
PHYSICAL REVIEW A APRIL 1999VOLUME 59, NUMBER 4
Group-theoretical approach to final-state angular correlations in double photoionization
of helium
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and Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6377
~Received 22 April 1998; revised manuscript received 24 November 1998!

We extend the well-known O~4! group-theoretical method for the classification of doubly excited states to
the two-electron continuum. The analytical continuation of the approximate dynamic symmetry group across
the double ionization threshold is isomorphic to the homogeneous Lorentz group O~3,1!. The infinite-
dimensional irreducible representations of O~3,1! provide approximate wave functions, which incorporate
electron-electron angular correlations. Moreover, the labels of the representations can be interpreted as ap-
proximate quantum numbers, which allow the extension of well-known propensity rules from double excitation
to double ionization. Employing thedynamicO~3,1! symmetry group and a new method to calculatecomplex
Wigner (9-j ) coefficients, we determine the angular distributions of the photoelectrons for double photoion-
ization of helium near threshold. We find remarkable agreement with recent measurements. Similarities to and
differences from other calculations are discussed.@S1050-2947~99!00204-8#

PACS number~s!: 32.80.Fb, 31.15.Ja, 31.25.2v
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I. INTRODUCTION

The understanding of correlation effects arising in the
namics of two electrons escaping from a charged core i
fundamental importance in atomic and few-body physi
Much attention has been given to the double ionization of
and H2 by a single photon because this process occurs o
through the effects of correlation. At photon energies n
the double-ionization threshold, the studies have focused
the angular and energy distribution of the escaping electr
and on the energy dependence of the total cross section.
milestone of these studies was the Wannier-Rau-Pete
~WRP! theory@1–3# that predicted that the total cross secti
for double photoionization of an atom varies above thresh
ass11}Em, whereE is the energy shared by the two ph
toelectrons andm is an exponent depending on the chargeZ
of the residual ion. The theoretical valuesm51.127 for Z
51 andm51.056 forZ52 are consistent with experimen
for H2 and K2 targets@4,5# and for He@6–9#. Moreover, the
WRP theory predicts a strong angular correlation betw
the escaping electrons with preferred back-to-back emis
near threshold. Several theoretical methods have been d
oped to investigate angular correlations in double ionizat
@10–15#. While the region close to threshold~& eV! is still
difficult to access by fully numericalab initio treatments,
close agreement with experimental data at higher ener
has been achieved@15–19#.

In the following paper we present an alternative appro
to electron-electron angular correlation, which is sole
based on the existence of an approximate dynamical sym
try group of the problem. Within this framework, angul
correlations follow ‘‘automatically’’ from the proper choic

*Present address: Institute for Theoretical Physics, Vienna U
versity of Technology, A-1040 Vienna, Austria.
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of irreducible representations of the final state rather th
from the explicit evaluation of transition matrix element
This resembles threshold laws within which the asympto
properties in theE→0 limit ~E, excess energy above th
breakup threshold! is independent of the pathway with whic
the final state is accessed, provided the processes acces
same sector of final states characterized by the same e
quantum numbers, for example,1S→1P transitions in
photoionization. Similar to the WRP theory, such an a
proach can provide information about the energy and ang
dynamics but not about the absolute cross section. We s
in the following that by solely exploiting the approxima
dynamical symmetry, the angular correlation pattern for tw
electron emission near threshold can be determined with
any explicit calculation of the transition operator and witho
any adjustable parameter.

II. ANALYTIC CONTINUATION OF O „4…

The starting point of our analysis is the well-known a
proximate O~4! symmetry of doubly excited resonances@20–
23#. The dynamical symmetry group belongs to the gro
chain

O~3!,O~4!,O~4!3O~4!, ~1!

where O~4!3O~4! is the product group of hydrogenic elec
trons with quantum numbers~or labels of the irreducible
representations! n1,2,l 1,2,m1,2 while O~3! is the exact geo-
metric symmetry group with quantum numbersLM. The la-
bels of the irreducible representations of the dynamical O~4!
group,K andT, are approximate collective quantum numbe
describing bending vibrations and the projection of the
gular momentum along the interelectronic axis. Using sca
coordinatesr i5 r̃ i /Z, pi5 p̃iZ, it is seen from the scaled
Hamiltonian,
i-
2738 ©1999 The American Physical Society
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H̃52
1

2
~¹̃1

21¹̃2
2!2

1

r̃ i
2

1

r̃ 2
1l

1

r̃ 12
, ~2!

with l51/Z, that in the limit ofl→0 (Z→`) the symmetry
group chain@Eq. ~1!# becomes exact. For helium (l50.5) it
has been shown@20–28# that the supermultiplet structure
propensity rules, and the angular correlation pattern of d
bly excited states are well described by the approximate
namic O~4! group. Here, we extend the approximate dynam
cal symmetry group to doubly excited states across
double-ionization threshold based on analytical continu
and obtain an approximate dynamic O~3,1! group symmetry
for the double continuum states. Based on the O~3,1! repre-
sentation of the two-electron wave functions, we investig
the triply differential cross section~TDCS! of He, which can
be evaluated from the flux of the final-state wave functionc f
with the proper boundary conditions@11,27,28#, i.e.,

d3s

dV1dV2dE1
}uc f u2ur i→` ~ i 51,2! , ~3!

whereV1,2 are the solid angles of the emitted electrons a
E1 is the energy of one of the electrons. For a hydroge
atom, the electron moves in a central field2Z/r . The angu-
lar momentuml5r3p and the Runge-Lenz vectora5(p3 l
2Zr̂)/A2uEu are constants of motion, wherep is the momen-
tum of the electron andE the energy. The angular momen
tum l is perpendicular to the orbit, and the Runge-Lenz v
tor a is in the plane of the orbit and pointing from th
nucleus toward the perigee. When the electron is in a bo
state, the orbit is elliptic while for the electrons in the co
tinuum state, the orbit becomes hyperbolic. The angular
mentum and the Runge-Lenz vector form Lie algebras w
the following commutation rules@29,30#:

@ l i ,l j #5 i e i , j ,kl k , ~4!

@ l i ,aj #5 i e i , j ,kak , ~5!

@ai ,aj #56 i e i , j ,kl k ;, ~6!

where the1 ~2! sign refers to negative~positive! one-
electron energies. Equations~4!–~6! correspond to the infini-
tesimal generators of the O~4! ~for the1 sign! and the O~3,1!
symmetry group~for the 2 sign!. The analytic continuation
of O~4! across the threshold is therefore O~3,1!.

For two-electron atomic systems, the electron-electron
teraction leads to the mixing of the degenerate hydroge
manifolds. The average Coulomb repulsion of the electr
is determined by the relative orientation of the orbits. F
pairs of degenerate orbits with total angular momentumL
5 l11 l2 , the simplest measure of this orientation is the sca
B25(a22a1)2. Orbits directed toward opposite sides~larger
B2) of the nucleus repel each other less than two orbits
the same side~smallerB2) of the nucleus. The simultaneou
diagonalization of the commuting operatorsB2,L2,S2 ~total
spin!, and total parityp for doubly excited states in a sub
space of degenerate two-electron hydrogenic configurat
yields approximate mixing coefficients induced by the p
turbation 1/r 12, i.e., B2 and 1/r 12 commute with each othe
approximately. Moreover,B2 can be represented as a fun
u-
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tion of generators of the dynamic Lie algebras O~4!1 and
O~4!2 of electrons 1 and 2 for hydrogenic orbits. Diagona
ization of B2 is obtained naturally in the irreducible repre
sentations of the O~4! group. The labels of the irreducibl
representation are the quantum numbers of the doubly
cited state basis~DESB!,

uNnKTLMLp&5 (
l 1 ,l 2

uNl1nl2LMLp&DNl1nl2
KTLp , ~7!

whereML is thez component ofL, l i ( i 51,2) are the usua
hydrogenic angular-momentum quantum numbers,N and n
are the principal quantum numbers of the inner and ou
electrons, respectively. SinceN and n are assumed to be
approximate quantum numbers, radial correlations are
glected. The sum in Eq.~4! is over all values ofl 1 and l 2

compatible with a givenL andp. TheD mixing coefficient is
obtained in terms of Wigner (9-j ) symbols as@20–22#

DNl1nl2
KTLp 5~21! l 2@~P1T11!~P2T11!

3~2l 111!~2l 211!#1/2

35
~N21!

2

~n21!

2

~P1Q!

2

~N21!

2

~n21!

2

~P2Q!

2

l 1 l 2 L
6 11~21!T1Sp

A2~11dT,0!
,

~8!

where P5n211K and K and T (5uQu) are the DESB
quantum numbers. The range of values for~K,T! follows
directly from the triangle inequalities incorporated in the 9j
symbol. The energetically most favored state that minimi
the electron-electron repulsion among the doubly exci
states for givenN,n,L is the state with the maximum positiv
K value and with the minimumuTu value that also satisfie
p(21)T1S51 @28,26#, specifically, for fixedL51, S50,
the most favored state has quantum numbersK5N22 and
T51. The DESB functions incorporate most of the angu
correlations. The corresponding appropriate quantum n
bers, therefore, permit us to formulate propensity rules
excitation processes, which reflect the conservation of int
sic few-body correlations.

The idea is now to preserve these salient features for t
electron continuum states by an analytic continuation of
dynamic symmetry group O~4! across the double-ionizatio
threshold. As a result, we obtain the dynamic O~3,1! group
for the double continuum states. As a noncompact group,
homogeneous Lorentz group possesses infinite-dimensi
irreducible representations. The labels of the infini
dimensional irreducible representation of the principal se
for the O~3,1! group areh1 , h2 , L, hk , T, andp, whereh1 ,



ie
n-
g
le

e-
a

Th
n

-

tly

-

ity

ith
of

e
by

g-
le-

old.
9-
we

ion

2740 PRA 59YANGHUI QIU AND JOACHIM BURGDÖRFER
h2 , andhk take continuous values@30–34#. These labels can
be directly mapped from the O~4! group onto the O~3,1!
group as follows:

N→ ih1 , L→L,

n→ ih2 , T→T,

K→ ihK , p→p, ~9!

whereh i ( i 51,2) are related to the single-particle energ
asEi5Z2/(2h i

2). The irreducible representation of the pri
cipal series for the O~3,1! group can be obtained by applyin
the analytic continuation from double excitation to doub
ionization:

uh1h2hkTLMLp&5 (
l 1 ,l 2

uh1l 1h2l 2LMLp&Dh1l 1h2l 2

hkTLp ,

~10!

where

Dh1l 1h2l 2

hkTLp
5~21! l 2@~P1T11!~P2T11!

3~2l 111!~2l 211!#1/2

35
~ ih121!

2

~ ih221!

2

~P1T!

2

~ ih121!

2

~ ih221!

2

~P2T!

2

l 1 l 2 L
6

3
11~21!T1Sp

A2~11dT,0!
~11!

and P5 ih2211 ihK . Note that the O~3,1! mixing coeffi-
cientD is now a function of complex argument. The infinit
dimensional irreducible representations provide approxim
wave functions for double continuum statesc f , which incor-
porate electron-electron angular correlation.B2 is also ap-
proximately conserved for the double continuum states.
asymptotic form of the double continuum wave function e
tering Eq.~3! is

c f~r1 ,r2!ur i→`5
ei ~k1r 11k2r 2!

r 1r 2
(
l 1l 2

Dh1l 1h2l 2

hkTLp (
m1m2

Yl 1m1
~ r̂1!

3Yl 2m2
~ r̂2!^ l 1m1l 2m2uLML&. ~12!

Consequently, we obtain

d3s

dV1dV2dE1
}U(

l 1l 2

l max

Dh1l 1h2l 2

hkTLp (
m1m2

Yl 1m1
~ r̂1!Yl 2m2

~ r̂2!

3^ l 1m1l 2m2uLML&U2

. ~13!

For doubly excited states,l max in the sum overl 1 ,l 2 for
givenL andp is constrained by the principal quantum num
berN ( l i<N,n) while the single particlel distribution in the
correlated wave-function peaks nearl 0'AN @26#. Analo-
s

te

e
-

gously, we takel max'1/Amax(E1,E2) for the double con-
tinuum state. We note, however, thatl max will be automati-
cally determined when the transition amplitude is explici
evaluated usingc f . We note that Eq.~13! contains the well-
known selection rules@35#, which originate from the geomet
ric quantum numbers of O~3! ~including parity and spin!.
Moreover, it contains the approximate dynamical propens
rules based on the symmetry group O~3,1!.

The implication of Eq.~13! is that the angular distribution
and angular correlation pattern can be determined w
group-theoretical methods without an explicit evaluation
the transition matrix element. The key input to Eq.~13! is the
calculation of complex Wigner (9-j ) coefficients. Extensive
studies of thecomplexangular momentum coupling hav
been performed in the 1960s. Two methods developed
Dolginov and Toptygin@31# and by Andersonet al. @32,33#
were specifically devoted to the calculation of thecomplex
Wigner coefficients. However, we found the method su
gested by Dolginov and Toptygin to be impractical to imp
ment while the formulas derived by Andersonet al. do not
obviously preserve analytical continuity across the thresh
Our method uses recursion relations that hold for realj
symbols and which permit analytic continuation. Since
need in the following (9-j ) symbols withL51 andT51,
we consider for simplicity,

X~N,l 1 ;n,l 2 ;Q,T51,L51!5~21! l 2@~2l 111!~2l 211!

3~P12!P#1/2DNl1nl2
K11p

with Q5n1K.
After some tedious algebra starting from the commutat

rules in Eqs.~4!–~6!, we arrive at the recursive relations

X~N,1;n,0;Q,1,1!52S n221

N221D 1/2

X~N,0;n,1;Q,1,1!,

~14!

X~N,1;n,1;Q,1,1!5S 3

2D 1/2 Q

~N221!1/2X~N,0;n,1;Q,1,1!,

~15!

2H @n22~ l 11!2#
l ~ l 11!

~2l 11!J 1/2

X~N,l ;n,l 11;Q,1,1!

52~ l 11!1/2QX~N,l ;n,l ;Q,1,1!

1@~N22 l 2!~2l 11!#1/2X~N,l 21;n,l ;Q,1,1!

2S n22 l 2

2l 11 D 1/2

X~N,l ;n,l 21;Q,1,1!, ~16!

2H @N22~ l 11!2#
l ~ l 11!

~2l 11!J 1/2

X~N,l 11;n,l ;Q,1,1!

5~ l 11!1/2QX~N,l ;n,l ;Q,1,1!1@~n22 l 2!~2l 11!#1/2

3X~N,l ;n,l 21;Q,1,1!2S N22 l 2

2l 11 D 1/2

3X~N,l 21;n,l ;Q,1,1!, ~17!
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$@N22~ l 11!2#2~ l 12!%1/2X~N,l 11;n,l 11;Q,1,1!

5@2~2l 13!#1/2QX~N,l ;n,l 11;Q,1,1!

1H @n22~ l 11!2#
2l ~2l 13!

~2l 11! J 1/2

X~N,l ;n,l ;Q,1,1!.

~18!

It is easy to show that Eqs.~13!–~17! give the same values o
X for real 9j symbols as the direct calculation in terms of t
3 j expansion. With the replacement ofN→ ih1 , n→ ih2 ,
and Q→ ih, the recursion relations yield the correspondi
values of thecomplex9- j symbols. Moreover, since the re
cursion relations coincide at threshold for both bound sta
~n→`, N→`) and double continuum states (h1→`,
h2→`), the analytic continuity is explicitly preserved. Fo
doubly excited states, the O~4! angular correlation pattern i
approximately valid forn@1. In turn, by analytic continua
tion, the range of validity in the continuum is expected to
limited to h i@1, i.e., in the near-threshold region for thre
body breakup.

III. ANGULAR CORRELATION IN PHOTOIONIZATION

The characterization of the two-electron continuum st
in terms of the O~3,1! state labels allows now the straigh
forward extension of the propensity rules for continuum fin
states for a given process. We consider in the follow
double photoionization of helium, where the two electro
are excited from the ground state (1S) to a doubly-ionized
state (1P) after receiving all of the photon energy and o
unit of angular momentum. At this point, we can make e
plicit use of the fact that the same quantum numbers
describe the collective motion in doubly excited states
also describe the internal motion of continuum states. S
cifically, the propensity rules well known for resonances c
be extended to the continuum. Accordingly, as for dou
excited states, the most favored1P double continuum state
for a given h1 , h2 , is the state withT51 and hK5h1
12i . The propensity ofT51 states has been recently d
rectly demonstrated in multidifferential measurements
Dörner et al. @36#. Therefore, we can evaluate the TDCS f
double photoionization in Eq.~11! with L51, S50, T51,
and hK5h112i . Near threshold, we haveEi→0, h1@1,
andhK'h1 .

The angular correlation between the two electrons is
scribed by the interelectronic angleQ12 and is in the follow-
ing displayed for the specific geometry with one electr
emitted along the direction of photon polarization. At thres
old (E15E2'01), the two electrons move in~near! oppo-
site directions~Fig. 1!, which is in agreement with the WRP
theory. Note that the observed angular correlation a
closely corresponds to the one observed for doubly exc
states. ForK5Kmax, the two electrons are localized pre
dominantly on opposite sides of the nucleus and moved
dially out of phase or in phase corresponding to an~anti!
symmetric stretch mode. Unlike quasibound resonan
however, for double ionization the in-phase symmet
stretch mode is essential for the escape near threshold.

The O~3,1! description yields the threshold exponent f
theZ→` limit, i.e., m51 that is close to but not identical t
s

e

e

l
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e-
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o
d

a-

s,
c

the correct exponent forZ52 (m51.056). The differential
energy distribution is uniform over the interval 0<E1<E in
reasonable agreement with classical@37# andab initio quan-
tum calculations@16# that show an almost uniform distribu
tion with a slight dip of the differential cross section near t
end point (E1'0) by a few percent. These deviations refle
the fact that the approximate two-electron states neglect
dial correlations. Angular correlations, on the other hand,
expected to be more accurately represented. For the limE
→01, the angular distribution can also be derived from t
O~4! group representation for photon energy just below
Wannier threshold (E15E2502) invoking the continuity
across the double ionization limit.

As the electron energies increase, the angular distribu
depends on the shared total energy and the partition of
energy. For given total energyE50.2 eV with equal energy
sharingE15E250.1 eV@Fig. 2~a!#, the maximum TDCS ap-
pears at an angleu12'154°. For equal energy sharing (E1
5E2), the cross section vanishes atu25u125180°, giving
rise to a ‘‘cusp’’ in the TDCS. This is due to the fact that fo
a total angular momentumL51, c f(rW,2rW)50 @see Eq.
~12!#. The peak position of the TDCS as a function ofQ12
provides a simple measure for the distribution. For uneq
energy sharingE150.2 eV andE2501 eV @Fig. 2~b!#, the
peak in the TDCS is atu12'161°, which is 7° larger than
that of equal energy sharing. For unequal energy sha
E1501 eV andE250.2 eV @Fig. 2~c!#, the maximum of the
TDCS is located atu125180°. The angular distribution in
the extremely asymmetric energy sharing is significantly d
ferent from that for the equal energy sharing for fixed to
energyE. WhenE1ÞE2 , a finite value of TDCS atu25p is
possible. This gives rise to either a butterfly-shaped distri
tion for the correlatedemission of the slower electron or
single-lobe distribution atu5p for the faster electron. There
are no experimental data available for comparison for s
low energies, possibly due to the difficulties in detecting lo
electron energies.

At somewhat higher energies, a comparison with exp
ment andab initio quantum calculations is possible. In Fig.
we show our results along with two different theoretical r
sults of Pontet al. @15# and the measurements of Lablanqu
et al. @7# at E54 eV. The different plots have been rescal
so that the TDCS has the same value at its maximum for

FIG. 1. TDCS for double photoionization of helium. The TDC
is plotted in polar coordinates with respect to the angleu2 , the
emission direction of the second electron with energyE2 while the
emission direction of the first electron with energyE1 is fixed along
the polarization vectorx̂ of the photon, i.e.,u125u2 . Equal energy
sharing withE15E251026 eV.
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sets of data for a given case. For equal energy sharingE1
5E252 eV @Fig. 3~a!#, the peak in the TDCS is atu12
'122°. For unequal energy sharing,E153.3 eV andE2
50.7 eV @Fig. 3~b!#, the maximum of the TDCS can b
found at u12'127°. For the caseE150.7 eV and E2
53.3 eV @Fig. 3~c!#, the maximum of the TDCS appears
u125122°. The differences between the angles of the p
position are now smaller but still noticeable. Note that o
TDCS are exactly zero atu125180° for equal energy shar
ing. This node is the direct consequence of the exact s
metry of the 1P state@35#. The peak position of the distri
bution, however, is governed by the approximatedynamic
O~3,1! symmetry group.

The O~3,1! for the angular distribution lies ‘‘in between’
the experimental data and theab initio 2SC calculation of
Pontet al. @15# and is in somewhat closer agreement with t
data. We have shown both the original experimental data
Ref. @7# as well as the corrected data for equal-energy sh
ing @Fig. 3~a!# @38#. The agreement is significantly improve
for the revised data. We emphasize that our present re
contain no adjustable parameter and yield comparable, if
better, agreement as a fully numerical state-of-the-art ca
lation such as the 2SC approach. There are substantial
crepancies between the 2SC results and the approximat
results in the same gauge. The experimental peak posit
in the angular distribution are approximately equal for eq
and unequal energy sharing@7# in agreement with the O~3,1!
prediction. Note that the data of Lablanquieet al. are not

FIG. 2. As Fig. 1 but for energies,~a! E15E250.1 eV; ~b!
E150.2 eV, E251026 eV; ~c! E151026 eV, E250.2 eV.
k
r

-

of
r-

lts
ot
u-
is-
3C
ns
l

symmetric with respect to the polarization direction. Sin
retardation effects are expected to be negligible at such
energies and, hence, the angular distribution should be s
metric with respect to the polarization direction, the diffe
ence of the peak position in the angular distributions on b
sides of the polarization axis can be regarded as a lo
bound for the experimental errors, which are about 11°
Figs. 3~a!–3~c!. We note that there are now more data ava
able for other geometries@39# for which further tests will
become possible in the near future.

In conclusion, we have proposed the analytic continuat
of the approximate O~4! dynamical symmetry across th
double-ionization limit in terms of the O~3,1! group, the ho-
mogeneous Lorentz group. The group-theoretical appro
to angular correlations in the continuum provides direct
sights into the emission pattern in double ionization. T
angular distribution near threshold can be well describ
based on the approximate dynamical symmetry of the tw
electron system without an explicit calculation of th

FIG. 3. Comparison between experimental and theoretical an
lar distributions atE54 eV and different energy partitions:~a!
E15E252 eV; ~b! E153.3 eV, E250.7 eV; ~c! E150.7 eV, E2

53.3 eV. Open squares, experimental data from Lablanquieet al.
@7#; solid circles, experimental data from Huetzet al. @38#; full
curves, current group-theoretical results; dashed and dotted cu
velocity gauge results of 3C theory and 2SC theory from Pontet al.
@15#. The TDCS is plotted in polar coordinates with respect to
angleu2 of the second electron with energyE2 while the first elec-
tron with energyE1 is emitted along the polarization axis.
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photoionization. Quantum numbers characterizing propen
rules for excitation processes can be extended across
double-ionization threshold. The difference Runge-Lenz v
tor B play the role of a collective variable, which contain
the emission pattern subject to the constraints of the geo
ric O~3! quantum numbers.
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