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Spectrum of neutral helium in strong magnetic fields
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We present extensive and accurate calculations for the excited-state spectrum of spin-polarized neutral
helium in a range of magnetic field strengths up to 1012 G. Of considerable interest to models of magnetic
white dwarf stellar atmospheres, we also present results for the dipole strengths of the low-lying transitions
among these states. Our methods rely on a systematically saturated basis set approach to solving the Hartree-
Fock self-consistent field equations, combined with an ‘‘exact’’ stochastic method to estimate the residual basis
set truncation error and electron correlation effects. We also discuss the applicability of the adiabatic approxi-
mation to strongly magnetized multielectron atoms.@S1050-2947~99!02504-4#

PACS number~s!: 32.60.1i, 31.10.1z, 97.10.Ld, 95.30.Ky
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I. INTRODUCTION

The electronic structure of simple atomic systems
strong external fields remains poorly understood, des
considerable theoretical effort. These systems are of crit
importance in certain stellar environments, in which ve
large magnetic fields have been inferred@1#. A detailed
knowledge of the spectra of light atoms~presumed to domi-
nate the atmospheres of compact stellar remnants! subjected
to intense magnetic fields would enable both observers
theorists to better refine their understanding of these as
physical objects. Unfortunately, only the spectrum of hyd
gen has been adequately treated thus far, by Rosneret al. in
1984@2#. This detailed work on hydrogen has been succe
fully applied to the observed spectra@3# from many magnetic
white dwarf stars, but several stars remain in which the sp
tra cannot be accounted for by hydrogen@4#, and in which
the determination of the strength and configuration of
stellar magnetic field would be greatly aided by precise c
culations of the spectrum of the next lightest element, neu
helium.

The difficulty in theoretically treating atoms in stron
magnetic fields lies in the fact that magnetic and Coulo
forces are of nearly equal importance; neither can be tre
as a perturbation of the other. In the uniform magnetic fie
that we consider in this work~assumed to lie in thez direc-
tion!, this difficulty translates into a competition between t
cylindrical symmetry of the applied magnetic field, and t
spherical symmetry of the Coulomb interactions. An oft
applied approximation is the adiabatic approximation@5#, in
which the electronic orbital is assumed to be a product o
Landau level@3# for the direction transverse to the magne
field ~in r25x21y2) and a longitudinal function~in z) ba-
sically determined by the Coulomb interactions.

Several studies have recently addressed the electr
structure of helium atoms subjected to strong magn
fields. Most works have examined only the lowest electro
states using Hartree-Fock~HF! @6–8# and variational
@9,10,20# methods. To be predictive of observed stellar sp
PRA 591050-2947/99/59~4!/2875~11!/$15.00
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tra, however, many excited states are required, not only
lowest atomic state for a given symmetry. These exci
states must also be determined with sufficiently high ac
racy to distinguish the dominant absorption features found
observed stellar spectra. Several recent attempts have
made to solve the HF self-consistent field~SCF! equations
for the spectrum of magnetized helium. Thurneret al. @11#
used numerical quadrature of the HF SCF equations to ob
results for several excited states of helium atoms and h
umlike ions over a range of magnetic fields up to 1012 G.
The errors in this method, however, were best illustrated
later calculations of Jones, Ortiz, and Ceperley@12# who ap-
plied a basis set of Slater-type orbitals~STO! in solving the
same equations, and were able to obtain lower energies
two excited states over many symmetries, but only up
magnetic field strengths of 1010 G. Later quantum Monte
Carlo ~QMC! calculations@13#, using these same STO wav
functions as a starting point, found that the residual basis
truncation errors were still significant over much of the ran
of magnetic-field strengths studied, and emphasized the n
for more accurate HF wave functions. The helium spectr
in strong magnetic fields is the primary focus of this wor
To more accurately determine the spectrum of neutral
lium, we elected to stay within the basis set HF approach
utilize a much more flexible set of basis functions.

In this paper we use a basis set introduced by Aldrich a
Greene@14# in combination with a systematic method fo
saturating the basis set@15# to study the lowest-energy elec
tronic states of neutral helium. This basis set consists
functions of the form

x~r !}exp~2ar22bz2!, ~1!

wherea andb are variational parameters. This basis set h
the advantage that it can be used to accurately repre
states in which the charge density is highly anisotrop
where the values of the constantsa andb differ. Combined
with our previous method@12# for obtaining excited state
solutions to the HF equations, we obtain three excitations
2875 ©1999 The American Physical Society
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2876 PRA 59JONES, ORTIZ, AND CEPERLEY
each of the symmetries studied, with a precision that
estimate to be approximately 0.001 atomic energy units~har-
tree!. We estimate the remaining basis set truncation e
using our released-phase QMC method@13#, which, in prin-
ciple, is able to obtain the exact energies, including elect
correlation. We also provide tables of dipole strengths ca
lated for the lowest three excitations of each symmetry
necessity for accurate modeling of the absorptive beha
present in the atmospheres of strongly magnetized star
the first section we briefly review the methods employed
this study. The second section then presents our results
ginning with the HF energies and dipole matrix elemen
and we consider the implications of our results for the ad
batic approximation. We also use stochastic methods to
termine the correlation energy and estimate the remain
basis set truncation error in the HF energies. We concl
with some remarks about the applicability of our results
models of the atmospheres of magnetized compact st
remnants.

II. METHOD

Our method, apart from the introduction of a differe
basis set, is essentially the same as that of our previous p
@12#. Here we recapitulate only the essential formulas. T
magnetic field strength is parametrized by the constantbZ
5b/Z25B/B0Z2, where B054.7013109 G54701 MG.
The Hamiltonian in atomic units for an atom withN elec-
trons and atomic numberZ in constant magnetic field~along
the z direction! is given by

Ĥ5(
i 51

N F2
¹ i

2

2
2

Z

r i
1

~Z2bZ!2

2
~xi

21yi
2!G

1Z2bZ~Lz12Sz!1 (
1< i , j <N

1

r i j
, ~2!

whereLz5( i 51
N l iz andSz5( i 51

N siz are thez component of
the total angular momentum and spin of the system, res
tively, and lengths are in units of the Bohr radiusa0 . Here
we neglect contributions arising from the finite nuclear ma
We have chosen the magnetic field to be parallel to thz
axis, and the symmetric gauge, which has vector poten
A5B(2y,x,0)/2. In the absence of external fields the eige
values ofL2, Lz , S2, Sz , and parity,P, are good quantum
numbers. When the magnetic field is turned on, the rotatio
invariance is broken and the only conserved quantum n
bers are the eigenvalues ofLz , S2, Sz , and P ~alterna-
tively, we will use thez parity, Pz). We will use both the
zero-field notation, and also the triplet of proper quant
numbersM ~the eigenvalue ofLz), pz and Sz in the form
(M ,pz ,Sz). Taking our wave functionC to be a single
Slater determinant and minimizing the energy of the ab
Hamiltonian with respect to the electronic spin orbita
$ca% @ca(x)5a(s) ^ fa(r ), wherea(s) is a spin function,
fa(r ) a spatial orbital, andx5(s,r )], we obtain the usua
Hartree-Fock equations,

Fca5eaca , ~3!

whereF is the single-particle Fock operator,
e
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F5h~r !1(
b

~Jb2Kb!, ~4!

and

h~r !52
1

2
¹22

Z

r
1

~Z2bZ!2

2
~x21y2!1Z2bZ~ l z12sz!,

Jbca5F E dx8ur2r 8u21cb* ~x8!cb~x8!Gca~x!, ~5!

Kbca5F E dx8ur2r 8u21cb* ~x8!ca~x8!Gcb~x!.

Note that we are still considering the integrals over the s
degrees of freedom for the direct,J, and exchange,K, inte-
grals. We expand each spatial electronic orbital in a basis
$xm(r )%, of our choosing,

fa~r !5 (
m51

Nb

camxm~r !, ~6!

whereNb is the number of basis set elements. We have c
sen to use the basis set of Aldrich and Greene@14#

xm~r,w,z!5Nmr ummuzpme2 immwe2amr22bmz2
, ~7!

wheremm denotes the angular momentum quantum num
of operatorl z , and pm50 for positive z-parity states, and
pm51 for negativez-parity states. The parametersam andbm
allow for different treatment of the transverse and longitu
nal distance dependence, a crucial consideration when
applied magnetic field gets strong enough that the atom t
to minimize the diamagnetic contribution to the total energ
Analytic expressions can be worked out for most of the m
trix elements, while the nuclear repulsion@14# and electron-
electron matrix elements can be reduced to one-dimensi
integrals that are performed numerically. Our expressions
the electron-electron matrix elements can be found in
Appendix.

Our present calculations restrict the orbitals to have
common spatial dependence for two electrons in the sa
state but of opposite spin. In other words we use the
stricted Hartree-Fock~RHF! approach. Details of how we
achieve the solution in this method can be found in Ref.@12#.

A. Even-tempered Gaussians

An important concern in Eq.~6! is whether or not the
basis set is sufficiently well converged for a desired level
accuracy in the atomic total energy. Previous calculatio
@12# have been plagued by an inadequate basis set—eve
largest basis sets used have not been well converged
systematic way. In this work we have used even-tempe
Gaussian~ETG! sequences@15# to systematically saturate th
basis set for each electronic orbital. Essentially this me
that a sequence ofNs , a, andb parameters are generated
such a way that they fill the possible range of values as e
sequence is made longer (Ns increases!. In zero-field calcu-
lations only one sequence of spheroidal Gaussians is ne
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PRA 59 2877SPECTRUM OF NEUTRAL HELIUM IN STRONG . . .
for each angular momentum type~for Gaussian type orbitals
a5b, and the Gaussian is multiplied by a spherical h
monic!. These sequences of basis elements are given by

bi5b1db
i 21 , i 51, . . . ,Ns , ~8!

whereb1 anddb are the variational parameters for the ent
sequence that must be optimized with respect to the HF t
energy. AsNs gets longer, the basis set saturates, or beco
more and more complete. These sequences have been
cessfully used for well saturated zero-field atomic calcu
tions @15#, a case in which the parametersa andb are equal.
It should be emphasized that these ETG sequences are
ply a reliable way in which the basis set can be saturated
practice, we fully optimize the values of the basis set para
eters for each value ofNs , the length of the sequences, wi
respect to the total energy. One can then also fit the resu
optimal parameters in order to obtain a scheme for extra
lating to even larger basis set sizes~sequence lengths! @15#.
However, we have not done this extrapolation procedure
the optimal sequences are sufficiently well converged in
ergy to meet our requirements for the accuracy of the t
energy.

The main complication in the present application is th
our basis set@Eq. ~7!# is designed to break spherical symm
try (aÞb), such that we have two parameters in each Gau
ian basis function, separately describing the longitudinal
transverse directions. To compensate for this separation
use a series of such ETG sequences, with the longitud
parameters given by Eq.~8!, and the matching transvers
parameters given by

ai5 f bi , i 51, . . . ,Ns , ~9!

wheref is a constant factor. We have typically selectedf such
that we use a series of 2–5 even-tempered sequence
each orbital, withf 51,2,4,8, . . . . Note that the total numbe
of basis functions isNs multiplied by the number of differen
sequences. Additionally we have included a sequence s
thata is fixed,a5aB , whereaB5Z2bZ/2 is the exponentia
parameter for the first Landau level of an electron in a c
stant magnetic field. As the magnetic field gets larger,
Landau-level sequence becomes more and more importa
the basis set expansion of the electronic orbitals. The a
batic approximation corresponds to using only sequence
which a is fixed to aB . We will explore this issue furthe
below.

III. RESULTS

Our desired accuracy for the HF total energies is 0.0
hartree, such that we can resolve transitions in the opt
regime with a precision ofdl&100 Å , wherel5hc/uEi
2Ef u is the wavelength of allowed transitions between init
and final states. Our RHF calculations reported here us
minimum of 2 ETG sequences for each orbital, with so
calculations using up to 5 sequences. The convergence o
total energy as a function of the number of sequences
carefully checked at several different magnetic-fie
strengths~typically bZ51,10,100), and was converged
within 0.0005 hartree. It was necessary to include
-
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Landau-level sequence (ai5aB) for the 1s orbital for bZ
*1, while it was always necessary~apart frombZ50) to
include the Landau-level sequence for the second electr
orbital, due to the much greater impact of the applied field
the outermost electron. We began calculations with each
quence having a length of four@Ns54 in Eq. ~8!# and fully
optimized the parameters for each sequence~two parameters
for each sequence!. This process was repeated until the e
ergy converged within 0.0001 hartree, which typically r
quired a length ofNs56 –8. A typical example of this be
havior is shown in Fig. 1 for the first and third~inset! states
of symmetry (M ,pz ,Sz)5(0,1,21). The total energy in
this example is amply converged byNs57. Note that we
have chosen more stringent cutoffs for the convergence
the total energy with respect to the number and length
ETG sequences; thus the desired accuracy of 0.001 hartr
a conservative estimate of the remaining basis set trunca
error.

A. Excited-state spectrum of neutral He

Tables I–VIII contain the HF-ETG energies computed a
cording to the method outlined above, for the spin-polariz
(Sz521) symmetries havingM50,21,22,23, andpz5
6. We note that these energies are always lower than
best previously published HF results@12#, with the exception
of some of the very lowest states of each symmetry at sm
applied magnetic-field strength. This slight degradation~gen-
erally around 0 –331024 hartree! is due to the ETG basis
functions not representing the correct cusp behavior@16# at
the nucleus, while the Slater-type orbitals do possess a n
zero derivative at the origin. The ETG basis elements
much better, however, at reproducing the highly anisotro
behavior at high magnetic fields. This improved accuracy
reflected in the fact that the higher excited states are m
superior to those published previously@12#.

The spectrum of the energy states computed thus fa
shown in Fig. 2. We note that the most tightly bound sta

FIG. 1. Sample convergence of the first and third~inset! states
of (M ,pz ,Sz)5(0,1,21) symmetry (1s2s and 1s4s at zero field!
at bZ51.
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2878 PRA 59JONES, ORTIZ, AND CEPERLEY
TABLE I. HF-ETG total energies for the first three excite
states of (M ,pz ,Sz)5(0,1,21) symmetry. Zero-field quantum
numbers are given at the top of each column.

bZ 1s2s 1s3s 1s4s

0.01 22.2425 22.1199 22.0825
0.05 22.4111 22.2789 22.2354
0.10 22.5720 22.4425 22.4034
0.20 22.8659 22.7363 22.6986
0.30 23.1211 22.9879 22.9498
0.40 23.3444 23.2078 23.1696
0.50 23.5435 23.4041 23.3653
0.60 23.7239 23.5820 23.5428
0.70 23.8894 23.7453 23.7054
0.80 24.0427 23.8967 23.8567
0.90 24.1857 24.0379 23.9978
1.00 24.3202 24.1708 24.1299
2.00 25.3680 25.2080 25.1656
3.00 26.1260 25.9592 25.9161
5.00 27.2543 27.0792 27.0349
7.00 28.1147 27.9344 27.8891
10.00 29.1385 28.9525 28.9061
20.00 211.4945 211.2975 211.2494
30.00 213.1223 212.9189 212.8703
50.00 215.4668 215.2553 215.2057
70.00 217.2046 216.9879 216.9382
100.00 219.2286 219.0072 218.9543

TABLE II. HF-ETG total energies for the first three excite
states of (0,2,21) symmetry. Zero-field quantum numbers a
given at the top of each column.

bZ 1s2p0 1s3p0 1s4p0

0.01 22.2031 22.1105 22.0724
0.05 22.4197 22.2747 22.2330
0.10 22.6347 22.4537 22.4067
0.20 22.9827 22.7592 22.7060
0.30 23.2657 23.0155 22.9587
0.40 23.5068 23.2377 23.1784
0.50 23.7186 23.4355 23.3740
0.60 23.9082 23.6144 23.5512
0.70 24.0808 23.7786 23.7137
0.80 24.2394 23.9303 23.8644
0.90 24.3864 24.0725 24.0052
1.00 24.5282 24.2056 24.1417
2.00 25.5978 25.2446 25.1774
3.00 26.3621 25.9965 25.9278
5.00 27.4932 27.1163 27.0465
7.00 28.3523 27.9708 27.9004
10.00 29.3724 28.9875 28.9169
20.00 211.7170 211.3306 211.2599
30.00 213.3364 212.9503 212.8802
50.00 215.6691 215.2855 215.2150
70.00 217.3996 217.0169 216.9469
100.00 219.4150 219.0335 218.9634
TABLE III. HF-ETG total energies for the first three excite
states of (21,1,21) symmetry. Zero-field quantum numbers a
given at the top of each column.

bZ 1s2p21 1s3p21 1s4p21

0.01 22.2353 22.1220 22.0888
0.05 22.5366 22.2972 22.2413
0.10 22.8301 22.4855 22.4178
0.20 23.3016 22.8006 22.7188
0.30 23.6842 23.0630 22.9735
0.40 24.0107 23.2897 23.1938
0.50 24.2980 23.4903 23.3909
0.60 24.5560 23.6743 23.5707
0.70 24.7911 23.8411 23.7343
0.80 25.0078 23.9954 23.8858
0.90 25.2107 24.1388 24.0276
1.00 25.4000 24.2742 24.1605
2.00 26.8666 25.3261 25.1995
3.00 27.9213 26.0856 25.9508
5.00 29.4882 27.2156 27.0714
7.00 210.6816 28.0768 27.9268
10.00 212.1011 29.1010 28.9451
20.00 215.3690 211.4589 211.2906
30.00 217.6289 213.0873 212.9120
50.00 220.8876 215.4327 215.2490
70.00 223.3066 217.1710 216.9822
100.00 226.1264 219.1943 218.9999

TABLE IV. HF-ETG total energies for the first three excite
states of (21,2,21) symmetry. Zero-field quantum numbers a
given at the top of each column.

bZ 1s3d21 1s4d21 1s5d21

0.01 22.1403 22.0903 22.0673
0.05 22.3512 22.2588 22.2271
0.10 22.5528 22.4382 22.4012
0.20 22.8938 22.7436 22.7010
0.30 23.1698 22.9990 22.9541
0.40 23.4065 23.2211 23.1745
0.50 23.6156 23.4184 23.3709
0.60 23.8036 23.5969 23.5487
0.70 23.9753 23.7606 23.7119
0.80 24.1335 23.9122 23.8629
0.90 24.2806 24.0538 24.0038
1.00 24.4193 24.1908 24.1372
2.00 25.4881 25.2306 25.1733
3.00 26.2545 25.9827 25.9240
5.00 27.3900 27.1035 27.0426
7.00 28.2528 27.9582 27.8968
10.00 29.2773 28.9754 28.9134
20.00 211.6315 211.3192 211.2567
30.00 213.2562 212.9403 212.8772
50.00 215.5955 215.2756 215.2123
70.00 217.3302 217.0081 216.9442
100.00 219.3495 219.0247 218.9603
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TABLE V. HF-ETG total energies for the first three excite
states of (22,1,21) symmetry. Zero field quantum numbers a
given at the top of each column.

bZ 1s3d22 1s4d22 1s5d22

0.01 22.1659 22.0990 22.0742
0.05 22.4320 22.2801 22.2356
0.10 22.6871 22.4680 22.4120
0.20 23.1005 22.7822 22.7141
0.30 23.4394 23.0438 22.9685
0.40 23.7309 23.2701 23.1902
0.50 23.9890 23.4709 23.3873
0.60 24.2215 23.6524 23.5657
0.70 24.4342 23.8187 23.7288
0.80 24.6306 23.9725 23.8814
0.90 24.8134 24.1162 24.0229
1.00 24.9866 24.2549 24.1558
2.00 26.3268 25.3073 25.1947
3.00 27.2952 26.0671 25.9467
5.00 28.7385 27.1975 27.0674
7.00 29.8406 28.0594 27.9229
10.00 211.1540 29.0844 28.9411
20.00 214.1875 211.4426 211.2871
30.00 216.2905 213.0715 212.9091
50.00 219.3286 215.4169 215.2460
70.00 221.5954 217.1561 216.9805
100.00 224.2283 219.1800 218.9982

TABLE VI. HF-ETG total energies for the first three excite
states of (22,2,21) symmetry. Zero-field quantum numbers a
given at the top of each column.

bZ 1s4 f 22 1s5 f 22 1s6 f 22

0.01 22.1201 22.0829 22.0636
0.05 22.3268 22.2521 22.2241
0.10 22.5299 22.4317 22.3985
0.20 22.8637 22.7372 22.6990
0.30 23.1378 22.9933 22.9522
0.40 23.3738 23.2149 23.1726
0.50 23.5823 23.4142 23.3690
0.60 23.7702 23.5933 23.5469
0.70 23.9417 23.7577 23.7100
0.80 24.1000 23.9096 23.8610
0.90 24.2473 24.0513 24.0020
1.00 24.3861 24.1853 24.1353
2.00 25.4573 25.2258 25.1717
3.00 26.2263 25.9786 25.9225
5.00 27.3654 27.0998 27.0416
7.00 28.2310 27.9553 27.8957
10.00 29.2549 28.9729 28.9126
20.00 211.6182 211.3183 211.2562
30.00 213.2459 212.9392 212.8766
50.00 215.5879 215.2748 215.2119
70.00 217.3240 217.0073 216.9441
100.00 219.3448 219.0248 218.9605
TABLE VII. HF-ETG total energies for the first three excite
states of (23,1,21) symmetry. Zero-field quantum numbers a
given at the top of each column.

NbZ 1s4 f 23 1s5 f 23 1s6 f 23

0.01 22.1406 22.0914 22.0651
0.05 22.3923 22.2721 22.2320
0.10 22.6344 22.4587 22.4085
0.20 23.0275 22.7726 22.7110
0.30 23.3511 23.0339 22.9655
0.40 23.6294 23.2598 23.1872
0.50 23.8759 23.4606 23.3846
0.60 24.0980 23.6418 23.5630
0.70 24.3019 23.8082 23.7267
0.80 24.4906 23.9618 23.8784
0.90 24.6669 24.1056 24.0200
1.00 24.8318 24.2444 24.1532
2.00 26.1195 25.2967 25.1919
3.00 27.0517 26.0567 25.9443
5.00 28.4426 27.1872 27.0654
7.00 29.5058 28.0493 27.9220
10.00 210.7734 29.0743 28.9396
20.00 213.7044 211.4330 211.2861
30.00 215.7378 213.0624 212.9073
50.00 218.6784 215.4083 215.2443
70.00 220.8674 217.1463 216.9778
100.00 223.4342 219.1738 218.9986

TABLE VIII. HF-ETG total energies for the first three excite
states of (23,2,21) symmetry. Zero field quantum numbers a
given at the top of each column.

bZ 1s5g23 1s6g23 1s7g23

0.01 22.1089 22.0783 22.0534
0.05 22.3120 22.2476 22.2225
0.10 22.5133 22.4275 22.3976
0.20 22.8451 22.7332 22.6975
0.30 23.1181 22.9895 22.9505
0.40 23.3530 23.2120 23.1713
0.50 23.5607 23.4103 23.3678
0.60 23.7479 23.5897 23.5457
0.70 23.9189 23.7539 23.7090
0.80 24.0770 23.9060 23.8602
0.90 24.2282 24.0478 24.0014
1.00 24.3664 24.1818 24.1341
2.00 25.4393 25.2229 25.1707
3.00 26.2096 25.9759 25.9216
5.00 27.3514 27.0976 27.0410
7.00 28.2188 27.9533 27.8953
10.00 29.2476 28.9714 28.9121
20.00 211.6106 211.3173 211.2552
30.00 213.2408 212.9382 212.8765
50.00 215.5847 215.2745 215.2119
70.00 217.3216 217.0066 216.9440
100.00 219.3436 219.0249 218.9606
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@the first states of (21,1,21),(22,1,21),(23,1,21)
symmetry# lie lowest in energy, by a considerable marg
with a gap to higher excitations that increases monotonic
with applied field strength. The remaining states form
broad band of excitations whose width is slowly increas
as a function of magnetic-field strength. It should be no
that many additional tightly bound states lie betwe
the band of excitations and the lowest tightly bou
(23,1,21) state, for example, (24,1,21),(25,1,
21), . . . . Wehave chosen to focus on the most energ
cally favorable states at high magnetic fields. Thus we h
considered only spin triplet states, and have restricted
selves to states with23<M<0. If it is necessary to com
pute more symmetries to accurately model magnetized w
dwarf atmospheres, it is a simple matter to extend the ca
lations presented in this work.

B. Dipole strengths for low-lying He transitions

The dipole matrix element, in atomic units, between i
tial stateC i and final stateC f is given by

di f 5(
j 51

2

^C i uA4p

3
r jY1,DMuC f&, ~10!

whereDM5M f2Mi , andY1,DM is the usual spherical har
monic. These dipole matrix elements vanish unless the z
field angular momentum quantum numbers~eigenvalues of
the operatorL2) differ by one,uL f2Li u51. This same rule
also applies at nonzero applied field, as the diamagnetic t
only couples states that differ by two inL. These selection
rules allow for ten possible transitions between states of
ferent symmetry~that we have considered!. Numerical tables
for the dipole matrix elements can be provided by the
thors upon request, or obtained on the World Wide W
@17#. Graphical results for the dipole matrix elements a

FIG. 2. The energy spectrum of 24 states of neutral helium
applied longitudinal magnetic fields up tobZ5100, or approxi-
mately 231012 G.
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shown in Fig. 3. The ninety allowed transitions plotted
Fig. 3 show some basis set truncation error, which is
unexpected, as the HF-SCF wave-functions are optimi
according to energy, leaving other expectation values m
sensitive to the basis set error.

C. Validity of the adiabatic approximation

In the often used adiabatic approximation@5#, the only
basis functions used are those corresponding to the low
Landau level, while the functional dependence in the lon
tudinal direction is allowed to vary. We assess the validity
such an approximation by measuring the relative aver
transverse ‘‘widths’’ of the electron orbitals, namely,

^f2ux21y2uf2&/^f1ux21y2uf1&5
^r2&2

^r2&1

, ~11!

wheref1 corresponds to the first (1s) orbital, andf2 the
second, excited-state, orbital. If the adiabatic approximat
is valid, this ratio of the widths of the second electron co
pared to the first should approach a constant@see Eq.~14!#.
We show examples of this width for the 1s2p21 , 1s3p21,
and 1s4p21 states in Fig. 4. The lower panel shows t
width for all values of the applied magnetic field, while th
upper panel focuses on the region wherebZ*1. We note that
the ratio only approaches a constant for the very largest fi
strengths,bZ*80–100, and is still slowly varying even in
this superstrong field regime. The ratio is also only sligh
dependent on the degree of excitation.

We can learn more by examining separately the beha
of each of the two electronic orbitals. In the limit of infinit
magnetic-field strength, the electrons should occupy the l
est Landau level,

n

FIG. 3. Dipole strengths for allowed transitions in neutral h
lium as a function of magnetic-field strength. The main figu
shows the transitions from symmetry (M ,pz ,Sz)5(21,1,21) to
(0,1,21), with labels denoting the level of excitation. For e
ample, 1-1 is the transition between zero-field states 1s2p21 and
1s2s. The inset shows all of the data for all eight symmetries t
we have considered, for a total of 90 transitions.
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Fnm
Lan~r,w!5

An!

A2p~n1umu!! l 2S r

A2l
D umu

3Ln
umuS r2

l 2 D e2 imwe2r2/4l 2, ~12!

wherel 5A1/2b is the magnetic length, and Ln
umu is an asso-

ciated Laguerre polynomial. For the lowest Landau staten
50, and we have

F0m
Lan5F 2

2pumu! G
1/2

b
umu11

2 r umue2br2/2e2 imw. ~13!

The full wave function also includes a factor of an unknow
function of z times the cylindrical Landau state, but we a
concerned here with the quality of the adiabatic approxim
tion, so we focus only on the accuracy of the description
the transverse behavior. Now we consider the expecta
value ofr2 in the lowest Landau orbitals,

^F0m
Lanur2uF0m

Lan&5
umu11

b
5

umu11

Z2bZ

. ~14!

We see that, in the adiabatic limit, the expectation value
r2 for each electronic orbital should be a simple const
divided by the magnetic-field strength. Figures 5 and 6 p
this expectation value as a function of 1/bZ for the same
example states that we considered above,
1s2p21 , 1s3p21, and 1s4p21 states. Figure 5 plotŝr2&
for the first electronic orbital of helium~the 1s state at zero
magnetic field!, while Fig. 6 shows the same result for th

FIG. 4. The ratio of the expectation value ofr2 for the second
electronic orbital relative to the first for the first three excited sta
of (M ,pz ,Sz)5(21,1,21) symmetry. The upper panel is a clos
up of the data for larger field strengths. The ratio should appro
2.0 in the adiabatic limit. Lines are provided only as a guide to
eye.
-
f
n

f
t
t

e

FIG. 5. The expectation value ofr2 for the first HF electronic
orbital f1 as a function of magnetic-field strength, which shou
become linear in the limit when the adiabatic approximation
valid. Three orbitals are shown, corresponding to the first th
excitations of (M ,pz ,Sz)5(21,1,21) symmetry. The inset
shows a close up of the superstrong field regime near the or
The dashed line indicates the adiabatic limit. Solid lines are p
vided only as a guide to the eye.

FIG. 6. The expectation value ofr2 for the second~excited! HF
electronic orbitalf2 as a function of magnetic-field strength, whic
should become linear in the limit when the adiabatic approximat
is valid. Three orbitals are shown, corresponding to the first th
excitations of (M ,pz ,Sz)5(21,1,21) symmetry. The inset
shows a close up of the superstrong field regime near the or
Solid lines are provided only as a guide to the eye. The dashed
indicates the adiabatic limit.
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second orbital. We see in Fig. 5 that the approach to
adiabatic limit@indicated by the dashed line, whose slope
1/4 by Eq.~14!# is really not valid untilbZ*50, a very large
field indeed~about 1012 G). We also note that the limit is
reached at approximately the same value of field strength
all three states, a reasonable result, as the innermost ele
should not be greatly different from one excited state to
next. The second orbital, however, reaches the adiabatic
much more quickly, as we see from Fig. 6. The more s
tially extended states feel a much larger effective magn
field ~due to the diamagnetic term in the Hamiltonian!; thus
the tightly bound 2p21 state~given by the triangles! reaches
the adiabatic limit~indicated by the dashed line of slope 1/
more slowly (bZ.5) than the next two excited states, whic
are very near the adiabatic regime atbZ.0.1–0.2. The im-
plications of these results for multielectron atoms is that
adiabatic approximation is not good for the innermost el
trons, except at extremely large field strengths, due to
importance of the Coulomb repulsion from the nucleus. Th
we conclude that the adiabatic approximation for multiel
tron atoms is seldom very accurate, even for the large m
netic fields found in magnetized white dwarfs and neut
stars, which are generally less than 1012 G.

D. Basis set truncation error and correlation energy

To provide an estimation of the size of our basis set tr
cation error, we have used two quantum Monte Carlo me
ods. The fixed-phase method@18# ~FPQMC! is a variational
method that projects out the ground state of a particular s
metry using stochastic random walks. If the state w
bosonic, FPQMC would yield an exact result~albeit with
statistical error bars! for the total energy. Since we hav
fermions, the FPQMC energies are an upper bound to
exact total energy~often a very good upper bound! for the
ground state of a given symmetry, whose quality is co
strained by the fixed-phase approximation. The releas
phase method@13# ~RPQMC! is an ‘‘exact’’ method that can
simultaneously determine the ground and excited states
using correlation functions in imaginary time. If sufficient
well converged in imaginary time, this RPQMC method o
tains the exact energies, but always provides at least an u
bound to the exact excited-state energies. Both of th
methods, along with an earlier application to low-lying e
cited states of helium~for smaller and somewhat inferio
STO basis sets!, are reviewed in Ref.@19#. It is difficult, of
course, to separate out the basis set truncation errors from
correlation energy,

EC5EHF2EQMC . ~15!

Our ETG basis set should be equally valid at all fie
strengths, hence we can look for basis set error by exami
the behavior of the correlation energy as a function of fi
strength. Errors arising from truncation of the basis
should show up as~small! perturbations on the otherwis
smooth correlation energy curve. The behavior of the co
lation energy for the lowest state of each of the eight sy
metries studied is shown in Fig. 7. From the small osci
tions in the correlation energy curves we estimate, for
range of magnetic field strengths 0<bZ<1, that the trunca-
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tion error is generally less than 0.001 hartree. For lar
fields the truncation error increases. We note thatEC in-
creases slowly with applied field strength, except for t
most tightly bound states, which have zero-field quant
numbers 1s2p21 , 1s3d22 , and 1s4 f 23 , which increase
rather dramatically as the field strength grows larger.

Table IX compares our current RPQMC results for a
lected set of magnetic-field strengths and all eight symm
tries studied with our previous RPQMC results@13#. We note
that the previous results suffered from poor wave-funct
quality, as the present results~the method, when insuffi-
ciently converged in imaginary time, remains variational! are
greatly improved, especially for the higher excitations. W
also note that the correlation energy is quite small for
highest excitations, regardless of the symmetry state. T
reduction in correlation energy for the highest excitations
most likely due to the large physical separation between
innermost and outermost electrons.

E. Comparison with other calculations

For our HF-ETG results we have already noted a fav
able comparison with the best HF excited state calculati
in the literature@12#. For our fully correlated RPQMC result
we compare, in Table X, with the recent work of Scrin
@20#, who applied a variational calculation with a correlat
basis to the first three excitations ofM50 andM521, and
Becken, Schmelcher, and Diakonos, who performed a v
large configuration interaction~CI! calculation for theM
50 symmetries, with up to six excited states. We note t
our results compare favorably with the calculations
Becken, Schmelcher, and Diakonos at least for the sym
tries that they have computed thus far, while there are la
discrepancies with the results of Scrinzi. Some of Scrinz

FIG. 7. The correlation energy from FPQMC as a function
magnetic-field strength for the lowest state of each symmetry
responding toSz521, M50 ~triangles!, M521 ~squares!, M5
22 ~pentagons!, andM523 ~circles!. The positivez-parity states
have solid symbols. Lines are provided only as guides to the e
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TABLE IX. Comparison of released-phase QMC results,ERP , with the current ETG Hartree-Fock energiesEHF
ETG and the best previous

RP results from Ref.@13#. Blanks are left for the entries for which no previous RP calculations were done. Fixed-phase QMC resultsEFP ,
are also shown for the lowest excited state of each symmetry. We note that the previous RP results, Ref.@13#, are considerably improved fo
the higher excitations, which reflect the higher quality of the present HF wave functions.

bZ 2EHF
ETG Ref. @13# 2ERP 2EFP 2EHF

ETG Ref. @13# 2ERP 2EHF
ETG Ref. @13# 2ERP

1s2s 1s3s 1s4s

0.01 2.2425 2.2438~3! 2.2439~2! 2.2440~2! 2.1199 2.1209~1! 2.1206~3! 2.0825 2.0687~9! 2.0830~6!

0.10 2.5720 2.5737~3! 2.5738~2! 2.5731~3! 2.4425 2.4395~9! 2.4433~3! 2.4034 2.3497~21! 2.4034~4!

1.00 4.3202 4.3204~5! 4.3218~6! 4.3217~3! 4.1708 4.1169~19! 4.1716~9! 4.1299 4.1307~9!

1s2p0 1s3p0 1s4p0

0.01 2.2031 2.2050~6! 2.2053~4! 2.2061~3! 2.1105 2.1100~3! 2.1116~2! 2.0724 2.0578~14! 2.0718~5!

0.10 2.6347 2.6397~9! 2.6395~5! 2.6385~3! 2.4537 2.4545~6! 2.4558~4! 2.4067 2.3925~7! 2.4077~4!

1.00 4.5283 4.5314~4! 4.5352~6! 4.5347~2! 4.2056 4.1651~8! 4.2067~7! 4.1417 4.1425~10!

1s2p21 1s3p21 1s4p21

0.01 2.2353 2.2380~9! 2.2384~3! 2.2380~2! 2.1220 2.1219~5! 2.1231~5! 2.0888 2.0809~9! 2.0898~3!

0.10 2.8295 2.8354~5! 2.8354~6! 2.8356~2! 2.4855 2.4856~5! 2.4869~11! 2.4178 2.3852~17! 2.4189~2!

1.00 5.4000 5.4072~13! 5.4101~22! 5.4096~3! 4.2742 4.2436~32! 4.2753~2! 4.1605 4.1608~8!

1s3d21 1s4d21 1s5d21

0.01 2.1403 2.1410~1! 2.1412~3! 2.1414~3! 2.0903 2.0912~2! 2.0912~2! 2.0673 2.0624~9! 2.0696~4!

0.10 2.5528 2.5590~27! 2.5583~18! 2.5577~4! 2.4382 2.4369~12! 2.4392~5! 2.4012 2.3504~14! 2.4022~4!

1.00 4.4193 4.4214~19! 4.4236~8! 4.4235~5! 4.1908 4.1074~9! 4.1919~6! 4.1372 4.1379~7!

1s3d22 1s4d22 1s5d22

0.01 2.1659 2.1667~2! 2.1664~2! 2.0990 2.0996~2! 2.0742 2.0751~4!

0.10 2.6871 2.6899~9! 2.6902~2! 2.4680 2.4691~14! 2.4120 2.4125~4!

1.00 4.9866 4.9941~9! 4.9956~5! 4.2549 4.2565~21! 4.1558 4.1567~5!

1s4 f 22 1s5 f 22 1s6 f 22

0.01 2.1201 2.1198~8! 2.1206~1! 2.0829 2.0834~5! 2.0636 2.0655~6!

0.10 2.5299 2.5316~9! 2.5311~3! 2.4317 2.4326~3! 2.3985 2.3993~4!

1.00 4.3861 4.3888~22! 4.3907~5! 4.1853 4.1854~3! 4.1353 4.1356~1!

1s4 f 23 1s5 f 23 1s6 f 23

0.01 2.1406 2.1421~4! 2.1422~3! 2.0914 2.0920~7! 2.0651 2.0680~7!

0.10 2.6344 2.6330~22! 2.6361~4! 2.4587 2.4591~14! 2.4085 2.3980~8!

1.00 4.8318 4.8392~13! 4.8407~4! 4.2444 4.2459~9! 4.1532 4.1537~2!

1s5g23 1s6g23 1s7g23

0.01 2.1089 2.1095~3! 2.1094~2! 2.0783 2.0791~3! 2.0534 2.0544~12!

0.10 2.5133 2.5141~2! 2.5141~1! 2.4275 2.4281~2! 2.3976 2.3982~8!

1.00 4.3664 4.3714~18! 4.3694~4! 4.1818 4.1835~6! 4.1341 4.1349~6!
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ve
values for the total energy are considerably lower in ene
than both our RPQMC results and the CI values. The ag
ment between the distinctly different CI and RPQMC me
ods is reassuring, and it seems most likely that these ano
lously low energies of Scrinzi reflect numerical errors.

IV. CONCLUSIONS

We have applied a systematic method of basis-set sa
tion within the Hartree-Fock formalism for the case of ne
y
e-
-
a-

ra-
-

tral helium in strong magnetic fields, obtaining an accura
of approximately 0.001 hartree atomic units over a wi
range of magnetic-field strengths. The resulting accurac
determining wavelengths for transitions among these state
thus dl/l&0.0021/DEHF , for bZ&1. For optical transi-
tions, this accuracy is&2%. Unfortunately, the dipole ma
trix elements also have truncation errors, which are mu
more difficult to estimate.

Using our accurate HF-ETG wave functions, we ha
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TABLE X. Comparison of fully correlated RPQMC energies,ERP , with recent values found in the literature, where available. Value
parentheses for the RPQMC energies are statistical error bars. Those for Ref.@20# are estimated uncertainties in the last digit quote
Zero-field quantum numbers are listed above each block of entries. All energies are in hartree atomic units.

bZ 2ERP Ref. @20# Ref. @21# 2ERP Ref. @20# Ref. @21# 2ERP Ref. @20# Ref. @21#

1s2s 1s3s 1s4s

0.01 2.2439~2! 2.243 958 2.1206~3! 2.121 107 2.0830~6! 2.087 409
0.10 2.5738~2! 2.57859~1! 2.573 615 2.4433~3! 2.4686~56! 2.443 352 2.4034~4! 2.403 631

1s2p0 1s3p0 1s4p0

0.01 2.2053~4! 2.205 130 2.1116~2! 2.111 478 2.0718~5! 2.079 242
0.10 2.6395~5! 2.64014~0! 2.638 222 2.4558~4! 2.4944~90! 2.455 054 2.4077~4! 2.411~28! 2.407 425

1s2p21 1s3p21 1s4p21

0.01 2.2384~3! 2.1231~5! 2.0898~3!

0.10 2.8354~6! 2.835 72~0! 2.4869~11! 2.5044~3! 2.4189~2! 2.396~45!

1s3d21 1s4d21 1s5d21

0.01 2.1412~3! 2.0912~2! 2.0696~4!

0.10 2.5583~18! 2.565 70~7! 2.4392~5! 2.437~14! 2.4022~4!
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used quantum Monte Carlo methods to determine the co
lation energy~the difference between Hartree-Fock and t
exact total energy! and estimate the residual basis set tru
cation energies. We have also evaluated the validity of
adiabatic approximation, and found that it is poor for t
lowest-lying states and magnetic-field strengths. For
ample, the ground state of neutral helium does not enter
adiabatic regime untilbZ*50.

Both the dipole strengths and transition energies are
quired to construct a detailed model of the atmosphere
magnetic white dwarfs, which has not yet been done for s
suspected of containing neutral helium. We hope that
extensive tabulations provided in this work can provi
meaningful input into such models. Tables of numerical
sults for both the dipole matrix elements and energies ca
obtained on the World Wide Web@17#.
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APPENDIX: ELECTRON-ELECTRON MATRIX ELEMENT

The strategy that we have used for the electron-elec
matrix elements reduces the six-dimensional integral t
one-dimensional one that can be rapidly evaluated us
standard numerical quadrature methods. The matrix elem
between basis functions of the form of Eq.~7!,

I mnls
ee 5 K xm~r1!xl~r2!U 1

ur12r2u Uxn~r1!xs~r2!L ,

~A1!

can be expanded using the identity
e-

-
e

-
he

e-
of
rs
e

-
be

r
-

S.

n
a
g

nts

1

r 12
5

1

ur12r2u
5

1

2p2E0

`

duE
R3

dk eik•r122k2u. ~A2!

We now expand the three dimensional integral overk in
cylindrical coordinateskr , kz , andkw ,

I mnls
ee 5dm1m2

NmnlsE
0

`

du Ikr
~u!I kz

~u!, ~A3!

where Nmnls5NmNnNlNs , m15mm1mn , m25ml

1ms , and the remaining one-dimensional integral is eva
ated numerically. The two expressions remaining in the
tegrand are the results from the integration overkr andkz .

I kr
~u!5

p

22m111

~n11n21m1!!

a1
n11m111a2

n21m111

3
~u11/4a1!n2~u11/4a2!n1

~u1A!n11n21m111

3FS 2n2 ,2n1 ;2n22n12m1 ;

3
u~u1A!

~u11/4a1!~u11/4a2! D , ~A4!

where A51/@4(a11a2)# and F is the confluent hypergeo
metric function, in this particular case a relatively simp
finite series.

I kz
~u!5~21!p

p3/2

8p
b1

2p121/2b2
2p221/2p1! p2! ~u1C!2p21/2

3 (
j 150

[ p1/2]

(
j 250

[ p2/2] ~21! j 11 j 2b1
j 1b2

j 2~2p22 j 122 j 221!!!

j 1! j 2! ~p122 j 1!! ~p222 j 2!!

3@2~u1C!# j 11 j 2, ~A5!
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where C51/@4(b11b2)# and the numbered quantities a
related to the parameters of the original basis functions

a15am1an , a25al1as , ~A6!

b15bm1bn , b25bl1bs , ~A7!

p15pm1pn , p25pl1ps , ~A8!
. B

J.
d

nd

G.
n15~ ummu1umnu2mm2mn!/2,

n25~ umlu1umsu2ml2ms!/2, ~A9!

andp11p252p must be even~otherwise the integralI mnls
ee

is zero!.
ml
tt.
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