrostatic
frequency shift is half that in the case of radial orientation:

I,.2n
a .

wi= wg-i- 5&)3,

(5.19
e—17 n(n+1)?

Kar?no (e+1)n+1

2_3
Swy=7w0Yo

component of the electric field outside of the microsphere If the atom is close to the surface of the microsphere, expres-

has the form

€tar(N,M, ¥) = (E1Mm) tan

[ (3, ¢)
=t 2 B n1n<k1r>]”m—l9
(5.10
for the TM resonance and the form
. MY,m(3, ¢)
€ar(n,m, v)= (eTE)tan=— [BTE,nJ n( klr )] nSTT
(5.11)

for the TE resonance. Note that,(n,m,v) is related tov by
the relationk= ws/c= w(n,m,v)/c.

Summing the squares of Eq&.10 and (5.11) with re-
spect to the azimuthal quantum numbarand using the
formulas

1 ) . _n(n+1)(2n+1)
Sz MY g
(5.12
Nom Yhn n(n+1)(2n+1)
% a0 90 87 ’

sion (5.19 is simplified:

, 3e-1 YoWo

5(1)0:_ 3"
16e+1 [koys(a=1)]

In expressiong5.15 and (5.16), vy, is the linewidth in the

absence of the microspher®.9), i.e., in the case of un-
bounded dielectric medium, ang= wq/c.

(5.19

VI. NUMERICAL EXAMPLES AND PLOTS

The results of Sec. lll, together with the expressions for
the Rabi frequency in terms of the appropriate vacuum fields
and quasistatic frequency shifts, enable one to easily obtain
any characteristics of the system atom plus microsphere in
the case of resonance interaction.

Figure 5 shows the square of the vacuum field strength as
a function of the position of the atom for various atomic
dipole orientations in the case of both outside and inside
atom. It can be seen from this figure that in the case of
tangential dipole orientation and TM resonance, the vacuum
field reaches its maximum on the surface of the microsphere,
while for other types of resonance, the maximum vacuum
field is inside the microsphere and is two times as high as on
the surface in the case of TE resonance and 1.5 times as high
as that in the case of TM resonance.
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FIG. 5. Squared vacuum field strength as a function of the po-
sition of the atom in the case of radial dipole moment orientation  F|G. 7. Time dependence of the probability of the atom being in
(TM resonance witm=9, ka=5.5487 and tangential dipole mo-  an excited state. The Weisskopf-Wigner regif@eponential decay
ment orientation(TM resonance witm=9, ka=5.5487, and TE  [r/a=1.25, wolyo=1C°, radial orientation of the dipole,
resonance witm=10 andka=5.619. TM(1,12,12 (a whispering gallery mode(ka) .s= 6.924 298, reso-

. ) . nance cas@,= ws, initially excited atom).

For the modes with a higher quality fact@argen), the

maxima inside the microsphere come closer to the surface of

the microsphere and grow higher, which means that the ef-, Figures 7 and 8 show the te_mporal dynamics of th_e ex
fective volume of the mode is deéreased cited state of the atom and emlt_ted photon spectrum in the
Shown in Fig. 6 are the real and imaéinary parts of theCase of weak_ interactiotthe Weisskopf-Wigner ca$e|n
solutions of dispérsion equatici8.23 with the parameters acqordance.v_wth the resu!ts of Sec._ I, unde_r stronger inter-
‘ . arﬁ:tlon conditions thg W¢|§skopf—W|gner regime is replaced
occur exact resonance, i.e., the coincidence of complex sg)-y the vacuum Rabi-splitting regm((Flg_s. 9_anq| 1D One
lutions of Eq.(3.23. In 'Ehé \./1icinity of the atom outside the o >¢€ N Fig. 9 deeplown to zerg Rabi oscillations of the
e .atomic excitation, and in Fig. 10, a doublet emitted photon

microsphere, these curves coincide with those obtained 'gpectrum.

[22,24. In these figures, one can clearly see the characteris- Under strong interaction conditions wherein the atomic

lt;ﬁeil\;[gt?gt'ng regions of different frequency shifts or Vanying ansition frequency differs from the resonance one, the Rabi
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FIG. 8. Time dependence of the photon spectrum. The
FIG. 6. (a) Frequency splitting an¢b) radiative linewidths as a Weisskopf-Wigner regiméexponential decay{r/a=1.25, wq/ 7y,
function of the position of the atom relative to the surface of the=10P, radial orientation of the dipole, TM,12,12 (a whispering
microsphere with due regard for the local field factgradial ori- gallery mode, (ka),.=6.924 298, resonance Cagg= ws, iNi-
entation of the dipole moment, T(#,9,9 resonancda=5.5487. tially excited atonj.
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FIG. 9. Time dependence of the probability of the atom being in  F|G. 11. Time dependence of the probability of the atom being
an excited state. The Rabi splitting regifiéa=0.8, wo/%=5  in an excited state. The Rabi splitting regifiga=0.8, wy/ v,
X 107, radial orientation of the dipole, TM,12,13 (a whispering =5x 10, radial orientation of the dipole, TM,12,12 (a whisper-
gallery mode, (ka).s=6.924 298, resonance Casg=wres, iNi-  ing gallery modg (ka)—6.924298, nonresonance case
tially excited atonj. = west 4T e, initially excited aton).

oscillations become shallowe(Fig. 11) and the doublet of doublet type(Figs. 13 and 14in contrast to its singlet
structure of the emitted photon spectrum becomes asymmestructure in the case of an initially excited at¢Rigs. 7 and
ric (Fig. 12. 8).

Let us consider now the case of an initially excited mi- More interesting is the case of incomplete phase matching
crosphere. In the case of sufficiently strong interact®@9  of the excitation line. In that case, the probability amplitude
and optimal(as to phaseexcitation (3.42) and (3.43, the  of the atom being in an excited state is characterized by deep
dynamic atom-field relationships practically completely co-oscillations, but its maximum excitation probability is sub-
incide with those in the case of an initially excited atom stantially less than unity and is defined by fact®46 (Fig.
(Figs. 9—12. The weak interactiorfWeisskopf-Wignerre-  15). As a result of incomplete excitation of the atom, the
gime is in that case specific, because the photon spectrum fluorescence spectrum has a triplet structifig. 16.
the case of an initially excited microsphere always remains Figure 17 shows the relationship between the fluorescence

dP() Al

dP(0) AT, d(ho) 5

d(ho) 5

0.1
0.1

0.05
0.05

(0-0 A)/Q 0

Rabi oot

(@-0)/Qp 0 r_t

FIG. 12. Time dependence of the photon spectrum. The Rabi
FIG. 10. Time dependence of the photon spectrum. The Ratsplitting regime[r/a=0.8, wy/y,=5% 10, radial orientation of
splitting regime[r/a=0.8, wy/y,=5x10, radial orientation of the dipole, TM1,12,12 (a whispering gallery mode (Ka)es
the dipole, TM1,12,12 (a whispering gallery mode (ka)es =6.924 298, nonresonance casg= w s+ 2[5, initially excited
=6.924 298, resonance casg= ws, initially excited atonj. atom|.
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FIG. 13. Time dependence of the probability of the atom being FIG. 15. Time dependence of the probability of the atom being
in an excited state. The Weisskopf-Wigner regifegponential de- in an excited state. The triplet splitting regiriga=0.8, wy/ 7y,
cay [r/a=1.25, wy/yo=1CF, radial orientation of the dipole, =5x10’, radial orientation of the dipole, TW,12,12 (a whisper-
TM(1,12,12 (a whispering gallery mode (ka).s—6.924 298, op- ing gallery modg (ka),.s=6.924 298, resonance Cagg = ws,
timal excitation of the microsphefe the microsphere is excited in accordance with 344, 'y /T s

=0.25].

s_peqtrum_ and the degre_e of phase mgtchlng between_ the ex- VII. CONCLUSION

citation line and the microsphere. It is clearly seen in the

figure how the doublet structur@he solid ling which is Thus, we have considered in the present work the inter-
typical of optimum matching3.47) and(3.50 changes over action of a two-level atom with the continuum of modes

to the triplet structuréthe dotted ling specific to nonoptimal modified by the presence of a dielectric microsphere in the
matching(3.54), and then to the singlet structufie dashed frequency region corresponding to the occurrence of whis-
line) in the case of phase antimatchii@51) and (3.53.  pering gallery modes in the microsphere.

Note, the energetical profile of the excitation line is the same Subject to minimal assumptions, we have obtained on first
for all cases presented in Fig. 17. principles simple expressions describing the spectral charac-

teristics of the system and relaxation processes occurring
therein. Our main assumption is that the atom predominantly

dP(w) 34T,
d(he) 100 P N
S B dP(w) 34T, o \_
0.03 d(ho) 50 / \
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///\‘
) s
e

Q&‘
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¥ s‘%‘?“‘\“ Wi i
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r
res (0-0 A)/F s r.t (O"(’)A)/QRabi

FIG. 14. Time dependence of the photon spectrum. The FIG. 16. Time dependence of the photon spectrum. The triplet
Weisskopf-Wigner regiméexponential decay(r/a=1.25, wy/yq splitting regime[r/a=0.8, wy/y,=5x 10, radial orientation of
=10, radial orientation of the dipole, TM,12,12 (a whispering  the dipole, TM1,12,13 (a whispering gallery mode (ka) es
gallery mode, (ka).s—6.924 298, optimal excitation of the micro- =6.924 298, resonance casg= w., the microsphere is excited
spherg. in accordance with Eq:3.44), I'y /T .= 0.25).
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0.09 . ' ' ' ' (other frequencies, othars) may effectively be accounted
oosl @i, R fing| - for by adding the appropriate imaginary part to the energy of
d(rw) 10 - -+ Zerophase the atom(the Breit-Wigner procedurgt1)).
0.07¢ 1 The main characteristics of the systdithe dispersion
equation, oscillation frequencies, and decay parameters
0.06f I fully coincide with the corresponding characteristics found
0.05L when analyzing the classical syst¢a®?].

When the atom is excited at the initial instant, a doublet
0.04r structure is formed in the emitted photon spectrum, provided
0.03l that interaction is strong enough.

) If it is the microsphere that is excited at the initial instant,
0.02} the emitted photon spectrum depends substantially on the
excitation method. In the case of optimum excitation where
0.01F the excitation linewidth is equal to the resonance linewidth,
. there takes place an effective excitation of the atom, fol-
13 -1 -0.5 0 0.5 1 15 lowed by the formation of a Rabi doublet in the fluorescence
(-0, spectrum. If excitation conditions deviate from the optimal

FIG. 17. Fluorescence spectrum as a function of the micro-c.mes’ the Specm.Jm beco.me.s of triplg'g typq. Where the devia-
sphere excitation methode)x=wree, |Qy|=|Qed: (3 maxi-  toN from the optimal excitation conditions is great, the atom
res» res- . . .
mum possible concentration of the photon energy in the microlractically remains unexcited, and the fluorescence spectrum

sphere(3.50 (solid line): (b) minimum possible concentration of 1S Of singlet character. _ _

the photon energy in the microsphe®53 (dashed ling (c) in- A substantial proportion of the results (_)btamed in Sec. Il
termediate casé8.54) (dotted lind [r/a=0.8, wy/y,=5% 10, ra- are of general character and can be applied to other cases of
dial orientation of the dipole, TKL,12,12 (a whispering gallery ~—Strong atom-cavity interaction.

mode, (ka) .= 6.924 29§.
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