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Strong interaction between a two-level atom and the whispering-gallery modes
of a dielectric microsphere: Quantum-mechanical consideration
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The interaction is considered between a two-level atom and the continuum of electric field modes falling
within the profile of one of the resonance modes of a dielectric microsphere~a whispering gallery mode!.
Subject to minimal assumptions, simple equations are obtained on first principles, which describe the spectral
properties of the one-photon continuum and the relaxation processes occurring therein. If the initial state of the
atom is excited, a doublet structure is formed in the emitted photon spectrum, provided that the interaction is
strong enough. If it is the microsphere that is excited at the initial instant, the excited photon spectrum depends
substantially on the excitation method used. When excitation is optimal, the atom is effectively excited, and a
Rabi-doublet is then formed in the fluorescence spectrum. When the excitation conditions are other than
optimal, the spectrum becomes of triplet character, and when the deviation from the optimal excitation con-
ditions is strong enough, the atom practically fails to get excited, and the fluorescence spectrum is of singlet
type. A considerable part of the results obtained is of a general nature and can easily be applied to other cases
of strong interaction between atoms and resonators.@S1050-2947~99!05103-3#

PACS number~s!: 42.55.Sa, 42.50.Ct
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I. INTRODUCTION

There are several reasons why the interaction betwee
atom and a microsphere is of interest. First, the microsph
is a high-quality closed cavity with a low mode density in t
optical range@1–3#. That this is true has been experimenta
demonstrated using silica microspheres whose quality fa
for the whispering gallery modes~WGM! reaches as high a
value as 1010 @4#. Such a microsphere is essentially a to
quality microcavity for photons: even a single photon p
duces a field of perceptible strength in the vicinity of
surface~both inside and outside!. Second, the atom in th
region of increased field strength~inside and outside of the
microsphere! can be rather strongly coupled to a resonan
mode of the microsphere even at a small number of pho
@5#, and can even be coupled to the vacuum field~vacuum
Rabi splitting @6#!. Third, there have been proposed a
implemented very interesting applications of such atom p
microsphere couples. Specifically, it becomes possible to
fect nondemolition detection of trapped photons and de
mination of their number~Fock’s states! by monitoring the
ponderomotive action of the evanescent wave of the mic
sphere near its surface on the atom, resulting in a chang
the phase of the atomic wave function@7,8#. Moreover, the
high-quality microsphere is a microlaser with a very lo
lasing threshold@9# and an interesting object for QED ex
periments@10#. The strong atom-microsphere coupling is p
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tentially important for experimental realization o
‘‘controlled-NOT’’ gates for quantum computers@11–14#.

When considering the problem of interaction between
atom and a dielectric microsphere, it is convenient to tr
two cases: the case of weak nonresonance interaction
that of strong resonance interaction. The case of weak in
action occurs when the atom is far away from the surface
the microsphere or when the atomic transition frequency
far from the resonance frequencies of the microsphere
that case, the perturbation theory is applicable, and the c
acteristics of the system atom plus microsphere plus elec
magnetic field is only quantitatively different from those
the case where the atom and the microsphere are infin
far from each other. This case was analyzed in detail i
number of works@15–18#.

The case of strong interaction occurs when the at
comes close to the microsphere or when the atomic trans
frequency coincides with a resonance mode of the mic
sphere. In that case, the situation changes qualitatively,
in particular, there becomes possible an efficient absorp
by the microsphere of a photon emitted by the atom and v
versa@19–21#.

The interaction between a classical oscillator and class
electromagnetic field in the presence of a dielectric mic
sphere was examined in@22#, where the vacuum Rabi split
ting of the emission frequency of the atom located outs
the microsphere was analyzed in the strong resonance i
action approximation.

With the problem in the classical formulation treated, t
need arises in its consideration from the standpoint of qu
2996 ©1999 The American Physical Society
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PRA 59 2997STRONG INTERACTION BETWEEN A TWO-LEVEL ATOM . . .
tum mechanics. The point is that one might expect, beca
of the smallness of the number of quanta~photons! in the
systems, a substantial deviation of the observable chara
istics of the system from the classical ones. The solution
the quantum-mechanical problem proves more difficult th
that of its classical counterpart, which in the final analy
reduces to the solution of a complex transcendental equa
In the quantum-mechanical case, the problem formula
itself poses considerable difficulties because of the inte
tion of the atom with a great number~continuum! of electro-
magnetic modes modified by the presence of the mic
sphere.

From the quantum-mechanical point of view, the spon
neous emission of an atom in a one-dimensional cavity s
lar to the Fabry-Pe´rot type was analyzed in@23#. The
quantum-mechanical treatment of the resonance interac
between an atom and a dielectric microsphere was starte
our work reported in@24#, where we suggested on the bas
of not very rigorous considerations an approach to the de
mination and calculation of the so-called vacuum elec
field and the finding on its basis of the vacuum splitting
the levels of the system atom plus dielectric microsphere

In the present work~see also@25#!, this problem is ana-
lyzed more rigorously, and the vacuum field emerges a
result of rigorous calculations.

The structure of the rest of the paper is as follows. Sec
II describes the quantization of an electromagnetic field
the presence of a dielectric microsphere. Section III con
ers the dynamic properties of the one-photon continuu
which is a subspace of states corresponding to a single
ton in a quantized mode~or in the form of the energy of the
excited atom!. The spectrum of the Hamiltonian of the on
photon continuum is found here, and it is demonstrated
two discrete components are formed in it, which are resp
sible for the vacuum Rabi splitting. The formation dynam
of the singlet, doublet, and triplet photon spectrum are a
examined in this section for various methods of excitation
the system atom plus microsphere. In Sec. IV and V,
results obtained are used to find explicit expressions for
vacuum field and vacuum Rabi frequency for various ori
tations and positions of the atom. Section VI presents
results of numerical calculations for various problem para
eters.

II. QUANTIZATION OF ELECTROMAGNETIC FIELD IN
THE PRESENCE OF A DIELECTRIC MICROSPHERE

By and large the quantization procedure for electrom
netic field in spherical geometry is well known@26#, but a
special approach is required in each particular case. In
problem, the quantization volume may be taken in the fo
of an ideally conducting sphere of finite but large radiusL
→` ~the geometry of the problem is shown in Fig. 1!. The
final results will be independent ofL. The expansion of elec
tromagnetic field and its vector potential over the compl
set of eigenfunctions of the classical problem may be rep
sented in the form@26#
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s

ase~s,r !2as
†e* ~s,r !

i&
,

se

er-
f

n
s
n.
n
c-

-

-
i-

on
in

r-
c
f

a

n
n
-
,
o-

at
n-

o
f
e
e
-
e
-

-

ur

e
e-

B̂5(
s

asb~s,r !1as
†b* ~s,r !

&
, ~2.1!

Â52(
s

c

vs

ase~s,r !1as
†e* ~s,r !

&
.

The eigenfunctionsb(s,r ),e(s,r ) obey a set of equations

“3e~s,r !5 i
vs

c
b~s,r !,

~2.2!

“3b~s,r !5H 2 i
vs

c
«e~s,r !, r ,a,

2 i
vs

c
e~s,r !, r .a,

with an appropriate boundary condition atr 5L.
Hereas andas

† are the respective photon annihilation a
creation coefficients in the corresponding modes with or
nary communication relations andvs are the frequencies o
these modes.

In the case of electric dipole transitions, it is both tran
verse magnetic~TM! and transverse electric~TE! modes that
can be excited, and where the transition dipole momen
radially oriented, it is only the TM modes that can get e
cited. It is not very difficult to obtain expressions for th
electric field strengthe(s,r ) of the sth mode in terms of
spherical harmonics (Ynm) and spherical Bessel and Hank
functions~j,h! @27#:

FIG. 1. Geometry of the quantum-mechanical problem of
interaction between a two-level atom and a microsphere.
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eTM~n,m,n!5H 2
1

k«
¹3$@bTM,nj n~k1r !#L̂Ynm~q,w!%, r ,a,

2
1

k
¹3$@aTM,n

~1! hn
~1!~kr !1aTM,n

~2! hn
~2!~kr !#L̂Ynm~q,w!%, r .a

~2.3!

in the case transverse magnetic modes and

eTE~n,m,n!5H @bTE,nj n~k1r !#L̂Ynm~q,w!, r ,a,

@aTE,n
~1! hn

~1!~kr !1aTE,n
~2! hn

~2!~kr !#L̂Ynm~q,w!, r .a
~2.4!
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in the case of transverse electric modes. Heren is the orbital
quantum number,m is the azimuthal quantum number,n is
the radial quantum number,k5vs /c; k15A«(vs /c) are the
wave vectors outside and inside the sphere, respectivelL
52 i r3“ is the orbital momentum operator, anda is the
radius of the microsphere. The quantum number set (n,m,n)
forms the vector indexs5(n,m,n) used above.

The coefficientsan and bn are found in the usual way
such that the tangential field components at the microsp
boundary are continuous and the wave functions in
sphere of radiusL are normalized to a single photon in
quantized mode:

aTM
~1!

aTM
~2!

5122qn ;

bTM

aTM
~2! 5

2i«qn

ka@«„z2 j n~z2!…8 j n~z1!2„z1 j n~z1!…8 j n~z2!#
, ~2.5!

aTE
~1!

aTE
~2!

5122pn ;

bTE

aTE
~2! 5

2ipn

ka@„z2 j n~z2!…8 j n~z1!2„z1 j n~z1!…8 j n~z2!#
, ~2.6!

qn5

F«
d

dz2
@z2 j n~z2!# j n~z1!2

d

dz1
@z1 j n~z1!# j n~z2!G

F«
d

dz2
@z2hn

~1!~z2!# j n~z1!2
d

dz1
@z1 j n~z1!#hn

~1!~z2!G ,

~2.7!

pn5

F d

dz2
@z2 j n~z2!# j n~z1!2

d

dz1
@z1 j n~z1!# j n~z2!G

F d

dz2
@z2hn

~1!~z2!# j n~z1!2
d

dz1
@z1 j n~z1!#hn

~1!~z2!G ,

~2.8!

uaTE,n
~1! u25uaTE,n

~2! u25uaTM,n
~1! u25uaTM,n

~2! u25
2p\c

L

k3

n~n11!
.

~2.9!

Here qn and pn are the Mie reflection coefficients@28#, z1
5k1a, z25ka, and« is the dielectric constant of the micro
re
e

sphere. Note that with the wave functions normalized,
contribution from the region inside the dielectric micr
sphere is negligibly small in comparison with that from t
region with r;L.

To study the interaction between an atomic oscillator a
the continuum of electromagnetic modes modified by
presence of a dielectric microsphere, it is also necessar
know the density of final states. The requirement that
tangential electric field components of the TM modes sho
vanish on the inside surface of the quantization sphere le
to the transcendental equation

d

dr
~rZ !U

r 5L

50,

~2.10!

Z5FaTM,n
~1! hn

~1!S vs

c
r D1aTM,n

~2! hn
~2!S vs

c
r D G ,

which has the asymptotic solutions

vs5S n1
n11

2 D pc

L
1¯ , ~2.11!

wheren is the radial quantum number. Hence it follows th
the density of the final states will be defined by the sim
expression

r~v!5
dn

d~\vs!
5

L

p\c
. ~2.12!

In the case of TE modes, we have the same density of st
Note the density of the final states is independent of
presence of the microsphere (L→`). It is in agreement with
Courant’s theorem@29#.

The discussion up until now has been concerned with
bitrary quantized modes with equidistant frequencies~2.11!.
But if the resonance conditions are satisfied, there arise w
pering gallery modes@1,30,31#. The behavior of the energy
of interaction between the atom and the quantized mo
@see Eq.~3.8!# falling within the profile of a whispering gal-
lery mode is qualitatively illustrated in Fig. 2.

From the physical standpoint, the development of a wh
pering gallery mode is associated with the effect of to
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internal reflection from the surface of the microsphere, a
the frequency of the mode is approximately defined by
Bohr quantization equation

2pa5Nl, ~2.13!

wherel is the wavelength in the dielectric microsphere.
From the formal standpoint, a whispering gallery mo

arises when a pole appears in the Mie reflection coefficie
~2.7! and ~2.8!, for it is only in this case that total interna
reflection takes place.

The equations defining the position of resonances ma
obtained from Eqs.~2.7! and ~2.8!:

@Jn11/2~z1!#8

Jn11/2~z1!
5

1

2z2
~A«2A1/«!

1A«
@Hn11/2

~1! ~z2!#8

Hn11/2
~1! ~z2!

~TM case!,

~2.14!

@Jn11/2~z1!#8

Jn11/2~z1!
5S 1

« D 1/2@Hn11/2
~1! ~z2!#8

Hn11/2
~1! ~z2!

~TE case!,

~2.15!

wherez15k1a andz25ka.
In the case of whispering gallery modes, a whole num

of waves are present along the circumference, i.e.,z1'n,
z2'n/A«. Using this fact, Eqs.~2.14! and ~2.15! can be
simplified by means of the Debye asymptotic expansions
the Hankel functions and asymptotic expansions in the tr
sitional region for the Bessel functions@27#. As a result,
instead of Eqs.~2.14! and ~2.15!, we get

FIG. 2. Illustrating the resonance enhancement of the energ
interaction between an atom and quantized modes@see Eq.~3.8!#
falling within the profile of a whispering gallery mode.
d
e

ts

e

r

r
n-

Ai 8~221/3t !

Ai ~221/3t !
5S n

2D 1/3

A« sha~12 ie22n~a2th a!!

~TM case!, ~2.16!

Ai 8~221/3t !

Ai ~221/3t !
5S n

2D 1/3S 1

« D 1/2

sha~12 ie22n~a2th a!!

~TE case!. ~2.17!

Here n5n11/2, t5(z12n)/n1/3, cha5A«(n/z1), and Ai
is the Airy function@27#.

In the case of largen(n), these equations can be solve
by iteration with respect tot. As a result, the expressions fo
the resonant frequencies assume the form@32#

v res5
c

aA«
S j n11/22

1

«
A «

«21D ~TM case!,

~2.18!

v res5
c

aA«
S j n11/22A «

«21D ~TE case!, ~2.19!

where j n11/2 is one of the roots of the Bessel functio
Jn11/2.

When using in Eq.~2.18! or ~2.19! the first nontrivial root,
there develops a whispering gallery mode having no ze
inside the microsphere; when using the second root, the
zero appears inside the microsphere, and so on. In this
nection, whispering gallery modes can conveniently be c
sified on the basis of three numbers@3,31#: the number of
zeros in the radial direction inside the microsphere, the or
of the spherical Bessel function, and the azimuthal quan
number. Figures 3 and 4 show the Mie reflection coefficie
as a function of the parameterka. The modes without zeros
in the radial direction inside the microsphere are clearly s
~left-hand row!.

To estimate the radiative width of the principal resonan
line, use can be made of the following formula obtained
iteration from Eqs.~2.16! and ~2.17! @32#:

G res

v res
5

1

QTM
'

2

j n11/2

1

« S «

«21D 1/2

e22TTM,

~2.20!

TTM5nS archA«2A12
1

«
1/2 D 2t0n1/3A12

1

«
1

1

«
1¯

for TM resonances and the formula

G res

v res
5

1

QTE
'

2

j n11/2
S «

«21D 1/2

e22TTE,

~2.21!

TTE5nFarchA«2S 12
1

« D 1/2G2t0n1/3S 12
1

« D 1/2

111¯

for TE resonances. In formulas~2.20! and ~2.21!, n5n1 1
2 ,

t05( j n11/22n)/n1/3. For sufficiently large microsphere

of
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FIG. 3. Positions of the TM whispering gallery modes~relationship between the magnitude of the reflection coefficientsqn of the TM
waves and the radiusa of the microsphere with«56!.
ss
ar
us
n
us

fi-

o-

E

(k0a.100), the radiative linewidths~2.20! and ~2.21! be-
come negligibly small in comparison with other types of lo
~absorption in the material, scattering by surface irregul
ties, etc.!. In the case of small microspheres of interest to
radiative losses are predominant, and so we will give
consideration for the other types of loss in the further disc
sion.

In the vicinity of resonance, the Mie reflection coef
cients assume the following simple form:
i-
,
o
-

qn'2 i
Im~V res!

v2V res
, ~2.22!

whereV res is the complex frequency characterizing the res
nance mode:V res5v res2 i (G res/2), andG rescharacterizes the
width of the resonance mode and theQ factor of the cavity
with this mode. Similar expressions are also valid for T
modes:
FIG. 4. Positions of the TE whispering gallery modes~relationship between the magnitude of the reflection coefficientspn of the TE
waves and the radiusa of the microsphere with«56!.
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pn'2 i
Im~V res!

v2V res
. ~2.23!

III. ONE-PHOTON CONTINUUM DYNAMICS

A. One-photon continuum Hamiltonian

In the case of resonance interaction between an atom
long-lived electromagnetic field modes in a microsphere~the
so-called whispering gallery modes@1,30,31#!, which is of
interest to us, the effective dipolar atom-field interacti
Hamiltonian may be represented in the form@33,34#

H5HA1HF1HI , ~3.1!

where the atomic HamiltonianHA , field HamiltonianHF ,
and interaction HamiltonianHI for the two-level atom unde
consideration have the following form:

HA5\vAS 1
0D ,

HF5(
s

\vsas
†as, ~3.2!

HI52d̂^ Ê.

Here as
† and as are the ordinary creation and annihilatio

Bose operators for photons with the frequencyvs in the
resonance mode of the microsphere,d̂ is the dipole moment
operator given by

d̂5S 0
d*

d
0D , ~3.3!
nd

and the symbol̂ denotes the direct multiplication of th
atomic and photonic states.

Consider the parameters of this Hamiltonian. The mag
tude of the dipole transition momentd should be taken equa
to that in the absence of interaction. As for the atomic tra
sition frequencyvA , it seems quite logical that it allows fo
the shift due to the purely electrostatic interaction with t
microsphere@17,18,22,24#.

In accordance with Eqs.~2.22! and ~2.23!, the resonance
linewidth is finite, and account should be taken of all t
discrete modesv1 ,v2 ,v3 ,... falling within the resonance
profile, including the modes that are degenerate as to
azimuthal quantum number~see Fig. 2!.

Considering what has been said above, Hamiltonian~3.1!
may be represented by a matrix of the form

H5S 0
0

X*
¯

0
H1

0
¯

X
0

H2

¯

¯

¯

¯

¯

D , ~3.4!

where H1 is the Hamiltonian corresponding to the on
photon continuum,

H15S \vA

V1*

V2*

V3*

V1

\v1

0
0

V2

0
\v2

0

V3

0
0

\v3

D , ~3.5!

H2 is the Hamiltonian corresponding to the two-photon co
tinuum,
H251
\~vA1v1!

0
0
&V1*

0
0

V2*

V3*
0

0
\~vA1v2!

0
0
&V2*

0
V1*
0

V3*

0
0

\~vA1v3!

0
0
&V3*

0
V1*

V2*

&V1

0
0

2\v1

0
0
0
0
0

0
&V2

0
0

2\v2

0
0
0
0

0
0
&V3

0
0

2\v3

0
0
0

V2

V1

0
0
0
0

\~v11v2!

0
0

V3

0
V1

0
0
0
0

\~v11v3!

0

0
V3

V2

0
0
0
0
0

\~v21v3!

2 ,

~3.6!
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and the X terms describe transitions involving two-un
changes in the number of photons,

X5~Ṽ1 Ṽ2 Ṽ3 0 0 0 0 0 0!. ~3.7!

In writing expressions~3.5!–~3.7!, we adopted for clarity
that the atomic oscillator interacts with three quantiz
modesv1 , v2 , and v3 . The generalization to a greate
number of modes~the continuum of modes in the limit! is
not very difficult to make. The state vector of our system h
the following structure:

ground state

excited atom~vA!

one photon~v1!

one photon~v2!

one photon~v3!

¯

6 one-photon continuum

excited atom~vA!1one photon~v1!

excited atom~vA!1one photon~v2!

¯

two photons~v1!

two photons~v2!

two photons~v3!

¯

6 two-photon
continuum

etc.

Note that only two-photon states are numbered as follo
the states with two photons in the same st
2v1,2v2,2v3 ,... come first, and next come the states w
an energy ofv i1v j , i , j . The interaction matrix element
Vj ,m ,Ṽj ,m have the usual form

Vj ,m5Vm~v j !52
de~n,m,n j ,r !

i&
,

Ṽj ,m52
d* e~n,m,n j ,r !

i&
, ~3.8!

wheree is the electric field strength of the quantized mod
given by Eqs.~2.3! and ~2.4!.

In the rotating-wave approximation, the matrixX can be
disregarded, and the interaction Hamiltonian for a two-le
atom and a continuum of modes will then assume the form
the block-diagonal matrix

H5S 0
0
0
¯

0
H1

0
¯

0
0

H2

¯

¯

¯

¯

¯

D , ~3.9!

wherein the one-photon and two-photon continua with c
respondent atomic states do not interact and one can con
them separately.
d

s

s:
e

,

l
f

-
der

In this work we consider a one-photon continuum, d
scribed by Hamiltonian~3.5!. Hamiltonian~3.5! was consid-
ered in general form in a number of papers~for example,
@19,34,35#!. Expressions for the line profile were found
@36,37# with the assumption of frequency independence
the matrix elementsVim . In the present work, we will ana
lyze the dynamics of the system with Hamiltonian~3.5! sub-
ject to the condition that the coefficientsVim depend on fre-
quency in a resonance fashion. To find the spectrum of
Hamiltonian is a difficult task, but if the linewidth of the
whispering gallery mode is small~the smallness criterion
will be evident below!, the energies of all the photons i
Hamiltonian ~3.5! can be taken to be equal to the phot
energy in the case of resonance:v i5v res. In that case, of
course, the nondiagonal elementsVi describing the reso-
nance interaction will change greatly as a function of f
quency.

As a result of the above approximation, the interacti
Hamiltonian for an atom and one-photon continuum will a
sume the form

H15S \vA

V1*

V2*

V3*

V1

\v res

0
0

V2

0
\v res

0

V3

0
0

\v res

D . ~3.10!

It is not very difficult to verify that the spectrum of such
Hamiltonian hasn21 degenerate eigenvaluesv res ~n is the
number of quantized modes! and the two nontrivial eigenval
ues

\v65\S v res1vA

2
6 1

2 A~v res2vA!214VRabi
2 D

~3.11!

which point to the emergence of two discrete compone
instead of one atv res5vA . In Eq. ~3.11!, the vacuum Rabi
frequency is defined by the expression

\2VRabi
2 5(

i ,m
uVi ,mu25(

m
E d~\v!r~v!uVm~v!u2

~3.12!

which is exact despite approximation~3.10!.
Note that a similar expression for the vacuum Rabi f

quency was obtained in@35# on the basis of another ap
proach. Since we are considering here the resonance inte
tion, then, according to Eqs.~2.22! and ~2.23!, the relation

r~v i !uVimu2}
1

uv i2V resu2
~3.13!

holds true, and consequently one can easily get from exp
sion ~3.12! the general relation

r~v i !(
m

uVm~v i !u25
G res/2

~v i2v res!
21G res

2 /4

\

p
VRabi

2 .

~3.14!

Where the variation of the quantized mode frequenc
within the limits of resonance cannot be neglected, the
generation in Eq.~3.10! is removed. Nevertheless, if the Ra
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frequency given by expression~3.12! exceeds the linewidth
of the whispering gallery mode, the approximate Ham
tonian will correctly define the vacuum Rabi splitting.

Substituting expression~3.8! into Eq.~3.12!, one can eas-
ily obtain the following expression for the Rabi frequency
terms of the electric field strength of the mode:

\2uVRabi~r !u25 1
2 (

j
(
m

ude~n,m,n j ,r !u2. ~3.15!

Note that the above expression for the Rabi freque
agrees with the following Rabi frequencydefinition pre-
sented in@21,24# without proof:

\2uVRabi~r !u25
def

^vacu~ d̂Ê!2uvac&

5 1
2 (

i
(
m

ude~n,m,n i ,r !u2. ~3.15a!

With Rabi frequency~3.15! found, the estimation of the
spectrum of Hamiltonian~3.5! can be considered to be com
pleted. However, the presence of discrete components in
spectrum is in no way a sufficient condition for the develo
ment of a doublet structure in the emitted photon spectru

B. Properties of the one-photon continuum
in the case where the atom is excited

To describe the doublet structure of the emitted pho
spectrum, one should analyze the dynamics of the sys
described by the Schro¨dinger equation with Hamiltonian
~3.5!. This problem was considered in the general form
@19#, but the approximations and assumptions made in
work require further investigation.

The Schro¨dinger equations for the coefficient of expa
sion in terms of eigenfunctions of the free Hamiltonian of t
one-photon continuum~probability amplitudes! have the
form

i
]cA~ t !

]t
5vAcA~ t !1(

j ,m

Vj ,m

\
c j ,m~ t !,

~3.16!

i
]c j ,m~ t !

]t
5v jc j ,m~ t !1

Vj ,m*

\
cA~ t !, m50,61,...6n;

j 51,2,... .

HerecA ,c i ,m are the probability amplitudes to find an ato
or quantized mode with radial quantum numbern i and azi-
muthal quantum numberm in an excited state, respectively

Taking Fourier transform~3.16! with due regard for the
fact that the atom was in an excited state at the initial ins
of time, we get the system

~v2vA!cA~v!5(
j ,m

Vj ,m

\
c j ,m~v!1 i2,

~3.17!

~v2v j !c j ,m~v!5
Vj ,m*

\
cA~v!, m50,61,...6n;

j 51,2,... .
-

y

he
-
.

n
m

is

nt

Excluding from expression~3.17! the photon component
c j ,m(v), we obtain the following expression for the Fouri
componentcA(v):

cA~v!5
2 i

v2vA2SA~v!
, ~3.18!

where the mass operatorSA(v) is defined by the expressio

SA~v!52
1

\ (
m

E dv8r~v8!uVm~v8!u2

v82v2 i01 . ~3.19!

Substituting expression~3.14! into Eq.~3.19! and calculating
the resultant integral, we get the following relation for th
mass operator:

SA~v!5
VRabi

2

v2V res
. ~3.20!

Accordingly, for the Fourier component of the atomic wa
function, we have the following rather simple expression

cA~v!5
i ~v2V res!

~v2vA!~v2V res!2VRabi
2 . ~3.21!

Going over into the time domain, one can easily find t
amplitude of the probability that the atom will be in an e
cited state:

cA~ t !5
1

v12v2
$e2 iv1t~v12V res!2e2 iv2t~v22V res!%,

~3.22!

wherev1 ,v2 are the solutions of the dispersion equatio

~v2vA!~v2V res!2VRabi
2 5D~v!50, ~3.23!

v65
~vA1V res!6A~vA2V res!

214VRabi
2

2
. ~3.24!

Both dispersion equation~3.23! and its solution ~3.24!
largely coincide with the dispersion equation and solution
the classical problem on the interaction between the class
oscillator and classical electromagnetic field@22#. Note that
in contrast to spectrum estimate~3.11!, dispersion equation
solution ~3.24! contains imaginary parts which are respo
sible for the relaxation processes and can be obtained by
substitutionv res→V res.

Now that the solution for the amplitude of the probabili
of the atom in an excited state is known, it is not very dif
cult to find the expression for the Fourier component of
amplitude of the probability that the photon will be in thei th
mode:

c i ,m~v!5
i ~v2V res!

~v2vA!~v2V res!2VRabi
2

Vi ,m*

\~v2v i1 i01!
.

~3.25!

For the time dependence of this amplitude, we have



3004 PRA 59V. V. KLIMOV, M. DUCLOY, AND V. S. LETOKHOV
c i ,m~ t !5
Vi ,m*

\ F 1

v12v2
H e2 iv1t

~v12V res!

~v12v i !
2e2 iv2t

~v22V res!

~v12v i !
J

1e2 iv1t
~v i2V res!

~v i2vA!~v i2V res!2VRabi
2

G . ~3.26!
a

om
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he
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When t→`, the first two exponentials in Eq.~3.26! go to
zero, and the spectral distribution of the emitted photons
sumes the form

dP~v!

d~\v!
5(

m
uc i ,m~ t5`!u2r~v i !5

G res

~2p\!

VRabi
2

uD~v!u2

5
VRabi

2 G res/~2p\!

@~v i2vA!~v i2v res!2VRabi
2 #21~v i2vA!2G res

2 /4
,

~3.27!

whereD(v) is defined in Eq.~3.23!.
In the case of resonance, i.e., in the case where the at

transition frequency coincides with the whispering galle
mode frequency (vA5v res), one can easily find from Eq
~3.27! that the position of the doublet lines is defined by t
expression

v5vA6AVRabi
2 2G res

2 /8, ~3.28!

from which it follows that the Rabi splitting is only possib
if

VRabi.
G res

2&
. ~3.29!
nd

-
nc
ll
d

s-
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The width of the doublet lines in that case is

Gdoublet
2

4
5

G res
2

16

~VRabi
2 2G res

2 /16!

~VRabi
2 2G res

2 /8!
. ~3.30!

If the condition ~3.29! is not fulfilled, there occurs the
Weisskopf-Wigner exponential decay regime@38#, and the
spontaneous emission spectrum is a singlet with the l
width

Gsinglet
2

4
5

4VRabi
4

G res
2 28VRabi

2 . ~3.31!

Naturally, expression~3.31! is only valid for a sufficiently
strong interaction, i.e., for the case where the Rabi freque
substantially exceeds the atomic linewidthg0 in free space.

Expressions~3.21!–~3.31! have been obtained on firs
principles and are the main result of the present section. W
the concrete values of the Rabi frequencyVRabi and reso-
nance frequencyV res found, they can be applied to the de
scription of resonance interaction with any cavity. Note th
our results considerably refine the results obtained in@19#,
where the actual cavity was approximated by a singlet p
viding for the origination of the Rabi frequency and nonres
nance absorption in the cavity walls, i.e., use was made
the model non-Hermitian Hamiltonian
H̃15S \~v res2dc1 igc!

\VRabi

V1

V2

V3

¯

\VRabi

\vA

0
0
0
¯

0
0

\v1

0
0
¯

0
0
0

\v2

0
¯

0
0
0
0

\v3

¯

¯

¯

¯

¯

¯

¯

D ~3.32!
l

gy

f
e
e.

ns
which allowed simple diagonalization but could not help fi
concrete Rabi frequency and doublet linewidth values.

C. Properties of the one-photon continuum
in the case where the microsphere is excited

In this case, Eqs.~3.16! defining the dynamics of the sys
tem atom plus microsphere remain the same. A differe
occurs in the formulation of the initial conditions. We wi
assume that the excitation energy of the microsphere is
tributed among the quantized modes as follows:

c j ,m~ t50!5c0,j ,m , (
j ,m

uc0,j ,mu251. ~3.33!
e

is-

In the secondary quantization representation~the Fock rep-
resentation!, this is equivalent to the selection of the initia
state in the form

ucphoton~ t50!&5(
j ,m

c0,j ,mu1& j ,m , ~3.34!

where u1& j ,m is the one-photon Fock state with the ener
\v j and mode structureeTE(n,m,n j ,r ) or eTM(n,m,n j ,r ),
the phase ofc0,j ,m being reckoned with respect to that o
eTE(n,m,n j ,r ) or eTM(n,m,n j ,r ), so that the absolute phas
values of the interaction matrix elements appear nowher

The mean energy of any state~3.34! is equal to\v res. To
understand the physical meaning of the initial conditio
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~3.33! or ~3.34!, let us consider the mean value of th
squared radial component of the electric field operator of
TM mode:

S0~r !5^cphoton~ t50!uÊrad
2 ~r !ucphoton~ t50!&. ~3.35!

For not too large distances from the microsphere ce
@(r /c)G res!1#, it is possible to find from Eq.~3.35! the
relationship between the squared electric field strength
initial distribution ~3.33!:

S0~r !}S 1
2 (

j
Uq~v j !U21U(

j
q~v j !c0,j ,0U2D . ~3.36!

Hereq(v) is defined by expression~2.7! or ~2.22!. One can
see from the above expression that ifc0,j ,0iq(v j ), the
squared electric field strength~and energy! reaches its maxi-
mum value near the microsphere. But ifc0,j ,0'q(v j ), the
squared electric field strength and energy in the vicinity
the microsphere are minimal. Thus, expression~3.33! char-
acterizes the spatial structure of one-photon excitation.

Subject to the above initial conditions, the equations
the Fourier components of the probability amplitudes w
assume the form

~v2vA!cA~v!5(
j ,m

Vj ,m

\
c j ,m~v!,

~3.37!

~v2v j !c j ,m~v!5
Vj ,m*

\
cA~v!1 ic0,j ,m ,

m50,61,...6n; j 51,2,... .

The solution of system~3.37! is a more difficult problem in
comparison with the case of an initially excited atom. T
point is that the initial conditions are described, genera
speaking, by the arbitrary functionc0,j ,m , and depending on
its form, the emitted photon spectrum and atomic excitat
dynamics can assume different forms. In particular, the d
blet structure of the photon spectrum~typical of the case of
an initially excited atom! will rather be the exception tha
the rule. This is due to the fact that when the choice of
excitation form of the microsphere is arbitrary, only part
the excitation energy is transformed into the Rabi doub
the rest of the energy being reemitted without any chang
frequency.

To prove this fact, let us first consider the photon em
sion spectrum in the case of an arbitrary microsphere exc
tion line shape. From Eq.~3.37! one can easily find the ex
pression for the fluorescence spectrum att→`:

dP~v!

d~\v!
5r~v!(

m
UVm* ~v!

\
cA~v!1 ic0,m~v!U2

.

~3.38!

In our case, the matrix elementsVm* (v) have the Lorentzian
line shape@see Eq.~3.13!#

Vm~v!'
am

v2V res
. ~3.39!
e

er

d

f
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n
-

e
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in

-
a-

Assume that the excitation line shape is also of Lorentz
form:

c0,m~v!5
bm

v2Vc*
. ~3.40!

Substituting Eqs.~3.39! and~3.40! into Eq.~3.38!, we get the
following expression for the fluorescence spectrum:

dP~v!

d~\v!
5r~v!(

m
U am*

v2V res*
cA~v!

\
1 i

bm

v2Vc*
U2

.

~3.41!

For the Rabi doublet to form, it is necessary that there are
poles between its components in Eq.~3.41!, i.e., there are no
pole atv5Vc . One can easily see that it is only possib
subject to the following conditions. First, the complex res
nance frequency of the excitation line must be equal to t
of the microsphere:

Vc5V res. ~3.42!

Second, the spatial distribution of the excitation modes m
also agree with that of the atom-field interaction matrix e
ment:

bm5 i
am*

\
cA~V res* !5

am*

\VRabi
. ~3.43!

If conditions ~3.42! and ~3.43! are not satisfied, the addi
tional poles will not cancel and the fluorescence spectr
will be of triplet or singlet form.

To obtain concrete analytical results, assume that the
tial excitation distribution among the microsphere modes
the form

c0,m~v!5
1

\VRabi
S Gc

G res
D 1/2 am*

v2Vc*
, Vc5cc2 i

Gc

2
,

Gc.0. ~3.44!

Excluding from expression~3.37! the photon probability am-
plitudes, we obtain the following expression for the Four
component of the atomic probability amplitude:

cA~v!51
VRabi

D~v!

AG resGc

V res2Vc*
, ~3.45!

whereD(v) is defined in Eq.~3.23!.
It can be seen from this equation that the probability a

plitude of the excited state of the atom is proportional to
factor

AG resGc

V res2Vc*
, ~3.46!

which is a maximum atVc5V res. If this condition is satis-
fied, the atom gets fully excited by the microsphere and
vacuum Rabi splitting occurs. If condition~3.42! is not sat-
isfied, then, as seen from Eq.~3.46!, the atom is excited
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incompletely, and a central component appears in the fl
rescence spectrum along with the Rabi components, i.e
triplet is formed.

Next substituting Eq.~3.45! into Eq. ~3.38!, one can find
the fluorescence spectrum:

dP~v!

d~\v!
5

Gc

2p\ U VRabi
2

~v2V res* !D~v!

G res

V res2Vc*
1 i

1

v2Vc*
U2

,

~3.47!

whereD(v) is defined in Eq.~3.23!. Here the triplet struc-
ture of the spectrum is explicitly expressed. Note that trip
structure~3.47! bears no relation to Mollow’s triplet@39#, for
in this work we consider the one-photon continuum, wh
Mollow’s spectrum develops at high intensities.

As the width of the excitation line tends to zero, the flu
rescence spectrum naturally tends to thed function,

dP~v!

d~\v!
5

Gc→0

Gc

2p\ U 1

v2Vc*
U2

'd~v2vc!. ~3.48!

In the optimum case given by Eqs.~3.42! and ~3.43!, the
expression for the Fourier component of the excited at
probability amplitude will assume the following form:

cA~v!5
iVRabi

D~v!
, ~3.49!

whereD(v) is defined in Eq.~3.23!.
In the optimum case, one can easily get from Eq.~3.47!

the following expression for the emitted photon spectrum

dP~v!

d~\v!
5

G res

2p\ Uv2vA

D~v!
U2

5
~v2vA!2G res/~2p\!

@~v2vA!~v2v res!2VRabi
2 #21~v2vA!2G res

2 /4
,

~3.50!

which is very close to expression~3.27! for the doublet spec-
trum of photons emitted in the case of initially excited ato
The essential difference from the case of an initially exci
atom is that spectrum~3.47! is always of doublet characte
even if interaction weakness condition~3.29! is satisfied, i.e.,
even in the case of the Weisskopf-Wigner regime@38#.

Above we considered the case where excitation is t
greater or lesser extent phase-matched with the atom-
interaction matrix elements. Other cases can also be anal
within the framework of the present approach. In particu
if we use instead of Eq.~3.44! the initial condition

c0,m~v!5S Gc

G res
D 1/2 1

\VRabi

am*

v2Vc*
, Vc5vc1 i

Gc

2
,

Gc.0 ~3.51!

~phase antimatching!, the Fourier component of the excite
atom probability amplitude will be described by the expre
sion
o-
a

t

-

.
d

a
ld
ed
,

-

cA~v!5
VRabi

D~v!

AG resGc

v2Vc*
, ~3.52!

which explicitly contains three frequencies at a sufficien
high Rabi frequency@see Eq.~3.29!#.

In the case of antimatching~3.51!, the fluorescence spec
trum is given by the following expression (vA5v res):

dP~v!

d~\v!
5

Gc

2p\

1

uv2Vcu2
. ~3.53!

This spectrum is always of singlet type, and as the excita
linewidth tends to zero, it is naturally reduced tod function
~3.48!.

The case of uniform distribution of the phase

c0,m~v!5
1

\VRabi
S Gc

G res
D 1/2 am*

uv2Vc* u
,

Vc5vc2 i
Gc

2
, Gc.0 ~3.54!

is an intermediate between cases~3.44! and ~3.51! and can
also be analyzed within the framework of our approach.

Above we have considered various cases differing in
frequency distribution of the excitation line phase, the re
tive phase being taken to be actually independent of the
muthal quantum numberm. That is to say, we have assume
a perfect match as to the azimuthal quantum number. S
an approach is completely justified in the case of radial o
entation of the atomic dipole moment, for the atom he
interacts only with the mode havingm50 ~in the coordinate
system wherein the atom is situated on the polar axis! and
the phase problem is altogether absent. In the case of a
trary orientation of the dipole moment, the atom intera
with the modes havingm50,61, and, generally speaking,
is necessary to make special efforts to ensure coherence
m @condition~3.43!#. Note that the modes withmÞ0,61 ~in
the coordinate system wherein the atom is located on
polar axis! do not interact at all with the atom and manife
themselves in the fluorescence spectrum without any cha

It should be emphasized that the cases of excitation of
microsphere modes considered above are characterized
certain degree of coherence between various quant
modes. Naturally no splitting takes place in the case of n
coherent excitation of the microsphere~random phase distri-
bution among the quantized modes!.

IV. VACUUM FIELD AND RABI FREQUENCY
IN THE CASE OF AN ATOM LOCATED OUTSIDE

OF THE MICROSPHERE

A. Radial dipole moment orientation

We proceed to the direct calculation of the Rabi fr
quency. Consider first the case of an atom located outsid
the microsphere. In the case where the transition dipole
ment element is oriented along the radius of the dielec
microsphere, interaction is only possible with its TM mod
and it is then necessary to examine the mean square o
radial electric field component in the TM mode:
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\2uVRabi~r !u25 1
2 drad

2 (
i

(
m

uer~n,m,n i ,r !u2. ~4.1!

The radial component of thesth TM mode of the atom
located outside the microsphere, which is of interest to
can easily be found from expression~2.3!:

er~n,m,n,r !52
in~n11!

kr
@aTM,n

~1! hn
~1!~kr !

1aTM,n
~2! hn

~2!~kr!#Ynm~q,w!. ~4.2!

Note thater(n,m,n) is related to the radial quantum numb
n by the relation

k~n!5
vs

c
5

v~n,m,n!

c
.

Summing the square of the absolute value of Eq.~4.2! with
respect to the azimuthal quantum numberm by means of the
well-known relation

(
m

uYnmu25
2n11

4p
, ~4.3!

we get the following expression for the Rabi frequency:

\2uVRabi~r !u25 1
2 drad

2 Erad,TM
2 ,

Erad,TM
2 5n~n11!~2n11!(

n

2k~n!\c

Lr 2 u j n„k~n!r …

2qnhn
~1!
„k~n!r …u2. ~4.4!

Using elementary relations, expression~4.4! can easily be
reduced to the form

Erad,TM
2 5n~n11!~2n11!(

n

2k~n!\c

Lr 2 @ j n„k~n!r …2

2Re~qnhn
~1!
„k~n!r …2!#. ~4.5!

Replacing with the help of Eq.~2.12! the summation over
radial quantum numbern by integration over frequencies i
the frequency band 2Dv (Dv@G res) and extending the lim-
its of integration in the second term of Eq.~4.5! to the inter-
val 2`, 1`, we get the final expression for the mean squ
of the vacuum electric field:

Erad,TM
2 5n~n11!~2n11!

p\G res

2r 3 FYn11/2
2 ~kresr !

1Jn11/2
2 ~kresr !S 4Dv

pG res
21D G , ~4.6!

where Jn and Yn are the Bessel functions of the first an
second kind, respectively@27#, andkres5v res/c.

For long-lived modes,n is large and the term withJn
2 is

small compared with the term withYn
2. On the other hand

the terms proportional toDvJn
2 are specific to vacuum in th

absence of the microsphere and must be subjected to a r
s,

e

or-

malization procedure, i.e., omitted. As a result, the expr
sion for the vacuum field at the pointr will assume the form

Erad,TM
2 5n~n11!~2n11!

p\G res

2r 3 @Yn11/2
2 ~kresr !#.

~4.7!

Note that expression~4.7! is proportional to the resonanc
width G res of the microsphere. This is due to the fact that
the case under consideration the atom is located outsid
the microsphere and can only get excited by virtue of
leakage of the vacuum energy from the microsphere.

In addition to the origination of the Rabi frequency, th
dielectric microsphere is also responsible for a purely qu
static shift of the atomic transition frequency. In our case,
quasistatic frequency shift is defined by the expression@18#

vA
25v0

22dv0
2,

~4.8!

dv0
25 3

2 v0g0

a~«21!

k0
3r 4 (

n51

`
n~n11!2

~«11!n11 S a

r D 2n

.

If the atom is very close to the microsphere, expression~4.8!
is simplified:

dv0
25

3

8

«21

«11

g0v0

@k0~r 2a!#3 . ~4.9!

In expression~4.8!, v0 stands for the atomic transition fre
quency in the absence of the microsphere,

g05
4d2v0

3

3c3\
~4.10!

is the linewidth in the absence of the microsphere, andk0
5v0 /c.

B. Tangential dipole moment orientation

Now let us consider the case of a tangentially orien
dipole. In that case, the dipole interacts with both TM a
TE modes. This case can be analyzed in exactly the s
way as the case of radial orientation.

For the Rabi frequency, we have the expression

\2uVRabi~r !u25 1
2 dtan

2 Etan
2 ,

~4.11!

Etan
2 5(

m
(

j
uetan~n,m,n j ,r !u2.

Note that as the position of the TM and TE resonances
determined~approximately! by the different expressions@see
Eqs.~2.18! and~2.19!#, interaction at a single frequency ca
take place either with a TM or with a TE mode. Therefo
when calculating the Rabi frequency, consideration sho
only be given for the electric fields of the correspondi
mode.

The tangential component~we take it that this is theu
component! of the electric field outside of the microsphe
has the form
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etan~n,m,n,r !5~eTM! tan

52
i

k

]

r ]r
r @aTM,n

~1! hn
~1!~kr !

1aTM,n
~2! hn

~2!~kr !#
]Ynm~q,w!

]u
~4.12!

for the TM resonance and the form

etan~n,m,n!5~eTE! tan

52@aTE,n
~1! hn

~1!~kr !

1aTE,n
~2! hn

~2!~kr!#
mYnm~q,w!

sinu
~4.13!

for the TE resonance. Note thatetan(n,m,n) is related ton by
the relationk5vs /c5v(n,m,n)/c. Summing the squares o
Eqs.~4.12! and~4.13! with respect to the azimuthal quantu
numberm and using the formulas

1

sin2 u (
m

m2YnmYnm* 5
n~n11!~2n11!

8p
, ~4.14!

(
m

]Ynm

]u

]Ynm*

]u
5

n~n11!~2n11!

8p
, ~4.15!

we obtain, after averaging over frequencies in the inter
2Dv (Dv@G res) and renormalizing, the final expression f
the effective tangential vacuum field.

In the case of TE resonance, we have the expression

Etan,TE
2 5~n11/2!kres

2 p\G res

2r
Yn11/2

2 ~kresr ! ~4.16!

and in that of TM resonance, the expression

Etan,TM
2 5~n11/2!

p\G res

2r 3 @~n11!Yn11/2~kresr !

2kresrYn13/2~kresr !#2. ~4.17!

As in the radial case, the vacuum field given by Eqs.~4.16!
and~4.17! is proportional to the linewidth of the microsphe
and vanishes as it is reduced.

In addition to the origination of the Rabi frequency, th
dielectric microsphere is also responsible for a purely qu
static shift of the atomic transition frequency. In our case,
quasistatic frequency shift is defined by the expression@18#

vA
25v0

22dv0
2,

~4.18!

dv0
25 3

4 v0g0

«21

~k0r !3 (
n51

`
n2~n11!

~«11!n11 S a

r D 2n

.

If the atom is very close to the surface, expression~4.18! is
simplified:

dv0
25

3

16

«21

«11

g0v0

@k0~r 2a!#3 . ~4.19!
l

i-
e

V. VACUUM FIELD AND RABI FREQUENCY
IN THE CASE OF AN ATOM LOCATED INSIDE

THE MICROSPHERE

By and large, the case of an atom located inside a die
tric microsphere can be considered in absolutely the sa
way as above. But in that case, account should be take
the local field factorf causing both a change in the matr
elements

Vi⇒ f Vi ~5.1!

and a change in the quasistatic frequency shift

dvA
2⇒ f 2dvA

2. ~5.2!

As usual, we will take the local field factor to be given b
@40#

f 5
3«

2«11
. ~5.3!

What is more, owing to the interaction with the crystal latti
of the microsphere material, the transition frequencyv0 may
differ from that in free space. We take no account of th
circumstance in the present work.

A. Radial dipole moment orientation

To find the Rabi frequency in the case where the atom
inside the microsphere, use should be made of expres
~2.3! for the electric field:

erad~n,m,n,r !52
in~n11!

«kr
@bTM,nj n~kA«r !#Ynm~q,w!.

~5.4!

Making absolutely the same calculations as in the case o
atom outside the microsphere, we obtain the following e
pression for the vacuum field inside the microsphere:

Erad,TM
2 5n~n11!~2n11!

p\G res

2«2r 3 Jn11/2
2 ~A«kresr !

3S Yn11/2~kresa!

Jn11/2~A«kresa!
D 2

. ~5.5!

Note that in contrast to the derivation of Eq.~4.7!, no diverg-
ing expressions appear in deriving expression~5.5!, and so
no need arises in renormalization. This circumstance is
to the fact that the field inside the microsphere has in p
ciple no analogs in free space. Comparison between exp
sion ~5.5! and expression~4.7! for the vacuum field outside
of the microsphere shows that there is a discontinuity due
the boundary conditions on the surface of the microsph
For the electric displacement vector, continuity remains. T
continuity of the electric displacement vector is evidence
the correctness of the renormalization procedure carried
in the case of an atom located outside of the microsph
Another important feature of expression~5.5! is the fact that
the vacuum field does not decrease with the decreasing r
nance widthG res. Accordingly for the Rabi frequency, we
have
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\2uVRabi~r !u25 1
2 f 2drad

2 Erad,TM
2 . ~5.6!

In addition to the origination of the Rabi frequency, th
dielectric microsphere is also responsible for a purely qu
static shift of the atomic transition frequency. In our case,
quasistatic frequency shift is defined by the expression@17#

vA
25v0

21dv0
2,

~5.7!

dv0
25 3

2 v0g0

«21

k1
3ar2 (

n50

`
n2~n11!

~«11!n11 S r

aD 2n

.

If the atom is very close to the microsphere, expression~5.7!
is simplified:

dv0
25

3

8

«21

«11

g0v0

@k0A«~a2r !#3
. ~5.8!

In expression~5.8!, v0 stands for the atomic transition fre
quency in the absence of the microsphere,

g05
4d2v0

3

3c3\
A« f 2 ~5.9!

is the linewidth in the absence of the microsphere, i.e., in
case of unbounded dielectric medium, andk05v0 /c.

B. Tangential dipole moment orientation

In that case, the dipole interacts with both TM and T
modes. This case can be examined in exactly the same
as the case of radial orientation.

The tangential component~we take it that this is theu
component! of the electric field outside of the microsphe
has the form

etan~n,m,n!5~eTM! tan

52
i

k

]

r ]r
r @bTM,nj n~k1r !#

]Ynm~q,w!

]u

~5.10!

for the TM resonance and the form

etan~n,m,n!5~eTE! tan52@bTE,nj n~k1r !#
mYnm~q,w!

sinu
~5.11!

for the TE resonance. Note thatetan(n,m,n) is related ton by
the relationk5vs /c5v(n,m,n)/c.

Summing the squares of Eqs.~5.10! and ~5.11! with re-
spect to the azimuthal quantum numberm and using the
formulas

1

sin2 u (
m

m2YnmYnm* 5
n~n11!~2n11!

8p
,

~5.12!

(
m

]Ynm

]u

]Ynm*

]u
5

n~n11!~2n11!

8p
,

i-
e

e

ay

we obtain, after averaging over frequencies, the final exp
sion for the effective tangential vacuum field.

In the case of TE resonance, we have the expression

Etan,TE
2 5~n11/2!kres

2 p\G res

2r

Jn11/2
2 ~A«kresr !

Jn11/2
2 ~A«kresa!

Yn11/2
2 ~kresa!

~5.13!

and in that of TM resonance, the expression

Etan,TM
2 5~n11/2!

p\G res

2r 3

3
@~n11!Jn11/2~kresr !2kresrJn13/2~kresr !#2

@~n11!Jn11/2~kresa!2kresaJn13/2~kresa!#2

3@~n11!Yn11/2~kresa!2kresaYn13/2~kresa!#2.

~5.14!

Note that the tangential vacuum field components suffer
discontinuity on the surface of the microsphere, which poi
to the correctness of the renormalization procedure in
preceding section. Another important feature of expressi
~5.13! and~5.14! compared to the case of an atom outside
the microsphere is that the vacuum field does not decre
with the decreasing resonance widthG res. Another specific
feature of the tangential case is the fact that the electros
frequency shift is half that in the case of radial orientatio

vA
25v0

21dv0
2,

~5.15!

dv0
25 3

4 v0g0

«21

k1
3ar2 (

n50

` n~n11!2

~«11!n11
S r

a
D 2n

.

If the atom is close to the surface of the microsphere, exp
sion ~5.15! is simplified:

dv0
25

3

16

«21

«11

g0v0

@k0A«~a2r !#3
. ~5.16!

In expressions~5.15! and ~5.16!, g0 is the linewidth in the
absence of the microsphere~5.9!, i.e., in the case of un-
bounded dielectric medium, andk05v0 /c.

VI. NUMERICAL EXAMPLES AND PLOTS

The results of Sec. III, together with the expressions
the Rabi frequency in terms of the appropriate vacuum fie
and quasistatic frequency shifts, enable one to easily ob
any characteristics of the system atom plus microspher
the case of resonance interaction.

Figure 5 shows the square of the vacuum field strength
a function of the position of the atom for various atom
dipole orientations in the case of both outside and ins
atom. It can be seen from this figure that in the case
tangential dipole orientation and TM resonance, the vacu
field reaches its maximum on the surface of the microsph
while for other types of resonance, the maximum vacu
field is inside the microsphere and is two times as high as
the surface in the case of TE resonance and 1.5 times as
as that in the case of TM resonance.
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For the modes with a higher quality factor~large n!, the
maxima inside the microsphere come closer to the surfac
the microsphere and grow higher, which means that the
fective volume of the mode is decreased.

Shown in Fig. 6 are the real and imaginary parts of
solutions of dispersion equation~3.23! with the parameters
specially chosen such that at certain points in space there
occur exact resonance, i.e., the coincidence of complex
lutions of Eq.~3.23!. In the vicinity of the atom outside the
microsphere, these curves coincide with those obtaine
@22,24#. In these figures, one can clearly see the characte
tic alternating regions of different frequency shifts or varyi
linewidths.

FIG. 5. Squared vacuum field strength as a function of the
sition of the atom in the case of radial dipole moment orientat
~TM resonance withn59, ka55.5487! and tangential dipole mo
ment orientation~TM resonance withn59, ka55.5487, and TE
resonance withn510 andka55.619!.

FIG. 6. ~a! Frequency splitting and~b! radiative linewidths as a
function of the position of the atom relative to the surface of
microsphere with due regard for the local field factorf @radial ori-
entation of the dipole moment, TM~1,9,9! resonanceka55.5487#.
of
f-

e

an
o-

in
is-

Figures 7 and 8 show the temporal dynamics of the
cited state of the atom and emitted photon spectrum in
case of weak interaction~the Weisskopf-Wigner case!. In
accordance with the results of Sec. III, under stronger in
action conditions the Weisskopf-Wigner regime is replac
by the vacuum Rabi-splitting regime~Figs. 9 and 10!. One
can see in Fig. 9 deep~down to zero! Rabi oscillations of the
atomic excitation, and in Fig. 10, a doublet emitted phot
spectrum.

Under strong interaction conditions wherein the atom
transition frequency differs from the resonance one, the R

-
n FIG. 7. Time dependence of the probability of the atom being
an excited state. The Weisskopf-Wigner regime~exponential decay!
@r /a51.25, v0 /g05108, radial orientation of the dipole
TM~1,12,12! ~a whispering gallery mode!, (ka)res56.924 298, reso-
nance casevA5v res, initially excited atom#.

FIG. 8. Time dependence of the photon spectrum. T
Weisskopf-Wigner regime~exponential decay! @r /a51.25, v0 /g0

5108, radial orientation of the dipole, TM~1,12,12! ~a whispering
gallery mode!, (ka)res56.924 298, resonance casevA5v res, ini-
tially excited atom#.



m

i-

o
m

m
in

ing
de
eep
b-

he

nce

i

a

ing

abi

PRA 59 3011STRONG INTERACTION BETWEEN A TWO-LEVEL ATOM . . .
oscillations become shallower~Fig. 11! and the doublet
structure of the emitted photon spectrum becomes asym
ric ~Fig. 12!.

Let us consider now the case of an initially excited m
crosphere. In the case of sufficiently strong interaction~3.29!
and optimal~as to phase! excitation ~3.42! and ~3.43!, the
dynamic atom-field relationships practically completely c
incide with those in the case of an initially excited ato
~Figs. 9–12!. The weak interaction~Weisskopf-Wigner! re-
gime is in that case specific, because the photon spectru
the case of an initially excited microsphere always rema

FIG. 9. Time dependence of the probability of the atom being
an excited state. The Rabi splitting regime@r /a50.8, v0 /g055
3107, radial orientation of the dipole, TM~1,12,12! ~a whispering
gallery mode!, (ka)res56.924 298, resonance casevA5v res, ini-
tially excited atom#.

FIG. 10. Time dependence of the photon spectrum. The R
splitting regime@r /a50.8, v0 /g0553107, radial orientation of
the dipole, TM~1,12,12! ~a whispering gallery mode!, (ka)res

56.924 298, resonance casevA5v res, initially excited atom#.
et-

-

in
s

of doublet type~Figs. 13 and 14! in contrast to its singlet
structure in the case of an initially excited atom~Figs. 7 and
8!.

More interesting is the case of incomplete phase match
of the excitation line. In that case, the probability amplitu
of the atom being in an excited state is characterized by d
oscillations, but its maximum excitation probability is su
stantially less than unity and is defined by factor~3.46! ~Fig.
15!. As a result of incomplete excitation of the atom, t
fluorescence spectrum has a triplet structure~Fig. 16!.

Figure 17 shows the relationship between the fluoresce

n

bi

FIG. 11. Time dependence of the probability of the atom be
in an excited state. The Rabi splitting regime@r /a50.8, v0 /g0

553107, radial orientation of the dipole, TM~1,12,12! ~a whisper-
ing gallery mode!, (ka)res56.924 298, nonresonance casevA

5v res14G res, initially excited atom#.

FIG. 12. Time dependence of the photon spectrum. The R
splitting regime@r /a50.8, v0 /g0553107, radial orientation of
the dipole, TM~1,12,12! ~a whispering gallery mode!, (ka)res

56.924 298, nonresonance casevA5v res12G res, initially excited
atom#.
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spectrum and the degree of phase matching between th
citation line and the microsphere. It is clearly seen in
figure how the doublet structure~the solid line! which is
typical of optimum matching~3.47! and~3.50! changes over
to the triplet structure~the dotted line! specific to nonoptimal
matching~3.54!, and then to the singlet structure~the dashed
line! in the case of phase antimatching~3.51! and ~3.53!.
Note, the energetical profile of the excitation line is the sa
for all cases presented in Fig. 17.

FIG. 13. Time dependence of the probability of the atom be
in an excited state. The Weisskopf-Wigner regime~exponential de-
cay! @r /a51.25, v0 /g05108, radial orientation of the dipole
TM~1,12,12! ~a whispering gallery mode!, (ka)res56.924 298, op-
timal excitation of the microsphere#.

FIG. 14. Time dependence of the photon spectrum. T
Weisskopf-Wigner regime~exponential decay! @r /a51.25, v0 /g0

5108, radial orientation of the dipole, TM~1,12,12! ~a whispering
gallery mode!, (ka)res56.924 298, optimal excitation of the micro
sphere#.
ex-
e

e

VII. CONCLUSION

Thus, we have considered in the present work the in
action of a two-level atom with the continuum of mod
modified by the presence of a dielectric microsphere in
frequency region corresponding to the occurrence of wh
pering gallery modes in the microsphere.

Subject to minimal assumptions, we have obtained on fi
principles simple expressions describing the spectral cha
teristics of the system and relaxation processes occur
therein. Our main assumption is that the atom predomina

g

e

FIG. 15. Time dependence of the probability of the atom be
in an excited state. The triplet splitting regime@r /a50.8, v0 /g0

553107, radial orientation of the dipole, TM~1,12,12! ~a whisper-
ing gallery mode!, (ka)res56.924 298, resonance casevA5v res,
the microsphere is excited in accordance with Eq.~3.44!, GC /G res

50.25#.

FIG. 16. Time dependence of the photon spectrum. The tri
splitting regime@r /a50.8, v0 /g0553107, radial orientation of
the dipole, TM~1,12,12! ~a whispering gallery mode!, (ka)res

56.924 298, resonance casevA5v res, the microsphere is excited
in accordance with Eq.~3.44!, GC /G res50.25#.
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interacts with continuum quantized modes falling within t
profile of one of the whispering gallery mode, the criterion
which is the smallness of the Rabi frequency in compari
with the distance between the resonances of the microsph
The weak interaction with the rest of the quantized mo

FIG. 17. Fluorescence spectrum as a function of the mic
sphere excitation method (v)A5v res, uVCu5uV resu: ~a! maxi-
mum possible concentration of the photon energy in the mic
sphere~3.50! ~solid line!; ~b! minimum possible concentration o
the photon energy in the microsphere~3.53! ~dashed line!; ~c! in-
termediate case~3.54! ~dotted line! @r /a50.8, v0 /g0553107, ra-
dial orientation of the dipole, TM~1,12,12! ~a whispering gallery
mode!, (ka)res56.924 298#.
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~other frequencies, othern’s! may effectively be accounted
for by adding the appropriate imaginary part to the energy
the atom~the Breit-Wigner procedure@41#!.

The main characteristics of the system~the dispersion
equation, oscillation frequencies, and decay paramet!
fully coincide with the corresponding characteristics fou
when analyzing the classical system@22#.

When the atom is excited at the initial instant, a doub
structure is formed in the emitted photon spectrum, provid
that interaction is strong enough.

If it is the microsphere that is excited at the initial instan
the emitted photon spectrum depends substantially on
excitation method. In the case of optimum excitation whe
the excitation linewidth is equal to the resonance linewid
there takes place an effective excitation of the atom, f
lowed by the formation of a Rabi doublet in the fluorescen
spectrum. If excitation conditions deviate from the optim
ones, the spectrum becomes of triplet type. Where the de
tion from the optimal excitation conditions is great, the ato
practically remains unexcited, and the fluorescence spect
is of singlet character.

A substantial proportion of the results obtained in Sec.
are of general character and can be applied to other cas
strong atom-cavity interaction.
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