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Laser-driven population transfer in four-level atoms: Consequences of non-Abelian geometrical
adiabatic phase factors

R. G. Unanyan,* B. W. Shore,† and K. Bergmann
Fachbereich Physik der Universita¨t, 67653 Kaiserslautern, Germany

~Received 4 August 1998!

We analyze the influence of three pulsed laser fields interacting with a four-state atomic system for which
there occur two degenerate population-trapping dressed states. We present a simple expression for the geo-
metrical phase acquired by such an atom during a stimulated Raman adiabatic passage~STIRAP! process using
a delay between Stokes and pump pulses, during which the two Rabi frequencies adiabatically traverse a closed
path in the parameter space. We describe techniques that can produce~geometrical! state-vector phases that are
independent of the longitudial velocity with which atoms move across a laser beam, and that are insensitive to
radiative decay from the intermediate excited state. The geometrical phase can be changed by changing the
relative delay of the pulses. The geometrical phase can be measured by observing the population in atomic
states. We show that when the pump and Stokes pulses are properly timed, high population transfer from the
initial state to the target state is achieved. In the adiabatic limit the robustness of the population transfer is
equivalent to that of STIRAP.@S1050-2947~99!05104-5#

PACS number~s!: 42.50.Hz, 03.65.Bz
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I. INTRODUCTION

A. Phase in quantum systems

One of the significant differences between a classical
tistical system, described by a probability distribution, an
quantum system, described by probability amplitudes, is
presence of a phase factor with each probability amplitu
These make possible a variety of interference effects cha
teristic of wavelike behavior, of which the familiar two-sl
diffraction pattern is perhaps the simplest.

In elementary cases, each probability amplitude acquir
scalar phase with passing time. Such scalar objects comm
— they are Abelian. More interesting are the cases,
cussed here, involving matrices of phases — these are
Abelian.

We will describe techniques that can produce state-ve
phases which are independent of the duration of pulses;
phases are thus independent of the velocity with which ato
move across a laser beam. We will note possibilities for
plying the general theory in atomic beams of helium a
neon.

The work reported here is an extension to some of
methods developed in recent years to produce atomic or
lecular population transfer in multilevel systems by means
pulsed coherent excitation@1#. Section II considers the
method of stimulated Raman adiabatic passage@2#. A fem-
tosecond variant of this technique, adiabatic passage
laser-induced potentials, forces molecular vibrational mot
into a desired target state@3#.

B. Schrödinger equation

We consider the effect on an atom of classical pulses
coherent radiation, i.e., fields free of stochastic variation.

*Permanent address: Institute for Physical Research of Arme
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assume the pulses that are sufficiently short so that the e
tation dynamics is coherent, and can be described by
time-dependent Schro¨dinger equation

\
d

dt
C~ t !52 iH ~ t !C~ t !, ~1!

whereH(t) is the time-dependent Hamiltonian operator f
the atom in the presence of a specified field. Because p
ability is conserved, the norm of the state vector rema
fixed, uC(t)u251.

The initial conditions on a state vector, and the analysis
its evolution in time, are presented most conveniently
introducing a set of atomic basis states,cn , associated in the
absence of pulsed radiation with energiesEn . Typically one
assumes, as do we, that the atom is known to be in statec1
initially ~at time t→2`). Of interest are the probabilitie
Pn(t)5 z^cnuC(t) z2 for finding the atom at a later timet in
statecn .

A simple approach to this problem, now quite standard
to express the state vectorC(t) as a superposition of the
basis states, in the form@1#

C~ t !5(
n

Cn~ t !exp@2 i zn~ t !#cn[(
n

Cn8~ t !cn ~2!

where the functionszn(t) are chosena priori and the com-
plex variablesCn(t) are to be determined so as to satisfy t
Schrödinger equation and the initial conditions. For an
choice of the phase functionszn(t), the functionsCn(t) are
probability amplitudes: the associated probabilities
Pn(t)5uCn(t)u2. Following this usual approach, one obtain
in place of the original operator equation forC(t), a set of
coupled ordinary differential equations for the probabil
amplitudes. Upon listing these amplitudesCn(t) as compo-
nents of a vectorC(t), one obtains the Schro¨dinger equation
in the form
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d

dt
C~ t !52 iW~ t !C~ t !, ~3!

where W(t) is a time-varying matrix, whose elements d
pend explicitly upon the choice of phase functionszn(t)
made in defining the probability amplitudes. It is usua
desirable to choose these phases such that the off-diag
elements ofW(t) are slowly varying. This is possible in th
cases we shall consider.

C. Adiabatic states and the RWA

One of the important situations of coherent atomic ex
tation occurs when the time variation of the Hamiltonian,
presented in the matrixW(t), is very slow. It then become
useful to introduce a set of adiabatic~or dressed! states
Fk(t) defined as instantaneous eigenstates ofW(t),

W~ t !Fk~ t !5lk~ t !Fk~ t ! ~4!

and to express the state vector in terms of these,

C~ t !5(
a

Ba~ t !Fa~ t !. ~5!

Such an expansion is always possible.
Our concern is with excitation of an atom by nea

resonant laser fields. Specifically we consider the custom
case when laser frequencies are nearly resonant with at
transitions, and when each transition can be uniquely
signed a single near-resonant laser field. Under these w
studied conditions we deal with the rotating wave appro
mation ~RWA! Hamiltonian matrix \W(t), whose off-
diagonal elements\Vnm(t) express the interaction energy
a transition dipole moment in a pulsed electromagnetic fie
and whose diagonal elements are detunings expressing
mulative differences between Bohr frequencies and laser
rier frequencies. We will assume that the various laser
quencies are resonant with the appropriate transitions, so
the diagonal elementsWnn(t) of W(t) vanish. We also as
sume that the pulse areas*dtWnm(t) are large, so that the
adiabatic approximation@4# can be used to solve the RW
equations~3!.

D. Dynamical, geometric, and non-Abelian phases

In special circumstances the initial state coincides w
one of the adiabatic states, sayFa(t),

Ca~2`!5Fa~2`!,

where the label onCa(t) identifies the initial condition. If
the system evolves adiabatically thereafter, then it remain
all times in a combination of adiabatic states having a co
mon eigenvalue. When the adiabatic states are not dege
ate, then only the stateFa(t) can contribute toCa(t), and
we can write

Ca~ t !5Baa~ t !Fa~ t ![exp@ ifa~ t !#Fa~ t !,

thereby defining a~scalar! phasefa(t). Thus adiabatic evo-
lution, which returns externally controlled parameters
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their initial values, will return the system to the initial stat
but with the acquisition of some phasefa .

As first noted by Berry@5#, one can distinguish two con
tributions to the phase acquired after completed time evo
tion: a dynamical part and a geometrical part. Usually
major contribution to the phase depends explicitly upon
time variation of the Hamiltonian; it is adynamicalphase.
Berry @5# showed that when the Hamiltonian of the syste
depends on a set of parameters which evolve along a clo
curve in the parameter space, then the state vector co
sponding to a simplenondegenerateeigenvalue develops a
phase which depends only on the curve in the param
space. This is thegeometricalphase~or Berry phase!. Unlike
the dynamical phase, the geometrical phase does not de
on the duration of the interaction. It is therefore, for instan
independent of the speed with which an atom moves thro
an interaction region.

Berry’s original identification of a geometric phase a
sumed that the eigenstates of the Hamiltonian were non
generate, and that the adiabatic theory of Born and Fock@4#
could be applied. The notion of Berry’s phase was gene
ized to the case of degenerate levels by Wilczek and Zee@6#.
Aharonov and Anandan@7# went beyond the assumption o
adiabatic evolution to further generalize Berry’s results.

When the evolution is adiabatic but the adiabatic eig
values are degenerate, then we can write the state ve
which evolves fromCa(2`) as

Ca~ t !5(
b

N

Bab~ t !Fb~ t !,

whereN is the number of adiabatic states which have
common eigenvalue. The coefficients here,Bab(t), form a
unitary matrix; they can be regarded as the elements o
generalized non-Abelian phase matrix@exp(if̂)#ab. Thus
when degenerate eigenvalues are considered the Berry p
needs to be replaced by a unitary transformation among
degenerate eigenfunctions. The transformation has the p
erties of a non-Abelian gauge field@6#. The non-Abelian
phase has been invoked, for example, in discussions of at
in external collinear electric and magnetic fields@8#, and for
nuclear quadrupole resonance@9#.

Usually the geometrical phase is much smaller than
dynamical phase. This makes measurement of the geom
phase difficult — it is a small effect on a large effect. F
example, the variation of dynamical phase due to variati
of the atom residence time in a laser beam places strin
constraints on allowable variation of atomic velocities
atomic beams must be nearly monoenergetic.

Here we present a scheme to measure the geom
phase. The proposal is based on using null-eigenva
trapped states@1# to describe the state vector at all time
When a system evolves as a trapped state, the state v
does not acquire a dynamical phase; only the geometr
phase, if nonzero, is present. We show how the geometr
phase can be mapped into atomic excitation. The excita
can, in turn, be detected by standard techniques~laser-
induced fluorescence or photoionisation! or as deflection of
an atomic beam. Thus there are numerous possibilities
using degenerate dressed states to observe the geom
phase.
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II. NON-ABELIAN PHASE IN A FOUR-STATE SYSTEM

The extension from three states to four states brings w
it numerous interesting possibilities for interesting effec
much as the earlier extension of the two-state atom t
three-state system brought new classes of phenomena u
examination. In this paper, we discuss geometrical-phase
fects in a four-state atomic system which interacts with th
pulsed laser fields. The system has similarities with
three-state system of two pulses acting to produce stimul
Raman adiabatical passage~STIRAP! @2#. The STIRAP
mechanism offers, in principle, a simple scheme for trans
ring all atomic population from a single populated initi
state to a target final state via a sequence of two parti
overlapping pulses applied in counterintuitive order: firs
Stokes pulse and then a pump pulse. During the cours
such a pulse sequence the adiabatic parameters~the two Rabi
frequencies! traverse a closed-loop path in parameter spa
Reference@10# presented a concept for measurement of
Berry phase for atomic interferometry based on two cycles
STIRAP.

Because there occurs only a single population-trapp
state for the three-state STIRAP, the adiabatic evolution
volves an Abelian transformation~process!. Such a process
can only change the phase of the quantum state, and so
observation of such a change requires the observation o
terference between two states. However, anon-Abelian
transformation, possible for a four-~or more! state system,
can change the expectation value of a physical observ
~for example atomic state population!. Therefore, it is rela-
tively easy to detect its consequences experimentally.

We study a four-state atomic system interacting with th
external laser fields, whose carrier frequencies arevp , vs ,
andvd ~see Fig.1!. The frequencies need not be different
the laser polarizations give unique associations of pulses
transitions. The pulses are delayed in time, and obey
condition of exact one-photon resonance.

A version of such a system has been investigated pr
ously @11#. Recently we suggested@12# a method to create
any preselected coherent superposition of the atomic sta
and 3, in a controlled and robust way, by using a sequenc
three pulses in the four-state system of Fig. 1. We h
shown that by changing the delay of the control pulse~ the
2↔4 transition! with respect to the pump and Stokes puls
~which are themselves simultaneous! it is possible to control
the final populations in states 1 and 3. A time-reversed v
sion of the technique makes possible a determination of
phase occurring in a superposition of two atomic states.

In this present paper we provide further details of t

FIG. 1. Energy levels and linkages. States 1 and 2 are cou
by the pump pulseP(t), states 2 and 3 by the Stokes pulseS(t),
and states 2 and 4 by the pulseQ(t). The system is initially in
state 1.
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underlying principles, and of the consequences of the n
Abelian geometric phase. We discuss various pulse
quences which produce a complete removal of popula
from the initial state 1. In these cases the final state i
superposition of states 3 and 4; the relative amounts of th
two possibilities depend only on the geometric phase,
hence a measurement of population in state 4~say! provides
a simple determination of this phase. We discuss both in
itively and counterintuitively ordered pulse sequences.

It is important to note that in this atomic system the i
termediate state may decay but we can choose the orde
of the laser pulses such that the population of state 2 will
negligibly small during the interaction time. Thus one c
investigate population transfer between atomic bare st
and the consequences of a non-Abelian geometric effect
purely adiabatic situation when the interaction time is lar
This is analogous to the situation in ordinary STIRAP. In th
part of the paper we will assume the single-photon detuni
vanish for all transitions to state 2. We remark, in sect
IV A, on the effects of nonzero detuning.

We solve the time-dependent Schro¨dinger equation~3! for
a four-state atom subject to an excitation scheme in wh
three of the states are connected to a single exited sta@a
tripod linkage~see Fig. 1!#. The RWA Hamiltonian matrix of
this system has the form

\W~ t !5
\

2S 0 P~ t ! 0 0

P~ t ! 0 S~ t ! Q~ t !

0 S~ t ! 0 0

0 Q~ t ! 0 0

D . ~6!

Here the Rabi frequenciesP(t), S(t) and Q(t) are real-
valued functions of time. Although we do not account he
for spontaneous emission, the usual application of
STIRAP procedure is to a system in which the intermedi
statec2 undergoes spontaneous emission not only to st
c1 , c3 , and c4 but to other unrecorded states~a loss of
population from the four-state system!. Thus it is usually
desirable that population be kept from this state at all tim

A. Adiabatic states for the tripod linkage

It is easy to verify thatW(t) of Eq. ~6! has the following
eigenvalues, two of which are degenerate:

l1~ t !5l2~ t !50,
~7!

l3~ t !51V0~ t !/2, l4~ t !52V0~ t !/2.

Here

V0~ t ![AQ~ t !21S~ t !21P~ t !2.

The corresponding eigenvectors~the dressed states! are ex-
pressible in terms of two time-dependent anglesq(t) and
w(t):

tanq~ t !5
P~ t !

S~ t !
, tanw~ t !5

Q~ t !

AP~ t !21S~ t !2
. ~8!

ed
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The angle q(t) is the mixing angle used in standa
STIRAP, andw(t) is an additional mixing angle related t
the additional pulse. The two degenerate null-eigenva
eigenvectors are

F1~ t !5F cosq~ t !

0

2sinq~ t !

0

G ,

~9!

F2~ t !5F sinw~ t !sinq~ t !

0

sinw~ t !cosq~ t !

2cosw~ t !

G ,

while the remaining eigenvectors are

F3~ t !5
1

A2F cosw~ t !sinq~ t !

1

cosw~ t !cosq~ t !

sinw~ t !

G ,

~10!

F4~ t !5
1

A2F cosw~ t !sinq~ t !

21

cosw~ t !cosq~ t !

sinw~ t !

G .

When theQ(t) pulse is absent we have the usual three-s
atomic system and the adiabatic states turn into the w
known adiabatic states for STIRAP@2#. However, the occur-
rence of two degenerate null-eigenvalue states here
complications, and flexibility, not present with three-sta
STIRAP.

In the adiabatic limit, which we assume to be applicab
the time derivative of the mixing anglesq(t) and w(t) is
small compared to the splitting of eigenvalues, given
V0(t). Under this condition there is negligible nonadiaba
coupling of dressed statesF1(t) or F2(t) to the statesF3(t)
or F4(t). Therefore, in the adiabatic limit we must take in
account only transitions between the degenerate dre
statesF1(t) andF2(t).

The systems of interest for the present discussion
those for which the atomic statesc1 , c3 , andc4 are stable
states. Spontaneous emission occurs only, if at all, from s
c2 . The two degenerate adiabatic statesF1(t) and F2(t)
receive no contribution from statec2 — these states ar
known as trapped states — and hence there is no difficult
considering long pulses, as needed to ensure adiabatic
lution.

B. Non-Abelian adiabatic potential

The assumption thatW(t) varies adiabatically implies
that only the two degenerate adiabatic statesF1(t) and
F2(t) are needed for the construction of any state vec
C(t). Let us consider the possibilities that initiallyC(t) is
e

te
ll-
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either one of these, by defining the state vectorCa(t) to be
the state vector which evolves from the initial condition

Ca~2`!5Fa~2`!. ~11!

At a later time we can write

Ca~ t !5(
b

Bab~ t !Fb~ t !. ~12!

Substituting this expansion into the Schro¨dinger equation,
taking the scalar product with adiabatic states, and using
fact that the adiabatic states@Eq. ~9!# are orthonormal, we
find immediately that for null-eigenvalue adiabatic sta
~trapped states! the elements ofB(t) obey the equation

d

dt
Bba~ t !52(

c
Abc~ t !Bca~ t ! ~a,b,c51,2!, ~13!

where

Abc~ t ![ K Fb~ t !U d

dt UFc~ t !L ~14!

form elements of a matrixA(t).
A matrix of formal solutions to Eq.~13! can be obtained

by direct integration, as

B~ t !5P expF2E
2`

t

A~ t8!dt8G , ~15!

whereP indicates a time-ordered product. The exponentia
matrix A(t), often termed a potential, is geometrical becau
it depends on the Hilbert-space structure, i.e., the choice
bases. If we choose a different basis

Fa8~ t !5(
b

Uab~ t !Fb~ t !, ~16!

whereU(t) is a unitary matrix, thenA(t) will transform as
components of a non-Abelian gauge potential

A8~ t !5U~ t !A~ t !U~ t !211U̇~ t !U21~ t !. ~17!

It proves useful to follow the common approach of r
garding the Hamiltonian as a functional of parametersS, P,
and Q and to define a non-Abelian potential@6# An com-
prised of elements

Aabn5K FaU ]

]xn UFbL , n51,2,3, ~18!

wherexn is one of the three coordinates in the spaceS, P, or
Q. A complete pulse sequence, fromt52` to t51`, re-
turns all pulse amplitudesP(t), S(t) andQ(t) to their initial
values ~zero!. For a closed curve in parameter space~i.e.,
completed pulses! one obtains the result

B~`!5P expF2(
n

R AndxnG . ~19!
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Integral~19! transforms as Eq.~17! but without the inho-
mogeneous termU̇U21. This means that the eigenvalues
the matrixB(t) are gauge invariant@6#.

C. Coupling of degenerate dressed states

The computation of integral~19! is difficult in the general
case, because a given segment in the path-ordered exp
tial integral does not commute with the next one. Howev
for our case, we have a two-state system, and after s
algebra we find the solution of Eq.~13!. For theB(t) matrix
we have the simple formula

B~ t !5F cosg~ t ! sing~ t !

2sing~ t ! cosg~ t !
G , ~20!

where

g~ t ![E
2`

t dq~ t8!

dt8
sinw~ t8!dt8. ~21!

After some timeT the parameters return to their origin
value. This means that after the interaction we have the
trix

B~`!5F cosg f sing f

2sing f cosg f
G , ~22!

where

g f5 R
C

Q

~P21S2!AQ21P21S2
~SdP2PdS!, ~23!

andC is the closed path in the parameter space. The eig
values of matrix~22! are exp(6igf). Thusg f , which is only
defined modulo 2p, is gauge invariant, i.e., it does not d
pend on the choice of the adiabatic basis.

The geometric phaseg f can be evaluated using Stoke
theorem. Specifically, to evaluateg f we must find the inte-
gral of a vectorV[R/R3 through an area elementdS in this
pulse-parameter space:

g f5 R
S
V–dS. ~24!

Equation~24! expresses the phaseg f as the flux throughdS
of a field V of a monopole with unit strength located at th
point of degeneracy (P50, S50, Q50). Therefore,g f50 if
C is in the radial plane; otherwise the geometric phase
generally nonzero.

III. POPULATION TRANSFER

For a quantitative analysis of the effects of the cont
pulse we assume Gaussian pulses of forms

S~ t !5VSe2~ t1t!2/T2
,

Q~ t !5VQe2t2/T2
, ~25!

P~ t !5VPe2~ t2t!2/T2
.

en-
r,

e

a-

n-

is

l

HereT andt are the pulse lengths and the delay between
Stokes and pump pulses, respectively. In keeping with
terminology of STIRAP, we refer to the pulse ordering
intuitive when the pump pulse precedes the Stokes pulse,
counterintuitivewhen the Stokes pulse arrives before t
pump pulse. In all cases we assume that initially all popu
tion resides in atomic state 1, and that we wish to trans
this population into state 3.

There are two possible pulse sequences which
achieve this goal with adiabatic evolution. These two
quences are associated with the two trapped adiabatic s
F1(t) andF2(t), and they are distinguished by the choice
pulse ordering.

A. Counterintuitively ordered pulses

When the Stokes pulse precedes the pump pulse~counter-
intuitively ordered pulses!, the angleq is initially ( t→
2`) zero. The trapped states then have the component

F1~2`!5F 1

0

0

0

G , F2~2`!5F 0

0

sinw~2`!

2cosw~2`!

G . ~26!

The initial condition ~all population in atomic state 1! is
fulfilled by associating the initial state vectorC(2`) with
the dressed stateF1(t), becausez^1uF1(2`)& z251 regard-
less of the order in which theQ pulse occurs. This is just the
conventional STIRAP trapped state; after the conclusion
the final ~pump! pulse ~when uwu5p/2) it coincides, apart
from a phase, with the target statec3 .

The Q pulse does not affectF1(t) directly, but because
the two trapped states are degenerate, transitions may o
between them. Such transitions will alter the populati
transfer, and will place population into a coherent super
sition of statesc1 , c3 , andc4 .

From Eqs.~12! and ~22! for the counterintuitive ordering
of pulses, we obtain the probabilityNi5u^F i(`)uC&u2 for
the adiabatic stateF i(t) after the interactions

N15cos2 g f , N25sin2 g f ,
~27!

N3'0, N4'0.

When there is no control pulse,Q(t)[0, then g f50 and
consequentlyN151, N250. This means that all the popula
tion remains in the trapped stateF1 , as in STIRAP.

For counterintuitively ordered pulses we have the init
valuesw(2`)50 and q(2`)50. Therefore, the desired
initial condition ~all population in atomic state 1! is fulfilled
by associating the initial state vectorC(2`) with the
dressed stateF1 @see Eq.~9!#. At the end of the interaction
the following connection exists between the adiabatic sta
and the atomic states:

F1~`!→2c3, F2~`!→2c4.

From Eqs.~9! and ~27!, we find that the atomic~bare
state! populations are

P3~`!5cos2 g f , P1~`!'0,

~28!
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P4~`!5sin2 g f , P2~`!'0.

Thus the population of state 4 is determined completely
the geometrical phaseg f . In turn, the geometrical phaseg f
can be determined directly by measuring the population
state 4.

B. Numerical calculations

To illustrate this point, Fig. 2 shows the population
state 4, and the geometrical phase as a function of the d
between the Stokes and pump pulses. These results
obtained from the numerical solution of the Schro¨dinger
equation for the Gaussian pulses@Eq. ~25!#, when VQT
5VST5VPT5100 ~dashed line! and VQT5VST5VPT
550 ~short dash!. The solid line gives the analytical solutio
@Eqs. ~28! and ~21!#. This figure confirms the good agree
ment of the numerical and analytical results in the adiab
limit ~large pulse area!. For large delay between Stokes a
pump pulses we have good population transfer from the s
1 to state 4, and the geometrical phase is equal top/2.

The geometrical phaseg f reaches its maximum value
p/2, when the delayt is large. There is a nice geometric
interpretation for this value for the phase, as we see from
simple arguments of Sec. III C.

It is interesting to note that we can understand the beh
ior of the population of state 4 for larget as an example o
the usual STIRAP. In fact, for large delay we can neglect
influence of the Stokes pulse on the population transfer,
one can consider a four-state atomic system as a three-
system whose counterintuitive interactionsQ andP involve

FIG. 2. Population of state 4~a! and the geometrical phase~b! in
units of p as function of the delay betweenS and P pulses. The
results shown are obtained from numerical solutions to the Sc¨-
dinger equation for the Gaussian pulses given by Eq.~25!; the
dashed curve is forVST5VPT5VQT5A andA5100. The short-
dashed curve is forA550. Analytical results are shown as a sol
curve.
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the states 1, 2, and 4. Thus we see that there is a mappin
the geometrical phase onto atomic population distributio
we can deduce the geometrical phase by measuring the p
lation of the atomic states.

C. Geometrical interpretation

In the STIRAP process there occurs only a sing
population-trapping adiabatic state. The composition of t
state can be described by a single angle, expressing the
tive contribution of two atomic states to the null-eigenval
adiabatic state. With passing time the Hamiltonian is co
pletely described by the motion of a point in the tw
dimensional parameter space spanned by the pump
Stokes Rabi frequencies~asx andy axes!. As the pulses vary
with time, this Hamiltonian point moves, and the state vec
changes its angle in a corresponding plane.

Our considered extension involves two degenerate a
batic states, which contain portions of three atomic states
exclude one of the atomic states. To describe this comp
tion we require two angles; the subspace of the dressed s
is a sphere rather than the plane of the simpler STIRAP c
and the position of the state vector in this subspace depe
on three Rabi frequencies rather than the two of STIRAP.
the three pulses evolve in time, expressed by the chan
location of the Hamiltonian point in a three-dimensional p
rameter space~Fig. 3!, they force motion of the state vecto
on a sphere. The phase acquired by the state vector fro
pulse sequence is the integral of a phase along a path on
sphere; it has the interpretation of a solid angle. Equati
~23! and ~24! provide alternative expressions for this tot
geometric phase.

The geometrical interpretation of the parameter space
vides a simple explanation of predicted phases. For exam
the pump and Stokes pulses alone, taken as nonneg
functions of time, force the statevector to move within o
quarter of a circle in the plane defined by these two para
eters. As long as there is no control pulse, the state-ve
motion is planar and the enclosed solid angle is zero. T
addition of a nonnegative control pulse moves the state v
tor away from this plane but, given the quarter-circle co
straint of pump and Stokes pulses, allows motion only with
one-eighth of the full sphere. The solid angle subtended
this motion is at most one eighth of the full 4p solid angle:
the maximum geometrical phase isp/2.

The geometrical picture provides a simple understand
of the effect of changing the ordering of pump and Stok
pulses: reversing this order reverses the motion of the Ha
tonian point in the pump-Stokes plane of parameter spa
and therefore reverses the motion of the state vector on
sphere, meaning that there is a change in sign of the g
metrical phase.

D. Generalizations of counterintuitive pulses

Unlike the three-state case, there are many possible
eralizations of the counterintuitive pulse order for four stat
Let us consider a control pulseQ whose duration exceed
that of the combinedS andP pulses. For simplicity we con-
sider the choiceQ(t)5const. Then we have late- or early
time q5p/2 andw5p/2 @see Eq.~8!#. Therefore we have
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the following connection between the adiabatic states and
atomic states at the end of the interaction@see Eq.~9!#

F1~`!→2c3 , F2~`!→c1.

From Eqs.~9! and~27! we find the atomic~bare state! popu-
lations to be

P1~`!5sin2 g f , P2~`!'0,
~29!

P3~`!5cos2 g f , P4~`!'0.

The geometric phaseg f is independent of pulse areas, su
as VPT, VST and VQT. It depends on the ratiost/T,
VP /VQ , andVS /VQ .

When Q(t)'VQ5const is very large compared wit
P(t) andS(t) the atomic system will return to the statec1
becausew'p/2 and thus@see Eq.~21!#

g f'E
2`

1`dq

dt
dt5q~1`!2q~2`!5

p

2
.

We can explain this in the following way. For largeQ(t)
statesc2 and c4 are not populated, and one can elimina
these states from the initial equations for the amplitudes@Eq.
~3!#. After this procedure we have an effective two-sta
atom. The population transfer from the atomic state 1
atomic state 3 can proceed in two ways, as expressed b
amplitudesPS/Q and2PS/Q. These two amplitudes inter
fere destructively, so that no net transfer occurs. Thus
atomic population will return to the state 1.

When the amplitudes of the pump and Stokes pulses la
compared with the control pulse, andVQT@1, then the geo-
metrical phase is small. We then find from Eq.~29! that
complete population transfer occurs from the initial atom
state 1 to the target atomic state 3. The evolution of
atomic populations is plotted in Fig. 4. The lower frame
this figure shows the pulses. The parameters aret50.7T,
VPT5VST5500, andVQT535. The upper frame show
the resulting populations. Because the time evolution is a
batic the population of the excited statec2 remains small.
The geometrical phase, from Eq.~23!, is g f50.126. With
Eqs.~29! this gives a valueP350.984 for the population of

FIG. 3. Contour followed in theS-P-Q parameter space for th
laser pulses given by Eq.~25!. The parameters areVST5VPT
5VQT. The delay between the Stokes and pump pulser ist5T.
he
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state 3 after the interaction. The numerical solution of Eq.~3!
gives the same numerical value. It is interesting to note t
at the end of the Stokes interaction there is population in
The Q and P pulses together transfer this population in
state 1 via adiabatic evolution, as in STIRAP. The trans
into state 4 involves three simultaneous pulses, and so it
no such simple explanation.

The variation of the final population of state 3 with th
areas of pump and Stokes pulses is shown in Fig. 5, fot
50.7T, with VQT535 andVQT50 ~STIRAP!.

FIG. 4. Top: time evolution of atomic populations for counte
intuitively ordered pulses. The population of the intermediate s
2 remains zero. Bottom: pulses producing this excitation; the a
plitudes are given in units ofT21. Parameters areVPT5VST
5500,VPT535, andt50.7T.

FIG. 5. Population of state 3 as a function of the area of Sto
and pump pulses~counterintuitive sequence with delayt50.7T).
Solid curve, no control pulse (VQT50); dashed curve, contro
pulseVQT535. Results were obtained from a numerical soluti
of the Schro¨dinger equation for the Gaussian pulses of Fig. 2.
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As can be seen, the evolution differs significantly in the
two case. This is not surprising. For any adiabatic proc
involving only nondegenerate adiabatic states, the transi
between adiabatic states is proportional toe2VT, whereVT
is the effective pulse area@13#. The dependence of the fina
population on the area was considered in Ref.@14# for the
STIRAP process. They found breakdown of the Dykhn
Davis-Pechukas@13# exponential dependence of the no
adiabatic transition probability. As can be see from Fig.
population growth does not follow the simple pattern e
(2VT) when the control pulse is present. The coupling b
tween degenerate trapped statesF1 and F2 changes the
population dynamics dramatically.

In Fig. 6 we show the dependence of the population tra
fer from state 1 to state 3 on the delay of the pump a
Stokes interactions whenVPT5VST5500 andVQT535
for Gaussian pulses@Eq. ~ 25!# andQ(t)5const. A negative
delay means counterintuitive pulses and positive de
means intuitively ordered pulses. Thus whenVQT@1 the
variation of the transfer probability with delayt is symmet-
ric with respect tot50; both counterintutive and intuitive
pulse sequences produce the same results. Let us consid
intuitively ordered pulses in more detail.

E. Intuitively ordered pulses

When the pump pulse precedes the Stokes pulse, the
have initially uqu5p/2, and stateF1(t) does not fit the ini-
tial conditions~because thenu^1uF1(2`)&u50). The state
vector coincides initially with stateF2(t) if we require that
theQ pulse extends earlier and later than the pump pulse
the Stokes pulse, so that initially and finallyuwu5p/2. For
w5p/2 the trapped states are

F1~ t !5F cosq~ t !

0

2sinq~ t !

0

G , F2~ t !5F sinq~ t !

0

cosq~ t !

0

G . ~30!

When the pump pulse precedes the Stokes pulse, then
initial trapped states are

FIG. 6. Population of state 3 as a function of the delay betw
pump and Stokes pulses. The negative delayt,0 is a counterin-
tuitive sequence, and the positive delayt.0 is an intuitive pulse
sequence. The curve is symmetrical aboutt50, and agrees with
Eq. ~29!. Parameters areVST5VPT5500 andVQT535.
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F1~2`!5F 0

0

21

0

G , F2~2`!5F 1

0

0

0

G , ~31!

and the state vector will begin as the adiabatic stateF2
(2`). If, in addition, the pump pulse ends att5tP , prior to
the Stokes pulse, we have

F2~ tP!5F 0

0

1

0

G , ~32!

i.e., the dressed stateF2(tP) coincides with the target stat
c3 at the end of the pump-Stokes pulse sequence. Thus w
theQ pulse is present at the start and at the termination of
pump-Stokes pulses, then it is possible to achieve comp
adiabatic population transfer with intuitively ordered pulse
However, unlike the case of counterintuitively order
pulses, this transfer places population into statec4 during the
time evolution; see Fig. 7@the parameters are the same as
the counterintuitive case~Fig. 4!#.

Although the first step of the population transfer fro
state 1 to state 4 is a STIRAP process, in which the inter
tion Q acts as the counterintuitively ordered Stokes pulse,
transition from state 4 to the final atomic state 3 is not.
this step the interactionQ occurs in the intuitive ordering
compared to the transition between states 2 and 3.

The transition from atomic state 1 to atomic state 3 ta
place via the trapping stateF2(t). This can be understood b
examining the dressed stateF2(t) when, at intermedia-

n

FIG. 7. Top: time evolution of the atomic populations for int
itively orderd pulses, for parameters the same as those in Fig
Bottom: the pulses.
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tetimes,S andP are not small compared toVQ , so that we
havew'0, and the dark state is

F2~ tP!5F 0

0

0

21

G . ~33!

The final populations of the atomic states in the adiab
limit are the same as given by Eq.~29!. After the completed
population transfer the atoms are in state 3.

As shown in Ref.@15# for the intuitive case whenVQT
50, the final population of state 1 is zero but the final pop
lations of the states 2 and 3 oscillate with the effective R
frequency of the two pulses. However, the situation chan
qualitatively for largeVQT; one then has a monotonic de
pendence of the population in state 3 on the area of
Stokes and pump pulses.

It is interesting to note that the population of level 2
small during the adiabatic transfer between the initial a
final states. Thus in the adiabatic limit we have the sa
final population in the states 1 and 3, in accordance with
~29!. In order to show this, in Fig. 8 we plot the final pop
lation of state 3 as a function ofVQT, for counterintuitive
and intuitive pulse sequences. For largeVQT540 the popu-
lation of state 3 as a function of the area of the Stokes
pump pulses is the same for the both cases. However
VQT510 the intuitive and counterintuitive sequences g
different results. For the intuitive sequence the evolution
not adiabatic. Equations~29! and ~28! are valid only in the
adiabatic limit, i.e.,

Udq~ t !

dt U!V0~ t !, Udw~ t !

dt U!V0~ t !, ~34!

or, for pulse durationT,

V0T@1.

FIG. 8. Variation of the final population of state 3 with puls
area. The solid curve refers to the counterintuitive sequence,
VQT510; the short dash corresponds to the intuitive seque
again withVQT510; the dashed curve is for both sequences;
the large areaVQT540 ~intuitive and counterintuitive sequence
are indistinguishable!. This figure demonstrates how the adiaba
limit is approached, as predicted by the analytical results@Eq. ~29!#,
when the area of theQ pulse is increased.
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In fact, in atomic beam experiments~see for example, Refs
@16#, @17#! pulse areas as large asV0T;(100– 500) have
been used.

IV. COMMENTS

A. Effects of Detuning

For application to experiments involving atomic beam
moving transversely across laser beams, a consequenc
the velocity distribution is to change the interaction time
the individual atoms with the laser beams. This amounts
rescaling of the time unitt/T, but the integral@Eq. ~23!#, is
not changed. Thus the geometrical phase is insensitive to
longitudinal velocity distribution of an atomic beam.

The present results were derived with the simplifying a
sumption that the carrier frequencies of the three pulsesP, S,
andQ are each tuned to resonance with the respective t
sition. However, the results also apply when the pulses h
the same nonzero detuning. Then there still exists a pai
null-eigenvalue adiabatic statesF1 and F2 . The common
nonzero detuning alters only the structure and eigenvalue
the two adiabatic statesF3 and F4 . These states are no
involved in the adiabatic evolution.

B. A Comment on null eigenvalues

In the simplest coherent excitation by resonantly tun
fixed-frequency pulses, population transfer occurs betw
two states having common unperturbed energy eigenva
in the rotating-wave approximation — the atomic sta
combined with field states are degenerate before and afte
interaction which couples them. It is convenient, and alwa
possible, to take this common energy to be the~arbitrary!
zero point for expressing other energies; these two st
then share a null eigenvalue of the unperturbed RWA Ham
tonian. During the course of pulsed interaction the adiab
eigenvalues of the two-state single-pulse system differ fr
zero.

In the STIRAP procedure, based on three states
two pulses, there occurs a single eigenvalue of the full ad
batic Hamiltonian which remains at all times equal to t
original degenerate energy~zero, by convention!. In the tri-
pod linkage considered here, with four states and th
pulses, there are two null adiabatic eigenvalues dur
the interaction: a pair of dressed states remain degenera
all times. As we show, the location of the state vector with
the restricted subspace of the two strongly coupled adiab
states is not only a phase angle~the geometric phase!, but
it has a direct association with observable population tra
fer.

More elaborate systems, with more pulses, may invo
population transfer between any number of states sharin
null eigenvalue of the adiabatic Hamiltonian. Such ca
offer opportunities to examine couplings between mo
than two closely coupled null-eigenvalue adiabatic sta
@18#.

C. Experimental realizations

There are many ways to realized a tripod linkage patt
within atomic systems examined in earlier studies of S
RAP, such as metastable neon~Ne* ) @16# and metastable
helium ~He* ) @7#.
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For the Ne* statec1 , we can take the metastable sta
(2p53s) 3P0(M50), which can be coupled to the sta
(2p53p) 3P1(M50) ~statec2) by linearly polarized radia-
tion of wavelength 616 nm. The state3P1(M50) can be
coupled with (2p53s) 3P2(M51) ~statec4) and 3P2(M5
21) ~statec3) by a laser (l5588 nm! with s6 polarization
@16#.

For He* , the state 23S1 of helium is metastable, and ca
be coupled to the level3P0 by three laser beams of the sam
wavelength and with different polarizations. The sta
3P0(M50) ~state c2) can be coupled with3S1(M51)
~statec1), 3S1(M521) ~statec3), and 3S1(M50) ~state
c4) by a laser (l51083 nm! with s6 and p polarization,
for example, the pump pulseP(t) with s1 polarization, the
Stokes pulseS(t) with counterpropagatings2 polarization,
and the control pulseQ(t) with p polarization. In this case
we can derive all of the pulses from a single laser. Alter
tively, we can usel5389 nm to couple the metastable sta
to the next-higher-lying level, giving the option of easi
detecting decay from there.

Note that not only the control laser, but also the pump a
Stokes lasers, may be at a given wavelength, or that
pump and Stokes laser are at one wavelength, while the
trol laser is at the other. The choice depends on availabi
and needs to be judged eventually based on other cons
ations. The power of suitable cw lasers~say 50W/cm2) is
adequate to satisfy the adiabaticity conditions~see Ref.@8#!.

V. CONCLUSIONS

In this paper we have shown that, in the adiabatic lim
and with resonant excitation, the nature of the transition
tween four atomic states, linked in a tripod configuratio
involves only a geometrical phase. Consequently the ph
does not depend on the exact value of the Rabi frequen
as long as the conditions for adiabatic following are satisfi
n
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The stimulated Raman adiabatic passage~STIRAP! pro-
cess~i.e. a delay between Stokes and pump pulses!, during
which the Rabi frequencies traverses a closed path in par
eter space and the state vector evolves adiabatically, prov
a remarkable possibility of experimental determination o
geometrical phase.

Even when the lasers are each taken to be resonant
the associated Bohr frequencies, the excited state 2 is n
populated during the adiabatic evolution. The absence
spontaneous emission preserves the coherence of the a
wave function. At all times the atom is in a trapped sta
which suppresses the evolution of a nonzero dynam
phase and permits the observation of the geometrical ph
even if small.

We have shown how to measure this phase, say in
atomic beam experiment, by observing the population
atomic bare states. When pump and Stokes pulses are
plied in either counterintuitive or intuitive orders, one ca
obtain high population transfer from the initial state to t
target state. In the adiabatic limit the robustness of this tra
fer ~i.e. insensitivity to details such as pulse area! is equiva-
lent to that of the STIRAP process.
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