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Spectrum of neutral helium in strong magnetic fields
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We present extensive and accurate calculations for the excited-state spectrum of spin-polarized neutral
helium in a range of magnetic field strengths up t3>1G. Of considerable interest to models of magnetic
white dwarf stellar atmospheres, we also present results for the dipole strengths of the low-lying transitions
among these states. Our methods rely on a systematically saturated basis set approach to solving the Hartree-
Fock self-consistent field equations, combined with an “exact” stochastic method to estimate the residual basis
set truncation error and electron correlation effects. We also discuss the applicability of the adiabatic approxi-
mation to strongly magnetized multielectron atofi&1050-294709)02504-4

PACS numbses): 32.60:+i, 31.10+2, 97.10.Ld, 95.30.Ky

[. INTRODUCTION tra, however, many excited states are required, not only the
The electronic structure of simple atomic systems inlowest atomic state for a given symmetry. Thesr_a excited
i . . States must also be determined with sufficiently high accu-
strong external fields remains poorly understood, despitg, . 15 gistinguish the dominant absorption features found in
considerable theoretical effort. These systems are of criticglpyseryed stellar spectra. Several recent attempts have been
importance in ce.rtam stellar enqunments, in wh|c.h VelYmade to solve the HF self-consistent figBCP equations
large magnetic fields have been inferretl. A detailed  for the spectrum of magnetized helium. Thurmeral. [11]
knowledge of the spectra of light atorfisresumed to domi-  ysed numerical quadrature of the HF SCF equations to obtain
nate the atmospheres of compact stellar remnantsiected  results for several excited states of helium atoms and heli-
to intense magnetic fields would enable both observers angmlike ions over a range of magnetic fields up t0*1@.
theorists to better refine their understanding of these astrorhe errors in this method, however, were best illustrated by
physical objects. Unfortunately, only the spectrum of hydro-later calculations of Jones, Ortiz, and Cepefl&g] who ap-
gen has been adequately treated thus far, by Redredrin -~ plied a basis set of Slater-type orbit&8TO) in solving the
1984[2]. This detailed work on hydrogen has been successsame equations, and were able to obtain lower energies for
fully applied to the observed specfi@] from many magnetic two excited states over many symmetries, but only up to
white dwarf stars, but several stars remain in which the spegnagnetic field strengths of 30 G. Later quantum Monte
tra cannot be accounted for by hydroget}, and in which ~ Carlo (QMC) calculationg13], using these same STO wave
the determination of the strength and configuration of thdunctions as a starting point, found that the residual basis set
stellar magnetic field would be greatly aided by precise caliruncation errors were still significant over much of the range
culations of the spectrum of the next lightest element, neutrapf magnetic-field strengths studied, and emphasized the need
helium. for more accurate HF wave functions. The helium spectrum
The difficulty in theoretically treating atoms in strong in strong magnetic fields is the primary focus of this work.
magnetic fields lies in the fact that magnetic and Coulombl© more accurately determine the spectrum of neutral he-
forces are of nearly equal importance; neither can be treatdi#m, we elected to stay within the basis set HF approach and
as a perturbation of the other. In the uniform magnetic fieldg/tilize a much more flexible set of basis functions.
that we consider in this workassumed to lie in the direc- In this paper we use a basis set introduced by Aldrich and
tion), this difficulty translates into a competition between theGreene[14] in combination with a systematic method for
cylindrical symmetry of the applied magnetic field, and thesaturating the basis sgt5] to study the lowest-energy elec-
Spherica] symmetry of the Coulomb interactions. An Oﬁentronic states of neutral helium. This basis set consists of
applied approximation is the adiabatic approximafibh in ~ functions of the form
which the electronic orbital is assumed to be a product of a

Landau level 3] for the direction transverse to the magnetic x(r)xexp—ap?—b7?), D)
field (in p2=x2+y?) and a longitudinal functiorin z) ba-
sically determined by the Coulomb interactions. wherea andb are variational parameters. This basis set has

Several studies have recently addressed the electronthe advantage that it can be used to accurately represent
structure of helium atoms subjected to strong magnetictates in which the charge density is highly anisotropic,
fields. Most works have examined only the lowest electroniavhere the values of the constamtandb differ. Combined
states using Hartree-FockHF) [6—8] and variational with our previous method12] for obtaining excited state
[9,10,20 methods. To be predictive of observed stellar specsolutions to the HF equations, we obtain three excitations for
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each of the symmetries studied, with a precision that we

estimate to be approximately 0.001 atomic energy Uhiis- F=h(r)+ Eb: (Jb—Kb), (4)
tree. We estimate the remaining basis set truncation error

using our released-phase QMC meth@d], which, in prin-  gnq

ciple, is able to obtain the exact energies, including electron

correlation. We also provide tables of dipole strengths calcu- 1 (Z2B,)?

lated for the lowest three excitations of each symmetry, a h(r)=— —V2 —+ ——(X2+y?) + Z2B5(1,+ 2s,),
necessity for accurate modeling of the absorptive behavior r 2

present in the atmospheres of strongly magnetized stars. In

the first section we briefly review the methods employed in _ 1 % o ,

this study. The second section then presents our results, be- jb‘ﬁa_U dx'[r =" |71l (XD (X)) [¢ha(X), (5)
ginning with the HF energies and dipole matrix elements,

and we consider the implications of our results for the adia-

batic approximation. We also use stochastic methods to de- Kotba= J dx’|r—r’|‘1¢§(x’)¢a(x’) Pp(X).

termine the correlation energy and estimate the remaining

basis set truncation error in the HF energies. We concludfiote that we are still considering the integrals over the spin
with some remarks about the appllcablllty of our results tOdegreeS of freedom for the d|red and exchangdc inte-
models of the atmospheres of magnetized compact stellgjrals. We expand each spatial electronic orbital in a basis set,
remnants. {x,.(r)}, of our choosing,

II. METHOD Np
r= 21 CanXu(r), (6)

Our method, apart from the introduction of a different
basis set, is essentially the same as that of our previous paper
[12]. Here we recapitulate only the essential formulas. ThevhereN, is the number of basis set elements. We have cho-
magnetic field strength is parametrized by the consgynt sen to use the basis set of Aldrich and Gregh#
=pB/Z2=B/ByZ%, where By=4.701x10° G=4701 MG.

The Hamiltonian in atomic units for an atom witl elec- X#(p,gD,Z)ZN#plmﬂlzpﬂefim#wefaﬂpzfbﬂzz, (7)
trons and atomic numbet in constant magnetic fielthlong
the z direction is given by wherem,, denotes the angular momentum quantum number
of operatorl,, andp,=0 for positive z-parity states, and
R Vi2 7 ( 72 Bz)z p,=1 for negativez-parity states. The parametexs andb b
= 2 - ( i ) allow for different treatment of the transverse and longitudi-
=1 2 ri nal distance dependence, a crucial consideration when the
1 applied magnetic field gets strong enough that the atom tries
+2Z2B5(L,+ 25Z)+ E — (2 to minimize the diamagnetic contribution to the total energy.
I<I=N Tij Analytic expressions can be worked out for most of the ma-

trix elements, while the nuclear repulsipt4] and electron-
electron matrix elements can be reduced to one-dimensional
‘i:ﬁtegrals that are performed numerically. Our expressions for
the electron-electron matrix elements can be found in the
Appendix.

Our present calculations restrict the orbitals to have a
mmon spatial dependence for two electrons in the same
state but of opposite spin. In other words we use the re-
tricted Hartree-FockRHF) approach. Details of how we
chieve the solution in this method can be found in REH].

whereL,==;L lIIZ andS,= E _,Si; are thez component of
the total angular momentum and spin of the system, respe
tively, and lengths are in units of the Bohr radiaig. Here
we neglect contributions arising from the finite nuclear mass
We have chosen the magnetic field to be parallel tozhe
axis, and the symmetric gauge, which has vector potentlaéo
A=B(—Y,x,0)/2. In the absence of external fields the eigen-,
valuesofL?, L,, S?, S,, and parity]I, are good quantum
numbers. When the magnetic field is turned on, the rotation
invariance is broken and the only conserved quantum num-
bers are the eigenvalues bf,, S?, S,, andIl (alterna-
tively, we will use thez parity, I1,). We will use both the
zero-field notation, and also the triplet of proper quantum An important concern in Eq(6) is whether or not the
numbersM (the eigenvalue of.,), 7, andS, in the form  basis set is sufficiently well converged for a desired level of
(M,,,S,). Taking our wave functiord” to be a single accuracy in the atomic total energy. Previous calculations
Slater determinant and minimizing the energy of the abové12] have been plagued by an inadequate basis set—even the
Hamiltonian with respect to the electronic spin orbitals,largest basis sets used have not been well converged in a
{a} [Wa(X) = a(S)® ¢a(r), wherea(s) is a spin function, systematic way. In this work we have used even-tempered
¢,(r) a spatial orbital, anck=(s,r)], we obtain the usual GaussiaflETG) sequencefl5] to systematically saturate the

A. Even-tempered Gaussians

Hartree-Fock equations, basis set for each electronic orbital. Essentially this means
that a sequence ™, a, andb parameters are generated in
Fia=eaths, (3) such a way that they fill the possible range of values as each

sequence is made longeX{ increases In zero-field calcu-
whereF is the single-particle Fock operator, lations only one sequence of spheroidal Gaussians is needed
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for each angular momentum ty®r Gaussian type orbitals,
a=b, and the Gaussian is multiplied by a spherical har-
monic). These sequences of basis elements are given by

bi=b,s, !, i=1,...Nq, (8) v
Be

whereb, and §, are the variational parameters for the entire g
sequence that must be optimized with respect to the HF totaf
energy. A\, gets longer, the basis set saturates, or become @ -
more and more complete. These sequences have been sL% -4.3201
cessfully used for well saturated zero-field atomic calcula- i
tions[15], a case in which the parametersindb are equal.
It should be emphasized that these ETG sequences are sin_&
ply a reliable way in which the basis set can be saturated. Ir™
practice, we fully optimize the values of the basis set param-
eters for each value dfg, the length of the sequences, with
respect to the total energy. One can then also fit the resulting
optimal parameters in order to obtain a scheme for extrapo: 4 5 6 7
lating to even larger basis set siz@gquence length$15]. N,
However, we have not done this extrapolation procedure, as ) )
the optimal sequences are sufficiently well converged in en- FIG. 1. Sample convergence of the first and thirsey states
ergy to meet our requirements for the accuracy of the totaff (M:72,S,)=(0,+,—1) symmetry (52s and Is4s at zero field
energy. atpz=1.

The main complication in the present application is thatL dau-level a for the 1s orbital f

our basis seftEq. (7)] is designed to break spherical symme- >an aL;]'.IeV.e sequelnceai(— ag) for the for Ity _%r Bz
try (a#b), such that we have two parameters in each Gauss- 1| EjN 'ﬁ |tha§ a\lNaysl, necessaf;afparth romﬁz—d )I o
ian basis function, separately describing the longitudinal andc¢luce the Landau-leve sequence for the second € ectronlc
transverse directions. To compensate for this separation, bital, due to the much greater impact of th_e appl_led field on
use a series of such ETG sequences, with the Iongitudinarl € outermost electron. We began cglculatlons with each se-
parameters given by Ed8), and the matching transverse guence having a length of foiNs=4 in Eq.(8)] and fully
parameters given by optimized the parameters for each sequeitwe parameters

for each sequengeThis process was repeated until the en-
ergy converged within 0.0001 hartree, which typically re-
quired a length oN,=6-8. A typical example of this be-

. . havior is shown in Fig. 1 for the first and thiféhse) states
wheref is a constant factor. We have typically selectsdch f symmetry M,7,,S,)=(0,+,—1). The total energy in

that we use a series of 2-5 even-tempered sequences 2r . _
each orbital, withf=1,2,4,8 . . . . Note that the total number fis example is amply converged By,=7. Note that we

of basis functions itg multiplied by the number of different have chosen more stringent cutoffs for the convergence of

n Additionally we have included n the total energy with respect to the number and length of
sequences. onally we ha e2 cluded a sequence SUGrqg sequences; thus the desired accuracy of 0.001 hartree is
thata is fixed,a=ag, whereag=2°8,/2 is the exponential

> . a conservative estimate of the remaining basis set truncation
parameter for the first Landau level of an electron in a CONGror
stant magnetic field. As the magnetic field gets larger, this '
Landau-level sequence becomes more and more important in
the basis set expansion of the electronic orbitals. The adia-
batic approximation corresponds to using only sequences in Tables I-VIII contain the HF-ETG energies computed ac-
which a is fixed toag. We will explore this issue further cording to the method outlined above, for the spin-polarized
below. (S,=—1) symmetries havindM=0,—1,—2,—3, and 7,=
+. We note that these energies are always lower than the
IIl. RESULTS best previously published HF resufts2], with the exception
of some of the very lowest states of each symmetry at small
Our desired accuracy for the HF total energies is 0.00&pplied magnetic-field strength. This slight degradatipen-
hartree, such that we can resolve transitions in the opticadrally around 0-% 10" hartree is due to the ETG basis
regime with a precision obA=<100 A, wherex=hc/|E;  functions not representing the correct cusp behajiéi at
—E¢| is the wavelength of allowed transitions between initialthe nucleus, while the Slater-type orbitals do possess a non-
and final states. Our RHF calculations reported here used gero derivative at the origin. The ETG basis elements are
minimum of 2 ETG sequences for each orbital, with somemuch better, however, at reproducing the highly anisotropic
calculations using up to 5 sequences. The convergence of tigehavior at high magnetic fields. This improved accuracy is
total energy as a function of the number of sequences wa®flected in the fact that the higher excited states are much
carefully checked at several different magnetic-fieldsuperior to those published previough2].
strengths(typically 8=1,10,100), and was converged to  The spectrum of the energy states computed thus far is
within 0.0005 hartree. It was necessary to include theshown in Fig. 2. We note that the most tightly bound states

k=
2

aiszi, i=1,...,Ns, (9)

A. Excited-state spectrum of neutral He
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TABLE |. HF-ETG total energies for the first three excited TABLE 1ll. HF-ETG total energies for the first three excited
states of M,m,,S,)=(0,+,—1) symmetry. Zero-field quantum states of -1,+,—1) symmetry. Zero-field quantum numbers are

numbers are given at the top of each column. given at the top of each column.

Bz 1s2s 1s3s 1s4s Bz 1s2p_4 1s3p_, 1s4p_,
0.01 —2.2425 —2.1199 —2.0825 0.01 —2.2353 —2.1220 —2.0888
0.05 —2.4111 —2.2789 —2.2354 0.05 —2.5366 —2.2972 —2.2413
0.10 —2.5720 —2.4425 —2.4034 0.10 —2.8301 —2.4855 —2.4178
0.20 —2.8659 —2.7363 —2.6986 0.20 —3.3016 —2.8006 —2.7188
0.30 —-3.1211 —2.9879 —2.9498 0.30 —3.6842 —3.0630 —2.9735
0.40 —3.3444 —3.2078 —3.1696 0.40 —4.0107 —3.2897 —3.1938
0.50 —3.5435 —3.4041 —3.3653 0.50 —4.2980 —3.4903 —3.3909
0.60 —3.7239 —3.5820 —3.5428 0.60 —4.5560 —3.6743 —3.5707
0.70 —3.8894 —3.7453 —3.7054 0.70 —4.7911 —3.8411 —3.7343
0.80 —4.0427 —3.8967 —3.8567 0.80 —5.0078 —3.9954 —3.8858
0.90 —4.1857 —4.0379 —3.9978 0.90 —5.2107 —4.1388 —4.0276
1.00 —4.3202 —4.1708 —4.1299 1.00 —5.4000 —4.2742 —4.1605
2.00 —5.3680 —5.2080 —5.1656 2.00 —6.8666 —5.3261 —5.1995
3.00 —6.1260 —5.9592 —5.9161 3.00 —7.9213 —6.0856 —5.9508
5.00 —7.2543 —7.0792 —7.0349 5.00 —9.4882 —7.2156 —-7.0714
7.00 —8.1147 —7.9344 —7.8891 7.00 —10.6816 —8.0768 —7.9268
10.00 —9.1385 —8.9525 —8.9061 10.00 —12.1011 —9.1010 —8.9451
20.00 —11.4945 —11.2975 —11.2494 20.00 —15.3690 —11.4589 —11.2906
30.00 —13.1223 —12.9189 —12.8703 30.00 —17.6289 —13.0873 —12.9120
50.00 —15.4668 —15.2553 —15.2057 50.00 —20.8876 —15.4327 —15.2490
70.00 —17.2046 —16.9879 —16.9382 70.00 —23.3066 —17.1710 —16.9822
100.00 —19.2286 —19.0072 —18.9543 100.00 —26.1264 —19.1943 —18.9999

TABLE Il. HF-ETG total energies for the first three excited TABLE IV. HF-ETG total energies for the first three excited

states of (0;,—1) symmetry. Zero-field quantum numbers are states of (1,—,—1) symmetry. Zero-field quantum numbers are
given at the top of each column. given at the top of each column.

Bz 1s2p, 1s3py 1s4p, Bz 1s3d_; 1s4d_; 1s5d_;
0.01 —2.2031 —2.1105 —2.0724 0.01 —2.1403 —2.0903 —2.0673
0.05 —2.4197 —2.2747 —2.2330 0.05 —2.3512 —2.2588 —2.2271
0.10 —2.6347 —2.4537 —2.4067 0.10 —2.5528 —2.4382 —2.4012
0.20 —2.9827 —2.7592 —2.7060 0.20 —2.8938 —2.7436 —2.7010
0.30 —3.2657 —3.0155 —2.9587 0.30 —3.1698 —2.9990 —2.9541
0.40 —3.5068 —3.2377 —3.1784 0.40 —3.4065 —3.2211 —3.1745
0.50 —3.7186 —3.4355 —3.3740 0.50 —3.6156 —3.4184 —3.3709
0.60 —3.9082 —3.6144 —3.5512 0.60 —3.8036 —3.5969 —3.5487
0.70 —4.0808 —3.7786 —3.7137 0.70 —3.9753 —3.7606 —3.7119
0.80 —4.2394 —3.9303 —3.8644 0.80 —4.1335 —3.9122 —3.8629
0.90 —4.3864 —4.0725 —4.0052 0.90 —4.2806 —4.0538 —4.0038
1.00 —4.5282 —4.2056 —4.1417 1.00 —4.4193 —4.1908 —4.1372
2.00 —5.5978 —5.2446 —5.1774 2.00 —5.4881 —5.2306 —5.1733
3.00 —6.3621 —5.9965 —5.9278 3.00 —6.2545 —5.9827 —5.9240
5.00 —7.4932 —7.1163 —7.0465 5.00 —7.3900 —7.1035 —7.0426
7.00 —8.3523 —7.9708 —7.9004 7.00 —8.2528 —7.9582 —7.8968
10.00 —9.3724 —8.9875 —8.9169 10.00 —9.2773 —8.9754 —8.9134
20.00 —11.7170 —11.3306 —11.2599 20.00 —11.6315 —11.3192 —11.2567
30.00 —13.3364 —12.9503 —12.8802 30.00 —13.2562 —12.9403 —12.8772
50.00 —15.6691 —15.2855 —15.2150 50.00 —15.5955 —15.2756 —15.2123
70.00 —17.3996 —17.0169 —16.9469 70.00 —17.3302 —17.0081 —16.9442

100.00 —19.4150 —19.0335 —18.9634 100.00 —19.3495 —19.0247 —18.9603
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TABLE V. HF-ETG total energies for the first three excited TABLE VII. HF-ETG total energies for the first three excited
states of (-2,+,—1) symmetry. Zero field quantum numbers are states of (3,+,—1) symmetry. Zero-field quantum numbers are

given at the top of each column. given at the top of each column.

Bz 1s3d_, 1s4d_, 1s5d_, NBz 1s4f _4 1s5f 4 1s6f _,
0.01 —2.1659 —2.0990 —2.0742 0.01 —2.1406 —2.0914 —2.0651
0.05 —2.4320 —2.2801 —2.2356 0.05 —2.3923 —2.2721 —2.2320
0.10 —2.6871 —2.4680 —2.4120 0.10 —2.6344 —2.4587 —2.4085
0.20 —3.1005 —2.7822 —2.7141 0.20 —3.0275 —2.7726 —2.7110
0.30 —3.4394 —3.0438 —2.9685 0.30 —3.3511 —3.0339 —2.9655
0.40 —3.7309 —3.2701 —3.1902 0.40 —3.6294 —3.2598 —3.1872
0.50 —3.9890 —3.4709 —3.3873 0.50 —3.8759 —3.4606 —3.3846
0.60 —4.2215 —3.6524 —3.5657 0.60 —4.0980 —3.6418 —3.5630
0.70 —4.4342 —3.8187 —3.7288 0.70 —4.3019 —3.8082 —3.7267
0.80 —4.6306 —3.9725 —3.8814 0.80 —4.4906 —3.9618 —3.8784
0.90 —4.8134 —4.1162 —4.0229 0.90 —4.6669 —4.1056 —4.0200
1.00 —4.9866 —4.2549 —4.1558 1.00 —4.8318 —4.2444 —4.1532
2.00 —6.3268 —5.3073 —5.1947 2.00 —6.1195 —5.2967 —5.1919
3.00 —7.2952 —6.0671 —5.9467 3.00 —7.0517 —6.0567 —5.9443
5.00 —8.7385 —7.1975 —7.0674 5.00 —8.4426 —7.1872 —7.0654
7.00 —9.8406 —8.0594 —7.9229 7.00 —9.5058 —8.0493 —7.9220
10.00 —11.1540 —9.0844 —8.9411 10.00 —10.7734 —9.0743 —8.9396
20.00 —14.1875 —11.4426 —11.2871 20.00 —13.7044 —11.4330 —11.2861
30.00 —16.2905 —13.0715 —12.9091 30.00 —15.7378 —13.0624 —12.9073
50.00 —19.3286 —15.4169 —15.2460 50.00 —18.6784 —15.4083 —15.2443
70.00 —21.5954 —17.1561 —16.9805 70.00 —20.8674 —17.1463 —16.9778
100.00 —24.2283 —19.1800 —18.9982 100.00 —23.4342 —19.1738 —18.9986

TABLE VI. HF-ETG total energies for the first three excited TABLE VIII. HF-ETG total energies for the first three excited

states of 2,—,—1) symmetry. Zero-field quantum numbers are states of (3,—,—1) symmetry. Zero field quantum numbers are
given at the top of each column. given at the top of each column.

Bz 1s4f_, 1s5f_, 1s6f_, Bz 1s59_3 1s69_3 1s79_3
0.01 —-2.1201 —2.0829 —2.0636 0.01 —2.1089 —2.0783 —2.0534
0.05 —2.3268 —2.2521 —2.2241 0.05 —2.3120 —2.2476 —2.2225
0.10 —2.5299 —2.4317 —2.3985 0.10 —2.5133 —2.4275 —2.3976
0.20 —2.8637 —2.7372 —2.6990 0.20 —2.8451 —2.7332 —2.6975
0.30 —3.1378 —2.9933 —2.9522 0.30 —3.1181 —2.9895 —2.9505
0.40 —3.3738 —3.2149 —3.1726 0.40 —3.3530 —3.2120 —-3.1713
0.50 —3.5823 —3.4142 —3.3690 0.50 —3.5607 —3.4103 —3.3678
0.60 —3.7702 —3.5933 —3.5469 0.60 —3.7479 —3.5897 —3.5457
0.70 —3.9417 -3.7577 —3.7100 0.70 —3.9189 —3.7539 —3.7090
0.80 —4.1000 —3.9096 —3.8610 0.80 —4.0770 —3.9060 —3.8602
0.90 —4.2473 —4.0513 —4.0020 0.90 —4.2282 —4.0478 —4.0014
1.00 —4.3861 —4.1853 —4.1353 1.00 —4.3664 —4.1818 —4.1341
2.00 —5.4573 —5.2258 -5.1717 2.00 —5.4393 —5.2229 —5.1707
3.00 —6.2263 —5.9786 —5.9225 3.00 —6.2096 —5.9759 —5.9216
5.00 —7.3654 —7.0998 —7.0416 5.00 —7.3514 —7.0976 —7.0410
7.00 —8.2310 —7.9553 —7.8957 7.00 —8.2188 —7.9533 —7.8953
10.00 —9.2549 —8.9729 —8.9126 10.00 —9.2476 —-8.9714 —8.9121
20.00 —11.6182 —11.3183 —11.2562 20.00 —11.6106 —11.3173 —11.2552
30.00 —13.2459 —12.9392 —12.8766 30.00 —13.2408 —12.9382 —12.8765
50.00 —15.5879 —15.2748 —15.2119 50.00 —15.5847 —15.2745 —15.2119
70.00 —17.3240 —17.0073 —16.9441 70.00 —17.3216 —17.0066 —16.9440

100.00 —19.3448 —19.0248 —18.9605 100.00 —19.3436 —19.0249 —18.9606
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. i i ic-field strength. The main figure
FIG. 2. The energy spectrum of 24 states of neutral helium |nIIum as a function of magnetic-fie g in fgu

. - o 5 shows the transitions from symmetrii(=,,S,)=(—1,+,—1) to
applied longitudinal magnetic fields up 18;=100, or approxi- (0,+,—1), with labels denoting the Ievzel of excitation. For ex-
mately 2< 10 G. S

ample, 1-1 is the transition between zero-field state®pl, and
1s2s. The inset shows all of the data for all eight symmetries that

[the first states of €1,+,—1),(=2,+,-1),(=3,+,~1) we have considered, for a total of 90 transitions.

symmetry lie lowest in energy, by a considerable margin,
with a gap to higher excitations that increases monotonicallghown in Fig. 3. The ninety allowed transitions plotted in

with applied field strength. The remaining states form afijg. 3 show some basis set truncation error, which is not
broad band of excitations whose width is SIOle |ncreas|ngunexpected, as the HF-SCF wave-functions are Optimized

as a function of magnetic-field strength. It should be notedhccording to energy, leaving other expectation values more
that many additional tlghtly bound states lie betweensensitive to the basis set error.

the band of excitations and the lowest tightly bound
(=3,+,—1) state, for example, 4,+,—1),(—5,+,
—1),.... Wehave chosen to focus on the most energeti- ) ] o
cally favorable states at high magnetic fields. Thus we have In the often used adiabatic approximatiffl, the only
considered only spin triplet states, and have restricted oufasis functions used are those corresponding to the lowest
selves to states with-3<M<=0. If it is necessary to com- Landau level, while the functional dependence in the longi-
pute more symmetries to accurately model magnetized whiti!dinal direction is allowed to vary. We assess the validity of

dwarf atmospheres, it is a simple matter to extend the calci8Uch an approximation by measuring the relative average
lations presented in this work. transverse “widths” of the electron orbitals, namely,

<P2>2

(ol X*+ Y2 g (pa|x*+y?| 1) = ——
The dipole matrix element, in atomic units, between ini- (P )1
tial stateW; and final state¥; is given by

C. Validity of the adiabatic approximation

B. Dipole strengths for low-lying He transitions

. (1Y

where ¢, corresponds to the first €] orbital, and¢, the
2 2 second, excited-state, orbital. If the adiabatic approximation
[4T is valid, this ratio of the widths of the second electron com-

dif‘,-; (Wil ?rin'AM|q,f>’ (10 pared to the first should approach a consfaee Eq.(14)].

We show examples of this width for thes2p_,, 1s3p_4,
whereAM=M—M;, andY,,y is the usual spherical har- and 1s4p_, states in Fig. 4. The lower panel shows the
monic. These dipole matrix elements vanish unless the zerwidth for all values of the applied magnetic field, while the
field angular momentum quantum numbéesgenvalues of upper panel focuses on the region whgre= 1. We note that
the operatolL?) differ by one,|L¢—L;|=1. This same rule the ratio only approaches a constant for the very largest field
also applies at nonzero applied field, as the diamagnetic terstrengths,3,=80-100, and is still slowly varying even in
only couples states that differ by two In These selection this superstrong field regime. The ratio is also only slightly
rules allow for ten possible transitions between states of difdependent on the degree of excitation.
ferent symmetrythat we have consideredNumerical tables We can learn more by examining separately the behavior
for the dipole matrix elements can be provided by the auof each of the two electronic orbitals. In the limit of infinite
thors upon request, or obtained on the World Wide Weblmagnetic-field strength, the electrons should occupy the low-
[17]. Graphical results for the dipole matrix elements areest Landau level,
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FIG. 5. The expectation value @f for the first HF electronic
orbital ¢, as a function of magnetic-field strength, which should

of (M, 7,.S,)=(~ 1+, 1) symmetry. The upper panel is a Closesbecome linear in the limit when the adiabatic approximation is

up of the data for larger field strengths. The ratio should approacr\lla“q Three orbitals are shown, corresponding to the f|r_5t three
. . A . . excitations of M,w,,S)=(—1,+,—1) symmetry. The inset

2.0 in the adiabatic limit. Lines are provided only as a guide to the ) . -

eye shows a close up of the superstrong field regime near the origin.

The dashed line indicates the adiabatic limit. Solid lines are pro-
vided only as a guide to the eye.

FIG. 4. The ratio of the expectation value @f for the second
electronic orbital relative to the first for the first three excited state

Jnt
V2mr(n+|m|)!?2

v
2

P2 (p, )=

2

XLlnml e*im<Pe792/4|2’ (12) 10 [

wherel = {/1/23 is the magnetic length, andf"ll is an asso-

The full wave function also includes a factor of an unknown
function of z times the cylindrical Landau state, but we are
concerned here with the quality of the adiabatic approxima-<
tion, so we focus only on the accuracy of the description of§
the transverse behavior. Now we consider the expectatior 2
value ofp? in the lowest Landau orbitals,

ciated Laguerre polynomial. For the lowest Landau state, 3 8
=0, and we have ©
[
o]
2 1Y2 m+2 N % 6
(DLan: —— |m|efﬁp /2e7|m<p. 13 =
A
o
©
2]

Im[+1 |m[+1

<q)I6an|p2|q)8an — )
m m B ZZBZ

(14 0 5 10 15 20
1/,

V\éefsee thﬁt’ Iln the é.ld'abt?.t'cl “r;]"t’ Itgebexpec_tatli)n value of FIG. 6. The expectation value pf for the secondexcited HF

b or each e eCtromC_ or. ital shou e. a simpie COnStan‘electronic orbitakp, as a function of magnetic-field strength, which

d'\_”ded by th_e magnetic-field Strer_‘gth' Figures 5 and 6 plokpoyig become linear in the limit when the adiabatic approximation

this expectation value as a function ofg}/for the same s yalid. Three orbitals are shown, corresponding to the first three

example states that we considered above,2 theycitations of ,,,S,)=(—14,—1) symmetry. The inset

1s2p_;, 1s3p-j, and Is4p_, states. Figure 5 plotép®) shows a close up of the superstrong field regime near the origin.

for the first electronic orbital of heliurtthe 1s state at zero  Solid lines are provided only as a guide to the eye. The dashed line
magnetic field, while Fig. 6 shows the same result for the indicates the adiabatic limit.
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second orbital. We see in Fig. 5 that the approach to the 0.1
adiabatic limit[indicated by the dashed line, whose slope is
1/4 by Eq.(14)] is really not valid until3;=50, a very large
field indeed(about 18> G). We also note that the limit is
reached at approximately the same value of field strength fol___
all three states, a reasonable result, as the innermost electrc ¥
should not be greatly different from one excited state to the =
next. The second orbital, however, reaches the adiabatic limi © 0.06
much more quickly, as we see from Fig. 6. The more spa-__
tially extended states feel a much larger effective magnetic ©
field (due to the diamagnetic term in the Hamiltoniathus g
the tightly bound p _; state(given by the trianglesreaches g
the adiabatic limifindicated by the dashed line of slope 1/2) ~—
more slowly (3,=5) than the next two excited states, which
are very near the adiabatic regime@t=0.1-0.2. The im- 0.02
plications of these results for multielectron atoms is that the
adiabatic approximation is not good for the innermost elec-
trons, except at extremely large field strengths, due to the
importance of the Coulomb repulsion from the nucleus. Thus
we conclude that the adiabatic approximation for multielec-
tron atoms is seldom very accurate, even for the large mag-
netic fields found in magnetized white dwarfs and neutron FIG. 7. The correlation energy from FPQMC as a function of
stars, which are generally less than4@. magnetic-field strength for the lowest state of each symmetry cor-
responding tdS,=—1, M=0 (triangle, M=—1 (squares M =
—2 (pentagong andM = — 3 (circles. The positivez-parity states
have solid symbols. Lines are provided only as guides to the eye.
To provide an estimation of the size of our basis set trun-
cation error, we have used two quantum Monte Carlo methtion error is generally less than 0.001 hartree. For larger
ods. The fixed-phase meth¢ti8] (FPQMQ is a variational  fie|ds the truncation error increases. We note that in-
method that projects out the ground state of a particular Symereases slowly with applied field strength, except for the
metry using stochastic random walks. If the state werénost tightly bound states, which have zero-field quantum
bosonic, FPQMC would yield an exact restbeit with  nympers $2p_,, 1s3d_,, and Is4f_5, which increase
statistical error bajsfor the total energy. Since we have (ather dramatically as the field strength grows larger.
fermions, the FPQMC energies are an upper bound to the Taple IX compares our current RPQMC results for a se-
exact total energyoften a very good upper boundor the |ected set of magnetic-field strengths and all eight symme-
ground state of a given symmetry, whose quality iS CONyries studied with our previous RPQMC reslts]. We note
strained by the fixed-phase approximation. The releasednat the previous results suffered from poor wave-function
phase methoffl 3] (RPQMQ is an “exact” method that can  quality, as the present resultthe method, when insuffi-
simultaneously determine the ground and excited states yjently converged in imaginary time, remains variatioreae
using correlation functions in imaginary time. If sufficiently greatiy improved, especially for the higher excitations. We
well converged in imaginary time, this RPQMC method 0b-5|so note that the correlation energy is quite small for the
tains the exact energies, but always provides at least an Uppgighest excitations, regardless of the symmetry state. This
bound to the exact excited-state energies. Both of thesgdyction in correlation energy for the highest excitations is

methods, along with an earlier application to low-lying ex- most likely due to the large physical separation between the
cited states of heliun{for smaller and somewhat inferior jnnermost and outermost electrons.

STO basis sejsare reviewed in Ref.19]. It is difficult, of
course, to separate out the basis set truncation errors from the
correlation energy, E. Comparison with other calculations

0.08

0.04

D. Basis set truncation error and correlation energy

For our HF-ETG results we have already noted a favor-
Ec=Enr—Equc- (15 able comparison with the best HF excited state calculations
in the literaturd 12]. For our fully correlated RPQMC results
Our ETG basis set should be equally valid at all fieldwe compare, in Table X, with the recent work of Scrinzi
strengths, hence we can look for basis set error by examinin0], who applied a variational calculation with a correlated
the behavior of the correlation energy as a function of fieldoasis to the first three excitations lf=0 andM = —1, and
strength. Errors arising from truncation of the basis seBecken, Schmelcher, and Diakonos, who performed a very
should show up agsmal) perturbations on the otherwise large configuration interactiofCl) calculation for theM
smooth correlation energy curve. The behavior of the corre=0 symmetries, with up to six excited states. We note that
lation energy for the lowest state of each of the eight sym-our results compare favorably with the calculations of
metries studied is shown in Fig. 7. From the small oscilla-Becken, Schmelcher, and Diakonos at least for the symme-
tions in the correlation energy curves we estimate, for thdries that they have computed thus far, while there are large
range of magnetic field strengths<(B,=<1, that the trunca- discrepancies with the results of Scrinzi. Some of Scrinzi's
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TABLE IX. Comparison of released-phase QMC resuligp, with the current ETG Hartree-Fock energle, EG and the best previous
RP results from Ref.13]. Blanks are left for the entries for which no previous RP calculations were done. Fixed-phase QMC Egsylts,
are also shown for the lowest excited state of each symmetry. We note that the previous RP res{i3], Reé. considerably improved for

the higher excitations, which reflect the higher quality of the present HF wave functions.

Bz —EEI® Ref.[13] —Egp —Egp —EEI® Ref.[13] —Egrp —EEI® Ref. [13] —Egrp
1s2s 1s3s 1s4s

0.01 2.2425 2.2438) 2.24392) 2.244Q2) 21199 2.120d) 2.12063) 2.0825 2.068®) 2.08306)

0.10 25720 2.5733) 2.57382) 2.57313) 24425 2.439®) 2.44333) 24034 2.349[21) 2.40344)

1.00 4.3202 4.3208) 4.32186) 4.3217%3) 4.1708 4.11649 4.17169) 4.1299 4.130®)
1s2pq 1s3pg 1s4p,

0.01 2.2031 2.2056) 2.20534) 2.20613) 21105 2.1108) 2.11162) 2.0724 2.057@4) 2.07185)

0.10 2.6347 2.639%) 2.639%5) 2.638%3) 2.4537 2.454%) 2.45584) 24067 2.392&) 2.40774)

1.00 4.5283 4.5314) 4.53526) 4.53472) 42056 4.165@B) 4.20677) 4.1417 4.1428.0)
1s2p_; 1s3p_; 1s4p_;

0.01 2.2353 2.2389) 2.23843) 2.238(2) 21220 2.121%) 2.12315) 2.0888 2.080®M) 2.08983)

0.10 2.8295 2.8358) 2.83546) 2.83542) 24855 2.485(G) 2.486911) 24178 2.385Q7) 2.41892)

1.00 5.4000 5.40123) 5.410122) 5.40963) 42742 4.243@2) 4.27532) 4.1605 4.1608)
1s3d_; 1s4d_; 1s5d_;

0.01 2.1403 2.141@) 2.14123) 2.14143) 2.0903 2.091) 2.09122) 2.0673 2.062®) 2.06964)

0.10 2.5528 2.559@7) 2.558318) 2.55774) 24382 2.436A2) 2.43925) 2.4012 2.350414) 2.40224)

1.00 4.4193 4.42149) 4.42368) 4.423%5) 41908 4.107®) 4.19196) 4.1372 4.1379)
1s3d_, 1s4d_, 1s5d_,

0.01 2.1659 2.1662) 2.16642) 2.0990 2.099@) 2.0742 2.075®)

0.10 2.6871 2.6899) 2.69022) 2.4680 2.46914) 2.4120 2.4128Y

1.00 4.9866 4.9949) 4.99585) 4.2549 4.25681) 4.1558 4.15605)
1s4f_, 1s5f_, 1s6f_»,

0.01 2.1201 2.1198) 2.12081) 2.0829 2.083%) 2.0636 2.065%)

0.10 2.5299 2.5318) 2.53113) 2.4317 2.432@3) 2.3985 2.399@Y)

1.00 4.3861 4.38822) 4.39075) 4.1853 4.185@) 4.1353 4.135@L)
1s4f_5 1s5f_5 1s6f_3

0.01 2.1406 21428 2.14223) 2.0914 2.092(0) 2.0651 2.068@()

0.10 2.6344 2.63322) 2.63614) 2.4587 2.45914) 2.4085 2.398(®)

1.00 4.8318 4.83923) 4.84074) 4.2444 4.245®) 4.1532 4.153R)
1s5g_; 1s6g_; 1s7g9_;

0.01 2.1089 2.1098) 2.10942) 2.0783 2.0791) 2.0534 2.054412)

0.10 2.5133 2514?2) 2.51411) 2.4275 2.428@) 2.3976 2.398®)

1.00 4.3664 4.37148) 4.36944) 4.1818 4.183%) 4.1341 4.134%)

values for the total energy are considerably lower in energyral helium in strong magnetic fields, obtaining an accuracy
than both our RPQMC results and the ClI values. The agreesf approximately 0.001 hartree atomic units over a wide
ment between the distinctly different CI and RPQMC meth-range of magnetic-field strengths. The resulting accuracy in
ods is reassuring, and it seems most likely that these anomgetermining wavelengths for transitions among these states is
lously low energies of Scrinzi reflect numerical errors. thus SN A<0.0021AEy, for B,=<1. For optical transi-
tions, this accuracy iss2%. Unfortunately, the dipole ma-

IV. CONCLUSIONS trix elements also have truncation errors, which are much

We have applied a systematic method of basis-set saturaore difficult to estimate.

tion within the Hartree-Fock formalism for the case of neu- Using our accurate HF-ETG wave functions, we have
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TABLE X. Comparison of fully correlated RPQMC energi€&s,p, with recent values found in the literature, where available. Values in
parentheses for the RPQMC energies are statistical error bars. Those fd2®edre estimated uncertainties in the last digit quoted.
Zero-field quantum numbers are listed above each block of entries. All energies are in hartree atomic units.

Bz —Egrp Ref.[20]  Ref.[21] —Egp Ref.[20] Ref.[21] —Egp Ref.[20] Ref.[21]
1s2s 1s3s 1s4s
0.01 2.243®) 2.243 958 2.1208) 2121107 2.083®) 2.087409
0.10 2.5738) 2.578591) 2.573615 2.4433) 2.468656) 2.443352 2.4034) 2.403631
1s2p, 1s3p, 1s4pq
0.01 2.2058%) 2.205130 2.111@) 2111478 2.071%) 2.079 242
0.10 2.639%5) 2.640140) 2.638222 2.455@) 2.494490) 2.455054 2.407@) 2.41128) 2.407425
1s2p_, 1s3p_, 1s4p_4
0.01 2.23843) 2.12315) 2.08983)
0.10 2.83546) 2.835720) 2.486911) 2.50443) 2.41892) 2.39645)
1s3d_, 1s4d_, 1s5d_;
0.01 2.141») 2.09122) 2.06964)
0.10 2.558818) 2.5657@7) 2.43925) 2.43714) 2.40224)
used quantum Monte Carlo methods to determine the corre- 1 1 [ ' ,
lation energy(the difference between Hartree-Fock and the —= —:—Zf duf 3dk gk -k (A2)
exact total energyand estimate the residual basis set trun- rz [ri=r2l  2a2Jo R

cation energies. We have also evaluated the validity of the . . . .
adiabatic approximation, and found that it is poor for the'V& now expand the three dimensional integral okein
lowest-lying states and magnetic-field strengths. For excylindrical coordinate,, k;, andk,,

ample, the ground state of neutral helium does not enter the

adiabatic regime untiB,=50. ce *

Both the dipole strengths and transition energies are re- Lo = OmymNuino 0 du Ikp(u)l"z(u)’ (A3)
quired to construct a detailed model of the atmospheres of
magnetic white dwarfs, which has not yet been done for star@ghere Nuomo=N,N,NyN,, m=m,+m,, my=m,

suspected of containing neutral helium. We hope that the-m_, and the remaining one-dimensional integral is evalu-
extensive tabulations provided in this work can provideated numerically. The two expressions remaining in the in-
meaningful input into such models. Tables of numerical retegrand are the results from the integration oveandk, .
sults for both the dipole matrix elements and energies can be
obtained on the World Wide Wel17].

T (ny+ny+my)!
Ikp(u) - 22m1+1 a21+ my+ 1ar212+ my+1
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APPENDIX: ELECTRON-ELECTRON MATRIX ELEMENT X (A4)
(u+1/4a,)(u+1/day) )’

The strategy that we have used for the electron-electron
matrix elements reduces the six-dimensional integral to avhere A=1/[4(a;+a,)] andF is the confluent hypergeo-
one-dimensional one that can be rapidly evaluated usingnetric function, in this particular case a relatively simple
standard numerical quadrature methods. The matrix elemenfmite series.
between basis functions of the form of Ed),
72 —p1—1/2, —py—1/2 -p-1/2
lkz(l1)=(—1)"§bl b, pa!pa!(u+C)~P

—|Xv(rl)X(r(r2)

ee —
|,w>\a—<X,u(r1)X>\(r2) F—r,

>, [p1/2] [P2/2] (_ 1Yyi1+iopiipi2 _9i _9i _ 1\l
(A1) " 2 ( 1).1.2b1b2(2.p 2j, 2.12 nHn
j1=0 j»=0 J1'i2' (P1=2] ) (P2—2j2)!

can be expanded using the identity X[2(u+C)Jirtlz, (A5)
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where C=1/[4(b;+b,)] and the numbered quantities are

. . . n1:(|mu|+|mv|_m;¢_mv)/2,
related to the parameters of the original basis functions by

al:aM+ay, a2=a)\+ag, (AG) n2:(|m)\|+|m(r|_m)\_m0)/2’ (Ag)
b;=b,+b,, by=by+b,, (A7)
andp;+ p,=2p must be everfotherwise the integralZ5, ,
P1=P,TP,, P2=PytPs, (A8) s zerq.
[1] J. D. Landstreet, inCosmical Magnetism edited by D. Wunner, J. Phys. B6, 4719(1993.
Lynden-Bell (Kluwer Academic, New York, 1994 [12] M. D. Jones, G. Ortiz, and D. M. Ceperley, Phys. RevbA
[2] W. Rosner, G. Wunner, H. Herold, and H. Ruder, J. Phys. B 219(1996.
17, 29(1984. [13] M. D. Jones, G. Ortiz, and D. M. Ceperley, Phys. Re\63:
[3] H. Ruder, G. Wunner, H. Herold, and F. Gey&toms in 6202(1997).
Strong Magnetic FieldéSpringer, Berlin, 1994 [14] C. Aldrich and R. L. Greene, Phys. Status Solidi9B, 343

[4] G. D. Schmidt, W. B. Latter, and C. B. Foltz, Astrophys. J. (1979.
350, 758(1990; G. D. Schmidt, R. G. Allen, P. S. Smith, and [15] M. W. Schmidt and K. Ruedenberg, J. Chem. PH#.3951
J. Liebert,ibid. 463, 320(1996. (1979.

[5] L. I. Schiff and H. Snyder, Phys. Re®5, 59 (1939. [16] T. Kato, Commun. Pure Appl. Mati.0, 151 (1957).

[6] R. Henry, R. F. O'Connell, E. R. Smith, G. Chanmugam, and[17] http://www.ncsa.uiuc.edu/Apps/CMP/papers/jon98/jon98.html
A. J. Rajagopal, Phys. Rev. 8 329(1974; G. L. Surmelian, [18] G. Ortiz, D. M. Ceperley, and R. M. Martin, Phys. Rev. Lett.

R. Henry, and R. F. O’Connell, Phys. Le#9A, 431 (1974. 71, 2777(1993.
[7] M. Vincke and D. Baye, J. Phys. B2, 2089(1989. [19] M. D. Jones, G. Ortiz, and D. M. Ceperley, Int. J. Quantum
[8] M. V. Ivanov, J. Phys. B7, 4513(1994. Chem.64, 523(1997.
[9] D. M. Larsen, Phys. Rev. RO, 5217(1979. [20] A. Scrinzi, Phys. Rev. /48, 3879(1998.
[10] A. Scrinzi, J. Phys. B9, 6055(1996. [21] W. Becken, P. Schmelcher, and F. K. Diakonos, J. Phy&oB.

[11] G. Thurner, H. Korbel, M. Braun, H. Herold, H. Ruder, and G. be published day April 1999



