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Photonic band gaps and defect states induced by excitations of Bose-Einstein condensates
in optical lattices

Karl-Peter Marzlin and Weiping Zhang
Department of Physics, Macquarie University, Sydney, New South Wales 2109, Australia

~Received 8 October 1998!

We study the interaction of a Bose-Einstein condensate in an optical lattice with an additional largely
detuned light field propagating through it. If the condensate is in its ground state it acts as a periodic dielectric,
and gives rise to photonic band gaps at optical frequencies. The band structure of the combined system of
condensed lattice atoms and photons is studied by using the concept of polaritons. If elementary excitations of
the condensate are present, they will produce defect states inside the photonic band gaps. The frequency of
localized defect states is calculated using the Koster-Slater model.@S1050-2947~99!06704-9#

PACS number~s!: 03.75.Fi, 32.80.2t, 42.70.Qs
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I. INTRODUCTION

The achievement of Bose-Einstein condensation in m
netic traps@1# has induced a great interest in the properties
quantum atomic gases and their manipulation by atom o
techniques. Although the latter are usually used for la
cooling in the formation process of a Bose-Einstein cond
sate~BEC!, confinement in an optical dipole trap has be
demonstrated only recently@2#. The all-optical confinemen
of a BEC provides a great potential for the manipulation a
application of BEC’s. In particular, it opens the new oppo
tunity to study atomic BEC’s in optical lattices. In rece
years experimentalists have made great efforts to crea
BEC in optical lattices. Although there are presently s
some technical problems in achieving this goal, the r
physics of uncondensed ultracold atoms in optical lattices@3#
and quasicrystals@4# has attracted great interest for both e
perimentalists and theorists. Recently, several theoretica
pers dealing with condensates in optical potentials have b
published@5,6#.

In this paper we focus on another aspect of this subj
light propagation through a coherent condensate tha
placed in an optical lattice. Since the ground state of
condensate in a lattice potential is periodic, it will act as
periodic dielectric for laser light propagating through it. Th
it will give rise to photonic band gaps at optical frequenci

The phenomenon of photonic band gaps is a natural c
sequence of the periodicity of the condensate. In fact
should also occur for uncondensed ultracold atoms in opt
lattices. However, in the case of a condensed atomic la
what is interesting is that, because of the macroscopic o
pation of the ground state, a proper description of photo
band gaps is given in terms of polaritons~an entangled co-
herent system composed of superpositions of photons
excited atoms!. Furthermore, elementary excitations may
present in the lattice BEC. In general these excitations ar
longer periodic, and will cause distortions of the perfect p
riodic structure of the condensed atomic lattice. A
excitation-induced defect in the atomic lattice in turn cau
the occurence of defect states inside photonic band gap
light propagating through the BEC. In this sense, elemen
excitations have a close analogy to lattice defects in so
PRA 591050-2947/99/59~4!/2982~8!/$15.00
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state physics which cause defect states in the electronic b
structure.

The paper is organized as follows. In Sec. II we will d
rive the equations of motion. In Sec. III we consider the ca
where only the lattice laser beams are present, and seek
periodic solution to the coupled equations of motion desc
ing the ground-state BEC and the lattice laser beams. T
solution shows that the optical potential experiences
back-reaction from the condensate if the latter has set
down into its ground state. In this sense, the lattice la
beams just effectively act as a constant periodic potential
the BEC. In Sec. IV we consider the propagation of a we
probe laser beam through the ground-state BEC, and de
the form of the lowest photonic band gap for this beam
using polariton modes. To examine the behavior of a pro
laser beam propagating through a weakly nonperiodic BE
a theory of defect states for photonic band gaps is develo
in Sec. V, which is applied in Sec. VI to the Koster-Slat
model for a localized elementary excitation. Section VII co
cludes the paper.

II. EQUATIONS OF MOTION

The system under consideration consists of interac
two-level atoms which are coupled to the electromagne
field. This coupling is described by using the electric-dipo
and rotating-wave approximations so that the correspond
second quantized Hamiltonian is given by

H5HA1H NL1H E.M.1H int , ~1!

where

HAªE d3x (
i 5e,g

C i
†H pW 2

2M
1V~xW !1EiJ C i ~2!

describes the atomic center-of-mass motion.V(xW ) denotes an
external potential.M represents the atomic mass, andEi , i
5e,g, are the internal energy levels for ground-state a
excited atoms, respectively. The corresponding field ope
tors Cg and Ce fulfill the commutation relations

@C i(xW )†,C j (yW )#5d i j d(xW2yW ). HNL is the nonlinear part
2982 ©1999 The American Physical Society
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of the atomic Hamiltonian which describes two-body co
sions. For a dilute Bose gas it can be approximated by

HNLª
1
2 E d3x (

i , j 5e,g
gi j C i

†C j
†C jC i , ~3!

where gi jª4p\2asc
( i j )/M are coupling constants, andasc

( i j )

denote the scattering lengths for scattering between atom
the internal statei and j.

For the description of the electromagnetic field we use
representation in terms of positive end negative freque
parts of the vector potential,AW (xW )5AW (1)(xW )1AW (2)(xW ). This
representation will turn out to be convenient for the adiaba
elimination of excited atoms. The Hamiltonian for the fr
electromagnetic field then takes the simple form

HE.M.52«0E d3x (
a,b51

3

Aa
~2 !~ v̂2!abAb

~1 ! . ~4!

The positive and negative frequency parts are related
(AW (1))†5AW (2) and fulfill the commutation relation

@Aa
(1)(xW ),Ab

(2)(yW )#5(\/2«0)v̂21dab
T (xW2yW ), where dab

T (xW

2yW ) is the transverse delta function. Thefrequency operator

v̂ is a pseudodifferential operator@7# whose action is defined
in momentum space by

@v̂AW #~xW !5~2p!23/2E d3k eikW•xWcukW uAW ~kW !. ~5!

The physical interpretation of the frequency operator
simple. It just multiplies a photon mode with its frequen
v(kW )5cukW u. A more compact representation ofv̂ in position

space is given byv̂5cA2D̂5cu2 i¹u, whereD̂ denotes the
Laplace operator. The usage of the frequency operatorv̂ has
advantages, though it is quite uncommon. It allows fo
closed representation of the equations of motion in posi
space which makes it easier to display the essential step
our derivations. Physically, it just corresponds to the Fou
transformation of the well-known equations for photon m
mentum eigenmodesal(kW ) coupled to two-level atoms.

Using the positive and negative frequency parts of
vector potential, the electric-dipole coupling between the
oms and the electromagnetic field in the rotating-wave
proximation can be written as

H int5 i E d3x$Cg
†Ce~dW * •v̂AW ~2 !!2Ce

†Cg~dW •v̂AW ~1 !!%.

~6!

The Heisenberg equations of motion derived from
Hamiltonian~1! are given by
in
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i\Ċe5H pW 2

2M
1V1Ee1 (

j 5e,g
ge jC j

†C jJ Ce

2 iCg~dW •v̂AW ~1 !! ~7!

i\Ċg5H pW 2

2M
1V1Eg1 (

j 5e,g
gg jC j

†C jJ Cg

1 iCe~dW * •v̂AW ~2 !! ~8!

iȦa
~1 !~xW !5v̂Aa

~1 !~xW !1
i

2«0
E d3yCg

†~yW !Ce~yW !

3 (
b51

3

db* dab
T ~xW2yW !. ~9!

III. LATTICE LASER BEAMS AND BEC IN GROUND
STATE: DECOUPLING OF THE FIELDS

To analyze the interaction between the atoms and the
tice laser beams in the absence of an external pote

@V(xW )50#, we restrict ourselves to the particular case wh
the atomic field is composed of condensed atoms, i.e
Bose-Einstein condensate. This allows us to make furt
substantial simplifications. As is well known, a condens
can be described by assuming that all atoms are in the s
quantum statecg . This amounts to replacing the field oper
tor Cg in Eq. ~8! by the c-number fieldcg , which then
fulfills a nonlinear Schro¨dinger equation. In addition, we as
sume that the photon fluctuations of the lattice laser bea
are small, and therefore not important for our case. This
lows us to replace the operatorAW (1) by a corresponding clas
sical field vectorAW L

(1) of the lattice laser beams.
We consider the regime of coherent interaction where

electromagnetic field is detuned far away from the atom
resonance frequencyv resª(Ee2Eg)/\. Specifically, we as-
sume that the detuningDLªvL2v res ~with vLªcukWLu) of
the lattice laser beams is negative~red detuning!, and its
absolute value is much larger than any other character
frequency of our system, so that we can adiabatically eli
nate the excited atoms@8–11#. This amounts to replacing th
field operator for excited atoms by

Ce'
2 i

\DL
cg~dW •v̂AW L

~1 !!. ~10!

Inserting Eq.~10! into Eqs.~8! and ~9!, one easily finds~to
first order in 1/DL)
i\ċg5H pW 2

2M
1V1Eg1gggcg

†cg1
1

\DL
~dW •v̂AW L

~2 !!~dW •v̂AW L
~1 !!J cg ~11!

i „ȦL
~1 !~xW !…a5v̂„AL

~1 !~xW !…a1
1

2«0\DL
E d3yucg~yW !u2„dW •v̂AW L

~1 !~yW !…(
b51

3

db* dab
T ~xW2yW !. ~12!
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Equations~11! and ~12! describe the coherent coupling of
ground-state atomic field to the lattice laser beams. T
physics implicit in these equations is straightforward. T
laser beams induce an optical potential for ground-state
oms which is proportional to the light intensit

@}(v̂AW L)2#. The atoms, in turn, act on the electromagne
field like a dielectric, where the index of refraction is dete
mined by the densityucgu2 of ground-state atoms.

We are interested in how the condensate affects the la
laser beams and the corresponding back-reaction in the
cal potential. For simplicity, we take the laser beam to
parallel to thex axis. Further, we assume that the BEC h
settled to its ground state which, because of the periodicit
the optical potential provided by the lattice laser beams
periodic. It is then convenient to decompose the fields int
discrete Fourier series

cg~x!5(
l PZ

c lexp@ i lkWL•xW #,

V~L !~x!ª
1

\
dW •v̂AW L

~1 !~x!5(
l PZ

V l
~L !exp@ i lkWL•xW #.

We remark thatkWL doesnot denote the wave vector of th
laser beams. It is defined by its relation to the spatial per

xL of the optical lattice bykWL5eW x2p/xL . This periodxL

differs in general slightly from the wavelength of the las
beams outside the atomic medium@12#. Transforming Eqs.
~11! and~12! to momentum space we arrive at the followin
one-dimensional set of equations:

i\ċ l5
\2kL

2

2M
l 2c l1

ggg

~2p!2 (
m,nPZ

cm1n2 l* cmcn

1
\

~2p!3\DL
(

m,nPZ
c l 1m2nVm

~L !* Vn
~L !, ~13!

i\V̇ l
~L !5\vLu l uV l

~L !1
vLu l udW'

2

2~2p!3«0DL
(

m,nPZ
Vm

~L !cm1n2 l* cn ,

~14!

where we have defined the transversal dipole moment of

atomsdW'ªdW 2kWL(dW •kWL)/kWL
2 . We can now exploit the fac

that the optical frequencyvL is typically ~very! much larger
than any other frequency scale involved in the system. T
allows us to perform a rotating-wave approximation by
serting Ṽ l

(L)
ªexp$ivLtulu%Vl

(L) into Eqs. ~13! and ~14! and
neglecting all terms which rotate at multiples of the fr
quencyvL . This procedure results in the simplified equ
tions
e
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i\ċ l5H \2kL
2

2M
l 21

\

~2p!3DL
(

mPZ
uVm

~L !u2J c l

1
ggg

~2p!2 (
m,nPZ

cm1n2 l* cmcn

1
\

~2p!3DL
(

mPZ
c l 12mVm

~L !* V2m
~L ! , ~15!

i\V̇ l
~L !5\vLu l u H 11

dW'
2

2~2p!3«0DL
(
nPZ

ucnu2J V l
~L !

1
dW'

2

2~2p!3«0DL

vLu l uV2 l
~L ! (

nPZ
cn22l* cn . ~16!

These equations have some properties which allow us to
couple the system for some physically interesting cases.
most important one is that the atoms only couple coun
propagating modes, i.e.,V l

(L) andV2 l
(L) . This is a direct con-

sequence of energy conservation, since a transition to
other mode would require an amount of energy on the or
of \vL , which cannot be provided by the interaction wi
the condensate. In addition, it is not difficult to see that b

the mean densityr̄ª(nucnu2 and the mean light intensity

per mode,Ī lªuV l
(L)u21uV2 l

(L)u2, are conserved quantities, re
flecting the conservation of the total number of atoms a
the number of photons with energy\vLu l u, respectively.
Therefore, the first sums on the right-hand sides of Eqs.~15!
and ~16! just produce a constant shift of the energy levels

We now consider a solution of the system of equatio
~15! and ~16! which corresponds to a standing-wave latti
laser beam interacting with a BEC in its ground state in
coherent regime. For a standing-wave lattice, we can m
the ansatzV l

(L)5V2 l
(L) . In addition, in the ground state of th

BEC the time dependence of all coefficientsc l is given by
c l(t)5exp@2imt/\#cl(0), wherem denotes the chemical po
tential andc l(0) can be chosen to be real. It is then n
difficult to show thatV l

(L)5V2 l
(L) holds for all times~by dif-

ferentiating both sides and comparing the results!. In addi-
tion, the expressionV l

(L)V2 l
(L)* , which describes the optica

potential in Eq.~15!, is time independent, too.
An immediate consequence of this fact is that in the

herent regime the optical potential is decoupled and the c
densate behaves as if it were moving in a given exter
periodic potential. However, this conclusion is only valid
we consider an infinite BEC. In practice, the BEC is finit
and the frequency of the light field is fixed by the las
source. As a consequence, the lattice wave vectorkL inside
the BEC is in general different fromvL /c @12#. Thus, even if
the equations of motion decouple for agiven wave vector
kL , the optical potential is altered becausekL is changed as
compared to the vacuum. Nevertheless, once this has
taken into consideration the influence of the lattice la
beams on the BEC can be replaced by an external pote
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V(xW ) with periodicity p/kL . In this sense, the condensa
and the lattice laser beam self-consistently settle into a
tionary state.

IV. POLARITON BAND THEORY FOR LIGHT
INTERACTING WITH A CONDENSATE

In Sec. III we have shown how the combined system o
BEC and lattice laser beams behaves in its ground state
are now interested in a different situation where a runn
probe laser beam propagates through the ‘‘lattice cond
sate’’ ~condensate plus lattice laser beams!. The behavior of
the probe laser can be intuitively understood by conside
the BEC as a kind of dielectric for the probe laser bea
Since the BEC is periodic, the probe laser beam will eff
tively propagate through a periodic dielectric. We thus e
pect it to show the phenomenon of photonic band gaps@13#.

To describe the interaction of the probe laser beam w
the condensate, we will assume that the ground-state B
changes little, so thatcg enters as a given external field in
the equations of motion for excited atoms~7! and for the
probe laser beam~9!. The validity of this assumption is a
consequence of the macroscopic population of the gro
state: a small change in the number of ground state atoms
little effect on the macroscopic wave function of the BEC,
that for a weak probe laser beam the change incg can be
neglected. For uncondensed atoms this approximation is
valid, since no state is macroscopically occupied, and
has to employ a density-matrix approach to describe the
namics of the fields.

As a consequence of the elimination of the ground-s
atoms, the coupled equations of motion describe polar
modes, i.e., entangled superpositions of excited matter
photons@14,15#. Thus it is really ‘‘polaritonic’’ band gaps
rather than photonic band gaps that we are studying. H
ever, for sufficiently large detunings of the lattice las
beams the entanglement is very small, so that the resul
deed can be considered to be photonic band gaps.

To find a suitable expression for the ground-state w
function cg , we use the results of Sec. III, i.e., consider t
case where the BEC moves in a periodic potential of
form

V~xW !52V0cos~2kLx! ~17!

~we choose the factor of 2kL since the potential created by a
optical lattice of wave vectorkL would create such a poten
tial @11#!. In addition, we consider a very weak probe bea
and neglect the four-wave mixing effect due to the interf
ence between the probe laser and the lattice lasers@12#. As a
result, the ground state of the BEC can effectively be
scribed by the Gross-Pitaevskii equation

mcg5H pW 2

2M
1V~xW !J cg1gggucgu2cg , ~18!

wherem is the chemical potential. In the experimentally r
alized dilute Bose condensates the interaction energy of
two-body collisions between atoms is usually large, so t
one can perform the Thomas-Fermi approximation by
glecting the kinetic energy. This transforms Eq.~18! into a
a-
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e
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simple algebraic equation whose solution is of the fo
ucg(x)u25r01r1cos(2kLx). This solution is valid for allx if
the optical potential is not too strong, so thatr1 is smaller
than r0 . If r1 is not too close tor0 we can furthermore
simplify the wave function to

cg~x!'Ar01
r1

2Ar0

cos~2kLx! ~19!

~this time-independent expression is valid in a frame rotat
at frequencyEg /\). We remark that this expression pro
duces qualitatively correct results for the lowest photo
band even if the kinetic energy is not negligible orr1'r0 .
The reason for this is that the corresponding corrections
sentially introduce higher coefficients in the Fourier series
Eq. ~19!. Since for a weak interaction these higher coe
cients only couple higher bands, they do not affect the res
for the lowest band. Furthermore, for a wide range of para
eters the change inr1 is not very large, so that Eq.~19! will
still produce good estimations, even if the underlying a
sumptions are not well fulfilled.

Sincecg does not depend ony andz, it is advantageous to
rescale the wave functions asc→L'c, where L' is the
typical extension of the BEC in they and z direction. This
guarantees that the one-dimensional integral*dxucu2 is di-
mensionless, and can be interpreted as a particle numbe
the actual calculations this rescaling leads to the appear
of various factors ofL' . L' will not enter the final results,
however.

Introducing the ~classical! field V (P)(x)ªdW •v̂AW P
(1)(x)

for the probe laser’s Rabi frequency, Eqs.~7! and~9! can be
reduced to the polariton equations of motions@15#

i\ċe5H pW 2

2M
1\v res1

geg

L'
2

ucgu2J ce2 i\cgV~P!, ~20!

i\V̇~P!5\v̂V~P!1
i udW'u2

2«0L'
2
v̂~cg* ce!, ~21!

wherecg ~divided by L') is given by Eq.~19!. Since the
density of excited atoms should be very small, we have
glected two-body collisions between excited atoms@gee50
in Eq. ~7!#. Becausecg depends only onx, and since we
consider the case thatce andV (P) also do not depend ony
andz, the transversed function of Eq.~9! can be reduced to
an ordinaryd function @to prove this, one can transform Eq
~9! to momentum space#.

For later use it will be convenient to consider the so
tions ^xuf&ª„ce(x),V (P)(x)… of Eqs. ~20! and ~21! as ele-
ments of a polariton Hilbert space with the conserved sc
product

^f8uf&ªE dxH ce8* ce1
2«0\L'

2

udW'u2
V~P!8* v̂21V~P!J .

~22!

Physically the quantitŷ fuf& is related to the number o
excitations~number of excited atoms plus number of ph
tons! in our system. It is a conserved quantity because of
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rotating-wave approximation made in Sec. II. Equations~20!
and~21! can be rewritten in the formi\] tuf&5Hpoluf& with
the polariton Hamiltonian

Hpolª
1

2
~11s3!H pW 2

2M
1\v res1

geg

L'
2

ucgu2J 1
1

2
~12s3!\v̂

2 i\cgs11
i udW'u2

2«0L'
2
v̂cg* s2 , ~23!

wheres i are the Pauli matrices. We remark thatHpol is Her-
mitian with respect to the scalar product~22!, i.e.,
^f8uHpolf&5^Hpolf8uf&.
we

c
d

if

b

c

th

ng
t

on

li-
th
To derive the polariton band structure we have to find
eigenvalues of the operatorHpol . Sincecg is periodic,Hpol
commutes with the operator of discrete translations
amountp/kL , and thus has a common set of eigenvect
with this operator. The eigenvectorsufn,q& therefore can be
characterized by two quantum numbersnP$0,1,2,•••% and
qP@2kL ,kL# which denote the band index and the quasim
mentum, respectively. The eigenvalues of the discrete tra
lation operator are given by exp@iqp/kL#, and belong to
eigenvectors which are simply given by momentum eig
states with momentum\kmª\(q12mkL) for integer m.
The eigenvalues\vn,q of the Hamiltonian can be found b
expanding Eqs.~20! and~21! in this basis and searching fo
stationary solutions. The corresponding equations
\vce~km!5H \2km
2

2M
1\v resJ ce~km!1

geg

L'
2 H r0ce~km!1

r1

2
@ce~km11!1ce~km21!#J 2 i\L'Ar0V~P!~km!

2 i\L'

r1

4Ar0

@V~P!~km11!1V~P!~km21!#, ~24!

\vV~P!~km!5\cukmuV~P!~km!1 i
udW'u2cukmu

2«0L'
H Ar0ce~km!1

r1

4Ar0

@ce~km11!1ce~km21!#J ~25!
nd

ge
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ow-
g to
e-
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can easily be solved numerically. Figure 1~c! shows the re-
sulting band structure near the upper band edge of the lo
frequency band for a condensate of densityr051.1r1
51014 cm23. In order to describe the limit of a photoni
instead of a polariton band structure, we have assume
very large detuning ofDL5100 GHz of the lattice. How-
ever, the results given below do not change very much
smaller detuning is assumed. We have furthermore setudW'u
'ea0 , with e being the electron’s charge anda0 denoting
Bohr’s radius. The wave vector of the lattice was taken to
kL5107 m21.

An excellent analytical approximation for the band stru
ture can be made by assuming that forqP(0,kL) only the
modes V (P)(q), V (P)(q22kL), ce(q), and ce(q22kL)
are important. The problem is then reduced to finding
eigenvalues of a 434 matrix. For q5kL the eigenvalues
have a simple form, and allow one to derive the followi
expression for the band gapDv, separating the two lowes
energy bands:

Dv5s12s2 , ~26!

where we have defined the frequenciesn iªudW'u2r i /(2\«0)
and furthermore have introduced the abbreviationss6

ª
A(DL /2)21v res(An06An1/4)2. For a large detuning

uDLu, i.e., in the limit of a photonic band gap, this expressi
simplifies to Dv5v0n1 /uDLu. For the numerical values
given above, the band gap takes the valueDv'40 GHz.

For qÞkL the band structure is given by a rather comp
cated expression. Therefore, we have further simplified
st

a

a

e

-

e

e

analytical result by fitting it to a square root@16#. The lowest
polariton band then takes the form

v0,q'v0,max1 n̄2Ac2~ uqu2kL!21 n̄2, ~27!

where

v0,max5v res2
uDLu

2
2s1 ~28!

denotes the upper edge of the lowest frequency band, a

n̄ª
Dv

~v0,max2v res!
2

s1~s11s2! ~29!

determines the curvature of the band. In the limit of a lar
detuning this simplifies ton̄'Dv/2.

V. THEORY OF LOCALIZED DEFECTS

In Sec. IV we have studied polariton band gaps of lig
generated by the lattice condensate in its ground state. H
ever, in general the BEC might be in a state correspondin
a ~coherent! elementary excitation which usually are not p
riodic. Thus we expect defects in the lattice condensate. A
well known from solid-state theory, a defect or an impur
in an otherwise periodic potential can lead to defect sta
i.e., states whose energy eigenvalue lies inside the gap
tween two energy bands~see, e.g., Ref.@17#!. In the system
under consideration this phenomenon could be exploited
acquire knowledge about nonperiodic elementary excitati
of the Bose condensate by observing light propagat
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through the BEC. In addition, defect theory can also be
plied to study the back-reaction of an excited BEC on
optical potential.

The existence of defect states for photonic band gaps
been examined in the microwave regime for ordinary diel
tric materials @13,18#. The method of calculation that w
adopt is closely related to the Green’s-function approach
Ref. @17#.

Specifically we consider the situation that the cond
sate’s wave function is given bycG(x)5cg(x)1dcg(x),
where cg ~divided by L') is given by Eq.~19!, and dcg
describes a coherent elementary excitation of the conden
which we assume to be localized in thex direction. This
allows us to estimate the resulting energy eigenstates
adapting the Koster-Slater model@19# to the case of polariton
band gaps.

Our aim is to find solutions of the equation

\vdefectuf&5~Hpol1Hdefect!uf&, ~30!

where

Hdefectª2 i\dcgs11
i udW'u2

2«0L'
2
v̂dcg* s2 ~31!

FIG. 1. Band structure of polaritons near the band edgekL .
Displayed is 104(v2v res)/v res vs 104(q2kL)/kL . ~a! shows the
free dispersion relation for the relevant field components in
absence of any interaction. For a homogeneous BEC,cg5Ar0, a
mixing of excited atoms and photons leads to the formation of
separate avoided crossings@solid and dashed lines in~b!#. The la-
bels indicate the asymptotic form of the polariton modes, wh
they correspond to either excited atoms (ce) or photons (V (P)).
For a periodic ground-state BEC, the two avoided crossings
combined to form band gaps~c!.
-
e

as
-

of

-

ate

by

describes the influence of the elementary excitationdcg ,
andvdefect is the defect eigenfrequency.

To find the solutions of Eq.~30! we expanduf& in terms
of Wannier functions,

uWn,n&ª
1

A2kL
E

2kL

kL
dq e2p inq/kLufn,q&, ~32!

where n is an integer number. The functionsWn,n(x) are
localized around the lattice pointpn/kL which makes them a
convenient tool to study localized defects. Insertinguf&
5(n,nfn,nuWn,n& into Eq.~30!, one easily deduces the equ
tion

vdefectfn,n5(
m

vn,n2mfn,m

1(
m,m

^Wn,nuHdefect/\uWm,m&fm,m , ~33!

with

vn,n2mª
1

2kL
E

2kL

kL
dq ep i ~n2m!/kLvn,q . ~34!

Since the Wannier basis is countable, Eq.~33! can be inter-
preted as a matrix equation. In particular, one now can
ploit the fact that both the Wannier functions andHdefect are
localized. This implies that, at least approximately, only
finite number, say anN3N submatrix, of the matrix ele-
ments^Wn,nuHdefectuWm,m& is nonvanishing.

Introducing the Green’s function Gª(vdefect1
2Hpol /\)21, whose matrix elements are given by

^Wn,nuGuWm,m&5dn,m

1

2kL
E

2kL

kL
dq

ep i ~n2m!/kL

vdefect2vn,q

5:dn,mGn,n2m ~35!

the eigenvalue problem can be reduced to

fn,n5 (
m,m,l

Gn,n2m^Wn,muHdefect/\uWm,l&fm,l . ~36!

As is well known in solid-state theory@17#, it is sufficient to
consider only the eigenvalue problem of theN3N subspace,
where the matrix elements ofHdefect are nonzero, to derive
the frequencies of the defect states.

VI. KOSTER-SLATER MODEL FOR PHOTONIC BAND
GAPS

Having derived the matrix eigenvalue equation~36! for a
determination of the defect frequency, it is straightforward
apply the Koster-Slater model@19# to the problem at hand. In
this model the assumption is made that both the Wan
functions and the perturbationUnp are localized in such a
way that only one matrix element of the perturbation is no
zero,

^Wn,nuHdefectuWm,m&5U0dn,0dm,0dn,0dm,0 . ~37!
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This model is not valid ifdcg is too strongly localized~i.e.,
on a scale much smaller than the lattice spacingp/kL) @20#,
but should produce qualitative estimates of defect frequ
cies for moderately localized perturbations.

Inserting Eq.~37! into the eigenvalue equation~36! and
using Eq.~35! to evaluate the only relevant matrix eleme
of G, ^W0,0uGuW0,0&, we find that the defect frequenc
vdefect has to fulfill the condition

15
U0

\

1

2kL
E

2kL

kL dq

vdefect2v0,q
. ~38!

The integral can be calculated exactly for the photonic b
of Eq. ~27!, but, since the resulting expression is somew
complicated, it is more instructive to use the following a
proximation which is valid if the defect frequencyvdefect is
close to the upper edgev0,max of the lowest frequency band

1

2kL
E

2kL

kL dq

vdefect2v0,q
'

p

vL
A n̄

2~vdefect2v0,max!
. ~39!

Inserting this into Eq.~38!, for the frequency of the defec
state we find the expression

vdefect2v0,max'
p2

2

n̄

vL
2

U0
2

\2
. ~40!

It is of interest to know how large this frequency differen
is for realistic systems. To achieve this we first have
estimate the value of U05^W0,0uHdefectuW0,0&
5 i\*dx$WV* Wedcg* 2We* WVdcg% with ^xuW0,0&
5„We(x),WV(x)…. A rough estimate of this integral can b
made by setting bothdcg and the Wannier function to b
constant over one wavelengthlL , and to be zero outside thi
range. The normalization condition̂W0,0uW0,0&51 then
leads approximately to 15lL$uWeu21uWVu2/(vLud'u2/
2\«0L'

2 )%. Using this conditionU0 takes its maximal value
for We51/A2lL:

U0'2\dcgAvL

ud'u2

2\«0L'
2
. ~41!

Assuming a defect amplitude ofdcg5eAr0L' over the ex-
tent of W0,0(x), wheree is small compared to one, we ca
derive an estimate of the defect frequency~40! of
n

,

e-

-
e

-

n-

d
t

-

o

vdefect2v0,max'2p2e2
n̄

vL
n0 . ~42!

Using the same numbers as in Sec. IV~that is, r i
51014 cm23 andDL51011 s21) as well ase50.3, this fre-
quency difference can be shown to be of the order of 100
Though this number is too small to be measurable, it sho
be pointed out that it applies only to a defect correspond
to an elementary excitation over one wavelength. A differ
type of defect can produce a much different result. For
ample, if we do not consider a weak elementary excitat
but rather a strong localized excitation, we can estimate
effect, by assuming a larger value fore. A threefold increase
of the local density (e53) would lead to a defect frequenc
vdefect2v0,max of about 10 KHz, for instance.

VII. CONCLUSIONS

In this paper we have analyzed the interaction of a latt
~or ‘‘crystallized’’! Bose-Einstein condensate with large
detuned laser beams. We have derived a periodic solutio
the coupled equations of motion, corresponding to a f
BEC and a standing lattice laser beam. We found that, if
condensate is in its ground state, these equations deco
and the effect of the lattice laser beam on the condensa
not affected by the condensate itself~no back-reaction!. In
this situation it is thus equivalent to consider a condensat
some external periodic potential with the same periodicit

Building on this result, we then assumed that the cond
sate moves in an external periodic potential. Since the c
densate’s ground state is then periodic, too, it forms a kind
periodic dielectric. A probe laser beam propagating throu
this dielectric will then experience the formation of photon
band gaps. We have analyzed this situation using the con
of polaritons, i.e., entangled superpositions of excited ato
and photons.

If the condensate is not in its ground state but in a st
corresponding to a localized elementary excitation the p
odicity of the system is perturbed. This leads to the form
tion of defect states inside a polariton band gap.
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