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Laser-driven population transfer in four-level atoms: Consequences of non-Abelian geometrical
adiabatic phase factors
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We analyze the influence of three pulsed laser fields interacting with a four-state atomic system for which
there occur two degenerate population-trapping dressed states. We present a simple expression for the geo-
metrical phase acquired by such an atom during a stimulated Raman adiabatic (83$8@¢é®) process using
a delay between Stokes and pump pulses, during which the two Rabi frequencies adiabatically traverse a closed
path in the parameter space. We describe techniques that can ptgdaneetrical state-vector phases that are
independent of the longitudial velocity with which atoms move across a laser beam, and that are insensitive to
radiative decay from the intermediate excited state. The geometrical phase can be changed by changing the
relative delay of the pulses. The geometrical phase can be measured by observing the population in atomic
states. We show that when the pump and Stokes pulses are properly timed, high population transfer from the
initial state to the target state is achieved. In the adiabatic limit the robustness of the population transfer is
equivalent to that of STIRAH.S1050-294{®9)05104-5

PACS numbds): 42.50.Hz, 03.65.Bz

[. INTRODUCTION assume the pulses that are sufficiently short so that the exci-
tation dynamics is coherent, and can be described by the

o . ] time-dependent Schdinger equation
One of the significant differences between a classical sta-

tistical system, described by a probability distribution, and a d ]

quantum system, described by probability amplitudes, is the AV (O=—1HOWY (), (1)

presence of a phase factor with each probability amplitude.

These make possible a variety of interference effects charac- . . o

teristic of wavelike behavior, of which the familiar two-slit WhereH(t) is the time-dependent Hamiltonian operator for

diffraction pattern is perhaps the simplest. theT 'ato.m in the presence of a specified field. Because prob—
In elementary cases, each probability amplitude acquires %_blhty is cogserved, the norm of the state vector remains

scalar phase with passing time. Such scalar objects commut&ed, [W(t)[*=1. .

— they are Abelian. More interesting are the cases, dis- The initial conditions on a state vector, and the anaIyS|s of

cussed here, involving matrices of phases — these are noffs evolution in time, are presented most conveniently by

Abelian. introducing a set of atomic basis statgg, associated in the
We will describe techniques that can produce state-vectaabsence of pulsed radiation with energigs Typically one

phases which are independent of the duration of pulses; su@dssumes, as do we, that the atom is known to be in giate

phases are thus independent of the velocity with which atomgiitially (at time t— —=). Of interest are the probabilities

move across a laser beam. We will note possibilities for apP,(t)=|( | ¥ (t)? for finding the atom at a later timein

plying the general theory in atomic beams of helium andstatey, .

neon. A simple approach to this problem, now quite standard, is

The work reported here is an extension to some of th§, express the state vectdf(t) as a superposition of the
methods developed in recent years to produce atomic or m?iasis states, in the forfil]

lecular population transfer in multilevel systems by means o

pulsed coherent excitatiopl]. Section Il considers the

method of stimulated Raman adiabatic pasd&jeA fem- V()= Cyt)exd —iln(t) = Cln (2
tosecond variant of this technique, adiabatic passage by n n

laser-induced potentials, forces molecular vibrational motion

A. Phase in quantum systems

into a desired target staf8]. where the functiong,(t) are chosera priori and the com-
. ) plex variable<C,,(t) are to be determined so as to satisfy the
B. Schradinger equation Schralinger equation and the initial conditions. For any

We consider the effect on an atom of classical pulses ofhoice of the phase functiorig(t), the functionsC,(t) are
coherent radiation, i.e., fields free of stochastic variation. Weprobability amplitudes: the associated probabilities are
P,(t)=|Cn(t)|2. Following this usual approach, one obtains,
in place of the original operator equation fér(t), a set of
*Permanent address: Institute for Physical Research of Armeniagoupled ordinary differential equations for the probability
National Academy of Sciences, Ashtarak-2 378410, Armenia.  amplitudes. Upon listing these amplitud€g(t) as compo-
"Permanent address: Lawrence Livermore National Laboratorynents of a vecto€(t), one obtains the Schdinger equation
Livermore, CA 94550. in the form
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d their initial values, will return the system to the initial state,
i CH=—TWBC(), (3 but with the acquisition of some phags, .

As first noted by Bern}5], one can distinguish two con-
tributions to the phase acquired after completed time evolu-

pend explicitly upon the choice of phase functioggt)y ~ ton: @ dynamical part and a geometrical part. Usually the
made in defining the probability amplitudes. It is usually major contribution to the phase depends explicitly upon the

desirable to choose these phases such that the oﬁ—diagoﬁgpe variatLon Ogthﬁ Harr?iltonr:an; it i‘? dy_nami:c:alhphase.
elements ofV(t) are slowly varying. This is possible in the Berry [S] showed that when the Haf“' tonian of the system
cases we shall consider. depends on a set of parameters which evolve along a closed

curve in the parameter space, then the state vector corre-
o sponding to a simpl@ondegenerateigenvalue develops a
C. Adiabatic states and the RWA phase which depends only on the curve in the parameter
One of the important situations of coherent atomic exci-space. This is thgeometricalphase(or Berry phasg Unlike
tation occurs when the time variation of the Hamiltonian, asthe dynamical phase, the geometrical phase does not depend
presented in the matriv/(t), is very slow. It then becomes on the duration of the interaction. It is therefore, for instance,
useful to introduce a set of adiabatior dressel states independent of the speed with which an atom moves through

where W(t) is a time-varying matrix, whose elements de-

®, (1) defined as instantaneous eigenstate®y/(f), an interaction region.
Berry’s original identification of a geometric phase as-
W() D (1) =N\ (1) P (1) (40 sumed that the eigenstates of the Hamiltonian were nonde-
) generate, and that the adiabatic theory of Born and FéEk
and to express the state vector in terms of these, could be applied. The notion of Berry’s phase was general-
ized to the case of degenerate levels by Wilczek andBke
_ Aharonov and Anandafi7] went beyond the assumption of
o Ea: Ba(h)®4(1)- ® adiabatic evolution to further generalize Berry’s results.

When the evolution is adiabatic but the adiabatic eigen-
Such an expansion is always possible. values are degenerate, then we can write the state vector
Our concern is with excitation of an atom by near- which evolves from¥,(—«) as
resonant laser fields. Specifically we consider the customary N
case when laser frequencies are nearly resonant with atomic
transitions, and when each transition can be uniquely as- ‘Pa(t):% Ban(1) (1),
signed a single near-resonant laser field. Under these well-

studied conditions we deal with the rotating wave approxXiwhere A is the number of adiabatic states which have a
mation (RWA) Hamiltonian matrix #W(t), whose off-  common eigenvalue. The coefficients heBg,(t), form a
diagonal elements(),(t) express the interaction energy of ynitary matrix; they can be regarded as the elements of a
a transition dipole moment in a pulsed electromagnetic field
and whose diagonal elements are detunings expressing

mulative differences between Bohr frequencies and laser Cafieeds to be replaced by a unitary transformation among the
rier frequencies. We will assume that the various laser frey

. ) ; ”» egenerate eigenfunctions. The transformation has the prop-
quencies are resonant with the appropriate transitions, so thafiioc of a non-Abelian gauge fiel®]. The non-Abelian

the diagonal elementd/,(t) of W(t) vanish. We also as- 556 hag been invoked, for example, in discussions of atoms
sume that the pulse aredsltW,(t) are large, so that the j, eyternal collinear electric and magnetic fie[@, and for
adiabatic approximatiofd4] can be used to solve the RWA nuclear quadrupole resonani@.

equations(3). Usually the geometrical phase is much smaller than the
dynamical phase. This makes measurement of the geometric
D. Dynamical, geometric, and non-Abelian phases phase difficult — it is a small effect on a large effect. For
In special circumstances the initial state coincides with€xample, the variation of dynamical phase due to variations
one of the adiabatic states, s@y(t), of the atom residence time ina laser beam_ pIaces_;trlngent
constraints on allowable variation of atomic velocities —
Y (—0)=D,(—x), atomic beams must be nearly monoenergetic.

Here we present a scheme to measure the geometric
where the label onV ,(t) identifies the initial condition. If phase. The proposal is based on using null-eigenvalue
the system evolves adiabatically thereafter, then it remains dtapped state§l] to describe the state vector at all times.
all times in a combination of adiabatic states having a comWhen a system evolves as a trapped state, the state vector
mon eigenvalue. When the adiabatic states are not degenatees not acquire a dynamical phase; only the geometrical
ate, then only the stat®,(t) can contribute to¥,(t), and phase, if nonzero, is present. We show how the geometrical

we can write phase can be mapped into atomic excitation. The excitation
can, in turn, be detected by standard technigaser-
V(1) =Baa(t) D (t)=exdid,(t)]D,(1), induced fluorescence or photoionisajiar as deflection of

an atomic beam. Thus there are numerous possibilities for
thereby defining dscalaj phase¢,(t). Thus adiabatic evo- using degenerate dressed states to observe the geometric
lution, which returns externally controlled parameters tophase.
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underlying principles, and of the consequences of the non-
Abelian geometric phase. We discuss various pulse se-
quences which produce a complete removal of population
from the initial state 1. In these cases the final state is a
superposition of states 3 and 4; the relative amounts of these
s two possibilities depend only on the geometric phase, and
hence a measurement of population in statead) provides
a simple determination of this phase. We discuss both intu-

FIG. 1. Energy levels and linkages. States 1 and 2 are coupletiively and counterintuitively ordered pulse sequences.

by the pump pulsé@(t), states 2 and 3 by the Stokes pul@), It is important to note that in this atomic system the in-
and states 2 and 4 by the pult). The system is initially in termediate state may decay but we can choose the ordering
state 1. of the laser pulses such that the population of state 2 will be
negligibly small during the interaction time. Thus one can
Il. NON-ABELIAN PHASE IN A FOUR-STATE SYSTEM investigate population transfer between atomic bare states

gnd the consequences of a non-Abelian geometric effect in a
it numerous interesting possibilities for interesting eﬁects,purely adiabatic situation when the interaction time is large.

much as the earlier extension of the two-state atom to (,Ih|5 is analogous to the situation in ordinary STIRAP. In this

three-state system brought new classes of phenomena undi@'t of the paper we will assume the single-photon detunings

examination. In this paper, we discuss geometrical-phase el«_anlsh for all transitions to state 2. We remark, in section

fects in a four-state atomic system which interacts with thre VA, on the effec;ts of nonzero de.t.ur."”g- .

pulsed laser fields. The system has similarities with the We solve the tlme-d_ependent Scu_rmggr equatlomS)_for .
three-state system of two pulses acting to produce stimulate four-state atom subject to an excitation schem_e in which
Raman adiabatical passagS8TIRAP) [2]. The STIRAP 1 ree o_f the states are connected to a ;mglg exned_ kdate
mechanism offers, in principle, a simple scheme for transferzr'.pod linkage(see Fig. J1. The RWA Hamiltonian matrix of
ring all atomic population from a single populated initial this system has the form

state to a target final state via a sequence of two partially
overlapping pulses applied in counterintuitive order: first a

The extension from three states to four states brings wit

0O Pt) 0 O
( (

Stokes pulse and then a pump pulse. During the course of Al P(t) 0 S(t) Q(t)

such a pulse sequence the adiabatic paramg@terswo Rabi AW =5 0 st 0 0 (6)
frequenciestraverse a closed-loop path in parameter space.

Referencg10] presented a concept for measurement of the 0 Q) O 0

Berry phase for atomic interferometry based on two cycles of
STIRAP. Here the Rabi frequencieB(t), S(t) and Q(t) are real-

Because there occurs only a single population-trappingalued functions of time. Although we do not account here
state for the three-state STIRAP, the adiabatic evolution infor spontaneous emission, the usual application of the
volves an Abelian transformatiofprocess Such a process STIRAP procedure is to a system in which the intermediate
can only change the phase of the quantum state, and so af{ate, undergoes spontaneous emission not only to states
observation of such a change requires the observation of in¥1, #3, and #, but to other unrecorded statés loss of
terference between two states. However,nan-Abelian population from the four-state systgniThus it is usually
transformation, possible for a foufer more state system, desirable that population be kept from this state at all times.
can change the expectation value of a physical observable
(for example atomic state populatjorTherefore, it is rela- A. Adiabatic states for the tripod linkage
tively easy to detect its consequences experimentally. . . .

We study a four-state atomic system interacting with three . Itis easy to verify thaW(t) of Eq. (6) ha§ the following
external laser fields, whose carrier frequenciesaye ws, eigenvalues, two of which are degenerate:
andwq (see Fig.l The frequencies need not be different if Ay (1) =\,(t)=0
the laser polarizations give unique associations of pulses and ! 2 '
transitions. The pulses are delayed in time, and obey the
condition of exact one-photon resonance.

A version of such a system has been investigated previ-
ously [11]. Recently we suggestdd 2] a method to create
any preselected coherent superposition of the atomic states 1
and 3, in a controlled and robust way, by using a sequence of Qo(H)=VQ(1)2+S(1)2+ P(1)2.
three pulses in the four-state system of Fig. 1. We have
shown that by changing the delay of the control pultke  The corresponding eigenvectothe dressed stateare ex-
24 transition with respect to the pump and Stokes pulsespressible in terms of two time-dependent angldg) and
(which are themselves simultanepitsis possible to control  ¢(t):
the final populations in states 1 and 3. A time-reversed ver-

@)

sion of the techniqgue makes possible a determination of the P(t) Q(t)
phase occurring in a superposition of two atomic states. tand(t)=——, tane(t)= ————. (8
In this present paper we provide further details of the S(1) VP(1)2+S(1)?
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The angle 9(t) is the mixing angle used in standard either one of these, by defining the state vedig(t) to be
STIRAP, ande(t) is an additional mixing angle related to the state vector which evolves from the initial condition
the additional pulse. The two degenerate null-eigenvalue

eigenvectors are Wa(—0)=Dy(—). (1)
cosd(t) At a later time we can write
P 0 v > Bay(H)® 12
()= —sind(t) | a(t)= - ap(t) Pp(t). 12
0

Substituting this expansion into the ScHimger equation,

©) taking the scalar product with adiabatic states, and using the
fact that the adiabatic stat¢gq. (9)] are orthonormal, we
find immediately that for null-eigenvalue adiabatic states
(trapped statgshe elements oB(t) obey the equation

sing(t)sind(t)
Do(1)= sine(t)cosd(t) |’

- t
cose(t) %Bbam:—E Apc(t)Bea(t) (a,b,c=1,2), (13

while the remaining eigenvectors are

where
[ cose(t)sind(t) ]
1 1 B d
Py(t)= — , Apc()={ Pp(1) 57| Pe(t) (14)
J2| cose(t)cosd(t)
sing(t) | form elements of a matriA(t).
(10 A matrix of formal solutions to Eq(13) can be obtained
[ cose(t)sind(t) ] by direct integration, as
()= — -t '
A= 73| cose(tycosd) | B(t):Pex;{—f_mA(t’)dt’}, (15
sing(t)

whereP indicates a time-ordered product. The exponentiated

When theQ(t) pulse is absent we have the usual three-stat@atrix A(t), often termed a potential, is geometrical because
atomic system and the adiabatic states turn into the wellit depends on the Hilbert-space structure, i.e., the choice of
known adiabatic states for STIRAR]. However, the occur- bases. If we choose a different basis
rence of two degenerate null-eigenvalue states here adds
complications, and flexibility, not present with three-state @;(t)zE Uy ®p(1), (16)
STIRAP. b

In the adiabatic limit, which we assume to be applicable,
the time derivative of the mixing angled(t) and ¢(t) is  whereU(t) is a unitary matrix, them(t) will transform as
small compared to the splitting of eigenvalues, given bycomponents of a non-Abelian gauge potential
Qo(t). Under this condition there is negligible nonadiabatic
coupling of dressed statds,; (t) or ®,(t) to the states5(t) A'(H)=UMAMDU) T+ U U (). (17)
or ®,(t). Therefore, in the adiabatic limit we must take into
account only transitions between the degenerate dressed It proves useful to follow the common approach of re-
states®(t) andd,(t). garding the Hamiltonian as a functional of parame®&r®,

The systems of interest for the present discussion arand Q and to define a non-Abelian potentig] A, com-
those for which the atomic statels, 3, andy, are stable prised of elements
states. Spontaneous emission occurs only, if at all, from state
». The two degenerate adiabatic stateg(t) and ®@,(t)
receive no contribution from stat¢, — these states are Aan,={ Pa -
known as trapped states — and hence there is no difficulty in X

considering long pulses, as needed to ensure adiabatic evo- . . .
lution glongp wherex” is one of the three coordinates in the sp&c®, or

Q. A complete pulse sequence, frdm —« to t=+o, re-
turns all pulse amplitudeB(t), S(t) andQ(t) to their initial
B. Non-Abelian adiabatic potential values(zerg. For a closed curve in parameter spdte.,
The assumption thatV(t) varies adiabatically implies Ccompleted pulsgsone obtains the result
that only the two degenerate adiabatic stadegt) and
®,(t) are needed for the construction of any state vector o) = _ 3€ v
W (t). Let us consider the possibilities that initiafly(t) is B(x) Pex;{ zy Andx

c1>b>, v=1,2,3, (18)

. (19
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Integral (19) transforms as Eq17) but without the inho- HereT andr are the pulse lengths and the delay between the
mogeneous teryU~ 1. This means that the eigenvalues of Stokes and pump pulses, respectively. In keeping with the
the matan(t) are gauge invariar[ﬁ]_ terminology of STlRAP, we refer to the pu|se Ol’del’ing as
intuitive when the pump pulse precedes the Stokes pulse, and
counterintuitivewhen the Stokes pulse arrives before the
pump pulse. In all cases we assume that initially all popula-

The computation of integrdll9) is difficult in the general  tjon resides in atomic state 1, and that we wish to transfer
case, because a given segment in the path-ordered expongfis population into state 3.

for our case, we have a two-state system, and after somghijeve this goal with adiabatic evolution. These two se-
algebra we find the solution of E¢L3). For theB(t) matrix  quences are associated with the two trapped adiabatic states
we have the simple formula ®4(t) andd,(t), and they are distinguished by the choice of
pulse ordering.

C. Coupling of degenerate dressed states

cosy(t)  siny(t)
B()=| __ , (20
—siny(t) cosy(t) A. Counterintuitively ordered pulses
where When the Stokes pulse precedes the pump fHelsenter-
intuitively ordered pulses the angled is initially (t—
t do(t’) | —o) zero. The trapped states then have the components
y(t)Ef sing(t’)dt’. (21
—» dt’ 1 0
After some timeT the parameters return to their original
value. This means that after the interaction we have the ma- ~ P1(=%)= ol Py(==)= sing(—) |’ (26)
trix
0 —Cosp(— )
cosys  sinyj - iy - . .
B(x)= _ , (220 The initial condition (all population in atomic state)1lis
—Sinyp  COSyt fulfilled by associating the initial state vectdf(—o) with
where the dressed stai®,(t), becausé(1|®,(—=))]*=1 regard-

less of the order in which th@ pulse occurs. This is just the
Q conventional STIRAP trappe|d |state; after the conclusion of

SdP-Pd9, (23 the final (pump pulse (when |p|=7/2) it coincides, apart
fﬁc (P2+ 32)1/Q2+ P2+ 32( 5 @3 from a phase, with the target statg.

The Q pulse does not affesb(t) directly, but because
and( is the closed path in the parameter space. The eigenhe two trapped states are degenerate, transitions may occur
values of matrix22) are expt-iy;). Thusy;, which is only  between them. Such transitions will alter the population
defined modulo Zr, is gauge invariant, i.e., it does not de- transfer, and will place population into a coherent superpo-
pend on the choice of the adiabatic basis. sition of statesy, ¢z, andy,.

The geometric phasg can be evaluated using Stokes’  From Eqgs.(12) and(22) for the counterintuitive ordering
theorem. Specifically, to evaluatg we must find the inte- of pulses, we obtain the probability;=|[(®;()|¥)|? for
gral of a vectoV=R/R® through an area elemedSin this  the adiabatic staté;(t) after the interactions
pulse-parameter space:

Ny=cos y;, Np=sirf y;,
_ (27)
Yi= éSV'dS (24) N3%0, N4%0

Equation(24) expresses the phase as the flux througlus ~ When there is ho conirol puls€(t)=0, theny;=0 and
of a field V of a monopole with unit strength located at the CONseduentiN; =1, N,=0. This means that all the popula-

point of degeneracyR=0, S=0, Q=0). Thereforey;=0 if tion remains in_ thg _trapped stade;, as in STIRAP. o
C is in the radial plane; otherwise the geometric phase is For counterl_ntumvely ordertid pulses we have the _|n|t|al
generally nonzero. values ¢(—»)=0 and J(—)=0. Therefore, the desired

initial condition (all population in atomic state) is fulfilled

by associating the initial state vecto¥(—o) with the
dressed staté, [see Eq(9)]. At the end of the interaction,
For a quantitative analysis of the effects of the controlthe following connection exists between the adiabatic states

Ill. POPULATION TRANSFER

pulse we assume Gaussian pulses of forms and the atomic states:
S(t)= Qe DA Dy(0)—=—ihs, Dp(0)—— iy
From Egs.(9) and (27), we find that the atomigbare
- —t2T2
Q) =0ge """, (25 state populations are
P(t)=0pe™ (- 77T, Py()=cos y;, Py()~0,

(28)
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1 the states 1, 2, and 4. Thus we see that there is a mapping of
h h the geometrical phase onto atomic population distributions:
we can deduce the geometrical phase by measuring the popu-
lation of the atomic states.

0.8
0.6

04 3 C. Geometrical interpretation

In the STIRAP process there occurs only a single
population-trapping adiabatic state. The composition of this
state can be described by a single angle, expressing the rela-
tive contribution of two atomic states to the null-eigenvalue
05 adiabatic state. With passing time the Hamiltonian is com-

RSN pletely described by the motion of a point in the two-
04 NN dimensional parameter space spanned by the pump and
h N Stokes Rabi frequencid€asx andy axes. As the pulses vary
wm 03 with time, this Hamiltonian point moves, and the state vector
0z ’ changes its angle in a corresponding plane.

Our considered extension involves two degenerate adia-
01 (b) batic states, which contain portions of three atomic states but
exclude one of the atomic states. To describe this composi-
7 It 3 33 3 tion we require two angles; the subspace of the dressed states

T is a sphere rather than the plane of the simpler STIRAP case,
and the position of the state vector in this subspace depends
units of = as function of the delay betwee®and P pulses. The on three Rabi frequencies rather than the two of STIRAP. As

results shown are obtained from numerical solutions to the"Schrothe three pulses ev.olve. In tlme, gxpressed ,by the. changing
dinger equation for the Gaussian pulses given by @§); the location of the Hamlltonlan point in a}three-d|men5|onal pa-
dashed curve is fosT=QpT=0Q,T=A andA=100. The short- fameter spacéFig. 3, they force motion of the state vector
dashed curve is foA=50. Analytical results are shown as a solid on a sphere. The phase acquired by the state vector from a
curve. pulse sequence is the integral of a phase along a path on this
sphere; it has the interpretation of a solid angle. Equations
Py(®)=sir? y;, Py(®)=~0. (23) and (24) provide alternative expressions for this total
geometric phase.
Thus the population of state 4 is determined completely by The geometrical interpretation of the parameter space pro-
the geometrical phasg; . In turn, the geometrical phasg  vides a simple explanation of predicted phases. For example,
can be determined directly by measuring the population ofhe pump and Stokes pulses alone, taken as nonnegative
state 4. functions of time, force the statevector to move within one
quarter of a circle in the plane defined by these two param-
B. Numerical calculations eters. As long as there is no control pulse, the state-vector
motion is planar and the enclosed solid angle is zero. The
addition of a nonnegative control pulse moves the state vec-
HWr away from this plane but, given the quarter-circle con-
ftaint of pump and Stokes pulses, allows motion only within
one-eighth of the full sphere. The solid angle subtended by
this motion is at most one eighth of the full@solid angle:
the maximum geometrical phaseg2.
The geometrical picture provides a simple understanding
of the effect of changing the ordering of pump and Stokes
ulses: reversing this order reverses the motion of the Hamil-
ttonian point in the pump-Stokes plane of parameter space,
&nd therefore reverses the motion of the state vector on the
sphere, meaning that there is a change in sign of the geo-
metrical phase.

0.2 (a)

FIG. 2. Population of state @) and the geometrical phage) in

To illustrate this point, Fig. 2 shows the population of
state 4, and the geometrical phase as a function of the del
between the Stokes and pump pulses. These results wi
obtained from the numerical solution of the Safirger
equation for the Gaussian pulsggqg. (25)], when QqT
=0gT=0pT=100 (dashed ling and QoT=QsT=QpT
=50 (short dash The solid line gives the analytical solution
[Egs. (28) and (21)]. This figure confirms the good agree-
ment of the numerical and analytical results in the adiabati
limit (large pulse areaFor large delay between Stokes and
pump pulses we have good population transfer from the sta
1 to state 4, and the geometrical phase is equat/th

The geometrical phase; reaches its maximum value,
/2, when the delayr is large. There is a nice geometrical
interpretation for this value for the phase, as we see from the
simple arguments of Sec. Il C.

It is interesting to note that we can understand the behav- Unlike the three-state case, there are many possible gen-
ior of the population of state 4 for largeas an example of eralizations of the counterintuitive pulse order for four states.
the usual STIRAP. In fact, for large delay we can neglect thd-et us consider a control pulS®@ whose duration exceeds
influence of the Stokes pulse on the population transfer, i.ethat of the combine® andP pulses. For simplicity we con-
one can consider a four-state atomic system as a three-statigler the choiceQ(t)=const. Then we have late- or early-
system whose counterintuitive interactio@sand P involve  time 9= /2 and ¢=7/2 [see Eq.8)]. Therefore we have

D. Generalizations of counterintuitive pulses
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FIG. 3. Contour followed in th&-P-Q parameter space for the S P(t)
laser pulses given by Ed25). The parameters ar@sT=QpT § S®
=QqT. The delay between the Stokes and pump pulser=3. =
g
1
the following connection between the adiabatic states and the
atomic states at the end of the interactjsee Eq.(9)] /Q
35
— —— N N
Dy(0)—= =iz, Dy(°)— . p 0 3
From Egs.(9) and(27) we find the atomidbare statgpopu- vT
lations to be FIG. 4. Top: time evolution of atomic populations for counter-
. _ intuitively ordered pulses. The population of the intermediate state
Pl(oo)_smz vt, Pa()~0, 2 remains zero. Bottom: pulses producing this excitation; the am-
(29 plitudes are given in units of ~1. Parameters ar€pT=QgT
Pg()=cos y;, P4()=0. =500, 0pT=35, andr=0.7T.

The geometric phasg; is independent of pulse areas, such
as QpT, QgT and QqT. It depends on the ratios/T,
Qp/Qq, andQg/Qq.

When Q(t)~{qg=const is very large compared with
P(t) andS(t) the atomic system will return to the staig
becausep~ 7/2 and thugsee Eq.(21)]

state 3 after the interaction. The numerical solution of Bj.
gives the same numerical value. It is interesting to note that
at the end of the Stokes interaction there is population in 4.
The Q and P pulses together transfer this population into
state 1 via adiabatic evolution, as in STIRAP. The transfer
into state 4 involves three simultaneous pulses, and so it has
no such simple explanation.

The variation of the final population of state 3 with the
areas of pump and Stokes pulses is shown in Fig. 5;for
=0.7T, with QoT=35 andQoT=0 (STIRAP).

fﬂdﬁ
4ind ﬂoa

We can explain this in the following way. For largg(t)
statesy, and ¢, are not populated, and one can eliminate
these states from the initial equations for the amplitJdep
(3)]. After this procedure we have an effective two-state
atom. The population transfer from the atomic state 1 to
atomic state 3 can proceed in two ways, as expressed by the
amplitudesP S Q and — PSQ. These two amplitudes inter-
fere destructively, so that no net transfer occurs. Thus the
; ; ) P

atomic population will return to the state 1. 3

When the amplitudes of the pump and Stokes pulses large ¢4
compared with the control pulse, afhT> 1, then the geo-
metrical phase is small. We then find from EQ9 that
complete population transfer occurs from the initial atomic
state 1 to the target atomic state 3. The evolution of the
atomic populations is plotted in Fig. 4. The lower frame of
this figure shows the pulses. The parameters ar®.7T,

a
dt=9(+2) ~ H(—2)= 5.

0.8

0.6

02

100 125 150 175 200

Pulse area

25 50 75

QpT=0gT=500, andQoT=35. The upper frame shows

FIG. 5. Population of state 3 as a function of the area of Stokes

the resulting pOpulationS. Because the t|me eVOIUtion iS ad|3and pump pu|se@ounterintuitive sequence with de|ay:07'|’)

batic the population of the excited stafge remains small.
The geometrical phase, from E3), is y;=0.126. With
Egs.(29) this gives a valud®;=0.984 for the population of

Solid curve, no control pulse{}qT=0); dashed curve, control
pulse)oT=35. Results were obtained from a numerical solution
of the Schrdinger equation for the Gaussian pulses of Fig. 2.
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FIG. 6. Population of state 3 as a function of the delay between

pump and Stokes pulses. The negative delay0 is a counterin- 8
tuitive sequence, and the positive delay 0 is an intuitive pulse S P(t) S()
. . - (53
sequence. The curve is symmetrical abeut0, and agrees with %
Eqg. (29). Parameters ar@sT=QpT=500 and(oT=35. £
S
o . . & Q
As can be seen, the evolution differs significantly in these ,. | /
two case. This is not surprising. For any adiabatic process e e N~— ~o
-3 0 3

involving only nondegenerate adiabatic states, the transition

between adiabatic states is proportionaetd’”, whereQT Al

is the effective pulse argd3]. The dependence of the final £ 7. Top: time evolution of the atomic populations for intu-
population on the area was considered in R&f] for the  jtively orderd pulses, for parameters the same as those in Fig. 4.
STIRAP process. They found breakdown of the Dykhne-gottom: the pulses.

Davis-Pechukag13] exponential dependence of the non-

adiabatic transition probability. As can be see from Fig. 5, 0 1
population growth does not follow the simple pattern exp

(—QT) when the control pulse is present. The coupling be- ol —o0)— 0 ol —o0)— 0 31
tween degenerate trapped statbs and ®, changes the (=) -1\ 2(=%) ol’ (3D
population dynamics dramatically. 0 0

In Fig. 6 we show the dependence of the population trans-
fer f tate 1 to state 3 the del f th d . . . .
Setrokr:sminstear;ction(; SWE;‘]:QPTOQQS?:‘ES‘(%’ gnd;ﬁﬂ% an and the state vector will begin as the adiabatic sthte
for Gaussian pulsg€q. ( 25)] andQ(t) =const. A negative (h_ Oos)t Ili, n ad|d|t|on, tk;]e pump pulse endstat tp, prior to
delay means counterintuitive pulses and positive dela); € Slokes pulse, we have
means intuitively ordered pulses. Thus wh@pT>1 the
variation of the transfer probability with delayis symmet-
ric with respect tor=0; both counterintutive and intuitive
pulse sequences produce the same results. Let us consider the D(tp)=
intuitively ordered pulses in more detail.

(32

o » O O

E. Intuitively ordered pulses i.e., the dressed statk,(tp) coincides with the target state

When the pump pulse precedes the Stokes pulse, then vi#s &t the end of the pump-Stokes pulse sequence. Thus when
have initially | 9| = /2, and statab,(t) does not fit the ini- theQ pulse is present at the start and at the termination of the
pump-Stokes pulses, then it is possible to achieve complete

tial conditions(because thef(1|®,(—«))|=0). The state ! , , POSSIDE
vector coincides initially with statéd,(t) if we require that adiabatic popqlatlon transfer with mtwtlvely qfdered pulses.
the Q pulse extends earlier and later than the pump pulse andoWever, unlike the case of counterintuitively ordered
the Stokes pulse, so that initially and finalky|= /2. For pulses, thls_ transfer p_Iaces population into stateluring the _
o= /2 the trapped states are time evolutl_on; see Fig. Bhe parameters are the same as in
the counterintuitive caséFig. 4)].
cosd(t) sind(t) Although the first step of the population transfer from
state 1 to state 4 is a STIRAP process, in which the interac-
(1) = . . Dy(t)= . (30 tion Q _acts as the counterintuiti\_/ely order_ed Stokes _pulse, the
—sind(t) cosd(t) transition from state 4 to the final atomic state 3 is not. In
0 0 this step the interactio® occurs in the intuitive ordering
compared to the transition between states 2 and 3.
The transition from atomic state 1 to atomic state 3 takes

When the pump pulse precedes the Stokes pulse, then tipéace via the trapping statk,(t). This can be understood by
initial trapped states are examining the dressed statk,(t) when, at intermedia-
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1 — In fact, in atomic beam experimentsee for example, Refs.
o5 [16], [17)) pulse areas as large &, T~ (100-500) have

) A7 v been used.

-
Py ! 7 IV. COMMENTS
-
04 QqT=10 //ﬂ A. Effects of Detuning
~
0.2 e “aT-40 For application to experiments involving atomic beams
- moving transversely across laser beams, a consequence of
S 20 50 50 700 the velocity distribution is to change the interaction time of
Pulse area the individual atoms with the laser beams. This amounts to a

rescaling of the time unit/T, but the integralEq. (23)], is
ot changed. Thus the geometrical phase is insensitive to the
ngitudinal velocity distribution of an atomic beam.
The present results were derived with the simplifying as-
mption that the carrier frequencies of the three puiseS
andQ are each tuned to resonance with the respective tran-
sition. However, the results also apply when the pulses have
the same nonzero detuning. Then there still exists a pair of
null-eigenvalue adiabatic statds; and ®,. The common
nonzero detuning alters only the structure and eigenvalues of
the two adiabatic state®; and ®,. These states are not
involved in the adiabatic evolution.

FIG. 8. Variation of the final population of state 3 with pulse
area. The solid curve refers to the counterintuitive sequence, wit
(oT=10; the short dash corresponds to the intuitive sequence,
again withQoT=10; the dashed curve is for both sequences; andSu
the large ared)oT=40 (intuitive and counterintuitive sequences
are indistinguishable This figure demonstrates how the adiabatic
limit is approached, as predicted by the analytical re$&lts (29)],
when the area of th® pulse is increased.

tetimes,S andP are not small compared @, so that we
have ¢~0, and the dark state is

0 B. A Comment on null eigenvalues
Do(to) = 33 In the simplest coherent excitation by resonantly tuned
2(tp) = 0 (33 fixed-frequency pulses, population transfer occurs between
1 two states having common unperturbed energy eigenvalues

in the rotating-wave approximation — the atomic states
combined with field states are degenerate before and after the
The final populations of the atomic states in the adiabatié¢nteraction which couples them. It is convenient, and always
limit are the same as given by E@9). After the completed possible, to take this common energy to be thebitrary
population transfer the atoms are in state 3. zero point for expressing other energies; these two states
As shown in Ref[15] for the intuitive case wheloT  then share a null eigenvalue of the unperturbed RWA Hamil-
=0, the final population of state 1 is zero but the final popu-tonian. During the course of pulsed interaction the adiabatic
lations of the states 2 and 3 oscillate with the effective Rabeigenvalues of the two-state single-pulse system differ from
frequency of the two pulses. However, the situation changegero.
qualitatively for largeQ o T; one then has a monotonic de-  In the STIRAP procedure, based on three states and
pendence of the population in state 3 on the area of thewo pulses, there occurs a single eigenvalue of the full adia-
Stokes and pump pulses. batic Hamiltonian which remains at all times equal to the
It is interesting to note that the population of level 2 is original degenerate enerdgero, by convention In the tri-
small during the adiabatic transfer between the initial ancod linkage considered here, with four states and three
final states. Thus in the adiabatic limit we have the sameuilses, there are two null adiabatic eigenvalues during
final population in the states 1 and 3, in accordance with Ecthe interaction: a pair of dressed states remain degenerate at
(29). In order to show this, in Fig. 8 we plot the final popu- all times. As we show, the location of the state vector within
lation of state 3 as a function d24T, for counterintuitive  the restricted subspace of the two strongly coupled adiabatic
and intuitive pulse sequences. For lakggT=40 the popu- states is not only a phase angtbe geometric phagebut
lation of state 3 as a function of the area of the Stokes anit has a direct association with observable population trans-
pump pulses is the same for the both cases. However, fder.
(oT=10 the intuitive and counterintuitive sequences give More elaborate systems, with more pulses, may involve
different results. For the intuitive sequence the evolution igpopulation transfer between any number of states sharing a
not adiabatic. Equation®9) and (28) are valid only in the null eigenvalue of the adiabatic Hamiltonian. Such cases

adiabatic limit, i.e., offer opportunities to examine couplings between more
than two closely coupled null-eigenvalue adiabatic states
dot de(t [18].
% <Qq(t), % <Qq(b), (34)

C. Experimental realizations

There are many ways to realized a tripod linkage pattern
within atomic systems examined in earlier studies of STI-
RAP, such as metastable ne@e*) [16] and metastable
QT>1. helium (He*) [7].

or, for pulse duratiorT,
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For the Né& statey;, we can take the metastable state The stimulated Raman adiabatic passé§€IRAP) pro-
(2p®3s) 3Po(M=0), which can be coupled to the state cess(i.e. a delay between Stokes and pump pulsesring
(2p°®3p) °P,(M =0) (statey,) by linearly polarized radia- Which the Rabi frequencies traverses a closed path in param-
tion of wavelength 616 nm. The staf®®;(M=0) can be eter space and the state vector evolves adiabatically, provides

coupled with (°3s) 3P,(M =1) (statey,) and 3Po(M = a remarkable possibility of experimental determination of a
— 1) (stateyss) by a laser k=588 nm with o polarization 9eometrical phase.
[16]). ( ¥s) by § m 7= P Even when the lasers are each taken to be resonant with

the associated Bohr frequencies, the excited state 2 is never
populated during the adiabatic evolution. The absence of
spontaneous emission preserves the coherence of the atomic
wave function. At all times the atom is in a trapped state,
which suppresses the evolution of a nonzero dynamical
phase and permits the observation of the geometrical phase,
even if small.

For He, the state 3S; of helium is metastable, and can
be coupled to the levelP, by three laser beams of the same
wavelength and with different polarizations. The state
3py(M=0) (state ¢,) can be coupled with3S;(M=1)
(statey,), 3S;(M=—1) (statey;), and °S;(M=0) (state
4) by a laser £ =1083 nm with .. and 7 polarization,

for example, the pump pulse(t) with o, polarization, the We have shown how to measure this phase, say in an
Stokes pulses(t) with counterpropagating . polarization,  5iomic beam experiment, by observing the population in
and the control puls@(t) with = polariza_tion. In this case  giomic bare states. When pump and Stokes pulses are ap-
we can derive all of the pulses from a single laser. Altemayieq in either counterintuitive or intuitive orders, one can
tively, we can use\=389 nm to couple the metastable statepain high population transfer from the initial state to the

to the next-higher-lying level, giving the option of easily (5rget state. In the adiabatic limit the robustness of this trans-

detecting decay from there. fer (i.e. insensitivity to details such as pulse arisaequiva-
Note that not only the control laser, but also the pump anggnt i that of the STIRAP process.

Stokes lasers, may be at a given wavelength, or that the
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