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Photonic band gaps and defect states induced by excitations of Bose-Einstein condensates
in optical lattices
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We study the interaction of a Bose-Einstein condensate in an optical lattice with an additional largely
detuned light field propagating through it. If the condensate is in its ground state it acts as a periodic dielectric,
and gives rise to photonic band gaps at optical frequencies. The band structure of the combined system of
condensed lattice atoms and photons is studied by using the concept of polaritons. If elementary excitations of
the condensate are present, they will produce defect states inside the photonic band gaps. The frequency of
localized defect states is calculated using the Koster-Slater ni@&i50-294{®9)06704-9

PACS numbe(s): 03.75.Fi, 32.80-t, 42.70.Qs

I. INTRODUCTION state physics which cause defect states in the electronic band
structure.

The achievement of Bose-Einstein condensation in mag- The paper is organized as follows. In Sec. Il we will de-
netic trapg 1] has induced a great interest in the properties ofive the equations of motion. In Sec. Ill we consider the case
quantum atomic gases and their manipulation by atom opti#here only the lattice laser beams are present, and seek for a
techniques. Although the latter are usually used for |aseperiodic solution to the coupled equatio_ns of motion describ.—
cooling in the formation process of a Bose-Einstein condenind the ground-state BEC and the lattice laser beams. This
sate(BEC), confinement in an optical dipole trap has beensSolution shows that the optical pot_entlal experiences no
demonstrated only recentfi2]. The all-optical confinement back-reaction from the condensate if the latter has settled
of a BEC provides a great potential for the manipulation ancﬂ
application of BEC's. In particular, it opens the new oppor-
tunity to study atomic BEC'’s in optical lattices. In recent

own into its ground state. In this sense, the lattice laser
eams just effectively act as a constant periodic potential for
the BEC. In Sec. IV we consider the propagation of a weak
years experimentalists have made great efforts to create probe laser beam through the_ground-state BEC.’ and derive
. . . € e form of the lowest photonic band gap for this beam by
BEC in optlpal lattices. Alt.hOUQh. th_ere are presently S_t'” using polariton modes. To examine the behavior of a probe
some technical problems in achieving _th|s goal, the ”Chlaser beam propagating through a weakly nonperiodic BEC,
physics of uncondensed ultracold atoms in optical latfi8és 5 theory of defect states for photonic band gaps is developed
and quasicrystalp4] has attracted great interest for both ex-i, gec. V, which is applied in Sec. VI to the Koster-Slater
perimentalists and theorists. Recently, several theoretical pgnodel for a localized elementary excitation. Section VII con-
pers dealing with condensates in optical potentials have beeflydes the paper.
published[5,6].

In this paper we focus on another aspect of this subject:
light propagation through a coherent condensate that is
placed in an optical lattice. Since the ground state of the The system under consideration consists of interacting
condensate in a lattice potential is periodic, it will act as atwo-level atoms which are coupled to the electromagnetic
periodic dielectric for laser light propagating through it. Thusfield. This coupling is described by using the electric-dipole
it will give rise to photonic band gaps at optical frequencies.and rotating-wave approximations so that the corresponding

The phenomenon of photonic band gaps is a natural corsecond guantized Hamiltonian is given by
sequence of the periodicity of the condensate. In fact, it
should also occur for uncondensed ultracold atoms in optical H=Ha+Hn +HemtHin, (1)
lattices. However, in the case of a condensed atomic lattice
what is interesting is that, because of the macroscopic occiwwhere
pation of the ground state, a proper description of photonic

Il. EQUATIONS OF MOTION

band gaps is given in terms of polaritot@n entangled co- 5 : 52 .
herent system composed of superpositions of photons and HA:=f d Xi;g Viloy PVO+E Y, 2

excited atomps Furthermore, elementary excitations may be
present in the lattice BEC. In general these excitations are no . -
longer periodic, and will cause distortions of the perfect pe-describes the atomic center-of-mass mothé(x) denotes an
riodic structure of the condensed atomic lattice. Anexternal potentialM represents the atomic mass, &fd |
excitation-induced defect in the atomic lattice in turn causes=©.9. are the internal energy levels for ground-state and
the occurence of defect states inside photonic band gaps kcited atoms, respectively. The corresponding field opera-
light propagating through the BEC. In this sense, elementarjors Wy and W fulfill the commutation relations
excitations have a close analogy to lattice defects in soIidE\Ifi(x)T,\Ifj(y)]=5ij5(x—y). Hy. is the nonlinear part
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of the atomic Hamiltonian which describes two-body colli- _ 52
sions. For a dilute Bose gas it can be approximated by iAW= m+v+ Ect+ >, gej\lf;r\lfj v,
i=eg
HNL::%J d3xi jzeg gij\If;r\If}L\I'j‘Ifi, 3 _iqu(a.[,,,&<+)) (7)
where g;; :=4712a{l)/M are coupling constants, araf’ . p? .
denote the scattering lengths for scattering between atoms in ihWy= om PV ng_E 9giViW ¥y
the internal staté andj. I=e9
For the description of the electromagnetic field we use the + illfe(a* @A) (®)

representation in terms of positive end negative frequency
parts of the vector potentialy(x) = A" (x) + A(7)(x). This

representation will turn out to be convenient for the adiabatic iAC(x)= oA (X) + '_f By ()T (y)
elimination of excited atoms. The Hamiltonian for the free @ 2 28 g
electromagnetic field then takes the simple form 3
3 X 2, df 83X =), E)
Hem=2¢0 f d*x X AT(@)AL @
a,b=1

Ill. LATTICE LASER BEAMS AND BEC IN GROUND

The positive and negative frequency parts are related by
STATE: DECOUPLING OF THE FIELDS

(ACNYT=A) and fulfill the commutation relation
[Agﬂ(;),Af;)(;)]:(5/280);)715%(;_)7), where 5;)()2 To analyze the interaction between the atoms and the lat-
tice laser beams in the absence of an external potential
[V()Z)zO], we restrict ourselves to the particular case where
the atomic field is composed of condensed atoms, i.e., a
Bose-Einstein condensate. This allows us to make further
L e substantial simplifications. As is well known, a condensate
[wA](x)=(277)‘3’2f d3k &% *c|k|A(k). (5 can be described by assuming that all atoms are in the same
quantum state/, . This amounts to replacing the field opera-
The physical interpretation of the frequency operator istor ¥4 in Eq. (8) by the c-number field ¢, which then
simple. It just multiplies a photon mode with its frequency fulfills a nonlinear Schrdinger equation. In addition, we as-
o(K)=c|K|. A more compact representation @fin position ~ Sume that the photon fluctuations of the lattice laser beams
are small, and therefore not important for our case. This al-

lows us to replace the operaTA?F“) by a corresponding clas-

- 37) is the transverse delta function. Tfrequency operator

wisa pseudodifferential operatpf] whose action is defined
in momentum space by

space is given byp=cy—A=c|—iV|, whereA denotes the
Laplace operator. The usage of the frequency operatoas i , = (+) ,
advantages, though it is quite uncommon. It allows for aSic@l field vectorA;™” of the lattice laser beams.
closed representation of the equations of motion in position W€ consider the regime of coherent interaction where the
space which makes it easier to display the essential steps fiectromagnetic field is detuned far away from the atomic
our derivations. Physically, it just corresponds to the Fourief€Sonance frequenay.es=(E.—Eg)/%. Specifically, we as-
transformation of the well-known equations for photon mo-sume that the detuning, :=w| — wes (With @, :=cl|k|) of
mentum eigenmodes, (K) coupled to two-level atoms. the lattice laser beams is negatieed detuning and its
Using the positive and negative frequency parts of theabsolute value is much larger than any other characteristic
vector potential, the electric-dipole coupling between the at{régquency of our system, so that we can adiabatically elimi-
oms and the electromagnetic field in the rotating-wave apf@t€ the excited atoni8—11]. This amounts to replacing the

proximation can be written as field operator for excited atoms by
. k" R(— oA —i . a
Him=|f X IW(d* - 0AT)) =W IW (d- wA )} W e tg(d- 0AL). (10)
(6) :
The Heisenberg equations of motion derived from thelnserting Eqg.(10) into Egs.(8) and (9), one easily findgto
Hamiltonian(1) are given by first order in 1A))
~2
g P T L s v N R
Iﬁl[/gz m+v+ Eg+ggglr//glr/lg+ ﬁTAL(d-wAL )(d~wAL ) l//g (11)

. . 1 e ) -
AL 00)a= 0 (AL (0)at 5 J Ay |urg(y)[2(d- 0AL () 2 df 93X Y)- (12
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Equations(11) and(12) describe the coherent coupling of a _ hzkf 7

ground-state atomic field to the lattice laser beams. The ify = M 12+ 3 > Qb2 g

physics implicit in these equations is straightforward. The (2m)°A mez

laser beams induce an optical potential for ground-state at- g

omsA 9wh|ch is proportional to the light intensity +&2 E o Bt

[«(wAL)?]. The atoms, in turn, act on the electromagnetic (2m)“mnez

field like a dielectric, where the index of refraction is deter- 5

mined by the densitj,a_pg|2 of ground-state atoms. _ + _32 GeomQF QL) (15)
We are interested in how the condensate affects the lattice (2m7)°A mez

laser beams and the corresponding back-reaction in the opti-
cal potential. For simplicity, we take the laser beam to be

parallel to thex axis. Further, we assume that the BEC has ) g2

settled to its ground state which, because of the periodicity of  i£Q{" =% |l| 1+—§Z |2t QY
the optical potential provided by the lattice laser beams, is 2(2m)eoA <2

periodic. It is then convenient to decompose the fields into a =3

discrete Fourier series F—— o 1B g . (16
2(27T)3SOA|_ L|| 7|nez ¢n72llr//n

'/’g(x):gfz pexlilk, - x], These equations have some properties which allow us to de-
couple the system for some physically interesting cases. The
most important one is that the atoms only couple counter-

1 propagating modes, i.eQ(") andQ %) . This is a direct con-

QOB (x):=—d- A" (x)= >, OPexdilk, -x]. sequence of energy conservation, since a transition to any

h lez other mode would require an amount of energy on the order

of Aw_, which cannot be provided by the interaction with

. the condensate. In addition, it is not difficult to see that both
We remark thak, doesnot denote the wave vector of the o mean density =3 ,|#,|2 and the mean light intensity

laser beams. It is defined by its relation to the spatial period — i,
) ) y o 1€ SPatial PETIOG o mode] =M 2+ |Q 1|2, are conserved quantities, re-
)(;,LﬁOf the optlcall IaIFtlrc]eI b}?’kL_eﬁZW/XL'lTh'Shpef”c;]XmL flecting the conservation of the total number of atoms and
ffiers in general slightly from the wavelength of the lasery,o ,mper of photons with energyw,|l|, respectively.
beams outside the atomic mediyi2]. Transforming Egs.

11) and(12 . he followi Therefore, the first sums on the right-hand sides of Es.
(1D an ( ). to momentum space we arrive at the following and(16) just produce a constant shift of the energy levels.
one-dimensional set of equations:

We now consider a solution of the system of equations
(15 and (16) which corresponds to a standing-wave lattice

0 2 laser beam interacting with a BEC in its ground state in the

i o :ﬁ kLIZz,b n 9gg E v Ut coherent regime. For a standing-wave lattice, we can make
2 T (o2t TR the ansat£2{")=0) . In addition, in the ground state of the
BEC the time dependence of all coefficientsis given by
N fi > U QB 0L (13 l/l|(t)=exq—iﬂﬂﬁ]l/4(0), whereu denotes the chgmical po-
(2m)3hA mnez m.oone tential andy(0) can be chosen to be real. It is then not
difficult to show thatQ{")= Q") holds for all imes(by dif-
ferentiating both sides and comparing the resulis addi-
_ o |16 tion, the expressiof2{~Q* | which describes the optical
inQM=to|l|Q"+ = QWByx .y, potential in Eq.(15), is time independent, too.
2(27)% A mnez 14 An immediate consequence of this fact is that in the co-

herent regime the optical potential is decoupled and the con-
densate behaves as if it were moving in a given external
) . periodic potential. However, this conclusion is only valid if
where Yve hfmid%f"led Ehe transversal dipole moment of th\‘i?/e consider an infinite BEC. In practice, the BEC is finite,
atomsd, :=d—k_(d-k.)/kf . We can now exploit the fact and the frequency of the light field is fixed by the laser
that the optical frequency, is typically (very) much larger  source. As a consequence, the lattice wave vegtdnside
than any other frequency scale involved in the system. Thighe BEC is in general different from, /c [12]. Thus, even if
allows us to perform a rotating-wave approximation by in-ie equations of motion decouple forgiven wave vector
serting (" :=expliw tI}Q" into Egs. (13 and (14 and  k,, the optical potential is altered becauseis changed as
neglecting all terms which rotate at multiples of the fre-compared to the vacuum. Nevertheless, once this has been
guencyw, . This procedure results in the simplified equa-taken into consideration the influence of the lattice laser
tions beams on the BEC can be replaced by an external potential
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V(x) with periodicity 7r/k, . In this sense, the condensate Simple algebraic equation whose solution is of the form

and the lattice laser beam self-consistently settle into a sta¥g(X)|*=po+ p1cos(ZX). This solution is valid for alk if
tionary state. the optical potential is not too strong, so thatis smaller

than pg. If py is not too close tgpy we can furthermore

IV. POLARITON BAND THEORY FOR LIGHT simplify the wave function to

INTERACTING WITH A CONDENSATE
P1
In Sec. IIl we have shown how the combined system of a ()~ po+ FP—COS(ZKLX) (19
0

BEC and lattice laser beams behaves in its ground state. We

are now interested in a different situation where a runningyyis time-independent expression is valid in a frame rotating

probe laser beam propagates through the “Iattice. conderst frequencyEgy/#). We remark that this expression pro-
sate” (condensate plus lattice laser beanie behavior of 005 gualitatively correct results for the lowest photonic

the probe laser can be intuitively understood by considering . -4 aven if the kinetic energy is not negligible gr~p,.

the BEC as a kind of dielectric for the probe laser beamayq yoaq0n for this is that the corresponding corrections es-

Since the BEC is periodic, the probe laser beam will effecg a1y introduce higher coefficients in the Fourier series of

tively_ propagate through a periodic dielec.tric. We thus ex'Eq. (19). Since for a weak interaction these higher coeffi-
pect it to show the phenomenon of photonic band dagk ients only couple higher bands, they do not affect the results

: ) . .C
To describe the mterac'uon of the probe laser beam W'”} r the lowest band. Furthermore, for a wide range of param-
the condensate, we will assume that the ground-state BE ers the change ip, is not very large, so that E¢19) will

cr?anges litle, sof thatry enfters as.agwen eéternglffleldhmto still produce good estimations, even if the underlying as-
the equations of motion for excited atort® and for the &, hions ‘are not well fulfilled.

probe laser bean®). The validity of this assumption is a Sincey, does not depend gnandz, it is advantageous to

consequence of the macroscopic population of the grounpescale the wave functions a—L, ¢, wherel, is the
state: a small change in the number of ground state atoms hﬁfpical extension of the BEC in thg and z direction. This
little effect on the macroscopic wave function of the BEC, Soguarantees that the one-dimensional integic|¢|2 is di-
that for a weak probe laser beam the change/dncan be mensionless, and can be interpreted as a particle number. In

nelgtlject_ed. For ur;c;)n(_jensed atoms th:'ls approxymdatlon dIS "Me actual calculations this rescaling leads to the appearance
valid, since no state IS macroscopically 0ccupied, and onGg gy s factors of, . L, will not enter the final results,
has to employ a density-matrix approach to describe the dyﬁowever

namics of the fields. s
i ical f P (x)i=di. AL
As a consequence of the elimination of the ground-state 'ntroducing the (classical field 0P(x):=d- 0AL"(x)

atoms, the coupled equations of motion describe polaritof®" the probe laser’s Rabi frequency, EG8l and(9) can be
modes, i.e., entangled superpositions of excited matter arf@duced to the polariton equations of motigas]
photons[14,15. Thus it is really “polaritonic” band gaps 2y

rather than photonic band gaps that we are studying. How- cx p_+ +% 2 s (P)

ever, for sufficiently large detunings of the lattice laser 1% 2M i res L2 [l ® [ Y= 1460, (20)
beams the entanglement is very small, so that the result in-

deed can be considered to be photonic band gaps. _ i|& 2
To find a suitable expression for the ground-state wave 0P =4 00P + _i;,((/,; Je), (21)
function ¢4, we use the results of Sec. lll, i.e., consider the gol?
case where the BEC moves in a periodic potential of the
form where ¢ (divided byL ) is given by Eq.(19). Since the
density of excited atoms should be very small, we have ne-
V(X) = — Vocog 2k, X) (17)  9lected two-body collisions between excited atdrgs.=0

in Eq. (7)]. Becausey, depends only orx, and since we
(we choose the factor ofi@ since the potential created by an consider the case that, and Q") also do not depend on
optical lattice of wave vectok, would create such a poten- andz the transversé function of Eq.(9) can be reduced to
tial [11]). In addition, we consider a very weak probe beaman ordinaryé function[to prove this, one can transform Eq.
and neglect the four-wave mixing effect due to the interfer-(9) to momentum spade

ence between the probe laser and the lattice |44€isAs a For later use it will be convenient to consider the solu-
result, the ground state of the BEC can effectively be detions (x|#):=(1s(x),QP(x)) of Egs.(20) and(21) as ele-
scribed by the Gross-Pitaevskii equation ments of a polariton Hilbert space with the conserved scalar
product
P
nibg= _+V(X)]¢g+ggg|¢g|2¢gi (18 2e0hL? ;oA

2M <¢’|¢>=f dx ‘//é*‘/fe+ |§ |2l QP g-1P L

where u is the chemical potential. In the experimentally re- . (22

alized dilute Bose condensates the interaction energy of the

two-body collisions between atoms is usually large, so thaPhysically the quantity ¢|¢) is related to the number of
one can perform the Thomas-Fermi approximation by neexcitations(number of excited atoms plus number of pho-
glecting the kinetic energy. This transforms E#8) into a  tong in our system. It is a conserved quantity because of the
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rotating-wave approximation made in Sec. Il. Equati(2® To derive the polariton band structure we have to find the
and(21) can be rewritten in the forrit ;| ¢) = H o &) with eigenvalues of the operatét,, . Sinceyy, is periodic,H
the polariton Hamiltonian commutes with the operator of discrete translations of

amount7/k, , and thus has a common set of eigenvectors
52 geg 5 with this operator. The eigenvecto|r$n,q> therefore can be
H o= (1+ 03) +ﬁwres |<!/g| +5 (1 o) characterized by two quantum numbers {0,1,2; - -} and
ge[ —k_ k. ] which denote the band index and the quasimo-
| 2. mentum, respectively. The eigenvalues of the discrete trans-
—itipyo, + —— L oo, (23) lation operator are given by epipw/k ], and belong to
g g eigenvectors which are simply given by momentum eigen-
states with momentuntk,:=A(q+2mk ) for integer m.
whereo; are the Pauli matrices. We remark thégi, is Her-  The eigenvalued w, 4 of the Hamiltonian can be found by
mitian with respect to the scalar producR2), i.e., expanding Eqs(20) and(21) in this basis and searching for
(¢'|Hpoip) =(Hpoidp'| ). stationary solutions. The corresponding equations

OL

{hzkz ] Yeg
hhwe(Ky) = +h sl YelKm) + — L2

potelke) + 2 [¢e<km+1>+¢e - m] il Voo™ (k)

1

—ihLL PP Ky 1)+ QP (K- 1)1, (24
4 Po
K
ﬁWQ(P)(km) ﬁC|k |Q(P (km)+ %[ \/—we(km)"" \/—[’pe(km+l)+¢e l)]] (25)

can easily be solved numerically. Figuré&jlshows the re- analytical result by fitting it to a square rddi6]. The lowest
sulting band structure near the upper band edge of the lowepblariton band then takes the form

frequency band for a condensate of densjty=1.1p, . _

=10"* cm 3. In order to describe the limit of a photonic W0 g™~ W0 mat ¥— V(|0 =k )2+ 12, (27)
instead of a polariton band structure, we have assumed a
very large detuning of\, =100 GHz of the lattice. How- Where
ever, the results given below do not change very much if a ™
smaller detuning is assumed. We have furthermoredst W0 max= Dres™ TL
~ea,, With e being the electron’s charge amlg denoting

Bohr’s radius. The wave vector of the lattice was taken to b‘?jenotes the upper edge of the lowest frequency band, and
k,=10" m™ L. ’

—Si (28)

An excellent analytical approximation for the band struc- o Aw
ture can be made by assuming that épe (Ok_) only the vis————————5, (S, +s_) (29
modes Q(q), QP(q-2k), ve(q), and ye(q—2k) (@0 max— @re

are important. The problem is then reduced to finding the
eigenvalues of a A4 matrix. Forq=k, the eigenvalues
have a simple form, and allow one to derive the following detuning this simplifies to~Aw/2.

expression for the band gapw, separating the two lowest
energy bands: V. THEORY OF LOCALIZED DEFECTS

determmes the curvature of the band. In the limit of a large

In Sec. IV we have studied polariton band gaps of light

Aw=s,-s_, (26)  generated by the lattice condensate in its ground state. How-
ever, in general the BEC might be in a state corresponding to
a (coherent elementary excitation which usually are not pe-
riodic. Thus we expect defects in the lattice condensate. As is
well known from solid-state theory, a defect or an impurity
= \/(AL/2)2+ wres(\/V_i \/V_1/4)2. For a large detuning in an otherwise periodic potential can lead to defect states,
|A,[, i.e., in the limit of a photonic band gap, this expressioni.e., states whose energy eigenvalue lies inside the gap be-
simplifies to Aw=wqv,/|A |. For the numerical values tween two energy bandsee, e.g., Ref17]). In the system
given above, the band gap takes the value~40 GHz. under consideration this phenomenon could be exploited to

For g#k, the band structure is given by a rather compli- acquire knowledge about nonperiodic elementary excitations
cated expression. Therefore, we have further simplified thef the Bose condensate by observing light propagation

where we have defined the frequencigs=|d, |2p/(2%¢)
and furthermore have introduced the abbreviatians
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140 describes the influence of the elementary excitatiah,
and wgefect iS the defect eigenfrequency.
Ve(@~ ™ R To find the solutions of Eq:30) we expand ¢) in terms
-1 1A 1 g of Wannier functions,
‘\\Q(P)(q-sz) |W > 1 ka d — i Vq/kl_|¢ > (32)
) ) =T qge )
@ s 2k ) K na
a)
® 14® & where v is an integer number. The functioW, ,(x) are
"’-§3\?'2kL) ( localized around the lattice poimtr/k, which makes them a
s v (2K convenient tool to study localized defects. Inserting)
O s s(@2k) =3, ,%n,|W, ) into Eq.(30), one easily deduces the equa-
Yolg-2ky J e, Ye(@ tion
) T,
dp(q) ®) T wdefecd’n,v: Z wn,V*,u.(ﬁn,,u
1.5 Q" (q-2kp I~ “
b)
\“”/ + 3 (Wi IHaeteod [ Win, ) b (33
|
= with
\/ﬁ
}Aw
13) ==i “ dge™ (v~ wikiy (39
nv—pu 2kL K, ng-
-15
©) Since the Wannier basis is countable, E28) can be inter-

FIG. 1. Band structure of polaritons near the band ekige pre.ted as a matrix equation. In partlculgr, one now can ex-
Displayed is 16(w— w0/ wres VS 10(q—k )/k, . (@) shows the ploit Fhe fact _tha}t bo_th the Wannier functlons. aAdeecrare
free dispersion relation for the relevant field components in thé_ocjal'zed' This implies that, at Ieas'_[ apprOXImateI)_/, only a
absence of any interaction. For a homogeneous BEG: Jpo, a finite number, say arIN><|_\| submat_nx,. of the matrix ele-
mixing of excited atoms and photons leads to the formation of twoments(Wh, ,|H getect Wi, ) is nonvanishing.
separate avoided crossingmlid and dashed lines ifb)]. The la- Introducing the Green's function G:=(wgefecd
bels indicate the asymptotic form of the polariton modes, where—H /%) "1, whose matrix elements are given by
they correspond to either excited atomg,) or photons (™).

For a periodic ground-state BEC, the two avoided crossings are
combined to form band gaps).

1 ki eﬂn'i(V7,u.)/k|_
<Wn’V|G|Wm’M> 5n’m2kL f—k,_ a Wdefect™ @n,q
through the BEC. In addition, defect theory can also be ap-
plied to study the back-reaction of an excited BEC on the
optical potential. t

The existence of defect states for photonic band gaps ha
been examined in the microwave regime for ordinary dielec-
tric materials[13,18. The method of calculation that we
adopt is closely related to the Green’s-function approach of
Ref. [17]. ; ; : o .-

SPecificaIIy we coqsidgr the situation that the conden-@jnlsi(\;v;lg:]?; \{\r/]r; Igigsg::\c/‘aslfjaeti:gsgrﬁnlg :I;[d:; ;‘ﬁﬁ:g;&
sate's wave funct|0n IS given bYr(X) = 4hg(X) + 0¢g(x), where the matrix elements of ..; are nonzero, to derive
where y (divided byL,) is given by Eq.(19), and oy he frequencies of the defect states
describes a coherent elementary excitation of the condensatte '
which we assume to be localized in tledirection. This
allows us to estimate the resulting energy eigenstates by
adapting the Koster-Slater modé&R] to the case of polariton
band gaps.

Our aim is to find solutions of the equation

f c')defec{ ¢> =(H pol H gefec? | ¢>7 (30)

::5n,mGn,vf/.¢ (35

Qe eigenvalue problem can be reduced to

¢n,v:m2)\ Gn,vf;L(Wn,,u|Hdefectlhlwm,)\>¢m,>\- (36)
7S

VI. KOSTER-SLATER MODEL FOR PHOTONIC BAND
GAPS

Having derived the matrix eigenvalue equati@®) for a
determination of the defect frequency, it is straightforward to
apply the Koster-Slater modgl9] to the problem at hand. In
this model the assumption is made that both the Wannier
functions and the perturbatiod,,, are localized in such a
way that only one matrix element of the perturbation is non-
zero,

where

. ild,|?.
Hdefecf=_|h51r//go'++ ﬁw&l/a o_ (31
€ol-1 <Wn,v|Hdefechm,M>:ann,05m,oav,oau,o- (37
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This model is not valid if5ys4 is too strongly localizedi.e., "
on a scale much smaller than the lattice spaeiiig, ) [20], O defeci— Wo,mar= 2 T2 €2 —1g.
but should produce qualitative estimates of defect frequen- “L
cies for moderately localized perturbations.

Inserting Eq.(37) into the eigenvalue equatiof36) and
using Eq.(35) to evaluate the only relevant matrix element
of G, (WydG|Wy, we find that the defect frequency
wgetect Nas to fulfill the condition

(42)

Using the same numbers as in Sec. [that is, p;

=10"* cm 2 andA =10 s 1) as well ase=0.3, this fre-

quency difference can be shown to be of the order of 100 Hz.
Though this number is too small to be measurable, it should
be pointed out that it applies only to a defect corresponding
to an elementary excitation over one wavelength. A different
type of defect can produce a much different result. For ex-
ample, if we do not consider a weak elementary excitation

The integral can be calculated exactly for the photonic bandut rather a strong localized excitation, we can estimate its
of Eq. (27), but, since the resulting expression is somewhagffect, by assuming a larger value far A threefold increase
complicated, it is more instructive to use the following ap- ©f the local density ¢=3) would lead to a defect frequency

_UO 1 kL dq

1=— EEE—
fi 2k, —k_ Wdefect™ Woq

(38)

proximation which is valid if the defect frequen@yyesect iS
close to the upper edge, ., Of the lowest frequency band:

1 (ke dq T

2k, —k_ Wdefect™ Wo,q WL

. (39
2(‘J"defect_""O,ma)) 39

Inserting this into Eq(38), for the frequency of the defect
state we find the expression

— 2
WZVUO

Wdefect” @o,max™> 2 o2 ﬁ
L

(40

Wgefeci— @Wo,max Of @about 10 KHz, for instance.

VIl. CONCLUSIONS

In this paper we have analyzed the interaction of a lattice
(or “crystallized”) Bose-Einstein condensate with largely
detuned laser beams. We have derived a periodic solution of
the coupled equations of motion, corresponding to a free
BEC and a standing lattice laser beam. We found that, if the
condensate is in its ground state, these equations decouple
and the effect of the lattice laser beam on the condensate is
not affected by the condensate itséfio back-reaction In

is for realistic systems. To achieve this we first have toSOMe external periodic potential with the same periodicity.

estimate  the  value  of Uy=(WqdH getectWo 0
=% [dX{WHWebirg —Wg W 8¢} with (X|Wo o)

= (Wq(X),Wq(Xx)). A rough estimate of this integral can be

made by setting bottd; and the Wannier function to be
constant over one wavelength , and to be zero outside this
range. The normalization conditiodW, oW, =1 then
leads approximately to 2\ {|W2+|Wq|%/(w.|d, ¥
ZﬁsoLf)}. Using this conditiorlJ, takes its maximal value
for We=1/\2\:

° 9N "o L2

Assuming a defect amplitude @f,= e/poL, over the ex-

(41)

tent of Wy o(x), wheree is small compared to one, we can

derive an estimate of the defect frequernid®) of

Building on this result, we then assumed that the conden-
sate moves in an external periodic potential. Since the con-
densate’s ground state is then periodic, too, it forms a kind of
periodic dielectric. A probe laser beam propagating through
this dielectric will then experience the formation of photonic
band gaps. We have analyzed this situation using the concept
of polaritons, i.e., entangled superpositions of excited atoms
and photons.

If the condensate is not in its ground state but in a state
corresponding to a localized elementary excitation the peri-
odicity of the system is perturbed. This leads to the forma-
tion of defect states inside a polariton band gap.
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