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Changes in Floquet-state structure at avoided crossings: Delocalization and harmonic generation
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Avoided crossings are common in the quasienergy spectra of strongly driven nonlinear quantum wells. In
this paper we examine the sinusoidally driven particle in a square potential well to show that avoided crossings
can alter the structure of Floquet states in this system. Two types of avoided crossings are identified: one type
leads only to temporary changéss a function of driving field strengttin Floquet state structure while the
second type can lead to permanent delocalization of the Floquet states. Radiation spectra from these latter
states show a significant increase in high harmonic generation as the system passes through the avoided
crossing[S1050-294®9)03504-F

PACS numbdss): 42.50.Hz, 05.45:a, 42.65.Ky

[. INTRODUCTION repulsion and the creation of extendétklocalized states
has already been founfll7,18. However, these studies

Quantum systems whose classical counterparts are chaoti@oked at statistical properties of the system as a whole. Here
have received much attention in recent yddds One quan- We will concentrate on the changes in the structure of the
tum signature of the classical transition to chaos is the apduantum eigenstates at a single avoided crossing. We iden-
pearance of avoided crossings in the spectrum of the quarify two distinct types of avoided crossings which have dif-
tum system. Avoided crossings occur when the curves of twéerent effects on eigenstate structure. One type of crossing
quantum eigenvalues, as a function of some nonlinearity paProduces significant changes in the eigenstates only for the
rameter, come near to crossing but then repel each f@her Parameter values at which the avoided crossing actually oc-
As the classical system becomes increasingly chaotic, theurs. The second type results in structural changes that per-
number of avoided crossings in the quantum spectrum inSist for parameter values that are beyond the avoided cross-
crease$3—5]. This repulsion of eigenvalue curves leads to aing. Finally, we will investigate what impact these structural
change from Poisson to random-matrix statistics in the eichanges have on the radiation spectrum of the system.
genvalue spacings. These avoided crossings also play an im-
portant role in dynamical tunnelind,7]. Il. CLASSICAL AND QUANTUM DYNAMICS

Another common feature of these classically chaotic OF THE DRIVEN SQUARE WELL

guantum systems is that their eigenstates often show non- The model we will use to study these phenomena is the

classical localization. The probability density for these local- inusoidally driven sauare well. We choose this model be-
ized states remains in a small region of the phase space, evah ny driven sq L . . x
cause of its simplicity and its connection with experimental

though there is no classical barier to prevent them fromwork in solid-state physics. The driven square well serves as
spreading. Even systems with globally chaotic classical mo- " . \d-state physics. =N squar X
L highly simplified model for experiments involving elec-

tion can have localized quantum eigenstates. This pheno ' : .
L : . trons confined in GaAs/AGa, _,As wells and subjected to
enon was originally termed scarrif] and it was found that 'ptense far-infrared radiatiofl9,20. This model is also ad-

o .
he localization ten r near th ths of classi ) X
roeeri o?j?f or?)itcs) ends to occur near the paths of class Cavantageous because it has been the subject of many theoret-

Understanding localization is particularly important in ical studies, both classical and quantum. Its basic properties

light of some recent discoveries in the field of atomic phys—are well understood, gllowmg us to focus on the particular
ics. Experiments on atoms illuminated by an intense Iasephenomenon we are interested in.
field show that the atoms can emit photons whose frequen- ) )
cies are many times the frequency of the incident laser A. Classical dynamics
[9,10]. Recent theoretical work has shown that this high har- The Hamiltonian for the driven square well is
monic generation is related to delocalization and chaos
[11,17. Theoretical work has also shown that in some cases U
the ionization rate of these atoms may actually decrease as H=S—+excosoet, |x|<a, (2.9)
the intensity of the laser is increasglB,14. Some experi-
mental evidence for this stabilization has been folb8]. |\ heremis the massp is the momentum, and is the posi-
Localization plays a major role in stabilizing these atomsyjon of the particle. The width of the square well ia.2The
against ionizatiorf16]. Therefore we would like to have a . . . L~ ~ L~
better understanding of how localized eigenstates are creat giving field ha_s amp"“%‘jef angl fre_quencywo, with 1 as
ge time coordinate. This Hamiltonian can be made dimen-

and destroyed in these systems, and what relationship th . . : . .
has to the other phenomena of “chaotic” quantum systems?'onless using the scaling transformation introduced in

In this paper we will show that avoided crossings have 421], where H=Hc, x=xa, p=py2mc, e=ec/a, t
major impact on localization. A connection between level=ta2m/c, and wg=(wq/a)~c/(2m). The parametec is
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shows strobe plots of this system fer=174 and 780. The
coordinates for these plots are the action-angle variables of
the undriven square well, defined hy=2|p|/7 and @

=+ (x+1)/2 where all quantities are dimensionless be-
cause of the above scaling.

B. Quantum dynamics and Floquet theory

The Schrdinger equation for a driven particle in an infi-
nite square well is given by

9 - 2 97 . -
|hﬁ|¢(t)>=—%ﬁ+excos(wot), 2.3

Where|">'<|sa. All parameters are defined as in the classical
Hamiltonian above. The transformation to dimensionless co-
ordinates is identical to that used for the classical Hamil-

tonian, except that instead of scalipgve must scalé. The
resulting dimensionless equation is

J &
e lw(h)= —K2E+excos(wot) [w(D), (2.4

FIG. 1. Strobe plots of the classical dynamics of the drivenWhere energy is measured in units ofas in the classical
square well at two field strengthd.and 6 are the dimensionless C€asé andx=7#/(ay2mc). Note that in the quantum system
action-angle variables for the undriven square well(dne=174  there are three parametees: wy, andx. Only two of these
and theN=1 primary resonance is a prominent elliptical feature parameters are independent, so the full dynamics of this sys-
centered at9=0, J=16. All higher-order resonances have beentem can be studied by varying two parameters. In this paper
destroyed at this field strength. (b) e=780 and theN=1 reso- we will only vary one of the parameters, and we set
nance is distorted and occupies a smaller region of phase space thanl andwy=80 as above. The effect of varyingis left for
at e=174. The chaotic region is much larger at this higher fieldfuture study.
strength. This quantum system is periodic in time and can be de-

scribed in terms of Floquet eigenstate3,24], which are
a new unit of energy in terms of which the scaled Hamil-eigenstates of the one-period time evolution operator. Since
tonian will be expressed. The scaled Hamiltonjanunits of  the time evolution operator is unitary for this systéhere is
c) is no ionization all of the eigenvalues of the operator have
modulus 1. Thus the Floquet states satisfy
H=p?+ ex coswot, |X|<1, (2.2

= _ _ U(T) |Qy=e"1%Tx|Q ), (2.5
where all quantities are now dimensionless.
Note thate andw, are not independent parameters, sincewhere(} , is the Floquet eigenvalu@r quasienergyandT is
the transformation o, €) — (wg+/c,ec) produces the same the period of the driving field. It is apparent from the above
dynamics(with a rescaling of the energy urd). Because of equation that the quasienergy is only defined modulp
this scaling law we can choose an arbitrasy, study the =2#/T (with k=1).
dynamics as a function oé, and effectively analyze the The Floquet states can be computed numerically by first

dynamics for any set ofdg,€). In this paper we choose calculating the matrix for the operat@#(T) in a basis of
wo=80. unperturbed square-well eigenstates. A numerical diagonal-
The driVing field induces a series of nonlinear resonancefation of this matrix produces the eigenva|ue5 and eigenvec-
of odd order in the square well system, with higher-ordertors (in the unperturbed basisSince there is little coupling
resonances occurring at lower enerdi2$,22. This means petween states in the regular region and states in the region
that theN=1 primary resonance sits at a higher energy tharsf hounded chaos, a basis that extends into the regular region
all of the other resonances. As the strength of the drivingyill give an accurate description of all states associated with
field is increased the resonances overlap and the dynamics {Re chaotic regiofi25]. In our calculations we use a basis of
the region of overlap becomes chaotic. At very high fieldgp eigenstates. Withk=1 this basis extends far into the

strengths all higher-order resonances have been destroyggqular region for all values of that we will consider here.
and only theN=1 resonance remains. As the field strength is

inpreased still further, even thid=1 resonance begins t(_) Ill. AVOIDED CROSSINGS

disappear. However, since there are no resonances at higher

energies, the region of chaos remains bounded from above We wish to study the quantum dynamics that takes place
by regular motion. This bounded chaos can be seen clearly inear an avoided crossifgC) in the spectrum of quasiener-
strobe plots of the classical motion of this system. Figure Igies for this system. Our first step then is to locate some
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ACs occur only when the two states can tunnel through any
Kolmogorov-'Arnold-Moser (KAM) tori that lie between
them in the phase spad@8]. This means that the states
involved in avoided crossings tend to lie in regions of the
phase space where the KAM tori have been strongly dis-
torted or destroyed altogethgt9.

By studying Fig. 2 we can formulate a general picture of
what is happening to the quasienergy curves of this system
as e is increased. At lowe there are no avoided crossings
and most of the quasienergy curves maintain a constant
slope. The only curvature here is in the set of curves that
look like the characteristic curves of the Mathieu equation
[29]. The states associated with these curves are becoming
trapped in the pendulumlik®l=1 primary resonance that
forms ase increases from 0. The curve that looks like the
ground state of the Mathieu equation is connected tonthe
=16 square well state at=0. Note thatJ=16 is the exact
position of theN=1 resonance in the strobe plots of Fig. 1.
At higher values ofe, ACs begin to appear. At the avoided
crossing itself there is a significant change in the slope of the
quasienergy curves, but at these moderate valuesha AC
A seems to result only in an exchange of slopes between the

0 100 200 300 400 500 600 70O 8OO 900 two curves. At the highest values efshown in Fig. 2 the
€ avoided crossings result in dramatic changes in the slopes of

FIG. 2. Spectrum of quasienergies for the driven square well adhe quasienergy curves, not just an exchange of slope. One
a function of field strength. The first avoided crossings appear beay also note that the Mathieu curves are no longer identi-
tweene=100 ande=200. Ase is increased, the number of avoided fiable at these values ef. At these high values of the N
crossings increases rapidly so that by 800 avoided crossings =1 resonance has become highly distorted and is beginning
dominate the spectrum. Bofl, and e are dimensionless quanti- to disappear into the chaotic sesee Fig. 1b)]. Thus we see
ties. that there is a strong connection between changes in the clas-
sical phase space and changes in the quasienergy spectrum.

0

avoided crossings. Figure 2 shows theod wg) spectrum of
the 40 lowest quasienergies as a functiorz.0As mentioned
in Sec. |, there is a close connection between the onset of
ACs and chaos in the classical system. Figure 2 shows that
avoided crossings begin to appear betweenl00 ande This connection between chaos and quasienergy curves is
=200, and bye=800 the spectrum is dominated by avoided interesting, but it is not entirely clear. For one thing, only the
crossings. This compares well with the growth of the chaotiaczonnection between very large changes in the classical phase
region in the classical phase space between these two valuggsace and correspondingly large changes in the quasienergy
of € (see Fig. 1L spectrum has been established. We would like to study the
It is important to note that there are many places, particuehanges that take place at a single avoided crossing. Addi-
larly at small values ok, where the quasienergy curves ac- tionally, we would like to see changes in the structure of the
tually cross. This happens when the two states associatdtloquet states, rather than changes in the quasienergy curves.
with the curves belong to differeftincoupledl sectors of the To see these structural changes we must construct a
Hilbert space and transitions between these states are forbiguantum-mechanical “phase space.” We can then monitor
den[2,26,27. By different sectors of Hilbert space we mean the changes in the “phase space” as the value afioves
that the two states belong to different blocks of a block-through an avoided crossing.
diagonal Hamiltonian, indicating that they belong to differ-
ent symmetry groups. Wher is small these “apparent
crossings” are quite common, but at largethere are few
apparent crossings. The reason for this is that the spread of Visualization of the quantum-mechanical “phase space”
chaos is due to the breaking of the same symmetries thaequires the construction of a phase-space probability density
prevent coupling of certain states. for the various quantum eigenstates. The uncertainty prin-
There are many strong ties between avoided crossings ariple prevents the construction of a true phase-space prob-
chaos, beyond the observed increase of ACs as the classiaility density in the classical sense, but it is possible to
system becomes chaotic. Successive avoided crossings arenstruct a quasiprobability density that is positive definite
responsible for the transition to a random-matrix distributionand gives a coarse-grained picture of the distribution of the
[4], a property which has long been associated with chaos. Iguantum state in phase space. This quasiprobability density
fact, there is a strong correlation between the overlap ofs the Husimi distributior{30,31. To construct the Husimi
these successive ACs and the fraction of the classical phaskstribution of a given quantum state one simply calculates
space which is chaotigs]. Other studies have shown that the overlap between the given state and a coherent state cen-

IV. CHANGES IN FLOQUET-STATE STRUCTURE
AT AN AVOIDED CROSSING

A. Visualization of quantum phase space
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tered on a particular poinig,pg) in phase space. The wave 50 T T T T T
function of the coherent state in configuration spack8$ .
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whereo is a squeezing parameter that determines the relative --"""":'=: ..... l

widths of the coherent state in tixeand p directions. Calcu- 46 fronerettt"

lating |(#/|Xo.Po)|? for a grid of phase-space points will pro- | &

duce a quasiprobability distribution that can be easily viewed(), | ..o .. B

as a contour plot. Figures 4 and 6 show Husimi distributions =~ [eess="" :

for several Floquet states in this system. m . .
Now we can use the Husimi distribution to visualize = [.ciceeeesseeancssesnanasonecsannonneces Brpeedteeeeesent

changes in the structure of the quantum phase space that tal

place at an AC. We will examine the Husimi distributions of )

Floquet states at values af slightly less than, slightly

greater than, and at the value at which that state undergoes ¢ .

AC. This will allow us to determine what changes occur at TR

the AC and to what extent these changes survive at highe — |...... qaetiiesennereesenttY

values ofe. VU UTURIIUPPPPIRTS TSRO
A (;Iose inspection of Fig. 2.reveals that not all avoided 40160 165 0 T T80 o To0

crossings look the same. As discussed in Sec. lll, there ar ¢

crossings where the curves simply exchange slopes and

crossings where the slopes change. We will refer to the FIG. 3. Detail from Fig. 2 showing a sharp avoided crossing

CrOSS|ngS that exchange Slopes as Sharp ACS The states Wr E:1755 The qUaSienergy curves involved in the avoided

volved in such an AC are weakly coupled and usually lie incr0ssing are labeled andB.

different regions of the phase spageside a resonance and

in the chaotic region, for instanceThe other type, broad an important role in tunneling, since a state originally con-

ACs, involve strongly coupled states that usually reside irfined to a resonance has become a chaotic state after the AC

the same region of phase space. In fact, most broad Ad$], but they do not play a significant role in altering the

occur between states that are both associated with the regigfucture of the quantum phase space.

of chaos.

501a at ¢
40

170 (a) 1B at € = 170 ()
B. Sharp crossing

Figure 3 is a detail from Fig. 2 that focuses on a sharp”’
avoided crossing aé~175. The two curves that participate
in the avoided crossing are labeléddand B. In Fig. 4 we
show the Husimi distributions of the two Floquet states at 50|a at ¢
e=170, 175.5, and 180. A4=170 we can see that statés 40
contained within theN=1 primary resonancksee Fig. 1a)
for a picture of the classical dynamics near this field
strength while stateB lies in the low-energy chaotic region.
At e=175.5, the center of the avoided crossing, the Husimi
distributions for both states appear to be mixtures of the 201a at e
states shown foe=170. Clearly the AC has a dramatic im-
pact on the structure of these states at this particular value ¢
e. However, the Husimi distributions a=180 show that
these changes do not persist at higher field strengths. Th 1°
two states simply exchange their structure, so thatthe ne 55— 535 5 T o5 i 3 3
effect is a relabeling of the Floquet states. So away from the 6 o
AC itself the overall structure of the quantum phase space is FIG. 4. Husimi distributions of the Floguet states involved in the

unchanged. . . ) avoided crossing shown in Fig. 3. The lab&l@ndB indicate the
These dynamics can be understood quite well using duasienergy curve in Fig. 3 with which the state is associated. The

two-level approact33]. These sharp ACs really only in- . yajues indicate the field strength at which the Floquet state was
volve the two Floquet states whose curves nearly come tocajculated. Ate=175.5 (the center of the avoided crossjnigoth
gether. The rest of the Hilbert space has very little influencerjoquet states are mixtures of the two stateseatl70. By e

on the dynamics of these two states. Without any contribu=180, A and B have exchanged their structure completely. Note
tion to the dynamics from other states, these two levels cathat the coordinates for all of the Husimi plots are the dimensionless
only exchange their structure. These types of crossings playction-angle variables used in Fig. 1.

175.5 (c) |[B at € 175.5 (d)

0]
e
fee]
O

() |B at € = 180 (£)

20
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this AC. Hence, we might expect to find more interesting
(and permanentstructural changes in this crossing than in
the previously studied one. Figure 6 shows the effect of the
avoided crossing on the structure of the three states that are
involved. As in the sharp crossing, there is a mixing of struc-
tures for values ot that lie within the crossing region. How-
ever, in this case the changes do not disappear when we look
at larger values of field strength. With this type of AC the
states are not simply ‘“relabeled,” but undergo actual
changes in their phase-space structure. Particularly striking is
the difference between Figs.(® and Gh). These states
would be identical if there were a complete exchange of
structure as seen in the sharp AC. Instead, before the cross-
ing stateE is localized at very low energies, but after the
crossing stat® (which has exchanged most of its structure
with stateE) has spread into the higher-energy portion of the
region of chaos. The avoided crossing has delocalized this
particular Floquet state. We find this result to be quite gen-
eral, that broad ACs lead to permanent changes in the struc-
ture of Floquet states that tend to delocalize the states. Of
course, since the region of chaos is bounded, the states can

A : L L L only delocalize until they reach the boundaries of the chaos.
730 740 750 760 770 780 At extremely high values ok, where nearly every “cha-

€ otic” state has undergone many broad avoided crossings, we

find that all of these states are delocalized and fill the chaotic

FIG. 5. Detail of Fig. 2 showing a pair of broad avoided cross- . 11
ings neare=760. The three quasienergy curves that are involved inreglon[ .

the avoided crossing are label€d D, andE.
V. EFFECT OF STRUCTURAL CHANGES

C. Broad crossing ON RADIATION SPECTRA

In a broad AC several states make significant contribu- Now that we have seen how avoided crossings can affect
tions to the dynamics. A particularly striking example of this the structure of Floquet states, we would like to see how they
is shown in Fig. 5, where two AC&t e~750 ande~765) effect an experimentally observable quantity, namely the ra-
actually overlap. Here there are three statabeledC, D, diation spectrum. In a prior work we found that the genera-
andE) that are strongly influencing each others’ dynamics.tion of high harmonics increased as the system, initially in a
There is no simple exchange of slopes between the curves gingle Floquet state, passed through an avoided crossing

50ic at € = 730 (a) [D at € = 730 (b) [E at € = 730 (c)
40

30
20
10

50tc at € = 760 (d) D at € = 760 () 1E at € = 760 (£)

501c at € = 780 (g) D at e = 780 (h) [E at € = 780 (1)

2 3 -3 -2 2 3 -3 -2 0

FIG. 6. Husimi distributions of the three Floquet states involved in the crossings shown in Fig. 5. TheJabelandE indicate the
quasienergy curve in Fig. 5 with which the state is associated=A60 all three states are mixtures of the states=at40. By e= 780 the
states have exchanged most of their structure, but there are significant differences fesav#estates. In particular, we expect the states
(c) and(h) to have similar structure but instead find ttiY is much less localized tha(t).
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(a) A at e=170

logyo |x(w)]? (arb. units)
Alogo |x(w)]? (arb. units)

(b) Bat e=175.5 |

log,o |X(LJ)|2 (arb. units)
Alogyo |x(w)|? (arb. units)

] ] ] ] ] ]
0 5 10 15 20 25 30
wfwo

(c) Bat e =180
FIG. 8. Differences between spectra shown in Fig. 7. The dif-
ference between Fig.(d) and Fig. 7a) is shown in(a). The differ-
ence between Figs(@) and 7a) is shown in(b). The increase and
subsequent decrease in harmonic generation is apparent.

states to exchange structure, effectively relabeling the states.
If true structural changes are to be distinguished from simple
L L L L L L relabeling, one must account for this relabeling when com-
0 5 10 13 20 2 30 paring different spectra. At the midpoint of the avoided
wfwy - . . . . ;i
crossing this is nearly impossible to do, since the relabeling

FIG. 7. Radiation spectra generated by the Floquet states show@s not fully taken effect. For values ethat are beyond the
in Figs. 4a), 4(d), and 4f). There is a significant increase in har- AC, the relabeling can easily be taken into account. Our
monic generation frone=170 (a) to e=175.5 (b). However, by  procedure in the following is to calculate spectra for a state
€=180 () this increase has disappeared. All spectra have beehefore the AC, one of the states at the midpoint of the AC,
normalized so that they have the same power at the fundamentand the relabeled statthow on a different quasienergy
frequencywg. curve after the AC. This separates the changes in radiation

spectrum that occur because of structural change in the Flo-

[11]. However, this effect was caused by population transfeguet state from the apparent changes that occur because the
from the original Floquet state to the other state as the fieldtates have been relabeled.
strength was increased. This population transfer creates a
superposition of two Floquet states that displays increased
radiation at high frequencie@lbeit shifted away from the
harmonic frequenciesin this study we would like to focus We first calculate radiation spectra for the states whose
on changes in the radiation spectrum that are caused by théusimi distributions are shown in Figs(a}, 4(c), and 4f).
changing structure of a single Floquet state. For this reasomhe first two states are associated with the cuxie Fig. 3,
we will calculate radiation spectra by starting the system in avhile the third is associated with cur@ By changing from
given Floquet state and maintaining a constant field strengthA to B after the avoided crossing we can account for the
for 128 cycles of the driving field. The expectation value of effects of relabeling as described above. The spectra are
the acceleration for the state is calculated during this timeshown in Fig. 7. Betweer=170 ande=175.5 there is a
interval. We then calculated the Fourier transfoptie), of  significant increase in the radiation at the highest harmonics
this acceleration time series. The square modulus of the Foi1-19. However, these harmonics have decreased at
rier transform gives us the radiation spectrum. Because the 180. This increase and subsequent reduction is easier to
Floguet states are periodic with periodr2vg it is not truly  see in Fig. 8, which shows the differences between the spec-
necessary to calculate for 128 cycles of the driving field.trum ate=170 and the spectra &t=175.5 and 180. This
However, this long integration time exposes numerical errorsemporary increase in high harmonic generation is exactly
that might be hidden in a shorter calculation. what we expect from the temporary changes in the phase-

To study the effect of structural changes on radiationspace structure seen in Fig. 4. At the midpoint of the AC
spectra we cannot simply study the spectrum of a single Floboth states are a mixture of the two states=atl70 and both
quet state for various values ef Avoided crossings cause are spread over a wider region of phase space. This leads to

log,o [x(w)[? (arb. units)

A. Sharp crossing
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E 4 FIG. 10. Differences between spectra shown in Fig. 8. The dif-
- 5 i ference between Fig.(8) and Fig. &a) is shown in(a). The differ-
) 1 ence between Figs.(® and 8a) is shown in(b). The increase in
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wfwp VI. CONCLUSION

FIG. 9. Radiation spectra generated by the Floquet states shown We have seen here that avoided crossings can dramati-
in Figs. 6¢), 6(f), and &h). There is a significant increase in har- cally alter the phase-space structure of Floquet states in a
monic generation frona=730(a) to e= 760 (b) and bye=780the  driven quantum system. Sharp ACs, involving states in sepa-
harmonic generation has increased even further. All spectra hav@te sectors of the Hilbert space, produce structural changes
been normalized so that they have the same power at the fundameititat do not survive at higher field strengths. The only effect
tal frequency. that remains at higher field strengths is a relabeling of the
Floquet states. These crossings increase the high harmonic
generation from a Floquet state at the crossing itself, but they
0 not lead to increased high harmonic generation at higher
eld strengths. Broad crossings, however, usually involve

monic generation subsides. Thus, sharp ACs only affect th&!ateS in the same sector of the Hilbert space and often in-

radiation spectrum of a Floquet state for field strengths thatude effect_s from several states at once. These crossings can
lie within the crossing. create persistent changes in the structure of the Floquet states

and in the radiation spectra that these states produce. At field
strengths beyond the avoided crossing the states will be less
localized and the spectra will show stronger radiation at high
Now we investigate the radiation spectra for the state®armonics.

shown in Figs. &), 6(f), and &h). Again we switch from The data on harmonic generation are interesting, as high
stateE to stateD for values ofe that are beyond the avoided harmonic generation has gained a lot of attention in recent
crossing, to account for the relabeling that takes place. Figyears. But perhaps even more intriguing are the results that
ure 9 shows the spectra for these states. There is a steadow how avoided crossings delocalize Floguet states. This
increase in the radiation at the highest harmofi8ds-45 as  has bearing on the important problem of the stabilization of
€ is increased. This is more easily seen in Fig. 10, whichatoms in intense laser fields. Theoretical studies have shown
shows the differences between the spectra. The changes timat this stabilization may result from the electron occupying
the spectra are quite complicated, but there is clearly no rea Floquet state that is localized in the phase spa6g This
versal in the increase of high harmonics as was observed incalization prevents the electron from reaching the con-
the sharp crossing. This broad AC permanently increases thinuum and thus decreases the ionization rate. To better un-
high harmonic generation. This is closely tied to the delocalderstand stabilization one must understand how localized
ization that is observed in Fig. 6, since the generation of highrloquet states are created and destroyed. Our work indicates

an increase in harmonic generation at this value.oAfter
the avoided crossing, however, these structural changes dig
appear(with the exception of the relabelingand the har- '

B. Broad crossing
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that avoided crossings play a key role in this process. It musts of such a well, driven by a far-infrared laser at low in-
be noted, however, that the model used in this paper does ntensity, should be similar to the dynamics of our model. The
allow ionization. To study stabilization, this work must be parameters used in this paper correspond to a laser with a
extended to open quantum systems. wavelength of 40Qum and intensity of 10 W/cn? striking
Although the primary motivation for this study was theo- a 600 A well with a depth of 300 meV. These parameters are
retical, these results may be experimentally observable. Theell within the range accessible by recent experiments.
infinite square well serves as a simple model for recent ex-
periments on electron confinement in GaAsB& _,As
guantum welld19,20. These experiments confine electrons
in wells that vary in width from 50 to 1000 A and in depth  The authors wish to thank the Welch Foundation for
from 200 to 300 meV. A well with a width of only 50 A and Grant No. F-1051 and the U.S. DOE, Contract No. DE-
a depth of 300 meV contains only a few bound states ané#G03-94ER14465, for partial support of this work. We also
therefore cannot be expected to produce the effects seen thank NPACI and the University of Texas at Austin High
this study. However, a well with a depth of 300 meV and aPerformance Computing Center for use of their computer
width of 600 A contains about 50 bound states. The dynamfacilities.
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