PHYSICAL REVIEW A VOLUME 59, NUMBER 4 APRIL 1999

Complete population transfer between nonresonant tunneling states induced by a train
of laser pulses
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Complete population transfer between nonresonant tunneling states in a double-well system is predicted to
occur when a train obright or dark laser pulses drives transitions to an excited state in the system. The
transition induces the phase shift of the wave packet involved in the transition and alters successive evolutions
of the wave packets of the nonresonant states as a result of quantum interference, resulting in complete
tunneling.[S1050-294{@9)00304-2

PACS numbgs): 42.50.Md, 42.50.Hz, 73.40.Gk, 72.15.Rn

[. INTRODUCTION cally suppress the tunneling by a laser field in the system of
a molecule that is placed in an appropriate host medium. In
One of the most fundamental problems of quantum meeffect, the laser field suppresses the tunneling by removing
chanics is the guantum-dynamical tunneling occurring in dif-the degeneracy of the ground states. Recently, we adapted
ferent physical, chemical, and biological systems, and th¢heir idea to a semiconductor double-well system and pre-
guantum-dynamical tunneling phenomena in the presence dficted dynamical suppression and enhancement of the tun-
a laser field have received increasing attention in recent yeargeling, which were due to the dynanfi@&c Stark shift of the
[1-7]. In contrast to the numerous publications concerningstates involved in the laser excitatiofis].
the interaction of a two-state system with a single pulse or Here we consider dynamical control of quantum tunneling
pulse traind8-11], there are only a limited number of stud- by a train of laser pulses for an asymmetric double-well po-
ies of interactions between a three-state system and pulg¢ential system as shown in Fig. 1. At low temperature the
trains, which are particularly devoted to the so-called quansystem can be modeled by a four-state system, each state
tum Zeno effecf12—14. The measurements by laser pulsesbeing the lowest-energy state for corresponding local wells
in the quantum Zeno system destroy the coherence of thef asymmetric double-well potentials for the groundg)
states involved in the transition through relaxations of theand excited V,) states. We assume that the excited state of
excited state. the right well is far from laser excitations. Therefore, three
In the present paper, we present a theoretical study of thetates|a), |b), and |c) are involved in the analysis of the
coherent population transfer between nonresonant tunneling
states in a double-well system under the influence of a train
of laser pulses, which coherently changes the tunneling evo- _
lutions as a result of quantum interference. It is shown that Ve
the complete population transfer between nonresonant tun-
neling states can be realized by the excitation of the tunnel-
ing states with a train dbright or dark laser pulses and this
can be explained by the phase shift of the probability ampli- 5
tude of the tunneling state involved in the transition, which NM """""""
alters the successive evolution of the wave packets of the
nonresonant states, resulting in complete tunneling.

Il. DOUBLE-WELL SYSTEM AND PULSE EXCITATIONS w

The quantum-dynamical tunneling can be observed in
systems whose potential energy has at least two minima,
with the form of the potential being locally symmetric. If the la)
system is initially located in one of the wells of the potential, , NI N
it will undergo tunneling oscillations having perio@,,, ba

=l k, vyhere « is the tunneling coefficienf15,16. Re- ~ FIG. 1. Asymmetric double potential system investigated in the
cently, Kilin, et al.[17] proposed a new scheme to dynami- present paper. The staté® and |b) in the ground state/, are
coupled by the tunneling through the potential barrier, and the
ground statga) and the excited state) are coupled by laser field
*Electronic address: tsukada@aomori-u.ac.jp E(t)=E,f(t)sinwt.

1050-2947/99/5@4)/28526)/$15.00 PRA 59 2852 ©1999 The American Physical Society



COMPLETE POPULATION TRANSFER BETWEE.. . . 2853

(a)
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model system. Statga) and|b) in the ground stat&/ are
coupled by the tunneling through the potential barrier, and
ground statda) and excited statéc) are coupled by laser

1

field E(t) =E,f(t)sin wt with amplitudeE,, , envelopef(t), - 08
and frequencyw. o)

In what follows, we will be interested in the time evolu- & 0.6 ,
tion of the populations in statga), |b), and|c) under the =3 (
influence of laser pulses. The time evolution of the wave 3_ 0.4
function of the systeny(t) is treated by the time-dependent O
Schralinger equation gy (t)/dt=H(t) with Hamiltonian o- 0.2

[18],

H="%«(|a)(b|+[b)(al) + wE(t)(|a)(c|+|c)(al)

—_
>}

~

—-—

+hA[b)(b|+ A wolc)(c], D
wherefik is tunneling(coupling energy determined by ma- c 0.8
trix elements between statd® and|a), u is the dipole tran- Kol
sition momentfA is the energy difference between stdts s 06
and|b), and# w, is the energy separation between stadgs =]
and [c). Expressing the eigenstate of the system as a linear Q 0.4
combination of the isolated three states, i.q/(t) 8
=c,(t)|a)+cy(t)|b) +cc(t)|c), we can obtain a set of 0.2
coupled differential equations far,(t), cp(t), and c.(t).

For convenience, the energy of stédgis chosen to be zero.
Substitutingy(t), H, andE(t) into the Schrdinger equa- (c)
tion, we can obtain a coupled equation as follows: 1
% = — i kapCp(t) —iQ,f(1)sSiNwt+ O)c(t), (2a) -S 0.8

dot E 0.6
C
;E = —iAcy(t) —ikpaa(t), (2b) 3 0.4
O
(a1
deJ(t) | . 02
ST iwoC(t)—iQ  f(t)sin(wt+ 0)cy(t), (20

2
Kt
FIG. 2. Modifications of the tunneling oscillations by a se-

quence of two laser pulses. The populatidng?, |c,|?, and|c|?
are shown by solid, dashed, and dotted lines, respectively, and the

pulse envelope is shown by the thin solid line. The parameters used
in the calculations are»= wy=1000, Q,=100«, and 7,=0.02.

where Q) ,=uE /%, «ap (kpa) IS the tunneling coefficient
between statéa) (|b)) and statgb) (|a)) due to the interwell
tunneling. Q, represents the interaction frequency, or Rabi
frequency, for the transition between states and |c) in-
duced by the laser field.

We assume throughout this paper tkgt= «,,= «, and

the energy separation, is much larger than the tunneling
frequency %, i.e.,wy=1000«. The phase of the laser field is

The first and the second pulses are appliedratr,,/4 and 7
=3r1,/4, respectively. (&) §=0, (b) 6=50«, and(c) 5=150«.

chosen to b&=0, because the qualitative characteristics of

the phenomena presented below are not changed Wye

lll. PHASE SHIFT BY PULSE EXCITATIONS

also assume that the laser pulses have a hyperbolic secant

envelope and the pulse repetition time should be shorter than The coupled equations can be solved numerically by use
the tunneling period so as to neglect the evolution of theof the Runge-Kutta algorithm. We introduce a dimensionless
tunneling oscillations during the pulse excitations. The hy-time 7=«t, and hence the dimensionless tunneling time is
perbolic secant # laser pulse is more convenient to control given by 7y =«Ty,=m. Direct numerical integration of
the quantum tunneling rather than the rectangular pulse, bdzgs. (2) is performed with an initial conditiorc,(7=0)
cause the populations in excited stfbeafter each pulse can =1, c,(7=0)=c(7=0)=0.

be neglected even for off-resonant pulses. The hyperbolic Let us begin with a case where the tunneling st&eand
secant pulses can change only the phase of the wave packel have the same energy, i.A=0. In Figs. Za)—2(c), we

in state|a) without changing its amplitude. The rectangular show typical numerical results that show the modifications of
pulse, on the other hand, induces large populations in stathe tunneling oscillations by a sequence of two laser pulses,
|c) except near resonance. This prevents us from strictly inwhich have the envelop§(7)=sech(/r,). The populations
vestigating the interference effects between wave packets iof states|a), |b), and|c) are shown as a function of the di-
statesa) and |b). mensionless timer together with the envelope of laser
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pulses. The populatior|s,|?, |cy|?, and|c.|? are shown by 4 - - ' - - '
solid, dashed, and dotted lines, respectively, and the pulse .
envelope by a thin solid line. The parameters used in the " 4mpulse
calculations arev= wy=1000, (),=100«, and 7,=0.02.
The pulse area is chosen to ber2i.e., [T2Q, f(7)dr
=2. The first and the second pulses are appliedrat
= 1/4 and 7= 37,/4, respectively.

In the case of resonant excitatiod= wyo— w=0), the
phase of the tunneling oscillations is reverset out of
phaseg at each pulse, as shown in FigaR The population in
state|a) is completely transferred to stae at the peak of
the laser pulse and it returns to sté just after the pulse
because of 2 pulse. A drastic change in the tunneling oscil- e
lations is seen for the detuned excitatiah{50«), as shown 0 M : L P
in Fig. 2b). After the first laser pulse, the tunneling oscilla- -700 -500 -300 -100 100 300 500 700
tions are completely suppressed and then the second lase Detuning (units of &)
pulse restores the free tunneling oscillations. When the de-
tuning is further increasedsE 150«), the oscillations ap- FIG. 3. Phase shift by ai2pulse excitation as a function of the
proach the free tunneling oscillations, as shown in Fig).2 detunings. The phase of the wave packet in stifeis altered from
As will be described below, the characteristics of the tunnelO~27 by changing the detuning from infinite negative to infinite
ing oscillations for the negative detunings’<0) are  Positive. The phase shift induced by & pulse is also shown.
slightly different from those for the positive detuning8 (
>0), because the calculations are performed without théehavior is confirmed by use of the trajectories of the Bloch
rotating-wave approximatioRWA). vector u=cicp,+c.Ch, v=—i(cic,—CaCl), and w

A qualitative explanation of the tunneling characteristics=c_c* —c,c} on the unit spheréBloch spherg The phase
described above can be given by a simple analytical considshjft obtained as a function of the detunifigs shown in Fig.
eration. In the case of the resonant excitatiér-0) shown 3 |t is worth noting that the phase of the wave packet in state
in Fig. 2(a), the system has a superposition of sta&sand  |a) is altered from 0-27 (or — m~ ) by changing the de-
Ib):  |4)=(12)(i|a)+|b)) just before the first pulse exci- tuning from infinite negative to infinite positive. As expected
tation. Since the quantum tunneling can be neglected duringom above discussions, the resonant excitation exactly in-

the laser pulse, the time evolution of states and|c) by  duces the phase shift ofr and for the detuning ofs
laser excitation is simply given in the following matrix form — /2 the phase shift becomes?2.

........

2 rpulse

~."V~.

Phase Shift (units of =)

in the RWA[19]: The phase shift of the wave packet induced by the pulse
o excitation plays a crucial role for the complete population
(Ca(T*)):(,CO_SQ‘”/ZK)T I Sin(Q),,/2k) 7 Ca(T)), transfer between nonresonant tunneling states. The phase
Ce(74)) \isin(Q,2«)7  cogQ,/2k)7 |\ Cc(7-) @ shift induced by a 4 pulse is also shown in Fig. 3, which is

nearly twice as large as that byr2pulse but not exactly
twice, except for the resonant conditiof= 0). By use of a

where we define the time-dependent Rabi frequefigy7) 41 pulse instead of a2 pulse, we can obtain larger phase

fTr g‘”:)(u?sélzoir;hi'?:'ilj?(nlcj%c;nsamm:?ft()azg ef:treTthe shifts with smaller detunings; the phase shiftof-37 is
1 Ly Vg — Cc —

= T4, We obtain c,(7, )= —Ca(r_)=i(1W2)e '™ and OPtained for=80k=o<80x.
c.(7;)=0 immediately after the laser excitation. This means

that the phase of the wave packet in sfabeis altered byr IV. COMPLETE POPULATION TRANSFER

by the pulse excitation. The successive time evolution of

states|ay and |b) after the first pulse is then given by A. Numerical results
lep(7)[?=(1/2)(1+sin7), which is 7 out of phase with re- We can see from the numerical result shown in Fig) 2

spect to the free tunneling oscillations. The numerical resulihat the phase of the tunneling oscillations is reversed by the
shown in Fig. 2a) is completely consistent with this inter- resonant excitation. Therefore, we infer that when the pulse
pretation. interval coincides with the half-cycle of the generalized Rabi
The populatiqn evollutions for the detungd gxcitatioﬁs ( oscillation[ Q = \(2x) 2+ A?], the generalized Rabi oscilla-
#0) are also simply interpreted by considering that eachjons with small amplitudes are reversed at each pulse and
laser pulse induces the phase alteratfoof the wave packet the oscillations constructively accumulated as a result of
in state|a). Keeping in mind thata(7.)=i(1v2)e"'* and  quantum interference, resulting in the complete population
cp(7+) =12, the time evolution of the population in state transfer between nonresonant tunneling stiteand |b).
|b) between the two pulses is given Hg,(7)|>=(3)(1 This behavior is confirmed by the numerical results
—cos¢sin7) immediately after the first pulse. The complete shown in Fig. 4a). In the calculations, it is assumed that the
suppression of the tunneling oscillations, i.éc,(7)|>  energy difference between stafes and|b) is chosen to be
=|c,(7)|?=3 between the pulses in Fig(l®, is achieved A=10« and the pulse train has 20 resonant @ulses with
for ¢= = /2. We can infer that the amount of phase changghe pulse envelopef(7)=32%, seclir—7,—(n—1)7]/7.
¢ approaches zer@r 27) as the detuning increases. This Other parameters aré),=100« and 7=« (@/Q), 7
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where Q= /(2x)%+AZ. If the phase shift by the pulse ex-

(a) 1 citation is given by, the transfer matrix is given by
% , ei<1$/2 0

S 08 :' ) o My=| o e idi2]- (7)
& °° A AAARA
‘—; § p VY Here, we consider a simple case that the pulse repetition time
g 04 ; ‘\/\/\/\/\ (or time interva) is equal to half of the period of the gener-
a 0.2 ! \ | alized Rabi frequency, i.er;= «k7/), and the phase shift by

Ml the pulse excitations i¢= * 7. Substituting the values of

NN | > and ¢ into Egs.(4) and(7), we obtain

0
(b) 1 i 1A 2 _ (1 0o
/; M|——|5 2k —A M¢—_| 0 —1/° (8,9)
0.8 !
c
L 06 The transfer matriM , for one pulse and one interval can be
® obtained by matrix multiplication oM, andM, i.e., M,
304 \ / =My-M,, and, therefore, the transfer matrix for a train\of
S / ] pulses can be written in the forfi20]
U1 T
“ ! cogNg) sin(N<p))
oL U ) N E— - MN=(+1)N ; , 10
0 2 4 6 8 10 w= (1) —sin(N¢) cogNeg) (10
Kkt
where
FIG. 4. Complete population transfer between nonresonant tun- . 2k
neling stategay and|b) by a train of 27 resonant laser pulses with p=tan A (12)

7,= k7l Q) and7,=4.57,. The energy difference between stams
and|b) is chosen to bed=10x. (&) 0,=100c, 7,=0.02, (D)  Tq gbtain the complete population transfer, we let hgs(

,=200k, 7,=0.01. =0, and combining this with E¢11), we obtain

=4.57r,. In Fig. 4a), we can see that nearly complete

(~92%) population transfer from statb) to |a) is achieved Z_K:tani(z)\Jrl) (12)
by eight pulses. The incomplete population transfer is mainly A 2N ’

due to population transfef~8%) to state|c). This can be

reduced(~2%) by use of steep 2 pulses as shown in Fig. where\ is integers. At large\, the number of pulseBl, in

4(b), where we used the pulse widtamplitude, which is  order to achieve the complete transfer, increases approxi-
half (twice) of that in Fig. 4a). It should be noted that the mately linearly withA.

complete transfer behavior hardly depends xgnand this As seen in Fig. ), the complete population transfer is
gives us flexibilities for the practical experiments. achieved at eight pulses, which agrees quite well with

= 712 tan }(2x/A)~7.96. It is worth noting that the complete
population transfer between nonresonant tunneling states by
. S means of sequential laser pulses can be considered as a tem-
In our previous papdrR20], the complete population inver- oral version of the phase matching between phase-

sion of a two-state system by a train of nonresonant optical . ; ; . o
. . ismatched waveguides induced by spatial perigoigrat-
pulses is proposed with two methods: the phase revers%g) structures 9 ysp P ©

method and the interval pulse method. The matrix multipli-
cation procedures for the interval pulse method usd@@
can be utilized for the present system with some modifica-
tions. . o In this section we consider the complete population trans-
During the intervals of the pulse excitations, the systéyer petween nonresonant tunneling states by a traidesf
undergoes free tunneling oscillations. For arbitrary initialyyned(s+0) laser pulses. In Fig. 5, we show the phase shift
amplitudesc,(0) andc,(0), thesolution of the equation of py nonresonant excitations as a function of the amplitude of

B. Theoretical considerations

V. DETUNED EXCITATIONS

motion can be written in the matrix form the pulse(),, with a constant pulse width,=0.02 for 5=
+50k, *100k, and =200«. The positive(negative phase
Ca(7) = A B(ca(0) =M Ca(0) 4 shifts are obtained for negatipositive) detunings. For the
em) 1B A ey “Milcyo) @ - -
b b b small detuningd= #+50«, the numerical results are shown

where the asterisk indicates a complex conjugate and th@nly for 2n7 (n=1~4) pulses, because the populations
matrix elements are transferred to staté&c) cannot be neglected for other pulse

areas. The amount of the phase shift monotonically increases
A 2K as the laser amplitud@ , is increased. The population trans-
A=cod 02k T=i G sinQf2k) 7, B=T-GmsiNQ26)7, o g state|c) is less than 2% for all numerical results ob-
(5,6  tained for5= * 100« and =200k.
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4 y T y T T T pulses to obtain the complete population transfer depends on
the sign of the detunin@en pulses for positive detuning of
6=100k and 17 pulses for negative detuning &=
—100x) and cannot be determined by Ed0). If A is posi-

tive (negative, the complete transfer for negatiypositive
detunings requires larger numbers of pulses than for positive
(negative detunings. This may be due to the complex coher-
ent accumulation effects of the tunneling evolutions, which
cannot be interpreted by the simple analysis presented in
Sec. IVB.

Comparing Fig. 6 with Fig. 5, we can see that the popu-
lation transfer to statéc) can be safety neglected and the
population transfer between the nonresonant states is more
completely achieved by detuned laser pulses.

Phase Shift (units of =)

w
¥

0 100 200 300 400
Q, (units of K)

-4
VI. EXCITATIONS BY DARK PULSES

FIG. 5. Phase shift by a nonresonant pulse excitation as a func- AS shownin Fig. 7, a train adark resonant pulses with an

tion of the amplitude of the puls@,, with a constant pulse width appropriate pulse interval and pulse area also induces the
7,=0.02 for = =50k, +100k, and +200k. complete population transfer between nonresonant states.

Complete population transfer between detuned sgatand
Keeping in mind that the resonantr2pulse excitation [b) by means _Of a train 0f202@Iark pulses. The dark pulse

induces the phase shift of, resulting in the complete popu- €NVelope is given by 2;-, sechir—7—(n—1)7)/7,, A
lation transfer, we infer that the detuned pulses can alsg40x, and Q,=100«. When the laser field is given by
achieve the complete population transfer if they bring abouf.,, Statela) splits into two dressed states, which are shifted
7 phase shift. For an example, the phase shift fors= by Q /2 from the original positioh21,17,18. Therefore, the
+100k is obtained af),, = 205« [indicated by(a)] and 216«  effective detuning between stati and |b) is given byA’
[indicated by(b), respectively. We can show such results in =Q ,/2—A and the complete population transfer is expected
Figs. 6a) and &b), where the complete population transfersby a train of 2r dark pulses with the pulse interval
are obtained at the expected valueslgf=205« and 21& = xx/Q’', whereQ'=[(2x)?>+A’2. An example of such a
for 6=100«, —100« with a fixed A=15«. The number of case is shown in Fig. 7 where the complete population trans-

fer from statelc) to state|a) is achieved at nine-dark pulses.

(a) By the dressing field, the populations of staf@sand|c) are
strongly mixed and they show rapid oscillations with an
0.8 i i equal time-averaged population. Here we assume that relax-
S "!”i ation effects from statdc) are not present or can be ne-
E= 0.6 i l‘,,«‘ glected. In other words, this restricts the applicability of the
=] 1 V. results to the case of short pulses and high repetition rates
g 0.4 i i compared with the relaxation times of the system.
o o tn
0.2 AA ! K
4| ", 1
o 2 3 4 58
(b) 1 Kkt AR c 08
AT s (@]
A ‘S 0.6
_ 08 Y &
S /‘::’if"[” ”[ 2 04
5 06 FEH o
S ;"“ * 02 \
o 04 Ay
o il
* oz it o 2 4 6 8 10
1 MM t
A K
o 1 2 3 4 5 6 _
kt FIG. 7. Complete population transfer between nonresonant tun-

neling statega) and|b) by a train of dark resonant pulses. The dark
FIG. 6. Complete population transfer between nonresonant tunpulse envelope is given by-132°, sectir— —(h—1)7)/7,. The
neling stateda) and |b) by a train of detuned laser pulses. Param-energy difference between stat@s and |b) is chosen to beA
eters used ard =10k, 7;=k7/Q, and 7o=4.57;. (a) =100« =40« and other parameters af®,=100«, 7=«w/(, and 7,

and( =205, (b) 6=—100k and() ,=216kx. =4.57,.
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VII. CONCLUSIONS the THz oscillations in semiconductor coupled quantum

Complete population transfer between nonresonant tunv—ve”S'
g i To conclude, it should be pointed out that since the tun-

neling states in a double-well system is predicted to OCCuF1e|ing interaction between two well states is formally iden-

}/(\;hg;\ 2;2?,{'2 dorstg?:tigr tﬂirzlas‘:fg:npu_:_iis dl::\;zs;;acnzgf:?n'gical to a coherent coupling, the system studied in the present
duces the phase shift of chz wa\)e acIF:et involved in th2Per is equivalent to an atomic three-level system coupled
P P y two coherent fields and most of the phenomena predicted

transition, which alter the successive evolutions of the wav?n the present paper can be observed experimentally, particu-

packets of the nonresonant states as a result of quantum '|:1;{rly in view of the recent advances in laser technology, in-

terference, resulting in complete tunneling. . . ! . .
The complete population transfer can be obtained for botﬁ:IUdIng effective pulse shapir@2] and producing trains of

resonant and detuned pulse trains with the repetition ratequally spaced identical pulses with repetition times of the

being half the period of the generalized Rabi oscillations.8rder of 10-100 p$23,24.

Furthermore, it is shown that a train of the dark pulses also
induces the complete population transfer between nonreso-
nant tunneling states. To control the quantum tunneling This work was partially supported by a Grant-in-Aid for
by short laser pulses, it might be useful not only to investi-Scientific Research on Priority Areas from the Ministry of
gate the interaction between laser field and quantum strud&sducation, Science, Sports and Cultu&rant Nos.
tures, but also, in view of practical point, to modulate 08217216 and 20275514
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