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Changes in Floquet-state structure at avoided crossings: Delocalization and harmonic generatio

T. Timberlake and L. E. Reichl
Center for Studies in Statistical Mechanics and Complex Systems, The University of Texas at Austin, Austin, Texas 7871

~Received 6 October 1998!

Avoided crossings are common in the quasienergy spectra of strongly driven nonlinear quantum wells. In
this paper we examine the sinusoidally driven particle in a square potential well to show that avoided crossings
can alter the structure of Floquet states in this system. Two types of avoided crossings are identified: one type
leads only to temporary changes~as a function of driving field strength! in Floquet state structure while the
second type can lead to permanent delocalization of the Floquet states. Radiation spectra from these latter
states show a significant increase in high harmonic generation as the system passes through the avoided
crossing.@S1050-2947~99!03504-0#

PACS number~s!: 42.50.Hz, 05.45.2a, 42.65.Ky
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I. INTRODUCTION

Quantum systems whose classical counterparts are ch
have received much attention in recent years@1#. One quan-
tum signature of the classical transition to chaos is the
pearance of avoided crossings in the spectrum of the q
tum system. Avoided crossings occur when the curves of
quantum eigenvalues, as a function of some nonlinearity
rameter, come near to crossing but then repel each othe@2#.
As the classical system becomes increasingly chaotic,
number of avoided crossings in the quantum spectrum
creases@3–5#. This repulsion of eigenvalue curves leads to
change from Poisson to random-matrix statistics in the
genvalue spacings. These avoided crossings also play an
portant role in dynamical tunneling@6,7#.

Another common feature of these classically chao
quantum systems is that their eigenstates often show
classical localization. The probability density for these loc
ized states remains in a small region of the phase space,
though there is no classical barrier to prevent them fr
spreading. Even systems with globally chaotic classical m
tion can have localized quantum eigenstates. This phen
enon was originally termed scarring@8# and it was found that
the localization tends to occur near the paths of class
periodic orbits.

Understanding localization is particularly important
light of some recent discoveries in the field of atomic ph
ics. Experiments on atoms illuminated by an intense la
field show that the atoms can emit photons whose frequ
cies are many times the frequency of the incident la
@9,10#. Recent theoretical work has shown that this high h
monic generation is related to delocalization and ch
@11,12#. Theoretical work has also shown that in some ca
the ionization rate of these atoms may actually decreas
the intensity of the laser is increased@13,14#. Some experi-
mental evidence for this stabilization has been found@15#.
Localization plays a major role in stabilizing these ato
against ionization@16#. Therefore we would like to have
better understanding of how localized eigenstates are cre
and destroyed in these systems, and what relationship
has to the other phenomena of ‘‘chaotic’’ quantum syste

In this paper we will show that avoided crossings hav
major impact on localization. A connection between lev
PRA 591050-2947/99/59~4!/2886~8!/$15.00
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repulsion and the creation of extended~delocalized! states
has already been found@17,18#. However, these studie
looked at statistical properties of the system as a whole. H
we will concentrate on the changes in the structure of
quantum eigenstates at a single avoided crossing. We i
tify two distinct types of avoided crossings which have d
ferent effects on eigenstate structure. One type of cros
produces significant changes in the eigenstates only for
parameter values at which the avoided crossing actually
curs. The second type results in structural changes that
sist for parameter values that are beyond the avoided cr
ing. Finally, we will investigate what impact these structu
changes have on the radiation spectrum of the system.

II. CLASSICAL AND QUANTUM DYNAMICS
OF THE DRIVEN SQUARE WELL

The model we will use to study these phenomena is
sinusoidally driven square well. We choose this model
cause of its simplicity and its connection with experimen
work in solid-state physics. The driven square well serves
a highly simplified model for experiments involving ele
trons confined in GaAs/AlxGa12xAs wells and subjected to
intense far-infrared radiation@19,20#. This model is also ad-
vantageous because it has been the subject of many the
ical studies, both classical and quantum. Its basic prope
are well understood, allowing us to focus on the particu
phenomenon we are interested in.

A. Classical dynamics

The Hamiltonian for the driven square well is

H̃5
p̃2

2m
1 ẽ x̃ cosṽ0 t̃ , ux̃u<a, ~2.1!

wherem is the mass,p̃ is the momentum, andx̃ is the posi-
tion of the particle. The width of the square well is 2a. The
driving field has amplitudeẽ and frequencyṽ0, with t̃ as
the time coordinate. This Hamiltonian can be made dim
sionless using the scaling transformation introduced
@21#, where H̃5Hc, x̃5xa, p̃5pA2mc, ẽ5ec/a, t̃

5taA2m/c, and ṽ05(v0 /a)Ac/(2m). The parameterc is
2886 ©1999 The American Physical Society
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PRA 59 2887CHANGES IN FLOQUET-STATE STRUCTURE AT . . .
a new unit of energy in terms of which the scaled Ham
tonian will be expressed. The scaled Hamiltonian~in units of
c) is

H5p21ex cosv0t, uxu<1, ~2.2!

where all quantities are now dimensionless.
Note thate andv0 are not independent parameters, sin

the transformation (v0 ,e)→(v0Ac,ec) produces the sam
dynamics~with a rescaling of the energy unitc). Because of
this scaling law we can choose an arbitraryv0 , study the
dynamics as a function ofe, and effectively analyze the
dynamics for any set of (v0 ,e). In this paper we choose
v0580.

The driving field induces a series of nonlinear resonan
of odd order in the square well system, with higher-ord
resonances occurring at lower energies@21,22#. This means
that theN51 primary resonance sits at a higher energy th
all of the other resonances. As the strength of the driv
field is increased the resonances overlap and the dynami
the region of overlap becomes chaotic. At very high fie
strengths all higher-order resonances have been destr
and only theN51 resonance remains. As the field strength
increased still further, even thisN51 resonance begins t
disappear. However, since there are no resonances at h
energies, the region of chaos remains bounded from ab
by regular motion. This bounded chaos can be seen clear
strobe plots of the classical motion of this system. Figure

FIG. 1. Strobe plots of the classical dynamics of the driv
square well at two field strengths.J and u are the dimensionles
action-angle variables for the undriven square well. In~a! e5174
and theN51 primary resonance is a prominent elliptical featu
centered atu50, J516. All higher-order resonances have be
destroyed at this field strength. In~b! e5780 and theN51 reso-
nance is distorted and occupies a smaller region of phase space
at e5174. The chaotic region is much larger at this higher fie
strength.
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shows strobe plots of this system fore5174 and 780. The
coordinates for these plots are the action-angle variable
the undriven square well, defined byJ52upu/p and u
56p(x11)/2 where all quantities are dimensionless b
cause of the above scaling.

B. Quantum dynamics and Floquet theory

The Schro¨dinger equation for a driven particle in an infi
nite square well is given by

i\
]

] t̃
uc~ t̃ !&52

\2

2m

]2

] x̃2
1 ẽ x̃ cos~ṽ0 t̃ !, ~2.3!

whereux̃u<a. All parameters are defined as in the classi
Hamiltonian above. The transformation to dimensionless
ordinates is identical to that used for the classical Ham
tonian, except that instead of scalingp̃ we must scale\. The
resulting dimensionless equation is

ik
]

]t
uc~ t !&5S 2k2

]2

]x2
1ex cos~v0t !D uc~ t !&, ~2.4!

where energy is measured in units ofc ~as in the classica
case! andk5\/(aA2mc). Note that in the quantum system
there are three parameters:e, v0 , andk. Only two of these
parameters are independent, so the full dynamics of this
tem can be studied by varying two parameters. In this pa
we will only vary one of the parameters,e, and we setk
51 andv0580 as above. The effect of varyingk is left for
future study.

This quantum system is periodic in time and can be
scribed in terms of Floquet eigenstates@23,24#, which are
eigenstates of the one-period time evolution operator. Si
the time evolution operator is unitary for this system~there is
no ionization! all of the eigenvalues of the operator ha
modulus 1. Thus the Floquet states satisfy

Û~T! uVa&5e2 iVaT/k uVa&, ~2.5!

whereVa is the Floquet eigenvalue~or quasienergy! andT is
the period of the driving field. It is apparent from the abo
equation that the quasienergy is only defined modulov0
52p/T ~with k51).

The Floquet states can be computed numerically by fi
calculating the matrix for the operatorÛ(T) in a basis of
unperturbed square-well eigenstates. A numerical diago
ization of this matrix produces the eigenvalues and eigenv
tors ~in the unperturbed basis!. Since there is little coupling
between states in the regular region and states in the re
of bounded chaos, a basis that extends into the regular re
will give an accurate description of all states associated w
the chaotic region@25#. In our calculations we use a basis
80 eigenstates. Withk51 this basis extends far into th
regular region for all values ofe that we will consider here.

III. AVOIDED CROSSINGS

We wish to study the quantum dynamics that takes pl
near an avoided crossing~AC! in the spectrum of quasiener
gies for this system. Our first step then is to locate so

han
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2888 PRA 59T. TIMBERLAKE AND L. E. REICHL
avoided crossings. Figure 2 shows the~modv0) spectrum of
the 40 lowest quasienergies as a function ofe. As mentioned
in Sec. I, there is a close connection between the onse
ACs and chaos in the classical system. Figure 2 shows
avoided crossings begin to appear betweene5100 ande
5200, and bye5800 the spectrum is dominated by avoid
crossings. This compares well with the growth of the chao
region in the classical phase space between these two v
of e ~see Fig. 1!.

It is important to note that there are many places, parti
larly at small values ofe, where the quasienergy curves a
tually cross. This happens when the two states associ
with the curves belong to different~uncoupled! sectors of the
Hilbert space and transitions between these states are fo
den@2,26,27#. By different sectors of Hilbert space we mea
that the two states belong to different blocks of a bloc
diagonal Hamiltonian, indicating that they belong to diffe
ent symmetry groups. Whene is small these ‘‘apparen
crossings’’ are quite common, but at largee there are few
apparent crossings. The reason for this is that the sprea
chaos is due to the breaking of the same symmetries
prevent coupling of certain states.

There are many strong ties between avoided crossings
chaos, beyond the observed increase of ACs as the clas
system becomes chaotic. Successive avoided crossing
responsible for the transition to a random-matrix distribut
@4#, a property which has long been associated with chaos
fact, there is a strong correlation between the overlap
these successive ACs and the fraction of the classical p
space which is chaotic@5#. Other studies have shown th

FIG. 2. Spectrum of quasienergies for the driven square we
a function of field strength. The first avoided crossings appear
tweene5100 ande5200. Ase is increased, the number of avoide
crossings increases rapidly so that bye5800 avoided crossings
dominate the spectrum. BothVa and e are dimensionless quant
ties.
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ACs occur only when the two states can tunnel through
Kolmogorov-’Arnold-Moser ~KAM ! tori that lie between
them in the phase space@28#. This means that the state
involved in avoided crossings tend to lie in regions of t
phase space where the KAM tori have been strongly d
torted or destroyed altogether@19#.

By studying Fig. 2 we can formulate a general picture
what is happening to the quasienergy curves of this sys
as e is increased. At lowe there are no avoided crossing
and most of the quasienergy curves maintain a cons
slope. The only curvature here is in the set of curves t
look like the characteristic curves of the Mathieu equat
@29#. The states associated with these curves are becom
trapped in the pendulumlikeN51 primary resonance tha
forms ase increases from 0. The curve that looks like th
ground state of the Mathieu equation is connected to thn
516 square well state ate50. Note thatJ516 is the exact
position of theN51 resonance in the strobe plots of Fig.
At higher values ofe, ACs begin to appear. At the avoide
crossing itself there is a significant change in the slope of
quasienergy curves, but at these moderate values ofe the AC
seems to result only in an exchange of slopes between
two curves. At the highest values ofe shown in Fig. 2 the
avoided crossings result in dramatic changes in the slope
the quasienergy curves, not just an exchange of slope.
may also note that the Mathieu curves are no longer ide
fiable at these values ofe. At these high values ofe the N
51 resonance has become highly distorted and is begin
to disappear into the chaotic sea@see Fig. 1~b!#. Thus we see
that there is a strong connection between changes in the
sical phase space and changes in the quasienergy spec

IV. CHANGES IN FLOQUET-STATE STRUCTURE
AT AN AVOIDED CROSSING

This connection between chaos and quasienergy curve
interesting, but it is not entirely clear. For one thing, only t
connection between very large changes in the classical p
space and correspondingly large changes in the quasien
spectrum has been established. We would like to study
changes that take place at a single avoided crossing. A
tionally, we would like to see changes in the structure of
Floquet states, rather than changes in the quasienergy cu
To see these structural changes we must construc
quantum-mechanical ‘‘phase space.’’ We can then mon
the changes in the ‘‘phase space’’ as the value ofe moves
through an avoided crossing.

A. Visualization of quantum phase space

Visualization of the quantum-mechanical ‘‘phase spac
requires the construction of a phase-space probability den
for the various quantum eigenstates. The uncertainty p
ciple prevents the construction of a true phase-space p
ability density in the classical sense, but it is possible
construct a quasiprobability density that is positive defin
and gives a coarse-grained picture of the distribution of
quantum state in phase space. This quasiprobability den
is the Husimi distribution@30,31#. To construct the Husimi
distribution of a given quantum state one simply calcula
the overlap between the given state and a coherent state

s
e-
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tered on a particular point (x0 ,p0) in phase space. The wav
function of the coherent state in configuration space is@32#

^xux0 ,p0&5S 1

s2p
D 1/4

expS 2
~x2x0!2

2s2
1

ip0~x2x0!

\ D ,

~4.1!

wheres is a squeezing parameter that determines the rela
widths of the coherent state in thex andp directions. Calcu-
lating z^cux0 ,p0& z2 for a grid of phase-space points will pro
duce a quasiprobability distribution that can be easily view
as a contour plot. Figures 4 and 6 show Husimi distributio
for several Floquet states in this system.

Now we can use the Husimi distribution to visualiz
changes in the structure of the quantum phase space tha
place at an AC. We will examine the Husimi distributions
Floquet states at values ofe slightly less than, slightly
greater than, and at the value at which that state undergoe
AC. This will allow us to determine what changes occur
the AC and to what extent these changes survive at hig
values ofe.

A close inspection of Fig. 2 reveals that not all avoid
crossings look the same. As discussed in Sec. III, there
crossings where the curves simply exchange slopes
crossings where the slopes change. We will refer to
crossings that exchange slopes as sharp ACs. The state
volved in such an AC are weakly coupled and usually lie
different regions of the phase space~inside a resonance an
in the chaotic region, for instance!. The other type, broad
ACs, involve strongly coupled states that usually reside
the same region of phase space. In fact, most broad
occur between states that are both associated with the re
of chaos.

B. Sharp crossing

Figure 3 is a detail from Fig. 2 that focuses on a sh
avoided crossing ate'175. The two curves that participat
in the avoided crossing are labeledA and B. In Fig. 4 we
show the Husimi distributions of the two Floquet states
e5170, 175.5, and 180. Ate5170 we can see that stateA is
contained within theN51 primary resonance@see Fig. 1~a!
for a picture of the classical dynamics near this fie
strength# while stateB lies in the low-energy chaotic region
At e5175.5, the center of the avoided crossing, the Hus
distributions for both states appear to be mixtures of
states shown fore5170. Clearly the AC has a dramatic im
pact on the structure of these states at this particular valu
e. However, the Husimi distributions ate5180 show that
these changes do not persist at higher field strengths.
two states simply exchange their structure, so that the
effect is a relabeling of the Floquet states. So away from
AC itself the overall structure of the quantum phase spac
unchanged.

These dynamics can be understood quite well usin
two-level approach@33#. These sharp ACs really only in
volve the two Floquet states whose curves nearly come
gether. The rest of the Hilbert space has very little influen
on the dynamics of these two states. Without any contri
tion to the dynamics from other states, these two levels
only exchange their structure. These types of crossings
ve
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an important role in tunneling, since a state originally co
fined to a resonance has become a chaotic state after the
@6#, but they do not play a significant role in altering th
structure of the quantum phase space.

FIG. 3. Detail from Fig. 2 showing a sharp avoided crossi
near e5175.5. The quasienergy curves involved in the avoid
crossing are labeledA andB.

FIG. 4. Husimi distributions of the Floquet states involved in t
avoided crossing shown in Fig. 3. The labelsA andB indicate the
quasienergy curve in Fig. 3 with which the state is associated.
e values indicate the field strength at which the Floquet state
calculated. Ate5175.5 ~the center of the avoided crossing! both
Floquet states are mixtures of the two states ate5170. By e
5180, A and B have exchanged their structure completely. No
that the coordinates for all of the Husimi plots are the dimension
action-angle variables used in Fig. 1.
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C. Broad crossing

In a broad AC several states make significant contri
tions to the dynamics. A particularly striking example of th
is shown in Fig. 5, where two ACs~at e'750 ande'765)
actually overlap. Here there are three states~labeledC, D,
andE) that are strongly influencing each others’ dynami
There is no simple exchange of slopes between the curve

FIG. 5. Detail of Fig. 2 showing a pair of broad avoided cros
ings neare5760. The three quasienergy curves that are involved
the avoided crossing are labeledC, D, andE.
-

.
in

this AC. Hence, we might expect to find more interesti
~and permanent! structural changes in this crossing than
the previously studied one. Figure 6 shows the effect of
avoided crossing on the structure of the three states tha
involved. As in the sharp crossing, there is a mixing of stru
tures for values ofe that lie within the crossing region. How
ever, in this case the changes do not disappear when we
at larger values of field strength. With this type of AC th
states are not simply ‘‘relabeled,’’ but undergo actu
changes in their phase-space structure. Particularly strikin
the difference between Figs. 6~c! and 6~h!. These states
would be identical if there were a complete exchange
structure as seen in the sharp AC. Instead, before the cr
ing stateE is localized at very low energies, but after th
crossing stateD ~which has exchanged most of its structu
with stateE) has spread into the higher-energy portion of t
region of chaos. The avoided crossing has delocalized
particular Floquet state. We find this result to be quite g
eral, that broad ACs lead to permanent changes in the st
ture of Floquet states that tend to delocalize the states
course, since the region of chaos is bounded, the states
only delocalize until they reach the boundaries of the cha
At extremely high values ofe, where nearly every ‘‘cha-
otic’’ state has undergone many broad avoided crossings
find that all of these states are delocalized and fill the cha
region @11#.

V. EFFECT OF STRUCTURAL CHANGES
ON RADIATION SPECTRA

Now that we have seen how avoided crossings can af
the structure of Floquet states, we would like to see how t
effect an experimentally observable quantity, namely the
diation spectrum. In a prior work we found that the gene
tion of high harmonics increased as the system, initially i
single Floquet state, passed through an avoided cros

-
n

tes
FIG. 6. Husimi distributions of the three Floquet states involved in the crossings shown in Fig. 5. The labelsC, D, andE indicate the
quasienergy curve in Fig. 5 with which the state is associated. Ate5760 all three states are mixtures of the states ate5740. Bye5780 the
states have exchanged most of their structure, but there are significant differences from thee5740 states. In particular, we expect the sta
~c! and ~h! to have similar structure but instead find that~h! is much less localized than~c!.
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@11#. However, this effect was caused by population trans
from the original Floquet state to the other state as the fi
strength was increased. This population transfer creat
superposition of two Floquet states that displays increa
radiation at high frequencies~albeit shifted away from the
harmonic frequencies!. In this study we would like to focus
on changes in the radiation spectrum that are caused by
changing structure of a single Floquet state. For this rea
we will calculate radiation spectra by starting the system i
given Floquet state and maintaining a constant field stren
for 128 cycles of the driving field. The expectation value
the acceleration for the state is calculated during this t
interval. We then calculated the Fourier transform,x(v), of
this acceleration time series. The square modulus of the F
rier transform gives us the radiation spectrum. Because
Floquet states are periodic with period 2p/v0 it is not truly
necessary to calculate for 128 cycles of the driving fie
However, this long integration time exposes numerical err
that might be hidden in a shorter calculation.

To study the effect of structural changes on radiat
spectra we cannot simply study the spectrum of a single
quet state for various values ofe. Avoided crossings caus

FIG. 7. Radiation spectra generated by the Floquet states sh
in Figs. 4~a!, 4~d!, and 4~f!. There is a significant increase in ha
monic generation frome5170 ~a! to e5175.5 ~b!. However, by
e5180 ~c! this increase has disappeared. All spectra have b
normalized so that they have the same power at the fundam
frequencyv0 .
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states to exchange structure, effectively relabeling the sta
If true structural changes are to be distinguished from sim
relabeling, one must account for this relabeling when co
paring different spectra. At the midpoint of the avoide
crossing this is nearly impossible to do, since the relabe
has not fully taken effect. For values ofe that are beyond the
AC, the relabeling can easily be taken into account. O
procedure in the following is to calculate spectra for a st
before the AC, one of the states at the midpoint of the A
and the relabeled state~now on a different quasienerg
curve! after the AC. This separates the changes in radia
spectrum that occur because of structural change in the
quet state from the apparent changes that occur becaus
states have been relabeled.

A. Sharp crossing

We first calculate radiation spectra for the states wh
Husimi distributions are shown in Figs. 4~a!, 4~c!, and 4~f!.
The first two states are associated with the curveA in Fig. 3,
while the third is associated with curveB. By changing from
A to B after the avoided crossing we can account for
effects of relabeling as described above. The spectra
shown in Fig. 7. Betweene5170 ande5175.5 there is a
significant increase in the radiation at the highest harmon
~11–19!. However, these harmonics have decreased ae
5180. This increase and subsequent reduction is easie
see in Fig. 8, which shows the differences between the s
trum at e5170 and the spectra ate5175.5 and 180. This
temporary increase in high harmonic generation is exa
what we expect from the temporary changes in the pha
space structure seen in Fig. 4. At the midpoint of the A
both states are a mixture of the two states ate5170 and both
are spread over a wider region of phase space. This lead

wn

n
tal

FIG. 8. Differences between spectra shown in Fig. 7. The
ference between Fig. 7~b! and Fig. 7~a! is shown in~a!. The differ-
ence between Figs. 7~c! and 7~a! is shown in~b!. The increase and
subsequent decrease in harmonic generation is apparent.
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2892 PRA 59T. TIMBERLAKE AND L. E. REICHL
an increase in harmonic generation at this value ofe. After
the avoided crossing, however, these structural changes
appear~with the exception of the relabeling! and the har-
monic generation subsides. Thus, sharp ACs only affect
radiation spectrum of a Floquet state for field strengths
lie within the crossing.

B. Broad crossing

Now we investigate the radiation spectra for the sta
shown in Figs. 6~c!, 6~f!, and 6~h!. Again we switch from
stateE to stateD for values ofe that are beyond the avoide
crossing, to account for the relabeling that takes place.
ure 9 shows the spectra for these states. There is a st
increase in the radiation at the highest harmonics~31–45! as
e is increased. This is more easily seen in Fig. 10, wh
shows the differences between the spectra. The chang
the spectra are quite complicated, but there is clearly no
versal in the increase of high harmonics as was observe
the sharp crossing. This broad AC permanently increases
high harmonic generation. This is closely tied to the deloc
ization that is observed in Fig. 6, since the generation of h

FIG. 9. Radiation spectra generated by the Floquet states sh
in Figs. 6~c!, 6~f!, and 6~h!. There is a significant increase in ha
monic generation frome5730 ~a! to e5760 ~b! and bye5780 the
harmonic generation has increased even further. All spectra
been normalized so that they have the same power at the funda
tal frequency.
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harmonics depends on the number of energy levels o
which the Floquet state is spread@11#.

VI. CONCLUSION

We have seen here that avoided crossings can dram
cally alter the phase-space structure of Floquet states
driven quantum system. Sharp ACs, involving states in se
rate sectors of the Hilbert space, produce structural chan
that do not survive at higher field strengths. The only eff
that remains at higher field strengths is a relabeling of
Floquet states. These crossings increase the high harm
generation from a Floquet state at the crossing itself, but t
do not lead to increased high harmonic generation at hig
field strengths. Broad crossings, however, usually invo
states in the same sector of the Hilbert space and often
clude effects from several states at once. These crossings
create persistent changes in the structure of the Floquet s
and in the radiation spectra that these states produce. At
strengths beyond the avoided crossing the states will be
localized and the spectra will show stronger radiation at h
harmonics.

The data on harmonic generation are interesting, as h
harmonic generation has gained a lot of attention in rec
years. But perhaps even more intriguing are the results
show how avoided crossings delocalize Floquet states. T
has bearing on the important problem of the stabilization
atoms in intense laser fields. Theoretical studies have sh
that this stabilization may result from the electron occupy
a Floquet state that is localized in the phase space@16#. This
localization prevents the electron from reaching the c
tinuum and thus decreases the ionization rate. To better
derstand stabilization one must understand how locali
Floquet states are created and destroyed. Our work indic

wn

ve
en-

FIG. 10. Differences between spectra shown in Fig. 8. The
ference between Fig. 8~b! and Fig. 8~a! is shown in~a!. The differ-
ence between Figs. 8~c! and 8~a! is shown in~b!. The increase in
harmonic generation seen in~a! clearly persists in~b!.
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that avoided crossings play a key role in this process. It m
be noted, however, that the model used in this paper does
allow ionization. To study stabilization, this work must b
extended to open quantum systems.

Although the primary motivation for this study was the
retical, these results may be experimentally observable.
infinite square well serves as a simple model for recent
periments on electron confinement in GaAs/AlxGa12xAs
quantum wells@19,20#. These experiments confine electro
in wells that vary in width from 50 to 1000 Å and in dep
from 200 to 300 meV. A well with a width of only 50 Å and
a depth of 300 meV contains only a few bound states
therefore cannot be expected to produce the effects see
this study. However, a well with a depth of 300 meV and
width of 600 Å contains about 50 bound states. The dyna
si-

et

C.

an
st
ot

he
x-

d
in

-

ics of such a well, driven by a far-infrared laser at low i
tensity, should be similar to the dynamics of our model. T
parameters used in this paper correspond to a laser wi
wavelength of 400mm and intensity of 105 W/cm2 striking
a 600 Å well with a depth of 300 meV. These parameters
well within the range accessible by recent experiments.
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