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Markov approximation for the atomic output coupler

M. W. Jack,1 M. Naraschewski,2 M. J. Collett,1 and D. F. Walls1
1Department of Physics, University of Auckland, Private Bag 92019, Auckland, New Zealand

2Jefferson Laboratory, Department of Physics, Harvard University, Cambridge, Massachusetts 02138
and Institute for Theoretical Atomic and Molecular Physics, Harvard-Smithsonian Center for Astrophysics,

Cambridge, Massachusetts 02138
~Received 30 October 1998!

The regions of validity of the Markov approximation for the coupling of atoms out of an atomic trap are
determined. We consider radio-frequency output coupling in the presence of gravity and collisional repulsion,
and Raman output coupling. The Markov approximation is crucial in most theoretical descriptions of an atom
laser that assume a continuous process of output coupling from a trapped Bose-Einstein condensate. In this
regime many techniques that have proved to be useful for modeling the optical laser, such as master equations,
can be used to describe the dynamics of the damping of the condensate mode undergoing output coupling.
@S1050-2947~99!04904-5#
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I. INTRODUCTION

The recent observation of Bose-Einstein condensa
~BEC! in atomic traps@1,2# has attracted widespread atte
tion. One of the most important perspectives of this exp
mental achievement is the possibility of producing the ma
wave analog of a laser, i.e., a high flux source of coher
atoms. In its simplest form, such an atom laser can be b
by adding a suitable output coupling mechanism@3,4# to
present Bose-Einstein condensation experiments. Sever
tempts have already been made to develop a theoretica
scription of an atom laser@5–17# that combines elements o
kinetic theory and laser theory. One of the problems t
exists in applying optical laser concepts to the Bose-Eins
output coupler situation is the question of the validity of t
Markov approximation@5#. The Markov approximation is an
extremely powerful tool to describe the coupling of a syst
of trapped particles to an environment. It allows one to th
of the coupling in the following terms: at any one time,
particle is either in the trapped system or has been cou
out. Quantum mechanically, this means that the existenc
any superposition of these two possibilities is neglect
Such an assumption is valid if the superposition decays o
time scale much faster than changes occur in the state o
trapped system. Classically, the Markov approximation
plies that an atom that has been coupled out will have
chance of being brought back into the trap again. In the c
of a noninteracting gas and ignoring gravity, atoms that
coupled out leave the spatial region of the trapped atoms
to the relatively slow quantum spreading of their wa
packet. As a consequence, the superposition decays sl
and it is likely that some atoms will be coupled back into t
trap instead of leaving the system irretrievably. Such a
havior leads to strongly non-Markovian dynamics for t
condensate mode@5–8#. However, in the presence of acce
erating potentials atoms may be removed from the region
coupling at a much faster rate and thereby allow the use
the Markov approximation.

In general, there are two distinct operating regimes for
output coupler. The first regime is the strong-coupling
PRA 591050-2947/99/59~4!/2962~12!/$15.00
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gime, where portions of a condensate are coupled out at s
a rate that the output-coupled atoms do not have time
propagate while the coupling is in progress. This regime w
realized in the first experimental demonstration of an out
coupler@3#, where a rf pulse was used to couple out a lar
fraction of the trapped atoms within a time interval of th
order ofms. When the coupling time was long compared
the rate at which atoms can be coupled back into the t
strongly non-Markovian behavior, such as Rabi oscillatio
was observed. In this regime strong collisional interactio
dominated the dynamics of the output-coupled atoms. T
Gross-Pitaevskii equation~GPE! has been found useful in
numerically modeling such a situation@9–11#. In this paper
we are interested in the opposite limit of weak semicontin
ous output coupling, where the untrapped atom beam is
low enough spatial density that we can neglect the effec
collisions on its behavior. Output coupling in this regime h
not yet been demonstrated, although it is considered exp
mentally viable@3#.

Previous theoretical treatments have implicitly made u
of the Markov approximation by assuming a Lindblad mas
equation~see Ref.@18#! for the condensate mode@12–15#. A
different, though essentially equivalent, approach treats
loss of condensate atoms by adding a damping term to
time-dependent Gross-Pitaevskii equation@16,17#. In the
present work we explore the regimes where the Markov
proximation is valid. In Sec. II we present the Hamiltonia
of the total system and introduce the concepts of a mem
function and a memory time. In Sec. III we apply the gene
ideas to the specific case of the radio frequency output c
pler. The results obtained are summarized in Sec. III D.
Sec. IV we also address the case of a Raman output cou

II. MATHEMATICAL FORMALISM

The Hamiltonian of the total system can be written as
sum of three parts,

H5HT1HU1HI , ~1!
2962 ©1999 The American Physical Society
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whereHT is the Hamiltonian of the trapped particles,HU is
the Hamiltonian of the untrapped particles, andHI the inter-
action between the two. The Hamiltonian of the trapped
oms is of the form

HT5E dxĉT
†~x!FVT~x!1

p2

2mG ĉT~x!

1
U

2 E dxĉT
†~x!ĉT

†~x!ĉT~x!ĉT~x!, ~2!

whereĉT(x) is the field operator for the trapped atoms a
VT(x) is the trap potential.m is the mass of the atoms an
U54p\2a/m is the coupling constant for a local collisio
process, wherea is the scattering length of a trapped-trapp
collision. The untrapped atoms are assumed to be of
enough spatial density that we can ignore collisions betw
the untrapped atoms and can write

HU5E dxĉU
† ~x!FVU

eff~x!1
p2

2mG ĉU~x!, ~3!

whereĉU(x) is the field operator of the untrapped atoms a
VU

eff(x) is the effective nonconfining potential experienced
the untrapped atoms. The form of this effective potential w
be given in a later section. Both fields satisfy Bose comm
tation relations, @ĉ(x),ĉ†(x8)#5d(x2x8). We consider
situations where the output coupling is linear and conser
particle number,

HI5 i\AgE dx@g~x,t !ĉU
† ~x!ĉT~x!2g* ~x,t !ĉU~x!ĉT

†~x!#,

~4!

where the coupling constantg(x,t) is normalized so tha
*dxug(x,t)u251, and we assume that the strength of the c
pling Ag is time independent. The time dependence
g(x,t) is then simply an oscillatory phase,g(x,t)
5g(x)e2 int. The above interaction Hamiltonian can d
scribe radio-frequency output coupling@3#, where a radio
wave induces a transition from a hyperfine level that
trapped in the magnetic trap to one that is untrapped or
titrapped. It can also describe Raman output coupling@4#
where two laser beams cause an atom in the trap to ma
two-photon transition to an untrapped state. In this case
atom experiences a momentum kick equal to the differe
in the momentum of the photons involved in the transitio

In this work we confine our interest to a single ener
mode of the trapped system. We will concentrate on the c
when the trapped mode of interest is the condensate m
However, the method is equally applicable to an exci
mode of the trap. The trap mode operator of interest is
fined in terms of its spatial mode functionua(x) by

a[E dxua* ~x!ĉT~x!. ~5!

An oscillation frequency,m, will be associated with this
mode. If the mode is the condensate mode thenua(x) is the
solution to the time-independent GPE andm is the chemical
t-
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potential. The mode operatora is coupled to the untrappe
field throughout an effective coupling region given by

k~x,t !5g~x,t !ua~x!. ~6!

A. Damping of the trapped mode

By substituting the formal solution of the Heisenbe
equation for the untrapped field into the Heisenberg equa
for the trapped modea, we obtain the Langevin equation o
motion @19#,

da~ t !

dt
52

i

\
@a~ t !,HT#2gE

2`

t

ds fm~ t2s!a~s!2Agj~ t !.

~7!

The driving field, j(t), is the contribution from the free
propagation of the initial untrapped field, considered here
be in a vacuum state,

j~ t ![E dxk* ~x,t !ĉU
0 ~x,t !, ~8!

where the dynamics of the free untrapped field operatorĉU
0

are determined by the HamiltonianHU alone. The presence
of the driving field is necessary to preserve the bosonic co
mutation relations of the mode operatora. The damping
term ~the second term on the right-hand side! represents a
loss of particles from the trapped mode into the untrapp
field and makes explicit the dependence of the trapped m
on its past behavior via the so called memory functio
f m(t2t8). The correlation between the driving field and
self at an earlier time determines the memory function
the commutation relation,

f m~ t2t8![@j~ t !,j†~ t8!#. ~9!

This relationship between the driving field and the memo
function is an example of the quantum fluctuation-dissipat
relation and leads to a description of a damping process c
sistent with both quantum and statistical mechanics. T
damping process can then be interpreted as the couplin
discrete atoms out of the trap at random times.

In general, the Langevin equation~7! will contain a term
representing a free oscillation and other terms due to co
sions between the trapped modes. We are interested in ou
coupling and the collisional behavior of the trapped atoms
not explicitly modeled in this work. Instead, we define a ra
G to account for these other processes without conside
them explicitly. This rate may be calculated in work conce
trating on the trapped atoms, such as@20#.

B. A finite memory time

For a dissipative system we expect the system behavio
time s as s→2` to become less and less important in d
termining the present behavior of the system. To make
more concrete we define a memory time,Tm, as the time
after which we can neglect the effect of the previous beh
ior of the system on the evolution in the present. In terms
the Langevin equation, a memory time exists for the syst
if, at some finite time in the past,Tm, we can make the
approximation



e
t

en

te
s
s
l o
-
e

y
ge

b
g
th
s
g
s
e

fo
y
a

t o

e
v
l o
th
a
ne
, i
ch
h
w
e

ve

sc
o
g
t

om

ore
n

e-
-
n
he

the
the
of
time
we
the

it
nal
ack
n
the
t
-
ak-

se
rn

on

he
nc-

he

for

y

e

2964 PRA 59JACK, NARASCHEWSKI, COLLETT, AND WALLS
E
2`

t

ds fm~ t2s!a~s!.E
t2Tm

t

ds fm~ t2s!a~s!, ~10!

for all t. If this condition is satisfied then we will callTm the
memory time of the system. Note that if a memory tim
cannot be defined for the system then the separation of
total system into a localized system interacting with an
vironment becomes inappropriate as there will be no time
which one can say that a particle has left the localized sys
and entered the environment. A description that allows u
separate the system from its environment at some time i
approximation and can only ever be valid to a certain leve
accuracy. Equation~10! is a condition that allows us to ne
glect correlations between the system and the environm
~to some level of accuracy! at some time in the past given b
the memory time. If higher accuracy is required then a lon
memory time is necessary.

In general, the memory time as given by Eq.~10! depends
on the nature ofa(s) and so no general statements can
made concerning this condition without detailed knowled
of the behavior of the trapped atoms. However, from
motion of the untrapped atoms one can determine ca
where condition Eq.~10! can be satisfied without assumin
too much about the behavior of the trapped system. Thi
clearer if we write the memory function in terms of th
single-particle Green’s function as

f m~ t2t8!5E dxdx8 k* ~x,t !k~x8,t8!G~x,t;x8,t8!, ~11!

where

G~x,t;x8,t8![@ĉU
0 ~x,t !,ĉU

0†~x8,t8!# ~12!

5^$0%uĉU
0 ~x,t !ĉU

0†~x8,t8!u$0%&, ~13!

is the single-particle Green’s function for the free atoms
t>t8 andk(x,t) is the effective interaction region given b
Eq. ~6!. The memory function can therefore be interpreted
the overlap between an atom, with an initial wave packe
the shape of the interaction region,k(x8,t8), with a wave
packet,k* (x,t), after it has propagated for a timet2t8.
There are two distinct ways in which this overlap could b
come smaller with increasing time. First, if an atom is lea
ing the interaction region due to an accelerating potentia
quantum-mechanical spreading of its wave packet then
overlap between the atoms wave packet and its original w
packet will decrease in time. The time at which we can
glect this overlap will determine the memory time. Second
an atom is accelerating then it will gain kinetic energy whi
will cause the wave packet of the atom to oscillate. T
overlap between this wave packet and a stationary one
then also oscillate. This oscillation will average to zero wh
integrated over time scales much longer than the period
oscillation. In our case, we are interested in integrating o
time scales short compared to the coupling time scale,g21.
The memory time can be defined as the time when the o
lation is much faster thang, as the overlap will average t
zero after this time. Another, equivalent, way of thinkin
about this is that only a range of frequencies will be close
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resonance with the coupling. Particles with energies far fr
resonance will not be coupled back into the trap.

Following from these considerations we can make a m
practical definition of a memory time in terms of the motio
of the untrapped atoms alone by

U E
2`

t

ds fm~ t2s!U@U E
2`

t2Tm
ds fm~ t2s!U, ~14!

independent ofa(t). Note that we have made the replac
ment f m(t2t8)→ f m(t2t8)e2 imt8 to take account of the os
cillation of the modea(t), as this may cancel the oscillatio
of the memory function itself. This is the only aspect of t
behavior of a(t) that we will consider in determining a
memory time.

In summary, there is a certain region of phase space in
untrapped field where particles can be coupled back into
trap. The time taken for a particle to leave this region
phase space determines the memory time. The memory
can then be interpreted as the time interval after which
can safely assume that a particle has irretrievably left
trap.

If a change ina(t) occurs during the memory time then
is necessary to consider the coupling out of an additio
particle before the first particle has either been coupled b
into the trap or left irretrievably; this is the non-Markovia
regime. Strictly speaking we should distinguish between
free evolution ofa(t) and its evolution due to the outpu
coupling. Strong coupling,gTm.1, leads to the second
order effects mentioned above and this is a serious bre
down of the Markov approximation. The neglect of the
effects for weak coupling is often referred to as the Bo
approximation. If, on top of this, the free system evoluti
~except for an oscillating phase!, is on a time scale much
slower than the memory time,GTm!1, then a(s) can be
taken to the front of the integral in the damping term of t
Langevin equation and the integral over the memory fu
tion can be done. The equation fora(t) will then be local in
time; this is referred to as the Markov approximation for t
damping.

In our case, the Markov approximation can be made
the damping if the memory time,Tm is much less than the
time scale of both the evolution of the trapped modeG21 and
the dampingg21. The operatora(s) can then be replaced b
its value att so that Eq.~7! becomes

da~ t !

dt
.2

i

\
@a~ t !,HT#2 iDva~ t !2g8a~ t !2Agj~ t !, ~15!

where

g85g ReH E
2`

t

ds fm~ t2s!J , ~16!

Dv5g ImH E
2`

t

ds fm~ t2s!J , ~17!

where Dv is a frequency shift due to the coupling@18#.
Equation ~15! is equivalent to the master equation for th
reduced density matrix of the system@19#.
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For the condensate mode the oscillation frequency and
decay rate~determined by the spatial mode function! will
vary at a rateg with the number of atoms in the mode. If th
collective excitations of the trapped atoms~caused by the
change in population! decay much more rapidly than the lo
rate then the chemical potential and the condensate m
function determined from the time-independent GPE will
valid on time scales much shorter than those of the lo
Steck, Naraschewski, and Wallis@16# have demonstrated tha
this procedure is valid by numerically simulating the evo
tion of the full coupled GPE for the trapped and untrapp
fields. In the present case Eq.~15! not only describes the
damping of the condensate number, it also determines
approximate evolution of the total quantum state of the c
densate mode~assuming a slow phase diffusion@21–23#!.

It is likely that a continuous-wave atom laser will als
have some form of pumping. If this pumping is replaci
atoms at the same rate as they are being removed then it
be possible for the rate of evolution of the spatial mode fu
tion of the condensate atoms to be much slower than the
of coupling. In this case the above approximation will b
come more accurate.

In this paper we proceed by first assuming that the m
function and the oscillation frequency are constant and t
determine the memory time. This memory time is then co
pared to the time scale of the dynamics of the trapped m
of interest. If the memory time is much shorter than the ti
scale of the mode dynamics the above assumptions are v
If this is not the case then we have a fully non-Markovi
decay with a time-varying system frequency and coupl
constant. Obviously it is of interest to determine the regio
of validity of the two cases.

C. Green’s functions

To determine the validity of the Markov approximatio
we need to calculatef m(t) in the presence of the potentia
VU

eff(x) and for an interaction regionk(x). A convenient way
to do this is via the Green’s function introduced above. T
single-particle Green’s function for the untrapped particl
Eq. ~13!, can be written in terms of path integrals~see, for
example,@24#! as,

G~x,t;x8,t8!5E
x8,t8

x,t

dx~t!expH iS@x~t!#

\ J , ~18!

where t5t2t8 and whereS is the action of the particle
given by, S@x(t)#5* t8

t dtL„x, (dx/dt)…, and L
5 1

2 m(dx/dt)22VU
eff(x) is the Lagrangian for the untrappe

particles. We are interested in the case where the Lagran
is the sum of the Lagrangians in each dimension. In this c
the Green’s function factorizes into three one-dimensio
Green’s functions. In general, the path integral is difficult
calculate. However, one can make a semiclassical appr
mation to the Green’s function. It turns out that this appro
mation is exact for potentials up to quadratic order in
coordinates. In fact, the semiclassical approximation is ju
fied by approximating a particular potential by a quadra
potential@24#. In this work we will only deal with quadratic
potentials.
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In the following sections~Secs. III and IV! we will con-
sider interaction regions that are independently Gaus
shaped in all three dimensions, so thatk(x)
5k(x)k(y)k(z), where eachk( j ), for j 5$x,y,z%, takes the
form

k~ j !5
1

~s j
2p!1/4

expH 2
j 2

2s j
2J , ~19!

wheres j is the width of the Gaussian in thej th dimension.
Note that we are ignoring any multiplicative constant ofk(x)
as we are interested in the relative fall off of the memo
function. The assumption of a Gaussian interaction reg
allows us to calculate memory functions exactly in ma
situations. We do not expect the exact shape of the inte
tion region to affect the order-of-magnitude estimates for
memory time that we make in this paper.

D. Properties of the output-coupled atoms

Thus far we have presented some general considera
concerning the Markov approximation for the damping
the trapped mode. There is, however, another aspect to
problem; that of determining the properties of the outp
coupled atoms. For example, let us assume that to a g
approximation the system exhibits Markovian damping a
the atoms leave the interaction region with a reasona
well-defined momentum. Due to the dispersive nature of
vacuum for atoms the properties of the untrapped field w
have a nontrivial dependence on position. Very close to
trap, atoms will not have traveled very far and dispers
effects may not be large. However, if the atoms experienc
lot of dispersion then the properties of the field will corr
spond to properties of the trapped mode averaged over s
time. Let us assume that there is a measurement device
calized about a positionx0 that is making destructive mea
surements~destructive in the sense that the detector scat
atoms into free modes far from those of interest; example
such detectors are a hot wire or ionization by a laser! on any
atoms that interact with it. In this case there will be an u
certainty in the time of emission of an atom that is detec
at x0 . The description of a continuous measurement proc
becomes much more complicated in this regime@25#. We
call this the non-Markovian regime for the measurements

To describe such a situation~see Appendix A! we can
define a response function of the system to a particular m
surement device~in analogy with the memory function! as

hx~ t2t8!5E dxdx8 x~x2x0!k~x8,t8!G~x,t;x8,t8!, ~20!

wherex(x2x0) describes the spatial extent of the detect
Ideally, the spatial extent of the measuring device will
smaller than that of the interaction region, otherwise much
the uncertainty will be introduced by the detector itse
hx(t2t8) is the probability amplitude for a particle that
emitted in the interaction region at timet8 to be detected a
time t by the detector.

We can define a memory time for the detection as
time interval between the earliest and the latest times th
particle could have been emitted. The memory time for m
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2966 PRA 59JACK, NARASCHEWSKI, COLLETT, AND WALLS
surements of the output can be analyzed in the same wa
for the damping. If the memory time corresponding to th
response function is much shorter than the time scale of
system dynamics then we can make the Markov approxi
tion for the measurements. If this holds then a detection t
can be considered to correspond exactly to an emission
and all the moments of the measured field are proportiona
those of the trapped mode. This will often be a stron
condition than that for Markovian damping.

III. RADIO-FREQUENCY OUTPUT COUPLER

In the radio frequency output coupler a radio wave
frequencyv rf induces transitions between trapped and
trapped ~or antitrapped! magnetic sublevels of the atom
The strength of the coupling is given by the Rabi frequen
V5gmBohruBu/A2\, written here in terms of the magnet
field B and the Landeg factor. The waist of the rf wave is
assumed to be much broader than the spatial mode func
of the trapped mode and so from Eq.~6! the interaction re-
gion becomesk(x,t)5ua(x)eint, where, ifa is the conden-
sate mode,ua(x) is determined by the solution to the time
independent GPE. However, we assume here that it is v
for our purposes to approximate this mode function by
Gaussian. The energy difference between the untrapped
and the center of the trap is given byV05VT(0). The un-
trapped atoms are free to propagate away and are in ge
subject to accelerating potentials,VU

eff(x). The general situa-
tion is depicted in Fig. 1.

In the following sections we will determine memory time
for a number of relevant potentials for the untrapped ato

A. Free space

In order to emphasize the effect of the external potent
we first consider the case when the atoms are coupled
free space. In thex dimension the free space@VU

eff(x)50#,
Green’s function is

G~x,x8;t!5
1

A4p ilt
expH i

~x2x8!2

4lt J , ~21!

wherel5\/2m is a measure of the rate of spreading of t
wave packet. Integrating this over the Gaussian integra

FIG. 1. Schematic of the situation under consideration. Ato
are coupled out of a trap by the rf field. Once coupled out the at
see a nonconfining potential that tends to repel them from the
teraction region.
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region@given by Eq.~19!# and multiplying the three integral
for each dimension together yields the memory function

f m~t!5)
j

L j~t!e2 iv0t, ~22!

where j 5$x,y,z%, v05m1V02v rf and

L j~t!5
s j

As j
21 ilt

, ~23!

wheres j is the width of the Gaussian in thej th dimension.
A Gaussian wave packet will keep its Gaussian shape~in real
space! but will increase in width over time due to the fa
that it contains a range of velocity components. The over
of the wave packet with itself as a function of time is give
by the memory function.

The radio frequency field couples an atom from t
trapped mode to modes of the untrapped field with frequ
cies aroundv05V01m2v rf so thatv5A2\v0 /m is the
magnitude of the mean velocity of the output coupled atom
When the radio frequency field is on resonance with
trapped mode (v050) particles are coupled out with a zer
mean velocity. The particles can only leave the interact
region by quantum mechanical spreading of their wave pa
ets. The memory function will then decay ast23/2 for long
times,t@s j

2/l. If the output coupled particle has an initia
mean velocityv0Þ0 the memory function will decay at a
faster rate, as the atom will leave the interaction region m
quickly. The case where the mean kinetic energy of the a
is much higher than the coupling rate,v0@g, is very similar
to the optical case and a memory time can be defined
which g21@Tm@v0

21.
Let us investigate the memory time more quantitative

In order to compare memory functions that decay in ve
different ways we consider the ratio of the magnitude of
two integrals in Eq.~14!,

R5

U E
2`

t2Tm
ds fm~ t2s!U

U E
2`

t

ds fm~ t2s!U . ~24!

The quantityR is a measure of the inaccuracy of the appro
mation that a particle has left the interaction region for
particular choice ofTm. Often we are interested in the in
verse, i.e., the memory time given a certain lower bound
the accuracy of the approximation. Doing the integrals in E
~24! we can find the ratioR in terms of the memory time~see
Appendix B for details of the calculations!. First consider the
case when the system is on resonance,v050. In the sym-
metric interaction region case,s5s j , the ratio reduces to

R5
s

@s41~lTm!2#1/4
. ~25!
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Inverting this equation we find the memory time in terms
the ratio,Tm>s2/lR2, where we have assumedR!1. In the
asymmetric case, the memory time is the same as the s
metric case wheres is the broadest width of the interactio
region. This memory time depends on the square of
width of the Gaussian and so is a sensitive function of
size of the interaction region. In experiments performed
date the size of a condensate in the broadest dimension
beens.10 mm. For 87Rb (m;10225 kg!, if we assume a
ratio of R51022 and a size ofs;10 mm, this already gives
a very long memory time of the order of 103 s.

When the atoms are coupled out with an initial veloci
v0Þ0, we get

Tm>
s2

lR2/d
, ~26!

whered is the dimension of the untrapped field, such that
the case where the interaction region is cigar shaped,~e.g.,
s5sx5sy and s!sz), d52, and when it is pancake
shaped~e.g., sx5sy , and sx@sz5s), d51. The initial
velocity produces an oscillation of the memory function th
when averaged over many oscillations leads to a reductio
the memory time compared to the on resonance case. F
cigar shaped region withs;10 mm andR51022 this gives
a much shortened~but still relatively long! memory time of
Tm;10 s for Rb atoms. These calculations show that ato
of low velocity leaving the interaction region by the sprea
ing of their wave packets linger in the region of interacti
for times much longer than 1 s.

For very weak coupling, the oscillation frequency,v0 ,
due to the initial kinetic energy of the atoms, may be mu
greater than the coupling rateg. The memory function aver
aged over times much longer than the time scale defined
the damping 1/vc!1/g is given by

f m~t!}

sinhS @s21 ilt#
vc

l D
s21 ilt

. ~27!

An integral over this function converges, as it acts like
sinc(vct) function for larget@s2/l and we can define a
memory time byTm;1/vc . Note that we do not analyze th
form of the decay in this case as it is simply due to o
choice of a sharp cutoff to restrict the frequencies~see Ap-
pendix B!. In this regime, there is essentially no differen
between the Markov approximation for the damping in t
optical and the atomic case. This is due to the fact that
have implicitly assumed that the coupling constant is
proximately constant across the frequencies of interest
that we are on a linear part of the dispersion curve
equivalently, that the atoms have a limited range of velo
ties about a fast mean velocity and so have fast propaga
times across the region of interaction.

B. Gravity

In most situations atoms coupled out of a trap will
subject to gravitational forces. It is therefore of interest
consider the effects of gravity on the length of the mem
time.
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The Green’s function in thez dimension for a gravita-
tional potentialVU

eff(z)52gmzhas the form

G~z,z8;t!5A 1

4p ilt
expH i

~z2z8!2

4lt
2 i

gm~z1z8!

2\
t

2 i
mg2t3

24\ J . ~28!

The first term in the exponential is the usual dispersion te
and the second and third terms can be recognized as p
shifts due to the potential and kinetic energies, respectiv
Integrating over a Gaussian shaped interaction region
assuming free space Green’s functions for the other two
mensions the memory function becomes

f m~t!5)
j

L j~t!expH 2S mgszt

2\ D 2

2 i
mg2

24\
t32 iv0tJ ,

~29!

where\v05\m1V02\v rf is the initial energy of the out-
put coupled particles@measured fromVU

eff(z50)50]. Under
the influence of gravity an initial Gaussian wave packet p
serves its Gaussian shape~in real space! but the peak of the
Gaussian propagates at a velocityv5gt after a timet in the
2z direction. The Gaussian decay of the memory funct
~given by the first term in the exponential! is due to the
gravitational potential accelerating particles out of the int
action region. If we assume that this Gaussian decay is
dominant process for short times the memory function can
written as

f m~t!}expH 2
t2

2st
2J , ~30!

wherest5A2\/mgsz . The ratio,R, defined by Eq.~14!,
becomes

R'
stA2e2 ~Tm

2 /2st
2
!

ApTm

, ~31!

where we have used the asymptotic behavior of erfc(x) @26#.
Inverting this, and assumingTm@st , we find Tm

>stA2 ln(1/R)52\Aln(1/R)/mgsz . In this case,Tm is in-
versely proportional to the size of the interaction region
the z direction. Surprisingly, the time for a particle to leav
the interaction region actually gets shorter as the interac
region gets larger. This can be explained by noting that s
tially separated parts of an extended wave packet in a gr
tational field experience different rates of gravity-induc
phase rotation. The greater the separation the greater the
tive rotation rate. Therefore, the larger the extent of the w
packet the faster the integral over the wave packet tend
zero. This same phenomena results in gravity-induced qu
tum interference between particles that experience diffe
gravitational fields@27#.

For an interaction region of sizesz;10 mm this Gaussian
envelope gives a memory time ofTm;1025 s for Rb and
Tm;1024 s for 23Na and will become shorter for a large
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interaction region. The memory time is largely independ
of R for R!1, as, in this case,Aln(1/R);1.

Let us now consider the second term in the exponentia
Eq. ~29!. This term describes the property that after a cert
time the particle is traveling at a velocity high enough tha
causes a rapid oscillation of the memory function. This
cillation will average to zero over a time scale much long
than the oscillation frequency. It makes physical sense
estimate a memory time as the time it takes a particle, ac
erating from rest under gravity, to reach a velocity that
high enough that the particle can no longer be coupled b
into the trap,t5v/g, wherev@A2\g/m. From Eq.~29! the
memory function will be oscillating much faster thang if Tm
is such that

2p
mg2Tm

2

24\
@g. ~32!

Rearranging this, we findTm@2/gAg\/m, which supports
our initial estimate quite well. Note that this memory time
independent of the size of the interaction region. For Rb
assuming the oscillation is 10 times greater thang, we can
estimate the memory function in terms ofg as Tm

;1025Ag s3/2.
The particle will undergo gravity-induced dephasing~as

discussed above! sooner than it can gain the required kine
energy ifst is less than the time it takes to make one os
lation st,(48p/mg2)1/3. We can rewrite this condition a
sz.(48m2gp)21/3. For Na, sz would need to be greate
than 6mm and for Rb,sz needs to be greater than 0.1mm for
the oscillation to become important. These values corresp
to very small condensates and therefore we expect
memory time to be determined by the time it takes the p
ticles to undergo gravity-induced dephasing in most sit
tions. A plot of two possible situations is given in Fig. 2.

FIG. 2. Plot of the real part of the memory function for a pa
ticle in a gravitational potential. The memory function is plotted f
sodium atoms with a symmetric interaction regionsx5sy5sz and
the frequencyv052p3100 Hz. The solid line corresponds tosz

510 mm where the time for a particle to leave the spatial inter
tion region determines the memory time. The dashed line dep
the case of a smaller interaction regionsz51 mm where it is pos-
sible that the oscillation due to the accelerating particles velo
determines the memory time.
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C. Collisional repulsion and the antitrapped case

If particles are being coupled out of the condensate m
into an untrapped state they will see a repulsive potential
to the condensate atoms left in the trap~in the repulsive
interaction case! and the shape of this potential will be pro
portional to the density distribution of the condensate. In
Thomas-Fermi approximation the condensate density ta
the shape of the trap potential@28#, UNuua(x)u25max@m
1V02VT(x),0#, whereN is the number of condensate a
oms. In the present experimental situations the traps h
been harmonic in all three dimensions. The repulsive pot
tial for the untrapped atoms will then be a three-dimensio
inverted harmonic potential, given by VU

eff(x)
5eUNuua(x)u25max@em2 1

2 m(e(v j
T)2 j 2,0#, where e is

the ratio of the scattering lengths between a trapp
untrapped atomic collision and a trapped-trapped collisi
In this paper we assume that in the region of interaction
can approximate the effect of the cutoff inverted harmo
potential by a inverted harmonic potential that is not cut
and is therefore quadratic everywhere. In general,
Green’s function depends on the potential everywhere,
we are only interested in the time until a particle is repel
from the interaction region and as long as the particle en
gies are not too close to the cutoff we can neglect the glo
effects due to the shape of the potential outside the inte
tion region.

In addition, if we are considering particles that are outp
coupled into spin states that are repelled by the trap thi
also an inverted harmonic potential. In this case the repuls
potential will be VU

eff(x)5eUNuua(x)u22VT(x), where we
have also included the collisional repulsion. In this case,e is
the ratio between a trapped-antitrapped atomic collision
a trapped-trapped collision.

The Green’s function for an inverted harmonic potentia
easily determined from the Green’s function for an harmo
potential @24# with the substitutionv→ iv. Along a single
axis of the inverted harmonic potential we have

G~x,x8;t!5A mvx

2p i\ sinhvxt
expH imvx

2\ sinhvxt
@~x21x82!

3coshvxt22xx8#2 i
Ṽ0

\
tJ , ~33!

where Ṽ0 is the potential at the center of the inverted ha
monic. This is the Green’s function of the untrapped atom
we can assume that the effect of the inverted harmonic
tential is much greater than that of gravity. In light of th
above discussion it is rather inconsistent now to assum
Gaussian interaction region. However, we do not expect
exact shape of the interaction region to effect our res
dramatically. This is borne out by results that we will prese
below.

The corresponding memory function in the Gaussian c
becomes

f m~t!5)
j

H F coshv jt1 i S l

v js j
2

2
v js j

2

l D
3sinhv jtG J 21/2

e2 iv0t, ~34!
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TABLE I. Summary of memory times for the radio frequency output coupler.

Free space~no oscillation! Tm>
2ms2

\R2
, s5max(sx ,sy ,sz)

Free space~fast oscillation! Tm>
2ms2

\R2/d
, v0@

l

s2

Gravity ~Gaussian envelope! Tm>
2\

mgsz
AlnS1

RD
Gravity ~oscillation! Tm@

2

g
Ag\

m

Inverted harmonic~exponential decay! Tm>
6
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lnS1
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where v05m1V0 /\2v rf2Ṽ0/\. For timest@1/v j this
becomes

f m~t!.)
j

F S 11 i
l

v js j
2

2 i
v js j

2

l D G21/2

3expH 2
v j

2
t2 iv0tJ . ~35!

This exponential decay describes particles being repelled
of the interaction region by the inverted harmonic potent
Assuming this exponential decay is the dominant process
short times we can estimate the usual ratio of integrals
R'exp(23v̄Tm/2), wherev̄5(vx1vy1vz)/3 is the mean
of the inverted harmonic trap frequencies. Inverting this
get Tm>(2/3v̄)ln(1/R), which is independent of the size o
the interaction region. For very asymmetric traps the t
frequency with the largest magnitude will define the mem
time as particles will be repelled fastest in this dimension

In the above calculations we assumed a Gaussian inte
tion region. However, these results hold for general inter
tion regions. This can be seen by taking the limitt@1/v j @as
suggested by Eq.~35!# of the Green’s function itself,

G~x,x8;t@1/v j !5Amvx

2p i\
expH imvx

2\
~x21x82!

2
vx

2
t2 i

Ṽ0

\
tJ , ~36!

where we have assumed 1@e2vxt. This decays as an expo
nential with increasing time, independent of the shape of
interaction region.

In the untrapped case where the potential is determine

collisional repulsionv j5Aev j
T andṼ05em. Assuming that

e.1 we can estimate the memory time~as defined by the
exponential decay! as simply one over the mean of the tra
frequencies. Typical trap frequencies range from 2p
310– 2p3400 Hz. From the experimental parameters of@3#

we can determine the valuev̄52p3219 Hz for the average
trap frequency, which gives a memory time ofTm;1 ms.
ut
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In the antitrapped case we havev j5(Ae11)v j
T and Ṽ0

5em2V0 . The effective inverted harmonic trap potential
estimated to be approximately twice the strength of the t
potential as it is the sum of the repulsive potential and
collisional repulsion. So the memory time calculated for t
untrapped case will be halved due to the repulsive trap
tential.

D. Summary of the radio-frequency output coupler

A summary of the calculated memory times for the rad
frequency output coupler is given in Table I, whereR@1
andd is the dimension of the space of the untrapped ato
e.g.,d51 corresponds to a cigar-shaped interaction regio

If particles are coupled out with a large kinetic energ
v0@g, then a memory time can be defined byg21@Tm

@v0
21, in the same way as for an optical system. In t

optical case the field inside a cavity is coupled directly to
field outside and particles tunneling out of the cavity ha
nearly the same energy as they had inside the cavity. H
ever, in the atomic case the coupling between the trap
field and the untrapped field is mediated by the rad
frequency field. Particles that make the transition betwee
trapped state and an untrapped state have an initial en
equal to the detuning between the frequency of the rf fi
and the energy difference between the two states, see Fi
This means that in the case wherev0 is large the radio fre-
quency is far from resonance with the condensate mode.
populated noncondensate mode is close to resonance the
ticles in the output will be thermal particles. In order
maximize the coupling to the condensate the rf field w
need to be on resonance with the condensate mode and
sequently we expect particles to come out with a small m
energy,v0'0. The slow moving particles are then subject
the accelerating potentials of gravity and collisional rep
sion.

From our calculations, gravity seems to be the force t
determines the memory time. It yields a memory time
Tm;1022 ms for a Rb condensate with a width in thez
direction of the order of 10mm and decreasing with increas
ing width. Sodium, being lighter, has a longer memory tim
Whereas collisional repulsion gives a memory time of t
order of the inverse trap frequenciesTm;1021 ms. This de-
pends on the scattering length of a trapped-untrapped c
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sion and is independent of the size of the region of inter
tion.

IV. RAMAN OUTPUT COUPLER

We can model the case of a Raman output coupler
replacing the coupling constant in the direction of the k
k(x) by

k~x!→k~x!e2 iDx, ~37!

where\D is given by the difference between the momentu
of the two photons involved in the Raman transition,D
5k12k2 .

Assuming the Raman kick is the dominant process,
Green’s function is the free-space Green’s function. T
memory function, assuming a Gaussian-shaped interac
region, is then

f m~t!5)
j

L j~t!expH 2
i

2

lsx
2D2t

sx
21 ilt

2 iv0tJ , ~38!

where in this casev05m2Dv1V0 /\, and we have defined
Dv5v12v2 as the difference between the frequencies
the two lasers.

In this case it is possible for focused laser beams to b
the order of the size of the condensate. The width of th
beams would then define the size of the interaction reg
However, focusing the beams to a small region will tend
lead to diffraction. The momentum of the kick will not b
well defined in this case. A comparison between the situa
when the momentum kick is well defined and when it is n
is shown in Fig. 3. If the momentum kick is not very larg
compared to the characteristic inverse length of the inte
tion region, D;1/sx , then for long times the behavior i
similar to the radio frequency case~i.e., repulsive potentials

FIG. 3. This figure is a comparison between the case whe
particle is given a well-defined momentum kick and when it is n
for the Raman output coupler. We have plotted the real part of
memory function as a function of time for the parametersD5106

m21, sy5sz510 mm andv052p3100 Hz. The solid line is the
casesx510 mm so thatD@1/sx . The dotted line is the casesx

51 mm, soD;1/sx . In this last case the memory function do
not exhibit the Gaussian decay as the momentum kick is not
defined.
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will dominate!. However, where the kick is much great
than the inverse size of the regionD@1/sx we can expand
the term in the exponential in Eq.~38! and write the memory
function as

f m~t!')
j

L j~0!expH 2
t2

2st
2

2 i ~lD21v0!tJ , ~39!

wherest5sx /A2Dl. This will dominate for time scalest
!sx

2/l. In the case when the kick is well defined th
memory time has a very simple classical interpretation
terms of the time a particle takes,t5d/v, to cross a distance
d52s going at velocityv5\D/m. The first term in Eq.
~39! is a Gaussian envelope of widthst and represents the
overlap between the wave packet of a particle propaga
away and the interaction region. As in the gravitational ca
this Gaussian envelope determines a memory time in te
of the usual ratio of integrals asTm>sxAln(1/R)/Dl. In the
best-case scenario, if the two laser beams involved in
Raman transition are counterpropagating, then at optical
quencies the kick given to the atom will be of orderD
;107 m21. This yields a memory time ofTm;1023 s for
interaction regions ofsx510 mm for Rb atoms.

The second term in Eq.~39! is recognized as a kinetic
energy term for a particle propagating with momentu
\(D2/l1v0). If the kick is large the particle will be given a
large kinetic energy and a memory time can be determi
by a high oscillation frequency. IfD2l1v0@g, then we can
determine a memory time asTm;1/vc , where D2l1v0
@vc@g. Unlike the radio-frequency output coupler the R
man output coupler~in the case where the kick is well de
fined! is very similar to the laser in that condensate ato
will leave the trap with a finite, and possibly large, kinet
energy in a well-defined direction. If the kick is large enou
the effects of gravity may be negligible for short distance

V. DISCUSSION

The regions of validity of the Markov approximation hav
been considered previously by Moy, Hope, and Savage@7# in
terms of a one-dimensional model of a condensate unde
ing output coupling into free space. Gravitational effec
were included via a numerical single-particle treatment.
contrast, we have determined analytical memory functio
and~estimates of memory times! for a full three-dimensional
multimode model that includes gravity and collisional rep
sion. This allows a direct comparison of our results w
current experiments.

We have investigated the regimes of validity of the Ma
kov approximation for atoms that are being coupled out of
atomic trap by an output coupler by determining the mem
times ~or correlation times! of the output coupled atoms. A
memory time can be defined by the time taken for a part
to leave the region of phase space of the untrapped fi
where it can be coupled back into the trap. After this time
a particle has not been coupled back it can be considere
have irretrievably left the trap.

Atoms coupled out by an rf field that leave the interacti
region by the free-space spreading of their atomic wa
packet alone can have long memory times (Tm@1 s! which
are dependent on the square of the size of the broades
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mension of the interaction region. These memory times
reduced if atoms are coupled out with a large mean kin
energy. However, in this case the coupling will be far fro
resonance with the condensate mode. For the rf output
pler, gravity~which will nearly always be present! dominates
in many cases, and yields a memory time that ranges f
1022 to 1021 ms for typical experimental parameters. Col
sional repulsion leads to a memory time of the order of
inverse mean trap frequencyv̄ and depending on the ratio o
the scattering lengths between a trapped-untrapped a
trapped-trapped collision,e: Tm;1/Aev̄, which is slightly
longer than the memory time for gravity for typical expe
mental parameters.

Raman output coupling has a memory time which d
pends on the inverse strength of the momentum kick\D,
given by the light to the atoms and on the size of the c
densate in the direction of the kick,s. The kick must be well
defined,D@1/s, to produce a reduction of the memory tim
If the light beams are focused too tightly (D;1/s) diffrac-
tion effects will dominate and the Raman output coupler, l
the radio frequency output coupler, must rely on exter
potentials such as gravity to determine a memory time. In
best case scenario, two counter propagating laser beams
produce a kick ofD;107 m21 giving a memory time of
Tm;1 ms. The Raman output coupler has the nice prop
that in the regime where a short memory time is produ
the atoms are given a well-defined momentum kick, prod
ing a beam of atoms@4#.

These memory times must be short compared with
time scales of the system evolution,G21, and the coupling
rateg21, in order to make the Markov approximation. Th
most important upper time limit ong21 is the correlation
time of the condensate,tc . g21 must be short compared t
tc otherwise the output-coupled atoms will not be correla
with each other. Current experimental estimates for the c
relation time give a range of 0.1– 1 s, i.e., long compared
the calculated memory time corresponding to gravity. The
fore, the Markov approximation will be valid for a range
coupling rates wheretc@g21@Tm.

When the Markov approximation is valid a Markov ma
ter equation may be used to solve for the evolution of
trap modes undergoing damping. When the Markov appro
mation cannot be made new methods must be emplo
@5,25,29#, and interesting behavior will be observed@6–8#.
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APPENDIX A

A localized system~in this case the trapped atoms! inter-
acting with a bath~the modes of the untrapped field! can be
re
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thought of in terms of inputs and outputs to the system@30#.
The initial bath propagates towards the system, interacts w
the system, propagates away again, and is eventually m
sured. To formalize this idea, input and output fields a
defined by

ĉ in~x,t !5UU
† ~ t,t0!ĉU~x,t0!UU~ t,t0!, ~A1!

wheret0,t and is usually taken to be in the distant past, a

ĉout~x,t !5UU~ t1 ,t !ĉU~x,t1!UU
† ~ t1 ,t !, ~A2!

wheret1.t and is usually taken to be in the distant futur
and where the field operators are in the Heisenberg pict
UU is the evolution operator defined in terms ofHU alone.
The relation between the input and output fields and the
mode is given by

ĉout~x,t !5ĉ in~x,t !1AgE
t0

t

ds@ĉ in~ t,x!,ĵ†~s!#a~s!. ~A3!

The output has a contribution from the input field and t
trapped mode at earlier times.

We assume that our measuring device~of Sec. II D! mea-
sures normally ordered moments@31# of the quantity

Ĉout~ t !5E dxx~x2x0!ĉout~x,t !, ~A4!

wherex(x2x0) describes the spatial extent of the detect
We are assuming that the actual measurements take p
over a very short time. The response function for the sys
given a particular measurement device is defined as

hx~ t2t8!5E dxx~x2x0!@ĉ in~ t,x!,ĵ†~ t8!#. ~A5!

hx(t2t8) is the probability amplitude for a particle that
emitted in the interaction region at timet8 to be detected a
time t by the detector. This becomes more obvious if w
write it in terms of the Green’s function for the untrappe
field, Eq. ~20!.

We can define a memory time,T̃m, as the time interval
between the earliest time a detected particle could have b
emitted and the latest time the particle could have been e
ted. T̃m exists if we can write

E
t0

t

d sh~ t2s!a~s!.E
t2T̃m

t

d shx~ t2s!a~s!, ~A6!

where we have ignored any constant time delay that the
sponse introduces as it will not effect steady-state results
this memory time is much shorter than the time scales of
system dynamics we can write

Ĉout~ t !.Ĉ in~ t !1Ag̃a~ t !, ~A7!

where g̃ is defined in a similar way tog8 for the damping
andC in(t) is the contribution of the input field to the outpu
If this holds a detection time corresponds exactly to an em
sion time and all the moments of the measured field
proportional to those of the trapped mode.
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The ratio of the magnitude of the integrals over t
memory function fromt2Tm to 2` and fromt to 2` in the
free space case is

R5

U E
2`

t2Tm
ds)

j
L j~ t2s!e2 iv0~ t2s!U

U E
2`

t

ds)
j

L j~ t2s!e2 iv0~ t2s!U . ~B1!

Doing the integrals in this equation allow us to determine
ratio in terms of the memory function.

In the symmetric interaction region case, wheres5s j ,
we can do the integrals in Eq.~B1! and we find

R5U se2 iv0Tm

As21 ilTm

2Av0s2p

l
e

s2v0

l erfcHAv0S s2

l
1 iTmD J

12Av0s2p

l
e

s2v0

l erfcHAv0s2

l
J U ,

~B2!

where erfc(z)512erf(z) is the complementary error func
tion. In the case wherev050 this ratio reduces to Eq.~25!.
In the asymmetric case withv050, although the intermedi
ate behavior is governed by the narrowest dimensions,
memory time is determined by the broadest dimension. T
is due to the fact that in strictly one and two dimensions
cannot define a memory time as in these cases the inte
in Eq. ~24! diverge. This is a fundamental property th
arises from the 1/At dependence of the one-dimension
Green’s function. In conclusion, the third dimension is
quired for the system to be dissipative in thev050 case.

On the other hand, the casev0Þ0 is important in the
asymmetric case as it is well known that a multiplicati
oscillating factor can make an otherwise divergent integ
convergent. In the case whenvÞ0 we can use the
asymptotic expansion for the error function@26#,
Apzez2

erfcz;111/2z2 as z→` for uarg(z)u,3p/4, to
show that for long timesTm@1/v0 , R}1/@s41(lTm)2#3/4.
For v0@l/s2, Eq. ~B2! simplifies to

R'
s3

@s41~lTm!2#3/4
. ~B3!

In the case where the interaction region is cigar shap
e.g.,s5sx5sy ands!sz , the ratio becomes

R5UE1H v0S s2

l
1 iTmD J

E1H v0

s2

l J U , ~B4!

whereE1(z) is the 1st order exponential integral@26#. Note
that a one-dimensional interaction region corresponds
two-dimensional bath and vice versa. For long times we
write R}s2/As41(lTm)2, where we have used th
asymptotic expansionE1(z)'e2z/z as z→` for uargzu
,3p/2. The ratio simplifies in thev0@l/s2 limit to
e

he
is
e
als

l
-

l

d,

a
n

R'
s2

@s41~lTm!2#1/2
, ~B5!

for all times, Tm. The memory function is then given b
Tm>s2/Rl.

If the interaction region is pancake shaped, e.g.,s5sx ,
sy@s, andsz@s we get

R5UerfcHAv0S s2

l
1 iTmD J

erfcHAv0

s2

l
J U . ~B6!

Whenv0@l/s2 this becomes

R'
s

@s41~lTm!2#1/4
. ~B7!

Yielding a memory time with the same dependency as
low-frequency symmetric case. Putting this all togeth
yields Eq.~26!.

If the atom is coupled out with a large kinetic energy it
useful to consider the memory function written in the for
of an integral over frequency,

f m~ t2t8!5E
0

`

dvD~v!uk~v!u2e2 i [v2n] ~ t2t8!, ~B8!

where v5vk , D(v) is the density of states andk(v) is
found by transforming the effective coupling constant tok
space~wherek is the label of the modes of the untrappe
field! and then using the dispersion relation to make a cha
of variables to frequency space.

In dealing with averages over oscillatory functions it
necessary to specify a time scale over which averages a
be taken. In frequency space this corresponds to conside
only a range of frequencies in the integral in Eq.~B8!. A
physical frequency-dependent coupling,k(v), will naturally
limit the range of frequencies and we can consider mem
times defined by Eq.~14!.

The time scale that we are ultimately interested in thou
is g21. We should therefore average over time scales sh
compared tog21. In frequency space, we can introduce
simple cutoff frequencyvc@g so that the function is aver
aged over times of ordervc

21 ,

f m~ t2t8!5e2 imtE
2vc

vc
dvD~v1v0!uk~v1v0!u2e2 iv~ t2t8!,

~B9!

wherev05m1n.vc . Obviously,v0 must be much greate
than this for the function to be attenuated with increas
time. We are essentially band filtering the memory functi
so we refer to this as the filtered memory function. Phy
cally, we are neglecting particles with energy greater th
\(v01vc) and less than\(v02vc) because they are a lon
way from resonance.

We can define a memory time in terms of the filter
memory functionf m(t2t8) by
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U E
t2Tm

t

dsf m~ t2s!U@U E
t0

t2Tm
dsf m~ t2s!U. ~B10!

In many casesTm;1/vc . Note that a memory time define
in this way relies on the fact that we have assumedv0@g.

The memory function averaged over times 1/vc where
v0@vc@g is given by Eq.~B9!. In the symmetric case
D(v)}Av and for a Gaussian shaped interaction regi
uk(v)u25exp@2 (s2/l) v#. The filtered memory function
simplifies for long times to

f m~t!}sinhS @s21 ilt#
vc

l D F v0

s21 ilt
1

1

2~s21 ilt!2G ,

~B11!

where we have again used the asymptotic expansion for
error function. The second term will tend more rapidly
zero and so the first term will define the memory time. A
integral over this term converges as it acts like a sinc(vct)
n-

n,
tt.

.

i-
n

. A

r,

i-
,

he

function for larget@s2/l and we can define a memory tim
by Tm;1/vc . Note that we do not analyze the form of th
decay in this case as it is simply due to our choice of a sh
cutoff to restrict the frequencies.

If the interaction region is effectively two dimension
then the density of states becomesD(v)}1/Av with
uk(v)u2 the same as above. The filtered memory function
long times also simplifies to

f m~t!}

sinhS @s21 ilt#
vc

l D
s21 ilt

, ~B12!

where we have again used the asymptotic properties of
error function. In a cigar shaped interaction region the d
sity of states isD(v)}1 and the filtered memory function
has the same long term behavior as the two- and th
dimensional cases.
tt.

lls

n

r

tt.

a-

n
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