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Bosons in a toroidal trap: Ground state and vortices
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We study the Bose-Einstein condenséB&C) in a three-dimensional toroidal sombrero-shaped trap. By
changing the parameters of the potential, or the number of bosons, it is possible to modify strongly the density
profile of the BEC. We consider the ground-state properties for positive and negative scattering length and
calculate the spectrum elementary excitations. We also discuss the macroscopic phase coherence and super-
fluidity of the BEC by analyzing vortex states and their stabiliy1050-294{9)06804-3

PACS numbg(s): 03.75.Fi, 05.30.Jp, 32.80.Pj

[. INTRODUCTION the condensate anoh is the atomic mass. The scattering
lengtha, is supposed to be positive f§fRb and*Na, but
Recent spectacular experiments with alkali-metal vaporsiegative for’Li. It means that for®’Rb and*Na the inter-
8Rb,*Na, and ’Li confined in magnetic traps and cooled atomic interaction is repulsive while fofLi the atom-atom
down to a temperature of the order of 100 hk-3] have interaction is effectively attractive. The extremum condition
renewed the interest in the Bose-Einstein condensation. Théer the energy functional gives the Gross-PitaevsIGiP)
oretical studies of the Bose-Einstein condend®&EC) in equation[15]
harmonic traps have been performed for the ground state
[4-7], collective low-energy surface excitatiof8,9], and
vortex state$6]. The presence of vortex states is a signature
of the macroscopic phase coherence of the systeenexis-
tence of a macroscopic quantum phase has been recently
demonstrated 10]). Moreover, vortices are important to
characterize the superfluid properties of Bose sysfdmisit ~ where u is the chemical potential. This equation has the
has been found that the BEC in monotonically increasingorm of a nonlinear stationary Schimger equation.
potentials cannot support stable vortices in the absence of an We study the BEC in an external sombrero potential with
externally imposed rotatiofl2]. Instead, stable vortices of cylindrical symmetry, which is given by
Bose condensates can be obtained in one-dimensiabal

2
— ;—mV2+VO(r)+gN|\P(r)|2 V(r)=p¥(r), 2

[13] and quasi-20)14] toroidal traps: such Bose condensates \ 5
are superfluid11]. N o o, Mz s
In this paper we study a 3D toroidal trap given by a quar- Vo(r) 4(p POt 2~ ®

tic sombrero potential along the cylindrical radius and a har-

monic potential along the axis. The resulting trapping po-

tential is very flexible and it is possible to modify wherep= \/x2+y2 andz are the cylindrical coordinates. This
considerably the density profile of the BEC by changing thepotential is harmonic along theaxis and quartic along the
parameters of the potential or the number of bosons. Weylindrical radiusp. Vq(r) is minimum along the circle of
analyze the ground-state properties and the vortex stability oldiusp=p, atz=0 andV,(r) has a local maximum at the
the condensate for both positive and negative scatteringrigin in the (,y) plane. Small oscillations in thex(y)
length and calculate also the spectrum of the Bogoliubowlane aroung, have a frequencw, = po(2\/m)¥2

elementary excitations. In particular, we consid@Rb and First, let us consider the Thomas-Fer(iiF) approxima-

Li atoms. tion: i.e., neglect the kinetic energy. It is easy to show that
The Gross-Pitaevskii energy functiorfdl5] of the BEC  the kinetic energy is negligible ifN>(%2%/2m)(\p3

reads +mw2/2)/u3, where uo=(2/7%) (M 4) 4 (mw2/2)Y4g? is

42 the bare chemical potential. This condition is satisfied for
E gN N2p8> 162 (N p2+mw?/2)/(2m). In the TF a imati
i (T M 2 2, 2% 4 Po PoT Mw; . pproximation
S- | v oo ors Shemp, et

()

1 1/2
where W (r) is the wave function of the condensate normal- ()= (g_N[#_Vo(r)]) O[u—Vo(n], 4
ized to unity,Vq(r) is the external potential of the trap, and
the interatomic potential is represented by a local pseudopo-
tential so thag=4m#42a,/m is the scattering amplitudea{ ~ where®(x) is the step function. For our system we obtain
is thes-wave scattering lengihN is the number of bosons of that (a) the wave function has its maximum value @&t p,
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andz=0; (b) for u<\pg/4 the wave function has a toroidal 0.025 ———— L B e A A B
shapej(c) for ,u>)\p8/4 the wave function has a local mini- —— N=5000
mum atp=2z=0; (d) the chemical potential scalesa@s [ N=10000
~ woNY2. 1t is important to note that the TF approximation 0.02

neglects tunneling effects: to include these processes, it is — — - N=20000

necessary to analyze the full GP problem. o N=80000

0.015

Il. GROUND-STATE PROPERTIES AND ELEMENTARY
EXCITATIONS

n(e,z)

We perform the numerical minimization of the GP func-
tional by using the steepest descent methtf]. It consists
of projecting onto the minimum of the functional an initial
trial state by propagating it in imaginary time. In practice one  ¢.005
chooses a time stefor and iterates the equation

W(r,r+An)=V(r,7)—ATHV(r,7) (5) 0 s " L ““\3 -

by normalizing¥ to 1 at each iteration. FIG. 1. Particle probability density in the ground state®@Rb
We discretize the space with a grid of points taking ad-atoms as a function of the cylindrical radius z¢0 (symmetry
vantage of the cylindrical symmetry of the problem. At eachplane. The curves correspond to different numbers of atoms: from
time step the matrix elements entering the Hamiltonian ar&000 to 50 000. Parameters of the external potengigs: 2 and\
evaluated by means of finite-difference approximants. We=4. Lengths are in units ofa,=1 um and A in units of
use grids up to 208200 points verifying that the results do (fw2)a; *=0.477 pevium®.
not depend on the discretization parameters. The number of ] ]
iterations in imaginary time depends on the degree of cont the presence of a steeguartio potential along the trans-
vergence required and the goodness of the initial trial wavaerse directionp=\x?+y? and a softer(quadrati¢ barrier
function. We found that strict convergence criteria have to bélong the vertical directioz.
required on the wave function in order to obtain accurate In the case of negative scattering length, it is well known
estimates of the wave function. that for the BEC in harmonic potential there is a critical
In our calculations we use theharmonic oscillator units. number of bosonsl;, beyond which there is the collapse of
We write p in units a,=[#%/(mw,)]¥2=1 um, A in units  the wave functiori7]. We obtain the same qualitative behav-
(hwy)a, *=0.477(5.92) peVkm*, and the energy in units ior for the ’Li condensate in our sombrero potential. How-

fw,=0.477(5.92) peV for®’Rb(’Li). Moreover, we use €Ver, in cylindrical symmetry, the collapse occurs along the
the following values for the scattering lengtta,=50 line which characterizes the minima of the external potential,

(—13) A for Rb(’Li) [1,3]. i.e., atp=po andz=0. The numerical results are shown in

We have to distinguish two possibilities: positive or nega-Fig. 2. We notice that, for a fixedo, the critical number of
tive scattering length. In the case of positive scattering lengtR0sonsNc is only weakly dependent on the height of the
we can control the density profile of the BEC by modifying barrier of the Sombrgro potential. Thesg results suggest that
the parameters of the potential and also the number of pa¥ve cannot use toroidal traps to significantly enhance the
ticles. In Fig. 1 we show the ground-state density profile ofMetastability of the BEC with negative scattering length.
the 8’Rb condensate for several numbers of atoms. For a 10 calculate the energy and wave function of the elemen-
small number of particles the condensate is essentially corf@ry excitations, one must solve the so-called Bogoliubov—de
fined along the minimum oW,(r); there is a very small GennesBdG) equationd18,19. The BAG equations can be
probability of finding particles in the center of the trap so obtained from the linearized time-dependent GP equation.
that the system is effectively multiply connected. Nsin- _ _ _
creases, the center of the trap starts to fill up and the system TABLE I. Ground state of'Rb atoms in the toroidal trap with
becomes simply connected. The valueNdbr which there is  Po=2 andX=4. Chemical potential and energy are in units of
a crossover between the two regimes increases with the valffg’==0-477 peVe;=0.729 kHz). Lengths are in units d,
of N and ofpy and, within the Thomas-FernfilF) approxi- mm.
mation, scales lika ¥2p§. In Table | we show the energy per

particle, the chemical potential, and the average transverse N E/N ’ o? NG

and vertical size for the trapping potential characterized by 5000 5.85 7.71 1.96 1.41
the parameterpy=2 and\ =4 in the z-harmonic oscillator 10000 7.45 10.26 1.97 1.70
units. As expected, the energy per particle and the chemical 20000 9.84 14.00 1.97 2.05
potential grow by increasing the number of particles but they 30000 11.73 16.94 1.97 2.29
do not scale adl¥? because, with this trapping potential, the 40000 13.36 19.47 1.98 2.48
TF approximation is valid foN>10. It is instead interest- 50000 14.81 21.74 1.99 2.63

ing to observe that/(x?)= \(y?) grows less than/(z%) due
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L B L L I B TABLE Il. Lowest elementary excitations of the Bogoliubov
10000 - o o o spectrum for the ground state 8fRb atoms in the toroidal trap
i o o) O with pg=2 and\ =4. Units are as in Table I.
i i N hoq hw, hws fhwy
1 1.00 1.98 2.97 3.96
8000 1= 7 5000 1.00 1.70 2.43 3.19
r s 10000 1.00 1.68 2.37 3.08
2 L - = . " 1 20000 1.00 1.66 2.32 3.00
L . i 30000 1.00 1.66 2.30 2.96
6000 L | 40000 1.00 1.66 2.30 2.95
50000 1.00 1.66 2.30 2.95
| 5 0 o o | We have tested our program in simple models by comparing
o numerical results with the analytical solution and verified
4000 - O 7 that a 40< 40 mesh already gives reliable results for the low-
O E') i '1‘0' . '1'5' L ‘2'0' R est part of the spectrum. In Table Il we show the lowest

v elementary excitations of the Bogoliubov spectrum for the
o(0)

ground state of the system. One observes the presence of an

FIG. 2. Critical numbeN, of “Li atoms vs the potential barrier 0dd collective excitation at energy quite closefte=1 (in
at the origin: Vo(0)=\pg/4. Open squaresy,=2; full squares, UNits w,). This mode is related to the oscillations of the
po=3; open circles, po=4. Energy is in units of 4w,  center of mass of the condensate which, due to the harmonic
=5.92 peV(w,=9.03 kHz) and length in units af,=1 um. confinement along the-axis, is an exact eigenmode of the
problem characterized by the frequeney, independently

Namely, one can look for zero angular momentum solution®f the strength of the interaction. For largé the lowest

of the form elementary excitations saturate, suggesting that the Thomas-
i)t ot x ot Fermi asymptotic limit is reached.
W(r,t)=e " Y(p,2) +u(p,z) e +v*(p,2)€ ]&6) In the case of negative scattering length we verified that,

quite close to the critical number of bosohg, an even
corresponding to small oscillations of the wave functionmode softens driving the transition towards a collapsed state.

around the ground-state solutign By keeping terms linear
in the complex functionsl and v, one finds the following IIl. VORTICES AND THEIR METASTABILITY

BdG equations: Let us consider states having a vortex line alongzthgis

and all bosons flowing around it with quantized circulation.

) +Vo(p,2)— The observation of these states would be a signature of mac-
roscopic phase coherence of trapped BEC. The axially sym-
metric condensate wave function can be written as

V()= (p,2)e*’, 9

a2+1 a+(92
52 p dp 972

ﬁZ
~ 2m

u(p,2)+gN¥(p,2)|%v(p,2)

+29N‘ ¥(p,2)|?

=hou(p,2), (7)) \where @ is the angle around the axis andk is the integer

220 2 1 5 guantum number of circulation. The resulting GP functional
[_ — (9_2+_ I 9 5| +Vo(p,2)— (1), representing the_energy per particle, can bg written in

2m\ dp° p dp T terms of 4, (r) by taking advantage of the cylindrical sym-

metry of the problem:
v(p,2)+gN[¥(p,2)|?u(p,2)

+29N‘ ¥(p,2)|?

f dpdzds (azﬂk(pz)Z ’awkpz) )
——fwv(p,2). ®) o || ez ]

The BdG equations allow one to calculate the eigenfrequen- + 2+Vo P, Z))W/k(P 2)|?+ —|l//k(P 7)|*.
ciesw and hence the energiésv of the elementary excita- 2mP

tions. This procedure is equivalent to the diagonalization of (10)

the N-body Hamiltonian of the system in the Bogoliubov
approximatior{17]. The excitations can be classified accord-Due to the presence of the centrifugal term, the solution of

ing to their parity with respect to the symmetzy- —z. this equation fok# 0 has to vanish on theaxis providing a
We have solved the two BdG eigenvalue equations bysignature of the vortex state.
finite-difference discretization with a lattice of A#@l0 points Vortex states are important to characterize the macro-

in the (p,z) plane. In this way, the eigenvalue problem re-scopic quantum phase coherence and also superfluid proper-
duces to the diagonalization of a 3208200 real matrix. ties of Bose systemfdl1]. It is easy to calculate the critical
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TABLE Ill. Vortex states and excitation energiesgt?Rb atoms 50 (T T
with k=1 in the toroidal trap withpy=2 and A=4 within the I N=50000
Hartree-Fock approximation. Units are as in Table I.

40

30
N El/N M1 € ﬁQC

5000 6.00 7.87 9.56 0.15 200

10000 7.61 10.44 12.46 0.16 ol P
20000 10.02 14.22 16.60 0.18 S
30000 11.93 17.20 19.80 0.20
40000 13.57 19.75 22.54 0.21
50000 15.04 22.04 25.09 0.23 20

0

v (0.2)

frequency(). at which a vortex can be produced. One has to
compare the energy of a vortex state in a frame rotating with £
angular frequency?, that isE—QL,, with the energy of the ’ Nl 1
ground state with no vortices. Since the angular momentum ol vt
per particle isfk, the critical frequency is given bjQ, 005115 2 253 35
=(E/N—Ey/N)/k, whereE, /N is the energy per particle g
of the vortex with quantum numbdr In Table Il we show FIG. 3. Effective potentiad .(p,z) appearing in the eigenvalue
some results for vortices of’Rb. The critical frequency equation for the single-particle excitation E). Two sections at
turns out to increase slightly with the number of atoms. Thisz=0 andz=3(z=6) are shown foN=5000 (N=50 000) atoms
corresponds to a moderate lowering of the momentum oin panel (a) [(b)]. z=0 corresponds to the symmetry plane. The
inertia per unit mass of the condensate wi\egrows. dotted line represents the external potential. The chemical potential
For “Li we calculate the critical numbe. of bosons for  of the vortex state is marked by a short dashed line, the excitation
which there is the collapse of the vortex wave function. Weenergy by a long dashed line. Parameters of the external potential:
find thatN, has a rather weak dependence on the quanturfio=2 andx=4. Units as in Fig. 1 withhw,=0.477 peVi,
number of circulatiork. Note that, in the case of a harmonic =9:729 kHz).
external potential, there is an enhancementigby increas-
ing k because in that case rotation strongly reduces the den=0 should pay a large kinetic energy cost due to the strong
sity in the neighborhood of the origin, where the externallocalization of the particle induced by the effective potential.
potential has its minimurg]. Instead, it is more convenient to place the excited particle on
Once a vortex has been produced, the BEC is superfluid fop of the Bose condensate, i.e.pat p; andz+0 as shown
the circulating flow persists, in a metastable state, in the ahin Fig. 4.
sence of an externally imposed rotatifiil]. As discussed It is well known that the Hartree-Fock approximation de-
previously, vortex solutions centered in harmonic traps havacribes only single-particle excitatiofd7]. To have the
been found[6], but such states turn out to be unstable to
single-particle excitations out of the condensate. To study the 0.01
metastability of the vortex we first analyze the following L
Hartree-Fock equatiofi2]: - N=50000

10

I

ﬁ2
- mV2+VO(r)+2gN’¢k(r)

I
I
[
!
I
i

2)¢(f)=6¢(r), (1D 0.005

|

1

1

|

!

| _
1
i
1

.
i

which describes, in the weak coupling limit, one particle
transferred from the vortex staté,(r) to an orthogonal
single-particle stateb(r). Quasiparticle motion is governed L
by an effective Hartree potential veq(r)=Vo(r) 0.02
+ 29| 4 (r)|?, which combines the effects of the trap with a I
mean repulsion by the condensate. Figure 3 showép,z) I
for N=5000 and 50 000. The repulsion induced by the un- 0.01
derlying condensate is quite evident near py. Let w, be i
the chemical potential of the vortex state characterized by a
circulation quantum numbdy, then the vortex is metastable

if e>pu, and unstable ik<pu, [12]. As shown in Table I,

for our 3D system all the studied vortices are metastable and z

so the BEC can support persistent currents, thus it is SUper- rig. 4. particle probability density of the=1 vortex state
fluid. Contrary to what may be inferred by means of semi-(sojid line) and square of the excitation wave functiatashed ling
classical argumentgl2], the wave function describing the at the radial distance=p,=2, i.e., where both the wave functions
excitation¢(r) is not localized near the symmetry axis even peak. Curves are fdi=5000 (N=50 000) atoms in panéh) [(b)].
for rather large numbers of atoms. A bound state atz Units and parameters as in Fig. 3.

n(p,z)

N=5000
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TABLE IV. Bogoliubov vs Hartree-Fock lowest elementary ex- 1D model, however, should be taken with caution because
citation for a vortex state of’Rb atoms withk=1 in the toroidal  other branches of low energy collective excitations are

trap with po=2 andA=4. Units are as in Table I. present in such low-dimensional systefag].
N how €— M1
IV. CONCLUSIONS

5000 1.22 1.69
10000 1.48 2.02 We have studied the Bose-Einstein condensate in a 3D
20000 1.73 2.38 toroidal trap given by a quartic sombrero potential along the
30000 1.88 2.60 cylindrical radius and a harmonic potential along #haxis.
40000 1.99 2.79 We have shown that it is possible to modify strongly the
50000 2.08 3.05 density profile of the condensate by changing the parameters

of the potential or the number of bosons. The properties of
the condensate and its elementary excitations have been ana-
complete spectrum, including collective excitations, onelyzed for both positive and negative scattering length by con-
must solve the BdG equatiori8,19. One must look for ~ sidering 8Rb and ‘Li atoms. For ‘Li, which has negative

solutions of the form scattering length, we have calculated the critical number of
it o (s atoms for which there is the collapse of the wave function.
Vi (r,)y=e” My (p,2)€*+u(p,z)e The results have shown that a toroidal trap does not enhance

the metastability of the ground state of the condensate. On
the other hand, in the case of a harmonic external potential,
Here q represents the quantum number of circulation of theVe have recently showf21,22 that, when a realistic nonlo-
elementary excitation. We have solved the two BdG eigengal (finite range effective interaction is taken into account, a
value equations by finite-difference discretization using the'eW stable branch of Bose condensate appears'lforat
same method described in Sec. Il. We have checked that gher density. Presumably a similar state can be found also
40x 40 mesh gives the correct excitation energies within thd" the presence of a toroidal external trap for a sufficiently
Hartree-Fock approximation. Therefore, for the purpose ofarge number of particles when nonlocality effects are in-
determining the stability of the vortex state, this rather coars&!uded. o _ _
mesh is sufficiently accurate. The results are shown in Table A Superfluid is characterized by the presence of persistent
IV: The lowest Bogoliubov excitation is positive and always CUIrents in the absence of an externally imposed rotation. In
lower than the lowest Hartree-Fock one. Moreover, by in-order to investigate this peculiar sign of the macroscopic
creasing the number of particles, their difference increases &§1ase coherence of the condensate, we have also studied
expected for collective excitations. We have also verifiedVOrtex states. Our results suggest that vortices can support
that vortex states become unstable by strongly reducing epersistent currents_, in 3D toroidal trz_ips with fairly large num--
ther density(down to about one hundred bosons in our Pers of atoms. This feature essentially depends on the toroi-
model trap or scattering length. dal geometry of the trap and should be independent of other
Therefore, the behavior of the 3D trap we have analyzedetails of the confining potential.
closely resembles the simplified 1D model studied in Ref.
[13], which represents the limit of a deep trapping potential.
Also in that case the Bogoliubov approximation has been
used to evaluate the spectrum of elementary excitations This work has been supported by the INFM under the
showing that vortices are stabilized by strong repulsive interResearch Advanced Proje@®@RA) on “Bose-Einstein Con-
particle interactiongor equivalently by high densify The  densation.”

Xe 'y p* (p,z)el k- Dlglet] (12
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