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Multiphoton detachment of H™ near the one-photon threshold: Exterior
complex-scaling-generalized pseudospectral method for complex quasienergy resonances
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We perform a nonperturbative study of the multiphoton above-threshold detachmentiofthe presence
of 1.640.um and 1.908«m laser fields by means of the non-Hermitian Floquet formalism. The laser param-
eters used are related to the recent experinjént8raestegaard, T. Andersen, and P. Ballimgpublished] on
the two-photon detachment of Hnear the one-photon threshold. The total and patahlove-threshold
detachment rates as well as the electron angular distributions are calculated for the laser intensities from
10° Wicn? to 10 Wicn?. It is found that at the weaker intensitiéselow 13* W/cn?), the perturbation
theory provides a reasonable description of the two-photon detachment process and the detached electrons are
largely in thed state. For higher intensity, however, the process becomes highly nonperturbative in nature. To
perform the calculations, we have introduced an exterior complex-scaling—generalized pseudd&@stral
GP3 technique for the discretization and solution of the non-Hermitian Floquet Hamiltonian. The ECS-GPS
procedure is accurate, simple to implement, and computationally more efficient than the basis-set expansion—
variational methods for resonance-state calculations. It also provides a simpler procedure than the uniform
complex-scaling method for the calculations of partial rates and electron angular distributions.
[S1050-294@9)01904-4

PACS numbegs): 32.80.Rm, 32.80.Fb, 42.50.Hz

. INTRODUCTION for multiphoton above-threshold detachment of Hby
10.6.um laser field was reported in one of our previous
The study of multiphoton and above-threshold detachfloquet workg17].
ment processes of the'Hon, a unique and important three-  The H™ ion will be described by an accurate one-electron
body atomic system, has attracted much interest both expefinodel recently constructdd0] to reproduce both the exact
mentally and theoretically in the past several years. Thexperimental binding energy20] and the low-energy
short-range interaction between the outer electron and theH(1s) elastic scattering phase shifts. The one-photon de-
core supports only one bound state. Further, under the eXachment cross sections based on this model potential are in
perimental conditiong1-5] for which the laser frequencies excellent agreement with earlier accurate two-electron calcu-
are either smaller than or comparable to the binding energjations[21,22,. Using this model potential, Waret al.[16]
of the H™ ion, doubly excited states lie far above the detach-have performed detailed Floquet studies of the frequency-
ment threshold and can be safely ignored. This simplifyingand intensity-dependent multiphoton detachment of fihe
feature renders the above-threshold multiphoton detachmepitensity-averaged multiphoton detachment rates and the
of H™ a unique and fundamental process to study. The moshreshold behavior so obtained are in good agreement with
recent experiments of Hinclude the nonresonaf#,5] and  the previous Los Alamos experimental d48], as well as
resonan{6] two-photon above-threshold detachment obserthe recent two-electrofR-matrix Floquet calculatiorf23].
vations. For the nonresonant cagésd], both the total de-  Finally, our recent Floquet studt8] of the electron angular
tachment rates and the electron angular distributions haveistribution associated with the above-threshold multiphoton
been measured. detachment of H by a 1064-nm laser field, again using this
Previous theoretical investigations of the processes ofnodel potential, is in good harmony with the recent experi-
multiphoton detachment of H include the perturbation mental work at Los AlamoB4]. In these recent Floquet stud-
theory (see a summary in the paper by Geltm@ad), the ies [16-1§, the (uniform) complex-scaling—generalized
Keldysh-Faisal-Reiss modg8], momentum-time-dependent pseudospectrdlCSGP$ method[16,24] is used for the dis-
calculations[9], inhomogeneous differential equation ap- cretization and solution of the non-Hermitian Floquet Hamil-
proach[10], two-electron perturbative or nonperturbative ap-tonian. The CSGPS method is found be both accurate and
proaches[11-15, the nonperturbative time-independent computaionally efficient and is applicable to both low-lying
non-Hermitian Floquet formalisifl6—18, and theR-matrix ~ and highly excited atomic and molecular resonance states.
Floguet method 19], to mention only a few. A theoretical The motivations of this paper are twofold. First, our
study of the electron angular distribution and partial widthspresent work on H is motivated by the most recent ongoing
experiment in Denmarfb], which measures the electron an-
gular distributions in the two-photon detachment of Hear
*Permanent address: Institute of Physics, St. Petersburg Statbe one-photon threshold. Some preliminary results in this
University, 198904 St. Petersburg, Russia. Electronic addresstudy were used by an experimental grdp for the cali-
photon94@kuhub.cc.ukans.edu bration of the experimental data. Second, we introduce an
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exterior complex-scaling—generalized pseudospe¢E@lS- e.g.,[16-18,39,40). According to this CSGPS approach, the
GP39 technique for accurate and efficient treatment of resocomplex-rotated coordinate is discretized on a set of collo-
nance states and apply the procedure to the study of compleation grid points, the potential matrix elements being diag-
guasienergy resonances associated with multiphoton abovenal and equal to the values of the potential at the grid
threshold detachment of H As will be shown later, the points. The kinetic energy matrix elements have simple ex-
ECS-GPS technigue has the advantage over the uniformplicit analytical expressions. As discussed elsewh&ée24,
CSGPS method in providing a simplified procedure for thethis uniform CGSPS procedure is found to be highly accurate
calculation of partial rates and angular distributions. and computationally more efficient than the traditional basis-
The exterior complex-scaling transformation was pro-set expansion method. For tlexterior scaling, the whole
posed by Simori25] for the treatment of molecular reso- range of the coordinate is split into two domains, the pseu-
nances in the Born-Oppenheimer approximation. It has beedospectral discretization being performed separately in each
subsequently extended to the study of atomic and moleculatomain. The complex scaling is applied in the exterior do-
resonances, particularly for potentials which behave nonanamain only. The boundary conditions at the boundary point
lytically (or defined only numerically or piecewise analyti- R, can be incorporated in the discretized Hamiltonian, modi-
cally) in the interior region of the coordinates. For such po-fying the matrix elements. The new matrix elements also
tentials, although the uniform complex scaling is still have simple explicit expressions, and the calculation of the
possible by means of certain transformation techniquesiamiltonian matrix in the generalized pseudospectral
[26,27], the exterior complex scaling provides a direct andmethod with the exterior complex scaling is as simple as
alternative procedure. The principal idea of ECS is to perwith the uniform complex scaling.
form the analytical continuatiofcomplex scalingof the co- The paper is organized as follows. In Sec. Il we describe
ordinates beyond some distanRg only. Thus for the one- the generalized pseudospectral technique with exterior com-
particle system, the conto®&(r) in the complex plane of the plex scaling. In Sec. 11l we apply the ECS-GPS procedure to
coordinate can be defined as follows: the study of multiphoton above-threshold detachment of H
in connection with the recent experimdf.

r, 0sr=sR,
RID=\ Ry+(r=Ry)expia), r>Ry. @) Il. EXTERIOR COMPLEX-SCALING —GENERALIZED
PSEUDOSPECTRAL METHOD FOR MULTIPHOTON
Herer is assumed to be real valued whiR{r) becomes QUASIENERGY RESONANCES

complex valued beyond the radi& . For many-body sys- In this section, we describe an approach, the exterior
tems, the same transformation is performed for each intefsomplex-scaling—generalized pseudospectral method, for ac-
particle coordinate. A number of applications of the exteriorerate and efficient treatment of atomic and molecular reso-
complex-scaling procedure have been developed in the tim‘?fances, including multiphoton quasienergy resonances
independent calculations of atomic and molecular resonancegiithin the non-Hermitian Floquet Hamiltonian formalism

[28—32{ cross sections in electro_n—atom co_IIisidrSéB], aS  [41,47). The CSGPS methoidl6,24 is a natural extension
well as in time-dependent calculatiof84]. Various numeri- ot the complex-scaling generalized Fourier-grid Hamiltonian
cal techniques were used to solve the second-order d'ﬁere'?CSGFGH methods[43]. The CSGFGH methods employ
tial equation along the contour defined by Ef): propaga-  pourier series and require that mesh points be equally
tion and matching method$28,31,33, global basis-set ghaced. On the other hand, the CSGPS methods employ or-
expansions[29], and _flnlte-el_ement baS|_s—set expansionsaqonal polynomialésuch as Legendre or Chebyshev poly-
[30,34 etc. The functiorR(r) is not analytical at the point omialy and allow fornonuniformgrid spacing. It has been
Ry, so some care should be taken when solving the equatioghown that the CSGFGH methods work well for potentials
alor_lg the con_to_ufl). This issue is the most important fQ_f the without singularity, such as the Morse potential for chemical
basis-set variational calculations. The boundary conditions §§;nds etc[43,44). However, for problems involving singu-
the pointR, can be insertgq in the Hamiltonian, leading to larity and/or long-range potentiasuch as the Coulomb po-
the appearance of an additional zero-range potef#BY.  tentia), the CSGPS method with appropriate coordinate
One can avoid the problem by introducing a dlscontlnuou%apping[la24] is the more natural and effective approach.
wave function transformation and a basis set of discontinuy, e following, we first review the essence of the GPS
ous functions[30,3§ or using integration by parts in the method and the uniform complex-scaling GPS method for
kinetic energy matrix elemen{$6]. Certainly, the singular pound- and resonance-state problefh,24. This is fol-

potential does not appear if the transition between the inter,yed by a presentation of the ECS-GPS procedure.
rior (unscaledl and exterior(complex scaledregions of the

coordinate is performed with an analytical functié{(r)
[32,37). However, nontrivial mapping functions also compli-
cate the problem, producing additional terms in the Hamil-
tonian.

In the present paper, we introduce an implementation of The central part of the pseudospectral method is to ap-
the exterior scaling method by means of the generalize@roximate theexact function f(x) defined on the interval
pseudospectral techniqliz6,24,38, providing a simple yet [—1,1] by Nth-order polynomialf y(x),
highly accurate and efficient procedure. Timeiform com- N
plex scaling within this GPS method was successfully ap- ~ _ ey
plied for atomic and molecular resonance calculatitgee, 0= ,Zo Fx)g;(x), @

A. The generalized pseudospectral method with coordinate
mapping for bound-state eigenvalue problems
involving Coulomb potential
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and requires the approximation to éeactat thecollocation P(r(x)=r' (x)f(x), (12)
points X :
we obtain the following transformed Hamiltonian, leading to
fn(xj)=1(x)). (3 asymmetriceigenvalue problenin atomic units:
In the case of the Legendre pseudospectral method which we 1 1 d2 1
shall employ in this articlexo=—1, xy=1, andx; (for j H(x)=— = —— — ——+ V(I (X)+Vn(x), (12
=1,... N—1) are the collocation points determined by the 217 (x) dx®r'(x

roots of the first derivative of the Legendre polynomial

Pn(X) with respect tax, namely, where

Pu(X;)=0. 4) Vm(X)ZS(r )2—24r rr 13
In Eq. (2), gj(x) are the cardinal functions defined by 8(r')
1 1—x2)p! Note that for the special mapping, EQ.0), V,(x) =0. Dis-
9i(x)=— (1—X7)Pp(x) (5) cretizing the Hamiltonian operator, EqL2), by the pseu-
! N(N+1)Py(X;) X=X; dospectral method, leads to the following set of coupled lin-
ear equations:

and satisfy the unique property

9j (%)= ;. (6) 20 [ 3D+ 8V (X)) + 8/ Vin(r () A =EA;.,
=
Consider the eigenvalue problem for the radial Sehro _
dinger equation defined on the semi-infinite &)@ ] with j'=1,... N-1. (14)

the Dirichlet boundary conditions: o )
Here the coefficients#\; are related to the wave function

H(r)g(r)=Ey(r), (0)=g(o)=0, 7) values at the collocation points as
where Aj=r" (X F ) [Pn(x] ™1
1@ =00 )12 PO T (15)
H(r)=— - —+V(r). (8)

2 dr2 and the matri@f?j), representing the second derivative with
respect ta, is given by

For atomic structure and dynamics calculations involving the

Coulomb potential, one typical problem with the grid meth- D},Zj?z[r’(xj/)]*ldﬁ[r’(xj)]*l, (16
ods is the Coulomb singularity at=0 and the long-range

nature of the interaction. Foequal-spacinggrid methods, Wheredf ]) is the second derivative of the cardinal function
one generally truncates the semi-infinite domain into a f|n|teg (x) with respect tox (see the Appendix The pseudospec-
dOMaiN[ T min F mad . FOT this PUFPOSE: i, must be chosen to  ra approximation for the first derivative of the wave func-
be SUﬁlClently small andmaxsufﬂClently Iarge Furthermore tion l//(l') with respect tor, calculated at the pon’ms(x )

the grid spacing must also be chosen to be small enough {@n be expressed through the coefficiehts
ensure that the short-range part of the Coulomb interaction is

properly represented. This results in a need for a very large di(r) "

number of grid points, in addition to possible truncation er- ar =PnX)[r' (x)] 1’22 DA,

rors. To overcome this problem, one can first map the semi- r(xj)

infinite domainr e[0,] into the finite domaimxke[—1,1] ,

using the mapping transformation j’=0,... N 17)
r=r(x), (99  with the matnxD(l) given by

and then use the Legendre or Chebyshev pseudospectral dis- D]f,lj)=[r’(x,-,)]*l’2d§};[r’(xj)]*l’z, (18)

cretization techniques. In the previous wofk$-18,24 for
uniform complex scaling, we have used the following alge'wheredﬁj) is the first derivative of the cardinal function with
braic mapping: respect tax (see the Appendjx
1+x ]
r=r(x)= leT’ (10 B. Resonance-state complex eigenvalue problems:
X uniform and exterior complex scaling

whereR,, is a mapping parameter. Generally the introduc- with generalized pseudospeciral discretization

tion of nonlinear mapping can lead to either an asymmetric The GPS method described above can be extended to the
or a generalized eigenvalue problem. Such undesirable feaesonance-state problems by means of the uniform complex-
tures can be avoided by the following symmetrization procescaling method 16,24 or by the exterior complex-scaling
dure[16,24). Thus by introducing method as described below. For the uniform complex scaling
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[45], r—r exp(a), we have previously used the following Herex}n andx{™ are the collocation points for the interior and

mapping transformatiofl6,24:

1+X
r=R

mI_x exma)

(19

Here both parametelR,, and « are real;R,, is the mapping

parameter which determines the density of the grid points D
while « is the complex rotation angle. Under this transfor-

mation, the semiaxig €[0,~] is rotated in the complex
plane by the anglex and then mapped to the intervak
[ —1,1]. Note that for the transformatiofi9) the additional

potential V,(x) vanishes, so the Hamiltonian matrix in Eq.

(14) takes the following simple form:

=

Hjij= = 5D{i+ 8, V(r(x)),

1= = 5D} CN-1

(20

j’yj:]-a

with the Dirichlet boundary conditions taken into account.

exterior domains, respectively, and the second derivative ma-
trices Df?j)"” and D]-(?J-)’ex are defined according to E¢L6):

D7 = [r ()] D ()17, 27

LN R RN CO) I (28)
The Dirichlet boundary conditions at=0 andr =« imply
that
in_ pex _
A=Ay, =0. (29
However, there is no Dirichlet condition at the pomtR,
which corresponds té\§ andAg*. One has to impose the
continuity of the wave function and its first derivative in-

stead. The wave functiost(R,,) can be calculated with the
help of Eq.(15). Applying Eg.(15) in the interior and exte-

Unlike the uniform scaling, the exterior complex scaling rior domains and equating the results, one obtains
assumes that only the exterior part of the radial coordinate
semiaxis is complex rotated. That means the total semiaxis [r;(1)]~"?Py, (1)A'n =lre—D17 V2P, (— DAGS

[000] is divided in two domains|0,R,] and[R,,%], with

the differential equationil2) to be solved separately in each

(30

domain. For the exterior domain, one can use the mappingimilarly, the calculation of the first derivative according to

transformatiorr .,(x), slightly different from Eq.(19):

1
ex=Rp+ R my_ exp(|a) (21
while in the interior domain the linear mag,(x),
1
rmzsz(ler), (22

serves the purpose. The boundary pdigt, as well asR,,

and « are the parameters of the transformations. Both th
maps(21) and (22) do not generate the additional potential

Vim(X), and the sets of linear equations for the coefficiéqts
in the interior and exterior domains read

Z HOAM=EAD, j'=1,...Np—1 (23

HYA=EAT, j'=1,... Ng—1 (24

N;, and N, being the numbers of collocation points in the

Eq. (17) leads to the following relation:

Nin
[rin(1)] 2Py (1>E Dy AT

Ney—1

SR 1) S, DR

(31)

ith the help of Eqgs.(30) and (31) one can express the
coefficients A and A, corresponding to the boundary

point Ry, through the other coefﬁments'” and A7
Nj,—1 Nex—1

) 1 o
in _ _ 7 (1),inpin 1 \Nex—1 (1),exp ex
ANin_ V|: J'Z]_ DNin*jAj +( 1) K ,2‘1 DO’] A] '
(32

l Nex—1
A |: 2 D(l) eerx+( 1)Nexfl

2 D(l) in m}

|I’1 ]
(33

interior and exterior domams respectively. The Hamiltonian,nere the constantg and » are defined as follows:

matricesH!). andH® in the interior and exterior domains

have the form(20)

i’

1 .
5D 8V (X)),

in — B
Hj = ) 1hi=1 ... Ny—1
(295

Hex__lD(z),ex+5 v ex i No—1
i T 200 VI e(x™), =1, ... Ne— 1.
(26)

Nin(lr\lin"' 1) + N
rin(l)

ex(Nex+ 1)
r(,ex(_ 1) .

o 1
) T

Substituting the expressiori82) and (33) into the sets of
equationg23) and(24), one eliminates the coefficienﬁ#{,‘m

andAg* and obtains a closed matrix eigenvalue problem for
the remaining coefficients:

(39



2868

Nip—1

>

. 1 . . )
in _ T n (1),|r| in
“ H</- VHj/'NinDNin’J Aj

1]

Ney—1

Mo i
—1)NexZZy'n (1),expex_ = AlN
F(=DNeHD J_Zl DY CAS=EA,

(39

Ney—1 1
ex |, T gex ~(1),ex| pex
le Hii S Hi Do |A;
1 Nip—1
—( —1)Nex ex (1),inpin_ ex
(-1) eWHj,,O; D{ PAN=EA,
i"=1,... Ne—1.
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discretization and solution of the non-Hermitian Floquet
Hamiltonian eigenvalue problem. The procedure is similar to
the uniform CSGPS methdd 6—18, except the radial dis-
tancer is partitioned into the interior and exterior regions,
Eq. (1). The optimal distanc®, to partition the two regions
can be chosen in such a way that the dominant interaction
potential is included in the interior region while the exterior
region includes only the long-range part of the interaction.
Further, as will be shown in the next section, the calculation
of the partial rates and angular distributions can be basically
accomplished within the interior region, resulting in a sig-
nificant simplification of the overall procedure.

[ll. CALCULATIONS OF PARTIAL RATES
AND ELECTRON ANGULAR DISTRIBUTIONS
FOR MULTIPHOTON DETACHMENT OF H ~

NEAR ONE-PHOTON THRESHOLD

In this section we apply the ECS-GPS method to the so-

As one can see, taking into account the boundary conditiongtion of the non-Hermitian Floquet Hamiltonian associated
at the pointR, modifies the Hamiltonian matrices in the \ith multiphoton detachment of H by 1.640um and
interior and exterior domains as well as adds coupling matriﬁlgosﬂm laser fields corresponding to the recent experi-
elements between the two domains. The total matrix of th,ents ongoing in Denmals]. The procedure for the calcu-

eigenvalue probleni35) has the dimensions\j,+ Ngy,—2)
X (Nint+Nex—2). The diagonalization of this matrix yields
the eigenvalues and the eigenvectphs’} and{A} inside
the interior and exterior domains. Then the coefficiﬂd,t%1

and Ag*, corresponding to the boundary poiRt,, can be
obtained with the help of Eq$32) and(33).

C. Exterior complex-scaling—generalized pseudospectral
method for complex quasienergy resonances associated
with multiphoton ionization processes

lation of electron energy and angular distributions within the
Floquet formalism has been described elsewh&8 Here
we outline the basic formulas for the description of multi-
photon detachment of H

We describe the unperturbed Hegative ion within the
accurate single-electron model potential approximaftiddj.
In the presence of linearly polarized monochromatic fields,
the total electron wave function, according to the Floquet
theorem, can be written as

W(r,t)=exp —iet)y(r,t), (38

In the presence of periodically time-dependent fields, the _ _ _ _ o
time-dependent Schdinger equation can be transformed wheree is the quasienergy. The functioi(r,t) is periodic

into an equivalentime-independeribfinite-dimensional Flo-
quet HamiltoniarAF(r) eigenvalue problerf41,42:

HE (D () =ey(r),

wheree is the quasienergy. The Floquet Hamiltontah has

(36)

in time with the periodl =2#/w and can be expanded in the
Fourier series:

Y(rh= 2 ym(rexp—imot). (39)

no discrete spectrum. Writing the time-evolution operator ad’he Fourier componentsy,(r) constitute an infinite-

exp(—izt)
z—AF

exp(—iHﬁ)z%J'Cdz (37)

gives the usual result that the time dependence is dominated

by poles of the resolvaniz(- A7)~ near the real axis but on

dimensional vector which solves the eigenvalue problem for
the time-independent Floquet Hamiltonigi¥ [41,42:

2 Fp Y (D= (1), (40)

higher Riemann sheets. The complex energies of the poleEhe diagonal blocksi’, . of the Floquet Hamiltonian are the

are related to the positions and widthSg(—1'/2) of the

energy-shifted unperturbed Hamiltonian operators for the

shifted and broadened complex quasienergy states. In thglectron moving in the H model potential:

non-Hermitian Floquet formalism{41,42, the complex

guasienergy states are determined directly from the eigen- .
value analysis of the analytically continued Floguet Hamil-

tonian HF (r exp(a)), obtained by the uniform complex-
scaling transformation—r exp(«) [45]. The non-Hermitian
Floquet matrix can be solved by means of thfebasis-set
expansion—variational methdd1,42 or by the CSGFGH
[43,24) or CSGPS methofil6—18. In the present work, we

F Lo i —
H .= 2V +W(r)—mo,

mm

(41)

whereW(r) is the angular-momentum-dependent model po-
tential [10]. The off-diagonal blocks of the Floquet Hamil-

tonian represent the interaction of the electron with the ex-
ternal laser field. The quasienergy eigenvalues emerging

extend the ECS—GPS procedure described in Sec. Il for thieom the eigenvalue problent40) are complex valued,
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(Er,—T'/2). The real part of the complex quasienergg) comparison with the results of the lowest-order perturbation
provides the ac Stark shifted energy level, whilgives rise  theory (LOPT) is valuable. For the one-photon detachment
to the total multiphoton ionization rate. the prediction of the perturbation theory 18,=2,8,=0
The expression for the electron angular distributions aftefl>1). The situation is more complicated if the number of
absorption ofn linearly polarized photons can be written as absorbed photons=2. According to LOPT, the emitted
[18] electrons in this case may possess the angular momentum 0
or 2. For the emitted electron in the pudestate, one has

&=(2w)*2k A2 (42) B,=10/78,=18/78,=0 (1>2) whereas for the purs
dQ nent state the distribution is isotropic, i.e., @b =0. In reality,
however,s and d waves are mixed in the wave function of
Here, the emitted electron, so the coefficierfts cannot be calcu-
—— lated with pure angular algebra even for the lowest intensi-
kn=2[Ree — (20) " *F*+no] (43 fies. According to LOPT, the detachment amplitude should
is the electron drift momentum, and theohoton detachment behave as
amplitudeA,, is defined as follows: 1 5
5\/;P0(cos¢9)+ \[EPZ(COSG), (48

An=(277)71f drexdint—i(2w) 3F?sin(27)
- i.e., it contains contributions fromandd partial waves. The
factors \1/2 and \/5/2 are added as normalization coeffi-

+ikp(r- F)afzcosﬂf d3r’exy —ik,(r-r') cients for the Legendre polynomials. The mixing coefficient
6 can be calculated within LOPT: in general it depends not
+i(r’-F)w‘lsinr]\fv(r’)zp(r’ o) (44) only on the angular algebra, but also on the radial wave

functions. Squaring the absolute value of the amplitude writ-
F andw being the laser field strength and frequency, respecten above and expanding it over the even-order Legendre
tively. Equations(42) and (44) assume that the wave func- Polynomials, one obtains for the coefficierig,
tion #(r,t) is properly normalized. The expressif) is

suitable for practical computations since the integration over _10+14 Res\5

the angles in the spatial integral can be performed analyti- 2 7(1+]68/?)

cally, and the integral over the variable can be computed (49)
effectively using the fast Fourier transform routines. The 18

quantitydI",/dQ represents the number of electrons per unit Ba= 5o

time detached with absorption of photons and emitted 7(1+[8]%)

within the unit solid angle under direction of the unit vector - . - . o
- } ST ) other coefficients being zero within LOPT. Given the mixing
r. Integration of t.he' angular _d'Str!bAUt'?'(‘gz) with respectto  parametew, one can calculate the anisotropy paramegrs
the angles specifying the directiongives the partial rates andg,. For example, if one set8=0 (pured wave in the

[y final state, the results 10/7 and 18/7 mentioned above are
obtained. On the other hand, if we take {Bgand B, coef-
_ & ficients from our calculations, we can find the complex mix-
r,=1{ dQ . 45 .
dQ ing parametess:
The sum of all partial rates with=n,,;,, wheren, is the 98,/B,—5
minimum number of photons required for detachment, is Re5=T,
equal to the total raté’: 50
S Im 8= \/ 18 1—(Red)?
F=nzzn. r,. (46) mo= 7B, (Red)*.

The coefficients calculated in this way is intensity depen-

One can expandll',/d() as a function of the anglé o | the fimit of the weak external field this result should
between the detectianand fieldF directions on the basis of converge to the intensity independent value which can be

the Legendre polynomials. Due to parity restrictions, onlygetermined within LOPT.
even Legendre polynomials are present in the expansion: e have performed the calculations of the total and par-
dr r - tial (above thresholdmultiphoton detachment rates as well

n n as the angular distributions of the emitted electrons. Equation
dQ  4xw 1+|21 B2iPa(cosd) |. @7 (40) is so?ved with the help of the ECS-GPS techniqge de-

scribed in Sec. Il. The Fourier components,(r) of the

The coefficients3,, are the anisotropy parameters since theywave function are further expanded in terms of the angular
determine the deviation of the real angular distribution frommomentum eigenfunctiorighe Legendre polynomialsOnly
the isotropic one. When analyzing the behavior of the coefthe diagonal blocks of the Floquet Hamiltoniéwith respect
ficients B8, for weak and medium-strong external fields, ato the Fourier indexm and angular momentutt) are modi-
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TABLE |. Partial and total rates for the detachment of Hy 1.640um radiation. The numbers in
brackets indicate the powers of 10.

Partial rateqa.u) Total rates(a.u)
Laser Number of photons absorbed
intensity
(Wicm?) 1 2 3 4 5
1.09] 3.31§—-9] 3.010—9] 7.15§-13] 1.553-16] 6.327-9]
1.0°10] 2978-7] 7.099-10] 2.087-12] 9.706—15] 2.989 7]
1.011] 2.717-5] 6.753-7] 1.336-8] 2.643-10] 2.78G —5]
2.011] 9.93§ -5] 5.134-6] 2.109 —-7] 8.659 —9] 1.047—4]
4.011] 3.353-4] 3.695 —5] 3.189 —6] 2.708 - 7] 3.757—4]
8.011] 9.487—-4] 2.316—4] 4.202 - 5] 7.339 - 6] 1.229 - 3]
1.012] 1.231-3] 3.926 —4] 9.064 —5] 1.981 -5] 1.734 -3]

fied by the exterior complex-scaling procedure according tdo the one-photon detachment threshold (0.754. eMhe

Eg. (35. The off-diagonal blocks are not affected except forone-photon channel is open only for the weak intensity
the different mapping functions used in the interior and ex-10° Wj/cn?; for the higher intensities it is closed due to ac
terior domains of the radial coordinate semiaxis. In practicaktark shift. In the 1.908:m(w=0.650 eV field, a minimum
computations, the results are converged for the followingof two photons is required for detachment for all the inten-
ranges of the parametefR;=40—60 a.u.R,=80-100 a.u., sijties used in the calculations. The results are presented in
a=0.4-0.6 radians. To achieve convergence, we include thgapjes 1-I11. (As an independent check of the reliability and
Fourier components- 12 to 12 and angular momenta 0 t0 9 5ccyracy of the ECS-GPS method, we have also performed
for the highest intensity considered. Up to 100 radial gridy,e cajculations using the uniform CSGPS technique. The
points were used in each interior and exterior domain. Theaqis are essentially identical to those shown in Tables
selected eigenvalue and eigenvector of the non-Herm|t|ap_”|_) Tables | and Il contain théabove-thresholdpartial

Floquet Hamiltonian matrix can be obtained efficiently by i
means of the implicitly restarted Arnoldi algorith#6] with and fotal detachment rates for the detachment by 1,640

spectral transformation. We found that the interior domainand 1.908=m radiation, respecﬂ_vely. Qne can see that the
appears large enough to get the integ# fully converged detachment rates for the same mtensﬂy are generally larger
within it. That means we do not need to perform the integraf0" the wavelength 1.90g.m. The exception is made by the
tion in the complex-rotated exterior domain using treck ~ iNtensity 18 wicn?, where the total detachment rate at the
rotation procedure as in the uniform complex-scaling casevavelength 1.640um is larger than that at the wavelength
[17]. This simplifies considerably the calculation of partial 1.908 um. The difference is due to the one-photon contri-
rates and angular distributions. bution which is present for the 1.640m field and not for
The calculations were performed for the laser field intenthe 1.908xm field. The above-threshold contribution is not
sities in the range fon/cnm?—102 W/cn? and the wave- very significant for the intensities up to #OW/cn?. For
lengths 1.640um and 1.908 um. The field parameters cor- example, for the intensity & W/cn?, the three-photon de-
respond to those used in the recent experiments on thachment rate constitutes only slightly more than 2% of the
electron angular distributiong5]. For the wavelength two-photon rate. The total detachment rates for the same
1.640 um, the photon energy«(=0.756 eV is very close wavelength and different intensities follow the power law of

TABLE Il. Partial and total rates for the detachment of By 1.908um radiation. The numbers in
brackets indicate the powers of 10.

Partial rateqa.u)Total rates(a.u) Total rates(a.u)
Laser Number of photons absorbed
intensity
(Wicn?) 2 3 4 5
1.J9] 4.846 —9] 2.211-12] 8.278 — 16] 3.054 —19] 4.848 —9]
1.0/10] 4,778 —7] 2.191-9] 8.223 - 12] 3.037—14] 4.80Q —7]
1.011] 4,169 —5] 1.994 — 6] 7.65Q — 8] 2.844 —9] 4.373 5]
2.q11] 1.434 - 4] 1.433 5] 1.118 - 6] 8.346 — 8] 1.589 —4]
4.J11] 4.231—-4] 9.07Q - 5] 1.453 —-5] 2.167 - 6] 5.304 —4]
8.0011] 9.195 —4] 4.137-4] 1.416—4] 4,15 5] 1.516 - 3]

1.012] 1.126 — 3] 6.353 — 4] 3.00§ —4] 1.13§ — 4] 2.176 — 3]




PRA 59 MULTIPHOTON DETACHMENT OF H" NEAR THE ONE . . . 2871

TABLE lIl. Anisotropy parameterg,, for the two- and three-photon detachment and the mixing param-
etersé for the two-photon detachment. The numbers in brackets indicate the powers of 10.

Number of absorbed photons

I 2 3 2 3
1.640 um 1.908um
1x10° Wien?
1 1.153 2.381 6.278-1] 2.359
2 2.505 2.709 2.298 2.407
3 —3.401—4] 2.640 —4.119 4] 2.313
4 2.291-8] —5.011 - 4] 6.069 —8] —6.347—4]
5=0.1629 expi(L.914) 5=0.3449 expR.061)
1x 10 wien?
1 1.134 2.369 6.1371] 2.362
2 2.499 2.687 2.291 2.404
3 —3.389 3] 2.630 —4.076 - 3] 2.301
4 1.781-6] —4.937-3] 2.707-6] —6.305 —3]
5=0.1707 expi(L.921) 5=0.3496 exp(2.064)
1x 10" wWien?
1 1.068 2.398 4.673-1] 2.375
2 2.454 2.650 2.226 2.375
3 —3.18 —2] 2.502 —3.680—2] 2.198
4 1.599 —4] —4.677-2] 2.21§ 4] —5.937-2]
5=0.2189 expi(l.893) 5=0.3937 expiR.104)
2x 10" Wicn?
1 9.855—1] 2.415 2.681—1] 2.372
2 2.410 2.608 2.152 2.337
3 —5.999 —2] 2.388 —6.549 —2] 2.109
4 5.815—4] -8.871-2] 7.823 - 4] —1.127-1]
5=0.2591 expi(1.902) 5=0.4415 exp.167)
4% 10" Wicn?
1 8.024—-1] 2.427 —2.014-1] 2.333
2 2.334 2.536 1.974 2.251
3 —1.066—1] 2.214 —9.996 —2] 1.985
4 1.957 — 3] -1.624-1] 2.09§ —3] —2.034-1]
5=0.3191 expi(1.962) 5=0.5502 expiR.328)
8x 10" wicn?
1 3.165—1] 2.384 —1.272 2.160
2 2.186 2.389 1.304 2.077
3 —1.644—1] 1.992 —7.867—2] 1.909
4 5.105— 3] —2.820—1] 2.021-3] —3.493 1]
5=0.4199 expi@.168) 5=0.9858 expiR.675)
1x 10 Wicn?
1 5.106 — 3] 2.341 —1.465 2.175
2 2.092 2.316 7.847-1] 2.076
3 -1.75Q0 1] 1.924 -3.971-2] 1.840
4 6.085— 3] -3.327-1] 8.63§ —4] -3.927-1]
5=0.4786 expiR.298) 5=1.509 expi2.747)

LOPT quite closely(except for the 1®Wi/cn?,1.640um  process for the intensities up tot0W/cn?. For the higher
case mentioned aboxeOne can draw a conclusion that for intensities, the contribution of the above-threshold channels
the wavelength range under consideration the perturbatioto the total ratdi.e., deviation from the LOPT predictions
theory provides an adequate description of the detachmebiecomes very important. As can be expected from the gen-
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eral theory, at the same intensity, the breakdown of the per- In conclusion, we have presented an ECS-GPS general

turbation theory is more pronounced for the larger waveprocedure for accurate and efficient determination of

length 1.908 um. resonance-state properties with application to the study of
This conclusion is confirmed by the analysis of the angu-complex quasienergy states associated with the multiphoton

lar distributions. Table Ill contains the anisotropy parametersabove-threshold detachment of Hnear the one-photon

B for the two- and three-photon detachment as well as théhreshold. Both total and partial detachment rates are pre-

mixing parameterss for the two-photon detachment. One sented for laser wavelengths 1.64®n and 1.908 um, and

can estimate how close the calculated nonperturbative resulfsr intensity in the range foW/cn? to 102 Wi/en?. It is

and those of LOPT are by taking a look at the magnitude ofound that for laser intensity less than'tow/cn?, the two-

the coefficientBg for the two-photon process argj for the  photon detachment processes are dominated byl-iivave

three-photon process. These coefficients are supposed to valectrons, in accord with the recent experimental observa-

ish within LOPT. As expected, the smallest values of theseaions [5]. We are currently extending the ECS-GPS tech-

coefficients correspond to the lowest intensity. With the in-nique to the solution of the non-Hermitian Floquet Hamil-

crease of the laser intensity, their relative magnitude intonian associated with théme-dependent density functional

creases from approximately 16 for 10° W/cn? to 10 theory[47] for the study of multiphoton processes many-

for 10 W/cn?. As one can see, the angular distribution electronsystems in intense laser fields.

pattern is quite stable and the mixing parametes small for

the intensities less than or equal to'10N/cn?. For the ACKNOWLEDGMENT
laser fields with the wavelength 1.640m, only 2.5% to )
4.5% (depending on the field intensjtgf the electrons emit- We acknowledge the Kansas Center for Advanced Scien-

ted after absorption of two photons appear in shetate, all  tific Computing for providing access to the Origin 2000 su-

others being in thel state. For the wavelength 1.908m, s~ Percomputer facilities.

electrons constitute 10% to 13% of the total emission, and

the rest is due to thed-electron contribution. APPENDIX: PSEUDOSPECTRAL TECHNIQUE
This picture changes rapidly as the laser intensity in- FOR THE SECOND-ORDER

creases above 1D W/cn?. The set of the anisotropy param- DIFFERENTIAL EQUATION EIGENVALUE PROBLEM

eters B, for the two-photon detachment at the intensities

2x 10" Wien? to 1012 Wicn? differs very much from that

at the intensities 0 W/cn? to 10 W/cn?. The mixing

parameterd suggests that up to 20% of the electrons at the () + v (X) f(X) =N (X) (A1)

wavelength 1.640um, and 70% of the electrons at the

wavelength 1.908um, are emitted in the state for the laser on the interval[ —1,1], with appropriate boundary condi-

field intensity 162 W/cn?. One must realize, however, that tions atx=—1 andx=1 (\ is the eigenvalule An approxi-

for such intense laser fields the paramefedoes not have mate solution of the eigenvalue problem can be obtained

direct meaning since its definition is based on the LOPTwith the help of the pseudospectral interpolation form@a

expression48) and can be interpreted only approximately. Certainly, the polynomiafy(x) cannot solve the differential

The accurate information is provided by the anisotropy paequation(Al) for all x within the intervall — 1,1]. However,

rametersB,, . one can request that EAL) is satisfied at the collocation
The recent experimerb] provides the following values pointsx; upon substitution of y(x) for f(x). One then ar-

of the anisotropy parametef, and 3, for the two-photon rives at a set of linear algebraic equations for the quantities

detachment: f(x):

Consider an eigenvalue problem defined by a second-
order differential equation

B,=1.3+0.2, B,=2.4+0.2 (1.640 um), (51) N
2, F0)[9](x5) +v(x)g;(x;7) = \gj(xj)] =0,
B,=0.7+0.2, B,=2.0'3% (1.908 um). (52 =

j'=1,... N—1. A2
As one can see from comparison with Table IlI, our nonper- : o (A2)

turbative results lie within the error range of the experimen-\gte that the sefA2) contains justN—1 equations fomN
tal values for intensities of the laser field less than or equal tq_ 1 coefficientsf(x;). It must be appended by two more
10' Wi/cn?, i.e., in that region where the deviation from the equations representing the boundary conditionsat 1
perturbation theory is not significant. The authors of R&f.  5nqx= 1, defining the algebraic matrix eigenvalue problem.

indicate that the peak intensity in their experiment can be as Tne derivatives of the functiong;(x) can be calculated
high as 8<10'* W/cn¥. This intensity corresponds to the 55 follows(see[16,24,39): :

highly nonperturbative regime where the angular distribu-

tions are quite different from those for the intensities weaker (1) Pn(Xj0)

than 16* Wicn? (see Table Il). To explain this discrep- 9 (xj)=d;/; Pux) (A3q)
ancy, we can infer that under the experimental condit[&hs NV

(the laser pulse duration is as long as 9 the detachment

process i; Iikely to occur before the laser field pulse ree_lches d(}):; (i"#j), dP=0 (j#0,j#N),

the peak intensity and thus corresponds to the weaker inten- I i X I

sity case. (A3b)
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o NN+ 1) dm:N(N+1), 30
4 4
; nN(Xj)
gj(xj) dfzJ)WXJ) (Ada)
d}?}=—m [i"#5.(J" D #(ON), (")) #(NO)],
b (Adb)
N(N+1)—2
e (ado)
N(N+1)
diP=———"- (j£0,j#N), A4d
P s 10N (A4d)
N(N+1)[N(N+1)—2
42 = 42~ ( JINC ) ]_ (Ade)

24

Let us introduce the coefficienss;, related tof(x;) as
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Taking into account the relation®), (A4), and (A5), one
can recast the set of equatiof#s2) in the following form:

E [di7+ 8o (x)IA=NA;, j'=1,... N-1.

(AB)

The matrix eigenvalue problem is defined by E46) and
the boundary conditions. For example, for the frequently

used Dirichlet boundary conditions,
AOZ AN: 0, (A?)

the sum in the left-hand side of EGA6) is reduced to the
range from 1 tdN—1, and a closed set of equations to solve

for the eigenvalua and eigenvectofA;,j=1,... N—1}is
obtained:
_E [di?+ 8,0 (x)]A=NA;/, J'=1,... N-1,
(A8)
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