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Markov approximation for the atomic output coupler
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The regions of validity of the Markov approximation for the coupling of atoms out of an atomic trap are
determined. We consider radio-frequency output coupling in the presence of gravity and collisional repulsion,
and Raman output coupling. The Markov approximation is crucial in most theoretical descriptions of an atom
laser that assume a continuous process of output coupling from a trapped Bose-Einstein condensate. In this
regime many techniques that have proved to be useful for modeling the optical laser, such as master equations,
can be used to describe the dynamics of the damping of the condensate mode undergoing output coupling.
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[. INTRODUCTION gime, where portions of a condensate are coupled out at such
a rate that the output-coupled atoms do not have time to
The recent observation of Bose-Einstein condensatiopropagate while the coupling is in progress. This regime was
(BEC) in atomic trapg1,2] has attracted widespread atten- realized in the first experimental demonstration of an output
tion. One of the most important perspectives of this expericoupler[3], where a rf pulse was used to couple out a large
mental achievement is the possibility of producing the mattefraction of the trapped atoms within a time interval of the
wave analog of a laser, i.e., a high flux source of coheren@rder of us. When the coupling time was long compared to
atoms. In its simplest form, such an atom laser can be buifthe rate at which atoms can be coupled back into the trap,
by adding a suitable output coupling mechanifdp] to strongly non-Markovian behavior, such as Rabi oscillations,
present Bose-Einstein condensation experiments. Several #/as observed. In this regime strong collisional interactions
tempts have already been made to develop a theoretical ddominated the dynamics of the output-coupled atoms. The
scription of an atom lasdb—17] that combines elements of Gross-Pitaevskii equatiofGPE) has been found useful in
kinetic theory and laser theory. One of the problems thafumerically modeling such a situati¢@—11]. In this paper
exists in applying optical laser concepts to the Bose-EinsteiM/€ are interested in the opposite limit of weak semicontinu-
output coupler situation is the question of the validity of theOUs output coupling, where the untrapped atom beam is of
Markov approximatiorf5]. The Markov approximation is an 10w enough spatial density that we can neglect the effect of
extremely powerful tool to describe the coupling of a systenrcollisions on its behavior. Output coupling in this regime has
of trapped particles to an environment. It allows one to thinknot yet been demonstrated, although it is considered experi-
of the coupling in the following terms: at any one time, a mentally viable{3].
partic'e is either in the trapped System or has been Coup'ed Previous theoretical treatments have ImplICItly made use
out. Quantum mechanically, this means that the existence & the Markov approximation by assuming a Lindblad master
any superposition of these two possibilities is neglectedequation(see Ref[18]) for the condensate modé2-15. A
Such an assumption is valid if the superposition decays on different, though essentially equivalent, approach treats the
time scale much faster than changes occur in the state of tH@ss of condensate atoms by adding a damping term to the
trapped system. Classically, the Markov approximation im-{ime-dependent Gross-Pitaevskii equatifit6,17. In the
plies that an atom that has been coupled out will have n@resent work we explore the regimes where the Markov ap-
chance of being brought back into the trap again_ In the CasBrOX|mat|0n IS Va.||d. In Sec. Il we pl’esent the Ham||t0n|a.n
of a noninteracting gas and ignoring gravity, atoms that ar@®f the total system and introduce the concepts of a memory
coupled out leave the spatial region of the trapped atoms duénction and a memory time. In Sec. lll we apply the general
to the relatively slow quantum spreading of their waveldeas to the specific case of the radio frequency output cou-
packet_ As a consequence, the Superposition decays S|Ov\@er. The results obtained are summarized in Sec. IlID. In
and it is likely that some atoms will be coupled back into theSec. IV we also address the case of a Raman output coupler.
trap instead of leaving the system irretrievably. Such a be-
havior leads to strongly non-Markovian dynamics for the
condensate modé—8]. However, in the presence of accel- Il. MATHEMATICAL FORMALISM
erating potentials atoms may be removed from the region of The Hamiltonian of the total system can be written as the
coupling at a much faster rate and thereby allow the use afym of three parts,
the Markov approximation.
In general, there are two distinct operating regimes for an
output coupler. The first regime is the strong-coupling re- H=H{+Hy+H,, (0]
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whereH is the Hamiltonian of the trapped particlds,, is  potential. The mode operataris coupled to the untrapped
the Hamiltonian of the untrapped particles, adidthe inter-  field throughout an effective coupling region given by
action between the two. The Hamiltonian of the trapped at-

oms is of the form K(X,1) =g(X,t)ua(X). (6)

A A. Damping of the trapped mode
Pr(X)

2
p
VT(X) + %

o= [ axdon A | _
By substituting the formal solution of the Heisenberg

U equation for the untrapped field into the Heisenberg equation

+ = f X (X) g (X) Prr(X) Pr(X), (2)  for the trapped moda, we obtain the Langevin equation of

2 motion[19],

where ¢r(x) is the field operator for the trapped atoms and da(t) t

V() is the trap potentialm is the mass of the atoms and ~ dt 7la®,Hr]= yfﬁxdsfm(t—s)a(s)— Vré().
U=4mh?a/m is the coupling constant for a local collision (7)
process, whera is the scattering length of a trapped-trapped

collision. The untrapped atoms are assumed to be of lowhe driving field, £(t), is the contribution from the free
enough spatial density that we can ignore collisions betweepropagation of the initial untrapped field, considered here to
the untrapped atoms and can write be in a vacuum state,

2

o, G &(t)= f dxac* (X, D) I (1), ®

p
eff =
Ve 0+ 5

Hy= [ axihoo

where the dynamics of the free untrapped field oper&ﬁor

where(x) is the field operator of the untrapped atoms and, ¢ getermined by the Hamiltoniath, alone. The presence

VE(x) is the effective nonconfining potential experienced byyf the driving field is necessary to preserve the bosonic com-
the untrapped atoms. The form of this effective potential will j, jtation relations of the mode operatar The damping
be givenin a IaterAsectiAon. Both fields satisfy Bose commuUyerm (the second term on the right-hand Sidepresents a
tation relations, [ ¢(x),#"(x')]=8(x—x"). We consider loss of particles from the trapped mode into the untrapped
situations where the output coupling is linear and conservefield and makes explicit the dependence of the trapped mode
particle number, on its past behavior via the so called memory function,
fn(t—1t'). The correlation between the driving field and it-
H|=iﬁ\/;f X 96 1) () e 00 — g% (1) B () FEO0 . tsr(]eéfca;n?rguet:{ilgenr rt(|ar|r‘1a<ii(;jne’termmes the memory function via

(4)

fm(t—t")=[&t),€"(t)]. 9
where the coupling constamj(x,t) is normalized so that _ _ . L
Jdx|g(x,t)|2=1, and we assume that the strength of the couThis relationship between the driving field and the memory

pling \y is time independent. The time dependence Offunction is an example of the quantum fluctuation-dissipation
g(x.t) 7{3 then simply an bscillatory phaseg(x,t) relation and leads to a description of a damping process con-

—g(x)e"'*'. The above interaction Hamiltonian can de- sistent with both quantum and statistical mechanics. The
scribe radié)—frequency output couplig], where a radio damping process can then be interpreted as the coupling of

wave induces a transition from a hyperfine level that isdls;:r:etznaet:)arrsthoeuigl;tr;e\z/itnraep 3;,;2;?3\2?' i?r?tiin a term
trapped in the magnetic trap to one that is untrapped or an- 9 ' 9 q

irapped. I can alo deseribe Raman ouput coupia PSS A e oselton and oher e dhe 10 <ol
where two laser beams cause an atom in the trap to make X P : P

two-photon transition to an untrapped state. In this case thgoupllng and the collisional behavior of the trapped atoms is

atom experiences a momentum kick equal to the differenc Oioe);ilgﬂﬁtr?g?fgiién;mzrwog(é;ngsad’.;’r\]'i (ieélonr?sii(ra?'ts
in the momentum of the photons involved in the transition. u b withou aering

In this work we confine our interest to a single energythem explicitly. This rate may be calculated in work concen-

mode of the trapped system. We will concentrate on the castéatmg on the trapped atoms, such[as).

when the trapped mode of interest is the condensate mode.

However, the method is equally applicable to an excited B. A finite memory time
mode of the trap. The trap mode operator of interest is de- For a dissipative system we expect the system behavior at
fined in terms of its spatial mode functian(x) by time s ass— —x to become less and less important in de-

termining the present behavior of the system. To make this
5) more concrete we define a memory tinlg,, as the time

after which we can neglect the effect of the previous behav-

ior of the system on the evolution in the present. In terms of
An oscillation frequency,u, will be associated with this the Langevin equation, a memory time exists for the system
mode. If the mode is the condensate mode thgix) is the if, at some finite time in the pasfl,,, we can make the
solution to the time-independent GPE amds the chemical approximation

a= f dxu (X) ihr(X).
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t t resonance with the coupling. Particles with energies far from
J dem(t—S)a(S)ZJ dsfn(t—s)a(s), (100  resonance will not be coupled back into the trap.
o = Tm Following from these considerations we can make a more
practical definition of a memory time in terms of the motion
of the untrapped atoms alone by

=Ty
f dsf,(t—s)

— o0

for all t. If this condition is satisfied then we will call,, the
memory time of the system. Note that if a memory time
cannot be defined for the system then the separation of the t
total system into a localized system interacting with an en- f dsf,(t—s)
vironment becomes inappropriate as there will be no time at -
which one can say that a particle has left the localized system
and entered the environment. A description that allows us tédependent o&(t). Note that we have made the replace-
separate the system from its environment at some time is amentf (t—t")—f (t—t")e ' to take account of the os-
approximation and can only ever be valid to a certain level otillation of the modea(t), as this may cancel the oscillation
accuracy. Equatiol0) is a condition that allows us to ne- of the memory function itself. This is the only aspect of the
glect correlations between the system and the environmettehavior of a(t) that we will consider in determining a
(to some level of accuragyt some time in the past given by memory time.
the memory time. If higher accuracy is required then a longer In summary, there is a certain region of phase space in the
memory time is necessary. untrapped field where particles can be coupled back into the
In general, the memory time as given by EtQ) depends trap. The time taken for a particle to leave this region of
on the nature ofi(s) and so no general statements can bephase space determines the memory time. The memory time
made concerning this condition without detailed knowledgecan then be interpreted as the time interval after which we
of the behavior of the trapped atoms. However, from thecan safely assume that a particle has irretrievably left the
motion of the untrapped atoms one can determine caseégap.
where condition Eq(10) can be satisfied without assuming  If a change ima(t) occurs during the memory time then it
too much about the behavior of the trapped system. This iss necessary to consider the coupling out of an additional
clearer if we write the memory function in terms of the particle before the first particle has either been coupled back
single-particle Green’s function as into the trap or left irretrievably; this is the non-Markovian
regime. Strictly speaking we should distinguish between the
, , e L free evolution ofa(t) and its evolution due to the output
fm(t—t ):f dxdx” w* (X, (X", 1)GX X, t), (D ¢oupling. Strong couplingyT,.>1, leads to the second-
order effects mentioned above and this is a serious break-

> , (14

where down of the Markov approximation. The neglect of these
effects for weak coupling is often referred to as the Born
G(x,t:x' t’)E[f//{’,(x t) z:{/f’f(x’ t")] (12) approximation. If, on top of this, the free system evolution

(except for an oscillating phageis on a time scale much
~0 ~Otrr o slower than the memory timd;T,<1, thena(s) can be
= {0}y (x,t) ' (X', t)[{0}), (13 taken to the front of the integral in the damping term of the
Langevin equation and the integral over the memory func-
is the single-particle Green’s function for the free atoms fortjon can be done. The equation faft) will then be local in
t=t’ and x(x,t) is the effective interaction region given by time; this is referred to as the Markov approximation for the
Eq. (6). The memory function can therefore be interpreted agiamping.
the overlap between an atom, with an initial wave packet of |n our case, the Markov approximation can be made for
the shape of the interaction regior(x’,t’), with a wave  the damping if the memory timé;,,, is much less than the
packet, k* (x,t), after it has propagated for a tinme-t".  time scale of both the evolution of the trapped méde and

There are two distinct ways in which this Overlap could be-the damping-yfl_ The operatoa(s) can then be rep|aced by
come smaller with increasing time. First, if an atom is leav-jts value att so that Eq(7) becomes

ing the interaction region due to an accelerating potential or

quantum-mechanical spreading of its wave packet then thga(t) i _

overlap between the atoms wave packet and its original wave g;— =~ 7 [a(t),Hr]—iAwa(t) — y'a(t) - Vy&t), (19
packet will decrease in time. The time at which we can ne-

glect this overlap will determine the memory time. Second, if  here
an atom is accelerating then it will gain kinetic energy which

will cause the wave packet of the atom to oscillate. The t

overlap between this wave packet and a stationary one will y'= yRe[ f dsfm(t—s)], (16)
then also oscillate. This oscillation will average to zero when ’m

integrated over time scales much longer than the period of t

qscﬂla‘uon. In our case, we are mteresteq in |.ntegrat|ng over Aw=ry |m[j dem(t—S)]7 17)
time scales short compared to the coupling time scglé, —w

The memory time can be defined as the time when the oscil-

lation is much faster thary, as the overlap will average to where Aw is a frequency shift due to the coupliid8].
zero after this time. Another, equivalent, way of thinking Equation(15) is equivalent to the master equation for the
about this is that only a range of frequencies will be close taeduced density matrix of the systdiB)].
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For the condensate mode the oscillation frequency and the In the following sectiongSecs. Il and IV we will con-
decay rate(determined by the spatial mode functjowill sider interaction regions that are independently Gaussian
vary at a ratey with the number of atoms in the mode. If the shaped in all three dimensions, so thak(x)
collective excitations of the trapped atorfaused by the = «k(Xx)k(y)«(z), where eactx(j), for j={x,y,z}, takes the
change in populatiordecay much more rapidly than the loss form
rate then the chemical potential and the condensate mode

function determined from the time-independent GPE will be _ 1 j?
valid on time scales much shorter than those of the loss. k(]) =~ &X [ (19
Steck, Naraschewski, and Wallis6] have demonstrated that (ojm) 20]

this procedure is valid by numerically simulating the evolu- . i . . .

tion of the full coupled GPE for the trapped and untrappedVheréo; is the width of the Gaussian in ttj¢h dimension.
fields. In the present case EL5) not only describes the Note thatwe are ignoring any multiplicative constani«k)
damping of the condensate number, it also determines th@S We are interested in the relative fall off of the memory
approximate evolution of the total quantum state of the confunction. The assumption of a Gaussian interaction region

densate modéassuming a slow phase diffusi¢21—23). allows us to calculate memory functions exactly in many
It is likely that a continuous-wave atom laser will also situations. We do not expect the exact shape of the interac-

have some form of pumping. If this pumping is replacing fion region to affect the order-of-magnitude estimates for the
atoms at the same rate as they are being removed then it m&jgmory time that we make in this paper.

be possible for the rate of evolution of the spatial mode func-

tion of the condensate atoms to be much slower than the rate D. Properties of the output-coupled atoms

of coupling. In this case the above approximation will be-

Thus far we have presented some general considerations
come more accurate.

concerning the Markov approximation for the damping of

In.this paper we proceed by first assuming that the mOdFﬁwe trapped mode. There is, however, another aspect to the
function and the oscillation frequency are constant and theBrobIem' that of determining the properties of the output-
determine the memory time. This memory time is then com- ’

d to the ti e of the d . tth d dcoupled atoms. For example, let us assume that to a good
pared to the time scale of the dynamics of the trapped modg, - imation the system exhibits Markovian damping and

of interest. If the memory.time is much shorter than the tim‘?t e atoms leave the interaction region with a reasonably
scale of the mode dynamics the above assumptions are \_’al'ﬁsell-defined momentum. Due to the dispersive nature of the
I(I this is _nr?t th? case then we have a fully non-l;/larkov:envacuum for atoms the properties of the untrapped field will

ecay with a time-varying system frequency and coupling,, e 4 nontrivial dependence on position. Very close to the
constant. Obviously it is of interest to determine the reg'onﬁrap atoms will not have traveled very far and dispersive

of validity of the two cases. effects may not be large. However, if the atoms experience a
lot of dispersion then the properties of the field will corre-
spond to properties of the trapped mode averaged over some
. o _ . time. Let us assume that there is a measurement device lo-
To determine the validity of the Markov approximation ¢gjized about a positior, that is making destructive mea-
we need to calculatén(7) in the presence of the potential syrementgdestructive in the sense that the detector scatters
Vi (x) and for an interaction regior(x). A convenientway  atoms into free modes far from those of interest; examples of
to do this is via the Green’s function introduced above. Thesych detectors are a hot wire or ionization by a [aserany
single-particle Green’s function for the untrapped particlesatoms that interact with it. In this case there will be an un-
Eq. (13), can be written in terms of path integraisee, for  certainty in the time of emission of an atom that is detected
example[24]) as, atx,. The description of a continuous measurement process
ot iS[x()] becomes much more cemplica_ted in this regif@g]. We
G(x,t;x’,t’)=j dx( r)exp{—], (18) call this the.non—Markowen regime for the measurements.
X/t h To describe such a situatioisee Appendix A we can
define a response function of the system to a particular mea-

) ) i surement devicéin analogy with the memory functioras
where 7=t—t’ and whereS is the action of the particle

given by, Sx(n)]=[;d7rL(x, (dx/d7)), and L , , o L
=im(dx/d7)%2—V(x) is the Lagrangian for the untrapped hy(t=t )_f dxdx” x(X=Xo) k(x",t')G(x,t;X", 1), (20)
particles. We are interested in the case where the Lagrangian

is the sum of the Lagrangians in each dimension. In this casehere y(x—X,) describes the spatial extent of the detector.
the Green’s function factorizes into three one-dimensionaldeally, the spatial extent of the measuring device will be
Green'’s functions. In general, the path integral is difficult tosmaller than that of the interaction region, otherwise much of
calculate. However, one can make a semiclassical approxihe uncertainty will be introduced by the detector itself.
mation to the Green’s function. It turns out that this approxi-h, (t—t’) is the probability amplitude for a particle that is
mation is exact for potentials up to quadratic order in theemitted in the interaction region at tinté to be detected at
coordinates. In fact, the semiclassical approximation is justitime t by the detector.

fied by approximating a particular potential by a quadratic We can define a memory time for the detection as the
potential[24]. In this work we will only deal with quadratic time interval between the earliest and the latest times that a
potentials. particle could have been emitted. The memory time for mea-

C. Green'’s functions
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region[given by Eq.(19)] and multiplying the three integrals
for each dimension together yields the memaory function

fm<r>:1j1 Aj(r)e oo, (22)

wherej={x,y,z}, wg=p+Vy— o, and

o
— Ai(7)= [ B (23)
j 2,
FIG. 1. Schematic of the situation under consideration. Atoms gj +iINT
are coupled out of a trap by the rf field. Once coupled out the atoms

see a nonconfining potential that tends to repel them from the i”\'/vherea-]- is the width of the Gaussian in thjéh dimension.
teraction region. A Gaussian wave packet will keep its Gaussian stiapeeal

) spacé but will increase in width over time due to the fact
surements of the output can be analyzed in the same way @gat it contains a range of velocity components. The overlap

for the damping. If the memory time corresponding to thisyf the wave packet with itself as a function of time is given
response function is much shorter than the time scale of thgy the memory function.
system dynamics then we can make the Markov approxima-" The radio frequency field couples an atom from the
tion for the measurements. If this holds then a detection tim%’apped mode to modes of the untrapped field with frequen-
can be considered to correspond exactly to an emission timggg aroundwg=Vo+ u— wy; SO thatv = m is the
and all the moments of the measyred.field are proportional tﬂwagnitude of the mean velocity of the output coupled atoms.
those of the trapped mode. This will often be a strongefynen the radio frequency field is on resonance with the
condition than that for Markovian damping. trapped mode ¢,=0) particles are coupled out with a zero
mean velocity. The particles can only leave the interaction
Il. RADIO-FREQUENCY OUTPUT COUPLER region by quantum mechanical spreading of their wave pack-

, . ets. The memory function will then decay as®? for long
In the radio frequency output coupler a radio wave ofimeg -5 2/) | If the output coupled particle has an initial

frequency wy "?duces transition_s between trapped and UN"mean velocitywy# 0 the memory function will decay at a
trapped (or antitrapped magneth sublevels of the atoms. faster rate, as the atom will leave the interaction region more
The strength of the coupling is given by the Rabi frequency g iciiy The case where the mean kinetic energy of the atom
ngMBohJBV\/Eﬁ! written here in terms of the magnetic g mych higher than the coupling rate,> y, is very similar
field B and the Landg factor. The waist of the rf wave is 5 e optical case and a memory time can be defined for
assumed to be much broader than the spatial mode funC“cWhich Yy IST > wpt

. . m o -
of the trapped mode and so from E§) the interaction re- Let us investigate the memory time more quantitatively.

. _ |Vt . . _ . -
gion becomesc(x,t) = U,(x)e™, where, ifa is the conden In order to compare memory functions that decay in very

;age mogeua(é?)'i_:s (|1I_|etermined by the solur:ion t?] th? t_ime-l_ ifferent ways we consider the ratio of the magnitude of the
independent . However, we assume here that it is valig, - integrals in Eq(14),

for our purposes to approximate this mode function by a

Gaussian. The energy difference between the untrapped level

and the center of the trap is given My=V+(0). The un- ft‘de f (-

trapped atoms are free to propagate away and are in general Cw Shn(t=s)

subject to accelerating potentiabs&“(x). The general situa- R= "

tion is depicted in Fig. 1. U dsf,(t—s)
In the following sections we will determine memory times -

for a number of relevant potentials for the untrapped atoms.

The quantityR is a measure of the inaccuracy of the approxi-
A. Free space mation that a particle has left the interaction region for a

(29)

free space. In the& dimension the free spac{e/ﬁ“(x)=0],

L (24) we can find the rati® in terms of the memory timésee
Green’s function is

Appendix B for details of the calculationd=irst consider the
case when the system is on resonanegs0. In the sym-

G(xX, X' 7) = (21) metric interaction region case,= o, the ratio reduces to

1 p‘ (x—x’)z]
exp i ,

VamiNT ANT
g

where\ =#/2m is a measure of the rate of spreading of the

. ; A . R=— 214" (25)
wave packet. Integrating this over the Gaussian integration [o"+ (N Tw)7]
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Inverting this equation we find the memory time in terms of The Green’s function in the dimension for a gravita-
the ratio,T,,=*/\R?, where we have assum&k<1. Inthe tional potentialVe(z) = —gmzhas the form

asymmetric case, the memory time is the same as the sym-

metric case where is the broadest width of the interaction , 1 (z=2')  gm(z+2')
region. This memory time depends on the square of the C(ZZ7)=\ z o €Xpi—p———I——F—7
width of the Gaussian and so is a sensitive function of the

size of the interaction region. In experiments performed to . mngj

—ij (28

date the size of a condensate in the broadest dimension has 24%
beens>10 um. For 8Rb (m~10"2° kg), if we assume a
ratio of R=10"2 and a size obr~10 um, this already gives The first term in the exponential is the usual dispersion term

a very long memory time of the order of 18. and the second and third terms can be recognized as phase
When the atoms are coupled out with an initial velocity, shifts due to the potential and kinetic energies, respectively.
wo# 0, we get Integrating over a Gaussian shaped interaction region and
) assuming free space Green'’s functions for the other two di-
oy mensions the memory function becomes
T= =L (26)

mgo,r\> mg .
whered is the dimension of the untrapped field, such that, in fm(T):H AJ(T)eXp{ _< 2% ) 1o T 1@t
the case where the interaction region is cigar shafed,, (29)
o=0y,=0y and o<0,), d=2, and when it is pancake
shaped(e.g., oy=0y, and o,>0,=0), d=1. The initial  whereiwo=%u+Vy—foy is the initial energy of the out-
velocity produces an oscillation of the memory function thatput coupled particleEmeasured fron\/gﬁ(zzo)zo]_ Under
when averaged over many oscillations leads to a reduction ithe influence of gravity an initial Gaussian wave packet pre-
the memory time compared to the on resonance case. Forggryes its Gaussian shaie real spacebut the peak of the
cigar shaped region with~10 um andR=10"? this gives  Gaussian propagates at a veloaity gt after a timet in the
a much shortenecbut still relatively long memory time of 7 girection. The Gaussian decay of the memory function
Tn~10 s for Rb atoms. These calculations show that atomggiven by the first term in the exponentidk due to the
of low velocity leaving the interaction region by the spread-gravitational potential accelerating particles out of the inter-
ing of their wave packets linger in the region of interaction action region. If we assume that this Gaussian decay is the

for imes much longer than1s. dominant process for short times the memory function can be
For very weak coupling, the oscillation frequenayg, written as

due to the initial kinetic energy of the atoms, may be much

greater than the coupling rate The memory function aver- 2
aged over times much longer than the time scale defined by fm( q-)oce)(p{ - _} , (30)
the damping kb .<1/y is given by 207
sin?([azﬁti)\r]&) where o= \2#/mgo,. The ratio,R, defined by Eq(14),
A becomes
fm( T)X 2 . . (27)
o°+iNT

o \2e (T2/20%)
An integral over this function converges, as it acts like a R~ —\/;T ) (39)
sinc(w.7) function for larger> o/ and we can define a m
memory time byT,,~ 1/w.. Note that we do not analyze the

form of the decay in this case as it is simply due to Ourlnverting this, and assumingT,>o,, we find T
. . _ ] m T m
choice of a sharp cutoff to restrict the frequendisse Ap = 2 IN(IR) = 2k JINRY/mgo, . In this caseT,, is in-

pendix B. In this regime, there is essentially no difference . ; . . S
between the Markov approximation for the damping in theversely proportional to the size of the interaction region in

optical and the atomic case. This is due to the fact that wahe z direction. Surprisingly, the time for a particle to leave

have implicitly assumed that the coupling constant is ap_the interaction region actually gets shorter as the interaction

proximately constant across the frequencies of interest aniggion gets larger. This can be explained by hoting that spa-
that we are on a linear part of the dispersion curve ort'al_Iy sepgrated parts of an _extended wave packe_t N a gravi-
tational field experience different rates of gravity-induced

equivalently, that the atoms have a limited range of veloci- . ;

ties about a fast mean velocity and so have fast propagatid? ase rotation. The greater the separation the greater the rela-

times across the region of interaction. tive rotation rate. Thergfore, the larger the extent of the wave
packet the faster the integral over the wave packet tends to

zero. This same phenomena results in gravity-induced quan-

tum interference between particles that experience different

In most situations atoms coupled out of a trap will begravitational fieldd27].

subject to gravitational forces. It is therefore of interest to  For an interaction region of size,~ 10 um this Gaussian

consider the effects of gravity on the length of the memoryenvelope gives a memory time @,~10 ° s for Rb and

time. Tm~10* s for ZNa and will become shorter for a larger

where we have used the asymptotic behavior of &)f€26].

B. Gravity
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1 T . C. Collisional repulsion and the antitrapped case

' If particles are being coupled out of the condensate mode

Y into an untrapped state they will see a repulsive potential due
v to the condensate atoms left in the trp the repulsive
\ interaction caseand the shape of this potential will be pro-

\ | portional to the density distribution of the condensate. In the
. Thomas-Fermi approximation the condensate density takes
. the shape of the trap potentif28], UN|u,(x)|?=max u

N +Vy—V+(x),0], whereN is the number of condensate at-

N RN oms. In the present experimental situations the traps have
or < G NP been harmonic in all three dimensions. The repulsive poten-
A e tial for the untrapped atoms will then be a three-dimensional

~~-7 inverted harmonic  potential, given by V'f,ﬁ(x)
= eUNJu,(X)|*=maf eu— 3mSe(w])?j2,0], where € is
0 1 2 3 the ratio of the scattering lengths between a trapped-
T (ms) untrapped atomic collision and a trapped-trapped collision.
In this paper we assume that in the region of interaction we
can approximate the effect of the cutoff inverted harmonic
potential by a inverted harmonic potential that is not cutoff
and is therefore quadratic everywhere. In general, the
Green’s function depends on the potential everywhere, but
tion region determines the memory time. The dashed line depict €are Or.]ly Inter_eSted n the time until a particle |s_repelled
the case of a smaller interaction regiop=1 um where it is pos- rom the interaction region and as long as the particle ener-
sible that the oscillation due to the accelerating particles velocit)g'es are not too close to the cutoff we can neglect the global

Re(f, (t)

FIG. 2. Plot of the real part of the memory function for a par-
ticle in a gravitational potential. The memory function is plotted for
sodium atoms with a symmetric interaction regisp= o, = o, and
the frequencywy=27X100 Hz. The solid line corresponds ¢
=10 um where the time for a particle to leave the spatial interac-

determines the memory time. effects due to the shape of the potential outside the interac-
tion region.

interaction region. The memory time is largely independent In addition, if we are considering particles that are output

of R for R<1, as, in this caseyIn(1/R) ~ 1. coupled into spin states that are repelled by the trap this is

Let us now consider the second term in the exponential irlso an inverted harmonic potential. In this case the repulsive
Eq. (29). This term describes the property that after a certairPotential will be VE(x) = eUN[u(x)|*= V() where we
time the particle is traveling at a velocity high enough that ithave also included the collisional repulsion. In this casi,
causes a rapid oscillation of the memory function. This osthe ratio between a trapped-antitrapped atomic collision and
cillation will average to zero over a time scale much longer2 trapped-trapped collision.
than the oscillation frequency' It makes physica] sense to The Green’s function for an inverted harmonic pOtential is
estimate a memory time as the time it takes a partide, acceﬁasny determined from the Green’s function for an harmonic
erating from rest under gravity, to reach a velocity that isPotential[24] with the substitutionw—iw. Along a single
high enough that the particle can no longer be coupled bacfxis of the inverted harmonic potential we have
into the trapt=uv/g, wherev> /2 y/m. From Eq.(29) the

memory function will be oscillating much faster thanf T, s Mawy iMaoy 2. 2
is such that Gxx5m) = 2mih sinhwxq-exp 2h Sinhwxr[(x X

mg’T?, Y }

2

\Y
> >7. (32) X coshw,7—2xx' | —i 2

7 (33

Rearranging this, we find',>2/gyyfi/m, which supports  \hereV, is the potential at the center of the inverted har-

our initial estimate quite well. Note that this memory time is yyonic. This is the Green’s function of the untrapped atoms if

independent of the size of the interaction region. For Rb angye can assume that the effect of the inverted harmonic po-

assuming the oscillation is 10 times greater thanwve can  tential is much greater than that of gravity. In light of the

estimate the memory function in terms of as T  apove discussion it is rather inconsistent now to assume a

~107%/y §2 Gaussian interaction region. However, we do not expect the
The particle will undergo gravity-induced dephasif@  exact shape of the interaction region to effect our results

discussed aboyesooner than it can gain the required kinetic dramatically. This is borne out by results that we will present

energy ifo, is less than the time it takes to make one oscil-pg|gw.

lation o, < (48m/mg”)"®. We can rewrite this condition as  The corresponding memory function in the Gaussian case

o,>(48m?gm) 3. For Na, o, would need to be greater pecomes

than Gum and for Rbo, needs to be greater than Quin for

the oscillation to become important. These values correspond .

to very small condensates and therefore we expect the fm(T):H HCOShijﬂ

memory time to be determined by the time it takes the par-

ticles to undergo gravity-induced dephasing in most situa- -2

tions. A plot of two possible situations is given in Fig. 2. xsinhwer e iwoT, (39

2
A wja'j)

2 A
W0
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TABLE I. Summary of memory times for the radio frequency output coupler.

Free spacéno oscillation

Free spacéfast oscillation

Gravity (Gaussian envelope

Gravity (oscillation

Inverted harmonig¢exponential decay

2mo?
P

™ AR
2

o=max(oy,oy,0,)

2mo-

= —

3 RZ/d !

m a)o> _2
g

where wo=u+Vo/fi— ws—Volfi. For times 7> 1/w; this

becomes
14 A .chrjz
+i —i
ij'-Z )\

J

-1/2

fm(T):H

4
E

T—I wor] . (35

In the antitrapped case we haxo@z(ﬁJr 1)ij andV,
=eu—Vy. The effective inverted harmonic trap potential is
estimated to be approximately twice the strength of the trap
potential as it is the sum of the repulsive potential and the
collisional repulsion. So the memory time calculated for the
untrapped case will be halved due to the repulsive trap po-
tential.

D. Summary of the radio-frequency output coupler

This exponential decay describes particles being repelled out A summary of the calculated memory times for the radio
of the interaction region by the inverted harmonic potential frequency output coupler is given in Table |, wheRe>1
Assuming this exponential decay is the dominant process fosndd is the dimension of the space of the untrapped atoms,
short times we can estimate the usual ratio of integrals by g. d=1 corresponds to a cigar-shaped interaction region.
R~exp(—3wT/2), wherew=(wy+ wy+ ,)/3 is the mean If particles are coupled out with a large kinetic energy,
of the inverted harmonic trap frequencies. Inverting this wew,> v, then a memory time can be defined y!>T,,
get T,=(2/3w)In(1/R), which is independent of the size of >w; ', in the same way as for an optical system. In the
the interaction region. For very asymmetric traps the trapoptical case the field inside a cavity is coupled directly to the
frequency with the largest magnitude will define the memoryfield outside and particles tunneling out of the cavity have
time as particles will be repelled fastest in this dimension. nearly the same energy as they had inside the cavity. How-
In the above calculations we assumed a Gaussian interagver, in the atomic case the coupling between the trapped
tion region. However, these results hold for general interacfield and the untrapped field is mediated by the radio-

tion regions. This can be seen by taking the limit 1/w; [as
suggested by Eq35)] of the Green’s function itself,

, My iMwy 5 1o
G(x,x"; > 1lwj) = 27_rﬁexp >7 (xX+x'%)

(36)

where we have assumed>E~ “x". This decays as an expo-

nential with increasing time, independent of the shape of th&"1€'9Y:@o

interaction region.

frequency field. Particles that make the transition between a
trapped state and an untrapped state have an initial energy
equal to the detuning between the frequency of the rf field
and the energy difference between the two states, see Fig. 1.
This means that in the case whesg is large the radio fre-
quency is far from resonance with the condensate mode. If a
populated noncondensate mode is close to resonance the par-
ticles in the output will be thermal particles. In order to
maximize the coupling to the condensate the rf field will
need to be on resonance with the condensate mode and con-
sequently we expect particles to come out with a small mean
~0. The slow moving particles are then subject to
the accelerating potentials of gravity and collisional repul-

In the untrapped case where the potential is determined b§/i°”'

collisional repulsiono; = yew] andVy=ex. Assuming that
e=1 we can estimate the memory tintas defined by the

From our calculations, gravity seems to be the force that
determines the memory time. It yields a memory time of
Tm~10"2 ms for a Rb condensate with a width in tlze

exponential decgyas simply one over the mean of the trap gjrection of the order of 1@m and decreasing with increas-

frequencies. Typical trap frequencies range fromr 2
X 10—-27 X 400 Hz. From the experimental parameter§3jf
we can determine the value= 27X 219 Hz for the average
trap frequency, which gives a memory timef~1 ms.

ing width. Sodium, being lighter, has a longer memory time.
Whereas collisional repulsion gives a memory time of the
order of the inverse trap frequenci€s~ 10! ms. This de-
pends on the scattering length of a trapped-untrapped colli-
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1 ' , ' will dominate. However, where the kick is much greater
than the inverse size of the regid® 1/0, we can expand
the term in the exponential in E(B8) and write the memory

function as
= 2
2 IV A e fu(n~=I1 A;(0)ex —F—I()\Az—i-wo)r , (39
< - —, L j 2
<
[a g

whereo .= o /\J2AN. This will dominate for time scales
<o?/\. In the case when the kick is well defined the
memory time has a very simple classical interpretation in
terms of the time a particle taketss d/v, to cross a distance
d=20 going at velocityv =AA/m. The first term in Eq.

10 15 20 (39 is a Gaussian envelope of width, and represents the
1(ms) overlap between the wave packet of a particle propagating
o ] ] away and the interaction region. As in the gravitational case
particle s gven a wel-defined momentun kiok and when it 16 ot 5, C2USSIan envelope determines a memory time in terms
for the Raman output coupler. We have plotted the real part of th%l;tsr;i;:lejaslégggr?; Ir;ﬁ%?tswis“laig lljneg-r/r?s)/iﬁ\)/\cl)l\llrééh?n the
memory function as a function of time for the paramet&rs 10° o ' - -

Raman transition are counterpropagating, then at optical fre-

m !, oy=0,=10 um andwy= 27X 100 Hz. The solid line is the . he Kick ai h b da
caseo,=10 um so thatA>1/o,. The dotted line is the case, quenYC|e§1t e . IC . given to the ath will be 9‘; oraar
~10" m~*. This yields a memory time of ,,~10 * s for

=1 um, soA~1loy. In this last case the memory function does

not exhibit the Gaussian decay as the momentum kick is not welinteraction regions ot,= 10 um for Rb atoms. o
defined. The second term in Eq39) is recognized as a kinetic

energy term for a particle propagating with momentum
sion and is independent of the size of the region of interach(A%/\ + wo). If the kick is large the particle will be given a
tion. large kinetic energy and a memory time can be determined
by a high oscillation frequency. K%\ + wy> v, then we can
IV. RAMAN OUTPUT COUPLER determine a memory time &~ l/w., where A’\ + wq
> w > . Unlike the radio-frequency output coupler the Ra-
We can model the case of a Raman output coupler bynan output couplefin the case where the kick is well de-
replacing the coupling constant in the direction of the kickfined) is very similar to the laser in that condensate atoms
k(X) by will leave the trap with a finite, and possibly large, kinetic
—iAx energy in a well-defined direction. If the kick is large enough
K(X)— r(x)e, (37 the effects of gravity may be negligible for short distances.

wherefi A is given by the difference between the momentum
of the two photons involved in the Raman transitiah, V. DISCUSSION

=ki—ky. , o ) The regions of validity of the Markov approximation have
Ass’ummg t_he Raman kick is the domln’ant process, th®een considered previously by Moy, Hope, and Sayagn
Green's function is the free-space Green's function. Th&grmg of 4 one-dimensional modei of a condensate undergo-
memory function, assuming a Gaussian-shaped interactiofy output coupling into free space. Gravitational effects
region, is then were included via a numerical single-particle treatment. In
i No2A2r contrast, we have determined analytical memory functions
fm(T)=H Aj(r)exp{ L x. _ion}’ (38) and(estlmates of memory timg$or afull three-d|_n"_|en3|0nal
i 2 U§+|)\T multimode model that includes gravity and collisional repul-
sion. This allows a direct comparison of our results with
where in this case,=u— Aw+V,/#, and we have defined current experiments.
Aw=w;— w, as the difference between the frequencies of We have investigated the regimes of validity of the Mar-
the two lasers. kov approximation for atoms that are being coupled out of an
In this case it is possible for focused laser beams to be afitomic trap by an output coupler by determining the memory
the order of the size of the condensate. The width of thesémes (or correlation timesof the output coupled atoms. A
beams would then define the size of the interaction regionmemory time can be defined by the time taken for a particle
However, focusing the beams to a small region will tend toto leave the region of phase space of the untrapped field
lead to diffraction. The momentum of the kick will not be where it can be coupled back into the trap. After this time, if
well defined in this case. A comparison between the situatiom particle has not been coupled back it can be considered to
when the momentum kick is well defined and when it is nothave irretrievably left the trap.
is shown in Fig. 3. If the momentum kick is not very large  Atoms coupled out by an rf field that leave the interaction
compared to the characteristic inverse length of the interacegion by the free-space spreading of their atomic wave
tion region, A~ 1/o,, then for long times the behavior is packet alone can have long memory timé&s,$¥ 1 9 which
similar to the radio frequency casee., repulsive potentials are dependent on the square of the size of the broadest di-
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mension of the interaction region. These memory times aréhought of in terms of inputs and outputs to the sys{&oi.

reduced if atoms are coupled out with a large mean kinetid he initial bath propagates towards the system, interacts with

energy. However, in this case the coupling will be far fromthe system, propagates away again, and is eventually mea-

resonance with the condensate mode. For the rf output cosured. To formalize this idea, input and output fields are

pler, gravity(which will nearly always be presendominates defined by

in many cases, and yields a memory time that ranges from R R

102 to 10! ms for typical experimental parameters. Colli- Pin(x,1) = U (t,t0) Py (X, t) Uy (L, to), (A1)

sional repulsion leads to a memory time of the order of the . ) )

inverse mean trap frequenayand depending on the ratio of wherety<t and is usually taken to be in the distant past, and

the scattering Iength§ be.tween a t@ppeq un?trapped and a llfout(xrt):UU(tlvt)‘r/fU(thl)UL(tlvt)1 (A2)

trapped-trapped collisiors: T~ 1/\/ew, which is slightly

longer than the memory time for gravity for typical experi- wheret,>t and is usually taken to be in the distant future,

mental parameters. and where the field operators are in the Heisenberg picture.
Raman output coupling has a memory time which de-U,; is the evolution operator defined in termsdf; alone.

pends on the inverse strength of the momentum Kidk  The relation between the input and output fields and the trap

given by the light to the atoms and on the size of the conmode is given by

densate in the direction of the kick, The kick must be well

defined, A>1/o, to produce a reduction of the memory time.

If the light beams are focused too tightla ¢ 1/0) diffrac-

tion effects will dominate and the Raman output coupler, like

the radio frequency output coupler, must rely on externalThe output has a contribution from the input field and the

potentials such as gravity to determine a memory time. In thérapped mode at earlier times.

best case scenario, two counter propagating laser beams will We assume that our measuring devioéSec. Il D mea-

produce a kick ofA~10" m~! giving a memory time of sures normally ordered momen&l] of the quantity

Tm~1 ms. The Raman output coupler has the nice property

that in the regime where a short memory time is produced 3 _ ERVIRGY

the atoms are given a well-defined momentum kick, produc- Voult) f Ay (X=Xo) foulX.L). A9

ing a beam of atom§4].

These memory times must be short compared with thd/N€réx(x—xo) _desc;ibeshthe spa’iial extent of the de&ectcir.
fime scales of the system evolutioh-*, and the coupling e aré assuming that the actual measurements take place

rate y~1, in order to make the Markov approximation. The OVEr @ Very short time. The response function for the system
most important upper time limit op~ ! is the correlation 9VeN @ particular measurement device is defined as

time of the condensate, . y ! must be short compared to A A
7. otherwise the output-coupled atoms will not be correlated hX(t—t’)=f dxx(X—Xo)[ ¥in(t,X),ET(t")].  (AB)
with each other. Current experimental estimates for the cor-

relation time give a range of 0.1-1 s, i.e., long compared tq, (') js the probability amplitude for a particle that is
the calculated memory time corresponding to gravity. Therégmjtteq in the interaction region at tinté to be detected at
fore, the Markov approximation will be valid for a range of time t by the detector. This becomes more obvious if we
coupling rates where.>y ">Tp,. write it in terms of the Green’s function for the untrapped
When the Markov approximation is valid a Markov mas- fjg|q Eq.(20).

ter equation may be used to solve for the evolution of the We can define a memory tim&,, as the time interval
trap modes undergoing damping. When the Markov approxiy ; : m X

mation cannot be made new methods must be employe%emeen the earliest time a detected particle could have been

[5.25,29, and interesting behavior will be observeg-g]. emltled ar?d th.e latest tlme. the particle could have been emit-
ted. T,, exists if we can write

~ ~ t ~ ~
Poul X,1) = thin(X,1) + \/;Jt dsl in(t,x),E(9)]a(s).  (A3)
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where y is defined in a similar way ta/’ for the damping

and¥,,(t) is the contribution of the input field to the output.

If this holds a detection time corresponds exactly to an emis-
A localized systeniin this case the trapped atojriater-  sion time and all the moments of the measured field are

acting with a baththe modes of the untrapped figldan be  proportional to those of the trapped mode.

APPENDIX A
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APPENDIX B o2
Th . . . R ——————, (B5)
e ratio of the magnitude of the integrals over the [0+ (A T,)2]2
memory function front— T, to — and fromt to — o in the
free space case is for all times, T,,. The memory function is then given by
Tm=0?/R\.

If the interaction region is pancake shaped, eugs oy,
oy>0o, ando,>o we get

erfc[

Doing the integrals in this equation allow us to determine the R= : (B6)
erfcl 0 }

t—=Thy
J’ dsH Aj(t—s)etwolt=9)

f dsH Aj(t—s)e t@ot=9)

(B1)

0_2

—+iT
0 N m

ratio in terms of the memory function. o?
In the symmetric interaction region case, where o, N
we can do the integrals in E¢B1) and we find
When we>\/o? this becomes

ge 1@oTm w0 o?wg [ o? J
: -1/ e erfc —+iTp, o
B Va2 +inT,, A R~ T = i (B7)
R= \/72 . > , [o"+(NTm)“]
woo~ T _0 wo0o
1= N erfc{ N ] Yielding a memory time with the same dependency as the

(B2) low-frequency symmetric case. Putting this all together
) yields Eq.(26).
where erfcg) =1—erf(z) is the complementary error func- ~ |f the atom is coupled out with a large kinetic energy it is

tion. In the case where,=0 this ratio reduces to E¢25).  yseful to consider the memory function written in the form
In the asymmetric case with,=0, although the intermedi- of an integral over frequency,

ate behavior is governed by the narrowest dimensions, the
memory time is determined by the broadest dimension. This
is due to the fact that in strictly one and two dimensions we
cannot define a memory time as in these cases the integrals
in Eq. (24) diverge. This is a fundamental property thatwhere w=w,, D(w) is the density of states and(w) is
arises from the 3/r dependence of the one-dimensionalfound by transforming the effective coupling constantkto
Green’s function. In conclusion, the third dimension is re-space(wherek is the label of the modes of the untrapped
quired for the system to be dissipative in thg=0 case. field) and then using the dispersion relation to make a change
On the other hand, the case,#0 is important in the of variables to frequency space.
asymmetric case as it is well known that a multiplicative In dealing with averages over oscillatory functions it is
oscillating factor can make an otherwise divergent integrahecessary to specify a time scale over which averages are to
convergent. In the case whewm#0 we can use the be taken. In frequency space this corresponds to considering
asymptotic expansion for the error functior26], only a range of frequencies in the integral in EBS8). A

Jmzé erfz~1+1/22% as z—= for |arg(z)|<3w/4, to  Physical frequency-dependent couplingw), will naturally

fm““'>:f:dwmwnK<w>|2e-”w-vl<t—t’>, (89)

show that for long time§ > l/w,, Rx1[o*+(AT)?2]¥4  limit the range of frequencies and we can consider memory
For wo>\/a?, Eq.(B2) simplifies to times defined by Ec(14). _ _ _

The time scale that we are ultimately interested in though

o3 is ¥~ 1. We should therefore average over time scales short

(B3) compared toy 1. In frequency space, we can introduce a

simple cutoff frequencyw >y so that the function is aver-
; -1

In the case where the interaction region is cigar shaped",‘g‘ad over times of ordes,

e.g.,o=o0,=0y ando<a,, the ratio becomes

=~ [0_4+()\Tm)2]3/4'

WMIJ ¢ de(w+wo)|K(w+ w0)|267i“’(t7t’),

0_2
El( [Oh) T""Tm ] (Bg)
R= , B4 )
o’ B4) wherewy= u+ v> w. . Obviously,w, must be much greater
E1 @or~ than this for the function to be attenuated with increasing

time. We are essentially band filtering the memory function
whereE;(2) is the 1st order exponential integf&l6]. Note  so we refer to this as the filtered memory function. Physi-
that a one-dimensional interaction region corresponds to aally, we are neglecting particles with energy greater than
two-dimensional bath and vice versa. For long times we cam (wq+ w¢) and less thar (wy— w.) because they are a long
write Rxo?/\Jo?+(\T,)?, where we have used the way from resonance.
asymptotic expansiorE,(z)~e 4z as z—x for |arg| We can define a memory time in terms of the filtered
<3/2. The ratio simplifies in they>\/o? limit to memory functionf ,(t—t') by



PRA 59 MARKOV APPROXIMATION FOR THE ATOMIC OUTPUT ... 2973

function for larger>o?/\ and we can define a memory time
. (B10)  py T, ~1/w.. Note that we do not analyze the form of the
decay in this case as it is simply due to our choice of a sharp

In many cased ,~ 1/w.. Note that a memory time defined Cutoff to restrict the frequencies. _ _

in this way relies on the fact that we have assurage- y. If the interaction region is effectively two dimensional
The memory function averaged over timesodvhere then the density of states becom&¥w)e1/Jw with

wo> w1y is given by Eq.(B9). In the symmetric case, |K(w)[2the same as above. The filtered memory function for

D(w)<\w and for a Gaussian shaped interaction region/ong times also simplifies to

|k(w)|?=exd— (6’/\) ]. The filtered memory function

simplifies for long times to

>

=Ty —
J dsf(t—s)
to

t J—
U dsf(t—s)
7Tm

sinl—( [a2+i>w]%)

o 1 fn(7) o , (B12)

+ 7
a?+iNT  2(a?+iNT)?

ol +iNT

- W,
fm(T)OCSim'( [O—Z—H)\T]T

(B11)  \vhere we have again used the asymptotic properties of the
where we have again used the asymptotic expansion for therror function. In a cigar shaped interaction region the den-
error function. The second term will tend more rapidly to sity of states isD(w)o1 and the filtered memory function
zero and so the first term will define the memory time. Anhas the same long term behavior as the two- and three-
integral over this term converges as it acts like a sinej dimensional cases.
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