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Complete population transfer between nonresonant tunneling states induced by a train
of laser pulses

N. Tsukada*
Department of Electronics and Information Engineering, Aomori University, 2-3-1 Kobata, Aomori 030, Japan

Y. Nomura and T. Isu
Advanced Technology R&D Center, Mitsubishi Electric Corporation, Amagasaki, Hyogo 661, Japan

~Received 24 April 1998; revised manuscript received 24 November 1998!

Complete population transfer between nonresonant tunneling states in a double-well system is predicted to
occur when a train ofbright or dark laser pulses drives transitions to an excited state in the system. The
transition induces the phase shift of the wave packet involved in the transition and alters successive evolutions
of the wave packets of the nonresonant states as a result of quantum interference, resulting in complete
tunneling.@S1050-2947~99!00304-2#

PACS number~s!: 42.50.Md, 42.50.Hz, 73.40.Gk, 72.15.Rn
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I. INTRODUCTION

One of the most fundamental problems of quantum m
chanics is the quantum-dynamical tunneling occurring in d
ferent physical, chemical, and biological systems, and
quantum-dynamical tunneling phenomena in the presenc
a laser field have received increasing attention in recent y
@1–7#. In contrast to the numerous publications concern
the interaction of a two-state system with a single pulse
pulse trains@8–11#, there are only a limited number of stud
ies of interactions between a three-state system and p
trains, which are particularly devoted to the so-called qu
tum Zeno effect@12–14#. The measurements by laser puls
in the quantum Zeno system destroy the coherence of
states involved in the transition through relaxations of
excited state.

In the present paper, we present a theoretical study of
coherent population transfer between nonresonant tunne
states in a double-well system under the influence of a t
of laser pulses, which coherently changes the tunneling e
lutions as a result of quantum interference. It is shown t
the complete population transfer between nonresonant
neling states can be realized by the excitation of the tun
ing states with a train ofbright or dark laser pulses and thi
can be explained by the phase shift of the probability am
tude of the tunneling state involved in the transition, whi
alters the successive evolution of the wave packets of
nonresonant states, resulting in complete tunneling.

II. DOUBLE-WELL SYSTEM AND PULSE EXCITATIONS

The quantum-dynamical tunneling can be observed
systems whose potential energy has at least two mini
with the form of the potential being locally symmetric. If th
system is initially located in one of the wells of the potenti
it will undergo tunneling oscillations having periodTtun
5p/k, where k is the tunneling coefficient@15,16#. Re-
cently, Kilin, et al. @17# proposed a new scheme to dynam
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cally suppress the tunneling by a laser field in the system
a molecule that is placed in an appropriate host medium
effect, the laser field suppresses the tunneling by remov
the degeneracy of the ground states. Recently, we ada
their idea to a semiconductor double-well system and p
dicted dynamical suppression and enhancement of the
neling, which were due to the dynamic~ac! Stark shift of the
states involved in the laser excitations@18#.

Here we consider dynamical control of quantum tunnel
by a train of laser pulses for an asymmetric double-well p
tential system as shown in Fig. 1. At low temperature
system can be modeled by a four-state system, each
being the lowest-energy state for corresponding local w
of asymmetric double-well potentials for the ground (Vg)
and excited (Ve) states. We assume that the excited state
the right well is far from laser excitations. Therefore, thr
statesua&, ub&, and uc& are involved in the analysis of th

FIG. 1. Asymmetric double potential system investigated in
present paper. The statesua& and ub& in the ground stateVg are
coupled by the tunneling through the potential barrier, and
ground stateua& and the excited stateuc& are coupled by laser field
E(t)5Ev f (t)sinvt.
2852 ©1999 The American Physical Society
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model system. Statesua& and ub& in the ground stateVg are
coupled by the tunneling through the potential barrier, a
ground stateua& and excited stateuc& are coupled by lase
field E(t)5Ev f (t)sinvt with amplitudeEv , envelopef (t),
and frequencyv.

In what follows, we will be interested in the time evolu
tion of the populations in statesua&, ub&, and uc& under the
influence of laser pulses. The time evolution of the wa
function of the systemc(t) is treated by the time-depende
Schrödinger equationi\]c(t)/]t5Hc(t) with Hamiltonian
@18#,

H5\k~ ua&^bu1ub&^au!1mE~ t !~ ua&^cu1uc&^au!

1\Dub&^bu1\v0uc&^cu, ~1!

where\k is tunneling~coupling! energy determined by ma
trix elements between statesub& and ua&, m is the dipole tran-
sition moment,\D is the energy difference between statesua&
and ub&, and\v0 is the energy separation between statesua&
and uc&. Expressing the eigenstate of the system as a lin
combination of the isolated three states, i.e.,c(t)
5ca(t)ua&1cb(t)ub&1cc(t)uc&, we can obtain a set o
coupled differential equations forca(t), cb(t), and cc(t).
For convenience, the energy of stateua& is chosen to be zero

Substitutingc(t), H, andE(t) into the Schro¨dinger equa-
tion, we can obtain a coupled equation as follows:

dca~ t !

dt
52 ikabcb~ t !2 iVv f ~ t !sin~vt1u!cc~ t !, ~2a!

dcb~ t !

dt
52 iDcb~ t !2 ikbaa~ t !, ~2b!

dcc~ t !

dt
52 iv0cc~ t !2 iVv f ~ t !sin~vt1u!ca~ t !, ~2c!

whereVv5mEv /\, kab (kba) is the tunneling coefficien
between stateua& ~ub&! and stateub& ~ua&! due to the interwell
tunneling. Vv represents the interaction frequency, or Ra
frequency, for the transition between statesua& and uc& in-
duced by the laser field.

We assume throughout this paper thatkab5kba5k, and
the energy separationv0 is much larger than the tunnelin
frequency 2k, i.e.,v051000k. The phase of the laser field i
chosen to beu50, because the qualitative characteristics
the phenomena presented below are not changed byu. We
also assume that the laser pulses have a hyperbolic se
envelope and the pulse repetition time should be shorter
the tunneling period so as to neglect the evolution of
tunneling oscillations during the pulse excitations. The h
perbolic secant 2p laser pulse is more convenient to contr
the quantum tunneling rather than the rectangular pulse,
cause the populations in excited stateuc& after each pulse can
be neglected even for off-resonant pulses. The hyperb
secant pulses can change only the phase of the wave p
in stateua& without changing its amplitude. The rectangul
pulse, on the other hand, induces large populations in s
uc& except near resonance. This prevents us from strictly
vestigating the interference effects between wave packe
statesua& and ub&.
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III. PHASE SHIFT BY PULSE EXCITATIONS

The coupled equations can be solved numerically by
of the Runge-Kutta algorithm. We introduce a dimensionle
time t5kt, and hence the dimensionless tunneling time
given by t tun[kTtun5p. Direct numerical integration of
Eqs. ~2! is performed with an initial conditioncb(t50)
51, ca(t50)5cc(t50)50.

Let us begin with a case where the tunneling statesua& and
ub& have the same energy, i.e.,D50. In Figs. 2~a!–2~c!, we
show typical numerical results that show the modifications
the tunneling oscillations by a sequence of two laser puls
which have the envelopef (t)5sech(t/tp). The populations
of statesua&, ub&, and uc& are shown as a function of the d
mensionless timet together with the envelope of lase

FIG. 2. Modifications of the tunneling oscillations by a s
quence of two laser pulses. The populationsucau2, ucbu2, and uccu2

are shown by solid, dashed, and dotted lines, respectively, and
pulse envelope is shown by the thin solid line. The parameters u
in the calculations arev5v051000k, Vv5100k, andtp50.02.
The first and the second pulses are applied att5t tun/4 and t
53t tun/4, respectively. ~a! d50, ~b! d550k, and~c! d5150k.
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pulses. The populationsucau2, ucbu2, anduccu2 are shown by
solid, dashed, and dotted lines, respectively, and the p
envelope by a thin solid line. The parameters used in
calculations arev5v051000k, Vv5100k, andtp50.02.
The pulse area is chosen to be 2p, i.e., *2`

1`Vv f (t)dt
52p. The first and the second pulses are applied at
5t tun/4 andt53t tun/4, respectively.

In the case of resonant excitation (d[v02v50), the
phase of the tunneling oscillations is reversed~p out of
phase! at each pulse, as shown in Fig. 2~a!. The population in
stateua& is completely transferred to stateuc& at the peak of
the laser pulse and it returns to stateua& just after the pulse
because of 2p pulse. A drastic change in the tunneling osc
lations is seen for the detuned excitation (d550k), as shown
in Fig. 2~b!. After the first laser pulse, the tunneling oscill
tions are completely suppressed and then the second
pulse restores the free tunneling oscillations. When the
tuning is further increased (d5150k), the oscillations ap-
proach the free tunneling oscillations, as shown in Fig. 2~c!.
As will be described below, the characteristics of the tunn
ing oscillations for the negative detunings (d,0) are
slightly different from those for the positive detunings (d
.0), because the calculations are performed without
rotating-wave approximation~RWA!.

A qualitative explanation of the tunneling characterist
described above can be given by a simple analytical con
eration. In the case of the resonant excitation (d50) shown
in Fig. 2~a!, the system has a superposition of statesua& and
ub&: uc&5(1/&)( i ua&1ub&) just before the first pulse exci
tation. Since the quantum tunneling can be neglected du
the laser pulse, the time evolution of statesua& and uc& by
laser excitation is simply given in the following matrix form
in the RWA @19#:

S ca~t1!

cc~t1! D5S cos~Vv/2k!t
i sin~Vv/2k!t

i sin~Vv/2k!t
cos~Vv/2k!t D S ca~t2!

cc~t2! D ,

~3!

where we define the time-dependent Rabi frequencyVv(t)
5Vv f (t). For the initial conditions immediately before th
first pulse, i.e., ca(t2)5 i (1/&) and cc(t2)50 at t
5t tun/4, we obtain ca(t1)52ca(t2)5 i (1/&)e2 ip and
cc(t1)50 immediately after the laser excitation. This mea
that the phase of the wave packet in stateua& is altered byp
by the pulse excitation. The successive time evolution
states ua& and ub& after the first pulse is then given b
ucb(t)u25(1/2)(11sint), which is p out of phase with re-
spect to the free tunneling oscillations. The numerical re
shown in Fig. 2~a! is completely consistent with this inter
pretation.

The population evolutions for the detuned excitationsd
Þ0) are also simply interpreted by considering that ea
laser pulse induces the phase alterationf of the wave packet
in stateua&. Keeping in mind thatca(t1)5 i (1/&)e2 if and
cb(t1)51/&, the time evolution of the population in sta

ub& between the two pulses is given byucb(t)u25( 1
2 )(1

2cosf sint) immediately after the first pulse. The comple
suppression of the tunneling oscillations, i.e.,uca(t)u2

5ucb(t)u25 1
2 between the pulses in Fig. 2~b!, is achieved

for f56p/2. We can infer that the amount of phase chan
f approaches zero~or 2p! as the detuningd increases. This
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behavior is confirmed by use of the trajectories of the Blo
vector u5ca* cb1cacb* , v52 i (ca* cb2cacb* ), and w
5caca* 2cbcb* on the unit sphere~Bloch sphere!. The phase
shift obtained as a function of the detuningd is shown in Fig.
3. It is worth noting that the phase of the wave packet in st
ua& is altered from 0;2p ~or 2p;p) by changing the de-
tuning from infinite negative to infinite positive. As expecte
from above discussions, the resonant excitation exactly
duces the phase shift ofp and for the detuning ofd
5Vv/2, the phase shift becomesp/2.

The phase shift of the wave packet induced by the pu
excitation plays a crucial role for the complete populati
transfer between nonresonant tunneling states. The p
shift induced by a 4p pulse is also shown in Fig. 3, which i
nearly twice as large as that by 2p pulse but not exactly
twice, except for the resonant condition (d50). By use of a
4p pulse instead of a 2p pulse, we can obtain larger phas
shifts with smaller detunings; the phase shift ofp;3p is
obtained for280k<d<80k.

IV. COMPLETE POPULATION TRANSFER

A. Numerical results

We can see from the numerical result shown in Fig. 2~a!
that the phase of the tunneling oscillations is reversed by
resonant excitation. Therefore, we infer that when the pu
interval coincides with the half-cycle of the generalized Ra
oscillation @V5A(2k)21D2#, the generalized Rabi oscilla
tions with small amplitudes are reversed at each pulse
the oscillations constructively accumulated as a result
quantum interference, resulting in the complete populat
transfer between nonresonant tunneling statesua& and ub&.

This behavior is confirmed by the numerical resu
shown in Fig. 4~a!. In the calculations, it is assumed that th
energy difference between statesua& and ub& is chosen to be
D510k and the pulse train has 20 resonant 2p pulses with
the pulse envelopef (t)5(n51

20 sech@t2t02(n21)ti#/tP .
Other parameters areVv5100k and t i5k(p/V), t0

FIG. 3. Phase shift by a 2p pulse excitation as a function of th
detuningd. The phase of the wave packet in stateua& is altered from
0;2p by changing the detuning from infinite negative to infini
positive. The phase shift induced by a 4p pulse is also shown.
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54.5t i . In Fig. 4~a!, we can see that nearly comple
~;92%! population transfer from stateub& to ua& is achieved
by eight pulses. The incomplete population transfer is ma
due to population transfer~;8%! to stateuc&. This can be
reduced~;2%! by use of steep 2p pulses as shown in Fig
4~b!, where we used the pulse width~amplitude!, which is
half ~twice! of that in Fig. 4~a!. It should be noted that the
complete transfer behavior hardly depends ont0 and this
gives us flexibilities for the practical experiments.

B. Theoretical considerations

In our previous paper@20#, the complete population inver
sion of a two-state system by a train of nonresonant opt
pulses is proposed with two methods: the phase reve
method and the interval pulse method. The matrix multip
cation procedures for the interval pulse method used in@20#
can be utilized for the present system with some modifi
tions.

During the intervals of the pulse excitations, the syst
undergoes free tunneling oscillations. For arbitrary init
amplitudesca(0) andcb(0), thesolution of the equation o
motion can be written in the matrix form

S ca~t!

cb~t! D5S A
B

B
A* D S ca~0!

cb~0! D5MI S ca~0!

cb~0! D , ~4!

where the asterisk indicates a complex conjugate and
matrix elements are

A5cos~V/2k!t2 i
D

V
sin~V/2k!t, B5 i

2k

V
sin~V/2k!t,

~5,6!

FIG. 4. Complete population transfer between nonresonant
neling statesua& and ub& by a train of 2p resonant laser pulses wit
t i5kp/V andt054.5t i . The energy difference between statesua&
and ub& is chosen to beD510k. ~a! Vv5100k, tp50.02, ~b!
Vv5200k, tp50.01.
ly
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whereV5A(2k)21D2. If the phase shift by the pulse ex
citation is given byf, the transfer matrix is given by

Mf5S eif/2

0
0

e2 if/2D . ~7!

Here, we consider a simple case that the pulse repetition
~or time interval! is equal to half of the period of the gene
alized Rabi frequency, i.e.,t i5kp/V, and the phase shift by
the pulse excitations isf56p. Substituting the values oft i
andf into Eqs.~4! and ~7!, we obtain

MI52 i
1

V
S D
2k

2k
2D D , Mf56 i S 1

0
0

21D . ~8,9!

The transfer matrixMu for one pulse and one interval can b
obtained by matrix multiplication ofMI and Mf , i.e., Mu
5Mf•MI , and, therefore, the transfer matrix for a train ofN
pulses can be written in the form@20#

Mu
N5~61!NS cos~Nw!

2sin~Nw!

sin~Nw!

cos~Nw! D , ~10!

where

w5tan21S 2k

D D . ~11!

To obtain the complete population transfer, we let cos(Nw)
50, and combining this with Eq.~11!, we obtain

2k

D
5tan

p

2N
~2l11!, ~12!

wherel is integers. At largeD, the number of pulsesN, in
order to achieve the complete transfer, increases appr
mately linearly withD.

As seen in Fig. 4~a!, the complete population transfer
achieved at eight pulses, which agrees quite well withN
5p/2 tan21(2k/D)'7.96. It is worth noting that the complet
population transfer between nonresonant tunneling state
means of sequential laser pulses can be considered as a
poral version of the phase matching between pha
mismatched waveguides induced by spatial periodic~or grat-
ing! structures.

V. DETUNED EXCITATIONS

In this section we consider the complete population tra
fer between nonresonant tunneling states by a train ofde-
tuned(dÞ0) laser pulses. In Fig. 5, we show the phase s
by nonresonant excitations as a function of the amplitude
the pulseVv with a constant pulse widthtp50.02 for d5
650k, 6100k, and 6200k. The positive~negative! phase
shifts are obtained for negative~positive! detunings. For the
small detuningd5650k, the numerical results are show
only for 2np (n51;4) pulses, because the populatio
transferred to stateuc& cannot be neglected for other puls
areas. The amount of the phase shift monotonically increa
as the laser amplitudeVv is increased. The population tran
fer to stateuc& is less than 2% for all numerical results o
tained ford56100k and6200k.

n-
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Keeping in mind that the resonant 2p pulse excitation
induces the phase shift ofp, resulting in the complete popu
lation transfer, we infer that the detuned pulses can a
achieve the complete population transfer if they bring ab
p phase shift. For an example, thep phase shift ford5
6100k is obtained atVv5205k @indicated by~a!# and 216k
@indicated by~b!, respectively#. We can show such results i
Figs. 6~a! and 6~b!, where the complete population transfe
are obtained at the expected values ofVv5205k and 216k
for d5100k, 2100k with a fixed D515k. The number of

FIG. 6. Complete population transfer between nonresonant
neling statesua& and ub& by a train of detuned laser pulses. Para
eters used areD510k, t i5kp/V, and t054.5t i . ~a! d5100k
andVv5205k, ~b! d52100k andVv5216k.

FIG. 5. Phase shift by a nonresonant pulse excitation as a f
tion of the amplitude of the pulseVv with a constant pulse width
tp50.02 ford5650k, 6100k, and6200k.
o
t

pulses to obtain the complete population transfer depend
the sign of the detuning~ten pulses for positive detuning o
d5100k and 17 pulses for negative detuning ofd5
2100k) and cannot be determined by Eq.~10!. If D is posi-
tive ~negative!, the complete transfer for negative~positive!
detunings requires larger numbers of pulses than for pos
~negative! detunings. This may be due to the complex coh
ent accumulation effects of the tunneling evolutions, wh
cannot be interpreted by the simple analysis presente
Sec. IV B.

Comparing Fig. 6 with Fig. 5, we can see that the pop
lation transfer to stateuc& can be safety neglected and th
population transfer between the nonresonant states is m
completely achieved by detuned laser pulses.

VI. EXCITATIONS BY DARK PULSES

As shown in Fig. 7, a train ofdark resonant pulses with an
appropriate pulse interval and pulse area also induces
complete population transfer between nonresonant sta
Complete population transfer between detuned stateua& and
ub& by means of a train of 20dark pulses. The dark pulse
envelope is given by 12(n51

20 sech@t2t02(n21)ti#/tp , D
540k, and Vv5100k. When the laser field is given by
Vv , stateua& splits into two dressed states, which are shift
by Vv/2 from the original position@21,17,18#. Therefore, the
effective detuning between statesua& and ub& is given byD8
5Vv/22D and the complete population transfer is expec
by a train of 2p dark pulses with the pulse intervalt i

5kp/V8, whereV85A(2k)21D82. An example of such a
case is shown in Fig. 7 where the complete population tra
fer from stateuc& to stateua& is achieved at nine-dark pulse
By the dressing field, the populations of statesua& anduc& are
strongly mixed and they show rapid oscillations with
equal time-averaged population. Here we assume that re
ation effects from stateuc& are not present or can be ne
glected. In other words, this restricts the applicability of t
results to the case of short pulses and high repetition r
compared with the relaxation times of the system.

n-
-

FIG. 7. Complete population transfer between nonresonant
neling statesua& andub& by a train of dark resonant pulses. The da
pulse envelope is given by 12(n51

20 sech@t2t02(n21)ti#/tp . The
energy difference between statesua& and ub& is chosen to beD
540k and other parameters areVv5100k, t i5kp/V, and t0

54.5t i .

c-
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VII. CONCLUSIONS

Complete population transfer between nonresonant
neling states in a double-well system is predicted to oc
when a train ofbright or dark laser pulses drives transition
to an excited state in the system. The pulse excitation
duces the phase shift of the wave packet involved in
transition, which alter the successive evolutions of the w
packets of the nonresonant states as a result of quantum
terference, resulting in complete tunneling.

The complete population transfer can be obtained for b
resonant and detuned pulse trains with the repetition
being half the period of the generalized Rabi oscillatio
Furthermore, it is shown that a train of the dark pulses a
induces the complete population transfer between nonr
nant tunneling states. To control the quantum tunnel
by short laser pulses, it might be useful not only to inves
gate the interaction between laser field and quantum st
tures, but also, in view of practical point, to modula
e

y

o

n-
r

-
e
e
in-

th
te
.
o
o-
g
-
c-

the THz oscillations in semiconductor coupled quantu
wells.

To conclude, it should be pointed out that since the tu
neling interaction between two well states is formally ide
tical to a coherent coupling, the system studied in the pres
paper is equivalent to an atomic three-level system coup
by two coherent fields and most of the phenomena predic
in the present paper can be observed experimentally, par
larly in view of the recent advances in laser technology,
cluding effective pulse shaping@22# and producing trains of
equally spaced identical pulses with repetition times of
order of 10–100 ps@23,24#.
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