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Multiphoton detachment of H2 near the one-photon threshold: Exterior
complex-scaling–generalized pseudospectral method for complex quasienergy resonances

Dmitry A. Telnov* and Shih-I Chu
Department of Chemistry, University of Kansas, and Kansas Center for Advanced Scientific Computing, Lawrence, Kansas 6

~Received 12 August 1998!

We perform a nonperturbative study of the multiphoton above-threshold detachment of H2 in the presence
of 1.640-mm and 1.908-mm laser fields by means of the non-Hermitian Floquet formalism. The laser param-
eters used are related to the recent experiments@L. Præstegaard, T. Andersen, and P. Balling~unpublished!# on
the two-photon detachment of H2 near the one-photon threshold. The total and partial~above-threshold!
detachment rates as well as the electron angular distributions are calculated for the laser intensities from
109 W/cm2 to 1012 W/cm2. It is found that at the weaker intensities~below 1011 W/cm2), the perturbation
theory provides a reasonable description of the two-photon detachment process and the detached electrons are
largely in thed state. For higher intensity, however, the process becomes highly nonperturbative in nature. To
perform the calculations, we have introduced an exterior complex-scaling–generalized pseudospectral~ECS-
GPS! technique for the discretization and solution of the non-Hermitian Floquet Hamiltonian. The ECS-GPS
procedure is accurate, simple to implement, and computationally more efficient than the basis-set expansion–
variational methods for resonance-state calculations. It also provides a simpler procedure than the uniform
complex-scaling method for the calculations of partial rates and electron angular distributions.
@S1050-2947~99!01904-6#

PACS number~s!: 32.80.Rm, 32.80.Fb, 42.50.Hz
ch
-
e
h
t
e

s
rg

ch
in

e
o

e

a

t
p-
p
nt

l
th

s

on
t

de-
re in
lcu-

cy-

the
with

ton
is
ri-
-

d

il-
and
g
s.

ur
g

n-

his

an

St
es
I. INTRODUCTION

The study of multiphoton and above-threshold deta
ment processes of the H2 ion, a unique and important three
body atomic system, has attracted much interest both exp
mentally and theoretically in the past several years. T
short-range interaction between the outer electron and
core supports only one bound state. Further, under the
perimental conditions@1–5# for which the laser frequencie
are either smaller than or comparable to the binding ene
of the H2 ion, doubly excited states lie far above the deta
ment threshold and can be safely ignored. This simplify
feature renders the above-threshold multiphoton detachm
of H2 a unique and fundamental process to study. The m
recent experiments of H2 include the nonresonant@4,5# and
resonant@6# two-photon above-threshold detachment obs
vations. For the nonresonant cases@4,5#, both the total de-
tachment rates and the electron angular distributions h
been measured.

Previous theoretical investigations of the processes
multiphoton detachment of H2 include the perturbation
theory ~see a summary in the paper by Geltman@7#!, the
Keldysh-Faisal-Reiss model@8#, momentum-time-dependen
calculations @9#, inhomogeneous differential equation a
proach@10#, two-electron perturbative or nonperturbative a
proaches @11–15#, the nonperturbative time-independe
non-Hermitian Floquet formalism@16–18#, and theR-matrix
Floquet method@19#, to mention only a few. A theoretica
study of the electron angular distribution and partial wid
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for multiphoton above-threshold detachment of H2 ~by
10.6-mm laser field! was reported in one of our previou
Floquet works@17#.

The H2 ion will be described by an accurate one-electr
model recently constructed@10# to reproduce both the exac
experimental binding energy@20# and the low-energy
e-H(1s) elastic scattering phase shifts. The one-photon
tachment cross sections based on this model potential a
excellent agreement with earlier accurate two-electron ca
lations@21,22#. Using this model potential, Wanget al. @16#
have performed detailed Floquet studies of the frequen
and intensity-dependent multiphoton detachment of H2. The
intensity-averaged multiphoton detachment rates and
threshold behavior so obtained are in good agreement
the previous Los Alamos experimental data@3#, as well as
the recent two-electronR-matrix Floquet calculation@23#.
Finally, our recent Floquet study@18# of the electron angular
distribution associated with the above-threshold multipho
detachment of H2 by a 1064-nm laser field, again using th
model potential, is in good harmony with the recent expe
mental work at Los Alamos@4#. In these recent Floquet stud
ies @16–18#, the ~uniform! complex-scaling–generalize
pseudospectral~CSGPS! method@16,24# is used for the dis-
cretization and solution of the non-Hermitian Floquet Ham
tonian. The CSGPS method is found be both accurate
computaionally efficient and is applicable to both low-lyin
and highly excited atomic and molecular resonance state

The motivations of this paper are twofold. First, o
present work on H2 is motivated by the most recent ongoin
experiment in Denmark@5#, which measures the electron a
gular distributions in the two-photon detachment of H2 near
the one-photon threshold. Some preliminary results in t
study were used by an experimental group@5# for the cali-
bration of the experimental data. Second, we introduce

ate
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exterior complex-scaling–generalized pseudospectral~ECS-
GPS! technique for accurate and efficient treatment of re
nance states and apply the procedure to the study of com
quasienergy resonances associated with multiphoton ab
threshold detachment of H2. As will be shown later, the
ECS-GPS technique has the advantage over the unif
CSGPS method in providing a simplified procedure for
calculation of partial rates and angular distributions.

The exterior complex-scaling transformation was p
posed by Simon@25# for the treatment of molecular reso
nances in the Born-Oppenheimer approximation. It has b
subsequently extended to the study of atomic and molec
resonances, particularly for potentials which behave nona
lytically ~or defined only numerically or piecewise analy
cally! in the interior region of the coordinates. For such p
tentials, although the uniform complex scaling is s
possible by means of certain transformation techniq
@26,27#, the exterior complex scaling provides a direct a
alternative procedure. The principal idea of ECS is to p
form the analytical continuation~complex scaling! of the co-
ordinates beyond some distanceRb only. Thus for the one-
particle system, the contourR(r ) in the complex plane of the
coordinate can be defined as follows:

R~r !5H r , 0<r<Rb

Rb1~r 2Rb!exp~ ia!, r .Rb .
~1!

Here r is assumed to be real valued whileR(r ) becomes
complex valued beyond the radiusRb . For many-body sys-
tems, the same transformation is performed for each in
particle coordinate. A number of applications of the exter
complex-scaling procedure have been developed in the t
independent calculations of atomic and molecular resona
@28–32#, cross sections in electron-atom collisions@33#, as
well as in time-dependent calculations@34#. Various numeri-
cal techniques were used to solve the second-order diffe
tial equation along the contour defined by Eq.~1!: propaga-
tion and matching methods@28,31,32#, global basis-set
expansions@29#, and finite-element basis-set expansio
@30,34#, etc. The functionR(r ) is not analytical at the poin
Rb , so some care should be taken when solving the equa
along the contour~1!. This issue is the most important for th
basis-set variational calculations. The boundary condition
the pointRb can be inserted in the Hamiltonian, leading
the appearance of an additional zero-range potential@29,35#.
One can avoid the problem by introducing a discontinuo
wave function transformation and a basis set of disconti
ous functions@30,35# or using integration by parts in th
kinetic energy matrix elements@36#. Certainly, the singular
potential does not appear if the transition between the i
rior ~unscaled! and exterior~complex scaled! regions of the
coordinate is performed with an analytical functionR(r )
@32,37#. However, nontrivial mapping functions also comp
cate the problem, producing additional terms in the Ham
tonian.

In the present paper, we introduce an implementation
the exterior scaling method by means of the generali
pseudospectral technique@16,24,38#, providing a simple yet
highly accurate and efficient procedure. Theuniform com-
plex scaling within this GPS method was successfully
plied for atomic and molecular resonance calculations~see,
-
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e.g.,@16–18,39,40#!. According to this CSGPS approach, th
complex-rotated coordinate is discretized on a set of co
cation grid points, the potential matrix elements being dia
onal and equal to the values of the potential at the g
points. The kinetic energy matrix elements have simple
plicit analytical expressions. As discussed elsewhere@16,24#,
this uniform CGSPS procedure is found to be highly accur
and computationally more efficient than the traditional bas
set expansion method. For theexterior scaling, the whole
range of the coordinate is split into two domains, the ps
dospectral discretization being performed separately in e
domain. The complex scaling is applied in the exterior d
main only. The boundary conditions at the boundary po
Rb can be incorporated in the discretized Hamiltonian, mo
fying the matrix elements. The new matrix elements a
have simple explicit expressions, and the calculation of
Hamiltonian matrix in the generalized pseudospec
method with the exterior complex scaling is as simple
with the uniform complex scaling.

The paper is organized as follows. In Sec. II we descr
the generalized pseudospectral technique with exterior c
plex scaling. In Sec. III we apply the ECS-GPS procedure
the study of multiphoton above-threshold detachment of2

in connection with the recent experiment@5#.

II. EXTERIOR COMPLEX-SCALING –GENERALIZED
PSEUDOSPECTRAL METHOD FOR MULTIPHOTON

QUASIENERGY RESONANCES

In this section, we describe an approach, the exte
complex-scaling–generalized pseudospectral method, for
curate and efficient treatment of atomic and molecular re
nances, including multiphoton quasienergy resonan
~within the non-Hermitian Floquet Hamiltonian formalism
@41,42#!. The CSGPS method@16,24# is a natural extension
of the complex-scaling generalized Fourier-grid Hamiltoni
~CSGFGH! methods@43#. The CSGFGH methods emplo
Fourier series and require that mesh points be equ
spaced. On the other hand, the CSGPS methods emplo
thogonal polynomials~such as Legendre or Chebyshev po
nomials! and allow fornonuniformgrid spacing. It has been
shown that the CSGFGH methods work well for potenti
without singularity, such as the Morse potential for chemi
bonds etc.@43,44#. However, for problems involving singu
larity and/or long-range potentials~such as the Coulomb po
tential!, the CSGPS method with appropriate coordina
mapping@16,24# is the more natural and effective approac
In the following, we first review the essence of the GP
method and the uniform complex-scaling GPS method
bound- and resonance-state problems@16,24#. This is fol-
lowed by a presentation of the ECS-GPS procedure.

A. The generalized pseudospectral method with coordinate
mapping for bound-state eigenvalue problems

involving Coulomb potential

The central part of the pseudospectral method is to
proximate theexact function f (x) defined on the interval
@21,1# by Nth-order polynomialf N(x),

f ~x!> f N~x!5(
j 50

N

f ~xj !gj~x!, ~2!
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and requires the approximation to beexactat thecollocation
points xj :

f N~xj !5 f ~xj !. ~3!

In the case of the Legendre pseudospectral method which
shall employ in this article,x0521, xN51, andxj ~for j
51, . . . ,N21) are the collocation points determined by t
roots of the first derivative of the Legendre polynom
PN(x) with respect tox, namely,

PN8 ~xj !50. ~4!

In Eq. ~2!, gj (x) are the cardinal functions defined by

gj~x!52
1

N~N11!PN~xj !

~12x2!PN8 ~x!

x2xj
~5!

and satisfy the unique property

gj~xj 8!5d j 8 j . ~6!

Consider the eigenvalue problem for the radial Sch¨-
dinger equation defined on the semi-infinite axis@0,̀ # with
the Dirichlet boundary conditions:

Ĥ~r !c~r !5Ec~r !, c~0!5c~`!50, ~7!

where

Ĥ~r !52
1

2

d2

dr2
1V~r !. ~8!

For atomic structure and dynamics calculations involving
Coulomb potential, one typical problem with the grid met
ods is the Coulomb singularity atr 50 and the long-range
nature of the interaction. Forequal-spacinggrid methods,
one generally truncates the semi-infinite domain into a fin
domain@r min ,r max#. For this purpose,r min must be chosen to
be sufficiently small andr max sufficiently large. Furthermore
the grid spacing must also be chosen to be small enoug
ensure that the short-range part of the Coulomb interactio
properly represented. This results in a need for a very la
number of grid points, in addition to possible truncation
rors. To overcome this problem, one can first map the se
infinite domainr P@0,̀ # into the finite domainxP@21,1#
using the mapping transformation

r 5r ~x!, ~9!

and then use the Legendre or Chebyshev pseudospectra
cretization techniques. In the previous works@16–18,24# for
uniform complex scaling, we have used the following alg
braic mapping:

r 5r ~x!5Rm

11x

12x
, ~10!

whereRm is a mapping parameter. Generally the introdu
tion of nonlinear mapping can lead to either an asymme
or a generalized eigenvalue problem. Such undesirable
tures can be avoided by the following symmetrization pro
dure @16,24#. Thus by introducing
e
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c„r ~x!…5Ar 8~x! f ~x!, ~11!

we obtain the following transformed Hamiltonian, leading
a symmetriceigenvalue problem~in atomic units!:

Ĥ~x!52
1

2

1

r 8~x!

d2

dx2

1

r 8~x!
1V„r ~x!…1Vm~x!, ~12!

where

Vm~x!5
3~r 9!222r-r 8

8~r 8!4
. ~13!

Note that for the special mapping, Eq.~10!, Vm(x)50. Dis-
cretizing the Hamiltonian operator, Eq.~12!, by the pseu-
dospectral method, leads to the following set of coupled
ear equations:

(
j 50

N

@2 1
2 D j 8 j

~2!
1d j 8 jV„r ~xj !…1d j 8 jVm„r ~xj !…#Aj5EAj 8 ,

j 851, . . . ,N21. ~14!

Here the coefficientsAj are related to the wave functio
values at the collocation points as

Aj5r 8~xj ! f ~xj !@PN~xj !#
21

5@r 8~xj !#
1/2c„r ~xj !…@PN~xj !#

21, ~15!

and the matrixD j 8 j
(2) , representing the second derivative wi

respect tor, is given by

D j 8 j
~2!

5@r 8~xj 8!#
21dj 8 j

~2!
@r 8~xj !#

21, ~16!

wheredj 8 j
(2) is the second derivative of the cardinal functio

gj (x) with respect tox ~see the Appendix!. The pseudospec
tral approximation for the first derivative of the wave fun
tion c(r ) with respect tor, calculated at the pointsr (xj 8),
can be expressed through the coefficientsAj :

dc~r !

dr U
r ~xj 8!

5PN~xj 8!@r 8~xj 8!#
21/2(

j 50

N

D j 8 j
~1!Aj ,

j 850, . . . ,N ~17!

with the matrixD j 8 j
(1) given by

D j 8 j
~1!

5@r 8~xj 8!#
21/2dj 8 j

~1!
@r 8~xj !#

21/2, ~18!

wheredj 8 j
(1) is the first derivative of the cardinal function wit

respect tox ~see the Appendix!.

B. Resonance-state complex eigenvalue problems:
uniform and exterior complex scaling

with generalized pseudospectral discretization

The GPS method described above can be extended to
resonance-state problems by means of the uniform comp
scaling method@16,24# or by the exterior complex-scaling
method as described below. For the uniform complex sca
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@45#, r→r exp(ia), we have previously used the followin
mapping transformation@16,24#:

r 5Rm

11x

12x
exp~ ia!. ~19!

Here both parametersRm anda are real;Rm is the mapping
parameter which determines the density of the grid po
while a is the complex rotation angle. Under this transfo
mation, the semiaxisr P@0,̀ # is rotated in the complex
plane by the anglea and then mapped to the intervalxP
@21,1#. Note that for the transformation~19! the additional
potentialVm(x) vanishes, so the Hamiltonian matrix in E
~14! takes the following simple form:

H j 8 j52
1

2
D j 8 j

~2!
1d j 8 jV„r ~xj !…, j 8, j 51, . . . ,N21

~20!

with the Dirichlet boundary conditions taken into account
Unlike the uniform scaling, the exterior complex scalin

assumes that only the exterior part of the radial coordin
semiaxis is complex rotated. That means the total semi
@0,̀ # is divided in two domains,@0,Rb# and @Rb ,`#, with
the differential equation~12! to be solved separately in eac
domain. For the exterior domain, one can use the mapp
transformationr ex(x), slightly different from Eq.~19!:

r ex5Rb1Rm

11x

12x
exp~ ia!, ~21!

while in the interior domain the linear mapr in(x),

r in5
1

2
Rb~11x!, ~22!

serves the purpose. The boundary pointRb , as well asRm
and a are the parameters of the transformations. Both
maps~21! and ~22! do not generate the additional potent
Vm(x), and the sets of linear equations for the coefficientsAj
in the interior and exterior domains read

(
j 50

Nin

H j 8 j
in Aj

in5EAj 8
in , j 851, . . . ,Nin21 ~23!

(
j 50

Nex

H j 8 j
ex Aj

ex5EAj 8
ex , j 851, . . . ,Nex21 ~24!

Nin and Nex being the numbers of collocation points in th
interior and exterior domains, respectively. The Hamilton
matricesH j 8 j

in and H j 8 j
ex in the interior and exterior domain

have the form~20!

H j 8 j
in

52
1

2
D j 8 j

~2!, in
1d j 8 jV„r in~xj

in!…, j 8, j 51, . . . ,Nin21

~25!

H j 8 j
ex

52
1

2
D j 8 j

~2!,ex
1d j 8 jV„r ex~xj

ex!…, j 8, j 51, . . . ,Nex21.

~26!
ts
-

te
is

g

e

n

Herexj
in andxj

ex are the collocation points for the interior an
exterior domains, respectively, and the second derivative
tricesD j 8 j

(2),in andD j 8 j
(2),ex are defined according to Eq.~16!:

D j 8 j
~2!, in

5@r in8 ~xj 8
in

!#21dj 8 j
~2!

@r in8 ~xj !#
21, ~27!

D j 8 j
~2!,ex

5@r ex8 ~xj 8
ex

!#21dj 8 j
~2!

@r ex8 ~xj !#
21. ~28!

The Dirichlet boundary conditions atr 50 andr 5` imply
that

A0
in5ANex

ex 50. ~29!

However, there is no Dirichlet condition at the pointr 5Rb

which corresponds toANin

in and A0
ex. One has to impose the

continuity of the wave function and its first derivative in
stead. The wave functionc(Rb) can be calculated with the
help of Eq.~15!. Applying Eq.~15! in the interior and exte-
rior domains and equating the results, one obtains

@r in8 ~1!#21/2PNin
~1!ANin

in 5@r ex8 ~21!#21/2PNex
~21!A0

ex.

~30!

Similarly, the calculation of the first derivative according
Eq. ~17! leads to the following relation:

@r in8 ~1!#21/2PNin
~1!(

j 51

Nin

DNin , j
~1!, inAj

in

5@r ex8 ~21!#21/2PNex
~21! (

j 50

Nex21

D0,j
~1!,exAj

ex.

~31!

With the help of Eqs.~30! and ~31! one can express th
coefficientsANin

in and A0
ex, corresponding to the boundar

point Rb , through the other coefficientsAj
in andAj

ex:

ANin

in 52
1

nF (
j 51

Nin21

DNin , j
~1!, inAj

in1~21!Nex21m (
j 51

Nex21

D0,j
~1!,exAj

exG ,

~32!

A0
ex5

1

nF (
j 51

Nex21

D0,j
~1!,exAj

ex1~21!Nex21
1

m (
j 51

Nin21

DNin , j
~1!, inAj

inG ,

~33!

where the constantsm andn are defined as follows:

m5F r in8 ~1!

r ex8 ~21!
G 1/2

, n5
1

4FNin~Nin11!

r in8 ~1!
1

Nex~Nex11!

r ex8 ~21!
G .

~34!

Substituting the expressions~32! and ~33! into the sets of
equations~23! and ~24!, one eliminates the coefficientsANin

in

andA0
ex and obtains a closed matrix eigenvalue problem

the remaining coefficients:
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(
j 51

Nin21 FH j 8 j
in

2
1

n
H j 8,Nin

in DNin , j
~1!, inGAj

in

1~21!Nex
m

n
H j 8,Nin

in (
j 51

Nex21

D0,j
~1!,exAj

ex5EAj 8
in ,

~35!

j 851, . . . ,Nin21

(
j 51

Nex21 FH j 8 j
ex

1
1

n
H j 8,0

ex D0,j
~1!,exGAj

ex

2~21!Nex
1

mn
H j 8,0

ex (
j 51

Nin21

DNin , j
~1!, inAj

in5EAj 8
ex,

j 851, . . . ,Nex21.

As one can see, taking into account the boundary condit
at the pointRb modifies the Hamiltonian matrices in th
interior and exterior domains as well as adds coupling ma
elements between the two domains. The total matrix of
eigenvalue problem~35! has the dimensions (Nin1Nex22)
3(Nin1Nex22). The diagonalization of this matrix yield
the eigenvalues and the eigenvectors$Aj

in% and $Aj
ex% inside

the interior and exterior domains. Then the coefficientsANin

in

and A0
ex, corresponding to the boundary pointRb , can be

obtained with the help of Eqs.~32! and ~33!.

C. Exterior complex-scaling—generalized pseudospectral
method for complex quasienergy resonances associated

with multiphoton ionization processes

In the presence of periodically time-dependent fields,
time-dependent Schro¨dinger equation can be transforme
into an equivalenttime-independentinfinite-dimensional Flo-
quet HamiltonianĤF(r ) eigenvalue problem@41,42#:

ĤF~r !c~r !5«c~r !, ~36!

where« is the quasienergy. The Floquet HamiltonianĤF has
no discrete spectrum. Writing the time-evolution operator

exp~2 iĤ Ft !5
1

2p i EC
dz

exp~2 izt!

z2ĤF
~37!

gives the usual result that the time dependence is domin
by poles of the resolvant (z2ĤF)21 near the real axis but on
higher Riemann sheets. The complex energies of the p
are related to the positions and widths (ER ,2G/2) of the
shifted and broadened complex quasienergy states. In
non-Hermitian Floquet formalism@41,42#, the complex
quasienergy states are determined directly from the eig
value analysis of the analytically continued Floquet Ham
tonian ĤF

„r exp(ia)…, obtained by the uniform complex
scaling transformationr→r exp(ia) @45#. The non-Hermitian
Floquet matrix can be solved by means of theL2 basis-set
expansion–variational method@41,42# or by the CSGFGH
@43,24# or CSGPS method@16–18#. In the present work, we
extend the ECS–GPS procedure described in Sec. II for
ns

ix
e

e

s

ed
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he

n-
-

he

discretization and solution of the non-Hermitian Floqu
Hamiltonian eigenvalue problem. The procedure is similar
the uniform CSGPS method@16–18#, except the radial dis-
tancer is partitioned into the interior and exterior region
Eq. ~1!. The optimal distanceRb to partition the two regions
can be chosen in such a way that the dominant interac
potential is included in the interior region while the exteri
region includes only the long-range part of the interactio
Further, as will be shown in the next section, the calculat
of the partial rates and angular distributions can be basic
accomplished within the interior region, resulting in a si
nificant simplification of the overall procedure.

III. CALCULATIONS OF PARTIAL RATES
AND ELECTRON ANGULAR DISTRIBUTIONS
FOR MULTIPHOTON DETACHMENT OF H 2

NEAR ONE-PHOTON THRESHOLD

In this section we apply the ECS-GPS method to the
lution of the non-Hermitian Floquet Hamiltonian associat
with multiphoton detachment of H2 by 1.640-mm and
1.908-mm laser fields corresponding to the recent expe
ments ongoing in Denmark@5#. The procedure for the calcu
lation of electron energy and angular distributions within t
Floquet formalism has been described elsewhere@18#. Here
we outline the basic formulas for the description of mul
photon detachment of H2.

We describe the unperturbed H2 negative ion within the
accurate single-electron model potential approximation@10#.
In the presence of linearly polarized monochromatic fiel
the total electron wave function, according to the Floqu
theorem, can be written as

C~r ,t !5exp~2 i«t !c~r ,t !, ~38!

where« is the quasienergy. The functionc(r ,t) is periodic
in time with the periodT52p/v and can be expanded in th
Fourier series:

c~r ,t !5 (
m52`

`

cm~r !exp~2 imvt !. ~39!

The Fourier componentscm(r ) constitute an infinite-
dimensional vector which solves the eigenvalue problem
the time-independent Floquet HamiltonianĤF @41,42#:

(
m8

Ĥmm8
F cm8~r !5«cm~r !. ~40!

The diagonal blocksĤmm
F of the Floquet Hamiltonian are th

energy-shifted unperturbed Hamiltonian operators for
electron moving in the H2 model potential:

Ĥmm
F 52

1

2
¹21Ŵ~r !2mv, ~41!

whereŴ(r ) is the angular-momentum-dependent model p
tential @10#. The off-diagonal blocks of the Floquet Hami
tonian represent the interaction of the electron with the
ternal laser field. The quasienergy eigenvalues emerg
from the eigenvalue problem~40! are complex valued,
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(ER ,2G/2). The real part of the complex quasienergy (ER)
provides the ac Stark shifted energy level, whileG gives rise
to the total multiphoton ionization rate.

The expression for the electron angular distributions a
absorption ofn linearly polarized photons can be written
@18#

dGn

dV
5~2p!22knuAnu2. ~42!

Here,

kn5A2@Re«2~2v!22F21nv# ~43!

is the electron drift momentum, and then-photon detachmen
amplitudeAn is defined as follows:

An5~2p!21E
2p

p

dt exp@ int2 i ~2v!23F2 sin~2t!

1 ikn~ r̂•F!v22 cost#E d3r 8exp@2 ikn~ r̂•r 8!

1 i ~r 8•F!v21 sint#Ŵ~r 8!c~r 8,t/v!, ~44!

F andv being the laser field strength and frequency, resp
tively. Equations~42! and ~44! assume that the wave func
tion c(r ,t) is properly normalized. The expression~44! is
suitable for practical computations since the integration o
the angles in the spatial integral can be performed ana
cally, and the integral over thet variable can be compute
effectively using the fast Fourier transform routines. T
quantitydGn /dV represents the number of electrons per u
time detached with absorption ofn photons and emitted
within the unit solid angle under direction of the unit vect
r̂ . Integration of the angular distributions~42! with respect to
the angles specifying the directionr̂ gives the partial rates
Gn :

Gn5E dV
dGn

dV
. ~45!

The sum of all partial rates withn>nmin , wherenmin is the
minimum number of photons required for detachment,
equal to the total rateG:

G5 (
n5nmin

`

Gn . ~46!

One can expanddGn /dV as a function of the angleu
between the detectionr̂ and fieldF directions on the basis o
the Legendre polynomials. Due to parity restrictions, o
even Legendre polynomials are present in the expansion

dGn

dV
5

Gn

4pS 11(
l 51

`

b2l P2l~cosu!D . ~47!

The coefficientsb2l are the anisotropy parameters since th
determine the deviation of the real angular distribution fro
the isotropic one. When analyzing the behavior of the co
ficients b2l for weak and medium-strong external fields,
r

c-

r
ti-

it

s

y

f-

comparison with the results of the lowest-order perturbat
theory ~LOPT! is valuable. For the one-photon detachme
the prediction of the perturbation theory isb252,b2l50
( l .1). The situation is more complicated if the number
absorbed photonsn52. According to LOPT, the emitted
electrons in this case may possess the angular momentu
or 2. For the emitted electron in the pured state, one has
b2510/7,b4518/7,b2l50 (l .2) whereas for the pures
state the distribution is isotropic, i.e., allb2l50. In reality,
however,s and d waves are mixed in the wave function o
the emitted electron, so the coefficientsb2l cannot be calcu-
lated with pure angular algebra even for the lowest inten
ties. According to LOPT, the detachment amplitude sho
behave as

dA1

2
P0~cosu!1A5

2
P2~cosu!, ~48!

i.e., it contains contributions froms andd partial waves. The
factors A1/2 andA5/2 are added as normalization coef
cients for the Legendre polynomials. The mixing coefficie
d can be calculated within LOPT: in general it depends
only on the angular algebra, but also on the radial wa
functions. Squaring the absolute value of the amplitude w
ten above and expanding it over the even-order Legen
polynomials, one obtains for the coefficientsb2l

b25
10114 RedA5

7~11udu2!
,

~49!

b45
18

7~11udu2!
,

other coefficients being zero within LOPT. Given the mixin
parameterd, one can calculate the anisotropy parametersb2
andb4 . For example, if one setsd50 ~pured wave in the
final state!, the results 10/7 and 18/7 mentioned above
obtained. On the other hand, if we take theb2 andb4 coef-
ficients from our calculations, we can find the complex m
ing parameterd:

Red5
9b2 /b425

7A5
,

~50!

Im d5A 18

7b4
212~Red!2.

The coefficientd calculated in this way is intensity depen
dent. In the limit of the weak external field this result shou
converge to the intensity independent value which can
determined within LOPT.

We have performed the calculations of the total and p
tial ~above threshold! multiphoton detachment rates as we
as the angular distributions of the emitted electrons. Equa
~40! is solved with the help of the ECS-GPS technique d
scribed in Sec. II. The Fourier componentscm(r ) of the
wave function are further expanded in terms of the angu
momentum eigenfunctions~the Legendre polynomials!. Only
the diagonal blocks of the Floquet Hamiltonian~with respect
to the Fourier indexm and angular momentuml ) are modi-
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TABLE I. Partial and total rates for the detachment of H2 by 1.640-mm radiation. The numbers in
brackets indicate the powers of 10.

Partial rates~a.u.! Total rates~a.u.!

Laser
intensity
(W/cm2)

Number of photons absorbed

1 2 3 4 5

1.0@9# 3.316@29# 3.010@29# 7.155@213# 1.553@216# 6.327@29#

1.0@10# 2.978@27# 7.099@210# 2.087@212# 9.706@215# 2.985@27#

1.0@11# 2.717@25# 6.753@27# 1.336@28# 2.643@210# 2.786@25#

2.0@11# 9.938@25# 5.134@26# 2.109@27# 8.655@29# 1.047@24#

4.0@11# 3.353@24# 3.695@25# 3.185@26# 2.708@27# 3.757@24#

8.0@11# 9.482@24# 2.316@24# 4.202@25# 7.339@26# 1.229@23#

1.0@12# 1.231@23# 3.926@24# 9.064@25# 1.981@25# 1.734@23#
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fied by the exterior complex-scaling procedure according
Eq. ~35!. The off-diagonal blocks are not affected except
the different mapping functions used in the interior and
terior domains of the radial coordinate semiaxis. In practi
computations, the results are converged for the follow
ranges of the parameters:Rb540–60 a.u.,Rm580–100 a.u.,
a50.4–0.6 radians. To achieve convergence, we include
Fourier components212 to 12 and angular momenta 0 to
for the highest intensity considered. Up to 100 radial g
points were used in each interior and exterior domain. T
selected eigenvalue and eigenvector of the non-Hermi
Floquet Hamiltonian matrix can be obtained efficiently
means of the implicitly restarted Arnoldi algorithm@46# with
spectral transformation. We found that the interior dom
appears large enough to get the integral~44! fully converged
within it. That means we do not need to perform the integ
tion in the complex-rotated exterior domain using theback
rotation procedure as in the uniform complex-scaling ca
@17#. This simplifies considerably the calculation of part
rates and angular distributions.

The calculations were performed for the laser field inte
sities in the range 109 W/cm2–1012 W/cm2 and the wave-
lengths 1.640mm and 1.908mm. The field parameters cor
respond to those used in the recent experiments on
electron angular distributions@5#. For the wavelength
1.640 mm, the photon energy (v50.756 eV! is very close
o
r
-
l

g

e

e
n

n

-

e
l

-

he

to the one-photon detachment threshold (0.754 eV!. The
one-photon channel is open only for the weak intens
109 W/cm2; for the higher intensities it is closed due to a
Stark shift. In the 1.908-mm(v50.650 eV! field, a minimum
of two photons is required for detachment for all the inte
sities used in the calculations. The results are presente
Tables I–III. ~As an independent check of the reliability an
accuracy of the ECS-GPS method, we have also perform
the calculations using the uniform CSGPS technique. T
results are essentially identical to those shown in Tab
I–III. ! Tables I and II contain the~above-threshold! partial
and total detachment rates for the detachment by 1.640-mm
and 1.908-mm radiation, respectively. One can see that
detachment rates for the same intensity are generally la
for the wavelength 1.908mm. The exception is made by th
intensity 109 W/cm2, where the total detachment rate at t
wavelength 1.640mm is larger than that at the waveleng
1.908 mm. The difference is due to the one-photon cont
bution which is present for the 1.640-mm field and not for
the 1.908-mm field. The above-threshold contribution is n
very significant for the intensities up to 1011 W/cm2. For
example, for the intensity 1011 W/cm2, the three-photon de
tachment rate constitutes only slightly more than 2% of
two-photon rate. The total detachment rates for the sa
wavelength and different intensities follow the power law
TABLE II. Partial and total rates for the detachment of H2 by 1.908-mm radiation. The numbers in
brackets indicate the powers of 10.

Partial rates~a.u.!Total rates~a.u.! Total rates~a.u.!

Laser
intensity
(W/cm2)

Number of photons absorbed

2 3 4 5

1.0@9# 4.846@29# 2.211@212# 8.278@216# 3.054@219# 4.848@29#

1.0@10# 4.778@27# 2.191@29# 8.223@212# 3.037@214# 4.800@27#

1.0@11# 4.165@25# 1.996@26# 7.650@28# 2.844@29# 4.373@25#

2.0@11# 1.434@24# 1.433@25# 1.118@26# 8.346@28# 1.589@24#

4.0@11# 4.231@24# 9.070@25# 1.453@25# 2.162@26# 5.304@24#

8.0@11# 9.195@24# 4.137@24# 1.416@24# 4.155@25# 1.516@23#

1.0@12# 1.126@23# 6.353@24# 3.008@24# 1.138@24# 2.176@23#
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TABLE III. Anisotropy parametersb2l for the two- and three-photon detachment and the mixing par
etersd for the two-photon detachment. The numbers in brackets indicate the powers of 10.

Number of absorbed photons

l 2 3 2 3

1.640mm 1.908mm

13109 W/cm2

1 1.153 2.381 6.278@21# 2.359
2 2.505 2.709 2.298 2.407
3 23.401@24# 2.640 24.119@24# 2.313
4 2.291@28# 25.011@24# 6.065@28# 26.347@24#

d50.1629 exp(i1.914) d50.3449 exp(i2.061)

131010 W/cm2

1 1.134 2.369 6.137@21# 2.362
2 2.499 2.687 2.291 2.404
3 23.385@23# 2.630 24.076@23# 2.301
4 1.781@26# 24.932@23# 2.707@26# 26.305@23#

d50.1707 exp(i1.921) d50.3496 exp(i2.064)

131011 W/cm2

1 1.068 2.398 4.623@21# 2.375
2 2.454 2.650 2.226 2.375
3 23.188@22# 2.502 23.680@22# 2.198
4 1.599@24# 24.677@22# 2.218@24# 25.937@22#

d50.2189 exp(i1.893) d50.3937 exp(i2.104)

231011 W/cm2

1 9.855@21# 2.415 2.681@21# 2.372
2 2.410 2.608 2.152 2.337
3 25.995@22# 2.388 26.549@22# 2.109
4 5.815@24# 28.871@22# 7.823@24# 21.122@21#

d50.2591 exp(i1.902) d50.4415 exp(i2.167)

431011 W/cm2

1 8.024@21# 2.427 22.014@21# 2.333
2 2.334 2.536 1.974 2.251
3 21.066@21# 2.214 29.996@22# 1.985
4 1.952@23# 21.624@21# 2.098@23# 22.034@21#

d50.3191 exp(i1.962) d50.5502 exp(i2.328)

831011 W/cm2

1 3.165@21# 2.384 21.272 2.160
2 2.186 2.389 1.304 2.077
3 21.644@21# 1.992 27.867@22# 1.909
4 5.105@23# 22.820@21# 2.021@23# 23.493@21#

d50.4199 exp(i2.168) d50.9858 exp(i2.675)

131012 W/cm2

1 5.106@23# 2.341 21.465 2.175
2 2.092 2.316 7.847@21# 2.076
3 21.750@21# 1.924 23.971@22# 1.840
4 6.085@23# 23.322@21# 8.638@24# 23.922@21#

d50.4786 exp(i2.298) d51.509 exp(i2.747)
r
tio
e
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en-
LOPT quite closely~except for the 109-W/cm2,1.640-mm
case mentioned above!. One can draw a conclusion that fo
the wavelength range under consideration the perturba
theory provides an adequate description of the detachm
n
nt

process for the intensities up to 1011 W/cm2. For the higher
intensities, the contribution of the above-threshold chann
to the total rate~i.e., deviation from the LOPT predictions!
becomes very important. As can be expected from the g
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eral theory, at the same intensity, the breakdown of the
turbation theory is more pronounced for the larger wa
length 1.908mm.

This conclusion is confirmed by the analysis of the an
lar distributions. Table III contains the anisotropy paramet
b2l for the two- and three-photon detachment as well as
mixing parametersd for the two-photon detachment. On
can estimate how close the calculated nonperturbative re
and those of LOPT are by taking a look at the magnitude
the coefficientb6 for the two-photon process andb8 for the
three-photon process. These coefficients are supposed to
ish within LOPT. As expected, the smallest values of th
coefficients correspond to the lowest intensity. With the
crease of the laser intensity, their relative magnitude
creases from approximately 1024 for 109 W/cm2 to 1021

for 1012 W/cm2. As one can see, the angular distributi
pattern is quite stable and the mixing parameterd is small for
the intensities less than or equal to 1011 W/cm2. For the
laser fields with the wavelength 1.640mm, only 2.5% to
4.5%~depending on the field intensity! of the electrons emit-
ted after absorption of two photons appear in thes state, all
others being in thed state. For the wavelength 1.908mm, s
electrons constitute 10% to 13% of the total emission, a
the rest is due to thed-electron contribution.

This picture changes rapidly as the laser intensity
creases above 1011 W/cm2. The set of the anisotropy param
etersb2l for the two-photon detachment at the intensit
231011 W/cm2 to 1012 W/cm2 differs very much from that
at the intensities 109 W/cm2 to 1011 W/cm2. The mixing
parameterd suggests that up to 20% of the electrons at
wavelength 1.640mm, and 70% of the electrons at th
wavelength 1.908mm, are emitted in thes state for the laser
field intensity 1012 W/cm2. One must realize, however, tha
for such intense laser fields the parameterd does not have
direct meaning since its definition is based on the LO
expression~48! and can be interpreted only approximate
The accurate information is provided by the anisotropy
rametersb2l .

The recent experiment@5# provides the following values
of the anisotropy parametersb2 and b4 for the two-photon
detachment:

b251.360.2, b452.460.2 ~1.640 mm!, ~51!

b250.760.2, b452.020.2
10.4 ~1.908 mm!. ~52!

As one can see from comparison with Table III, our nonp
turbative results lie within the error range of the experime
tal values for intensities of the laser field less than or equa
1011 W/cm2, i.e., in that region where the deviation from th
perturbation theory is not significant. The authors of Ref.@5#
indicate that the peak intensity in their experiment can be
high as 831011 W/cm2. This intensity corresponds to th
highly nonperturbative regime where the angular distrib
tions are quite different from those for the intensities wea
than 1011 W/cm2 ~see Table III!. To explain this discrep-
ancy, we can infer that under the experimental conditions@5#
~the laser pulse duration is as long as 9 ns! the detachmen
process is likely to occur before the laser field pulse reac
the peak intensity and thus corresponds to the weaker in
sity case.
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In conclusion, we have presented an ECS-GPS gen
procedure for accurate and efficient determination
resonance-state properties with application to the study
complex quasienergy states associated with the multipho
above-threshold detachment of H2 near the one-photon
threshold. Both total and partial detachment rates are
sented for laser wavelengths 1.640mm and 1.908mm, and
for intensity in the range 109 W/cm2 to 1012 W/cm2. It is
found that for laser intensity less than 1011 W/cm2, the two-
photon detachment processes are dominated by thed-wave
electrons, in accord with the recent experimental obser
tions @5#. We are currently extending the ECS-GPS tec
nique to the solution of the non-Hermitian Floquet Ham
tonian associated with thetime-dependent density function
theory @47# for the study of multiphoton processes ofmany-
electronsystems in intense laser fields.
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APPENDIX: PSEUDOSPECTRAL TECHNIQUE
FOR THE SECOND-ORDER

DIFFERENTIAL EQUATION EIGENVALUE PROBLEM

Consider an eigenvalue problem defined by a seco
order differential equation

f 9~x!1v~x! f ~x!5l f ~x! ~A1!

on the interval@21,1#, with appropriate boundary condi
tions atx521 andx51 (l is the eigenvalue!. An approxi-
mate solution of the eigenvalue problem can be obtai
with the help of the pseudospectral interpolation formula~2!.
Certainly, the polynomialf N(x) cannot solve the differentia
equation~A1! for all x within the interval@21,1#. However,
one can request that Eq.~A1! is satisfied at the collocation
points xj upon substitution off N(x) for f (x). One then ar-
rives at a set of linear algebraic equations for the quanti
f (xj ):

(
j 50

N

f ~xj !@gj9~xj 8!1v~xj 8!gj~xj 8!2lgj~xj 8!#50,

j 851, . . . ,N21. ~A2!

Note that the set~A2! contains justN21 equations forN
11 coefficientsf (xj ). It must be appended by two mor
equations representing the boundary conditions atx521
andx51, defining the algebraic matrix eigenvalue proble

The derivatives of the functionsgj (x) can be calculated
as follows~see@16,24,38#!:

gj8~xj 8!5dj 8 j
~1! PN~xj 8!

PN~xj !
, ~A3a!

dj 8 j
~1!

5
1

xj 82xj

~ j 8Þ j !, dj j
~1!50 ~ j Þ0,j ÞN!,

~A3b!
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d00
~1!52

N~N11!

4
, dNN

~1!5
N~N11!

4
, ~A3c!

gj9~xj 8!5dj 8 j
~2!PN~xj 8!

PN~xj !
, ~A4a!

dj 8 j
~2!

52
2

~xj 82xj !
2

@ j 8Þ j ,~ j 8 j !Þ~0N!,~ j 8 j !Þ~N0!#,

~A4b!

d0N
~2!5dN0

~2!5
N~N11!22

4
, ~A4c!

dj j
~2!52

N~N11!

3~12xj
2!

~ j Þ0,j ÞN!, ~A4d!

d00
~2!5dNN

~2!5
N~N11!@N~N11!22#

24
. ~A4e!

Let us introduce the coefficientsAj , related tof (xj ) as
C.
W

.
H
lt

R.
B.

.
,

.

f ~xj !5PN~xj !Aj . ~A5!

Taking into account the relations~6!, ~A4!, and ~A5!, one
can recast the set of equations~A2! in the following form:

(
j 50

N

@dj 8 j
~2!

1d j 8 jv~xj !#Aj5lAj 8 , j 851, . . . ,N21.

~A6!

The matrix eigenvalue problem is defined by Eq.~A6! and
the boundary conditions. For example, for the frequen
used Dirichlet boundary conditions,

A05AN50, ~A7!

the sum in the left-hand side of Eq.~A6! is reduced to the
range from 1 toN21, and a closed set of equations to sol
for the eigenvaluel and eigenvector$Aj , j 51, . . . ,N21% is
obtained:

(
j 51

N21

@dj 8 j
~2!

1d j 8 jv~xj !#Aj5lAj 8 , j 851, . . . ,N21.

~A8!
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