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We extend the well-known @) group-theoretical method for the classification of doubly excited states to
the two-electron continuum. The analytical continuation of the approximate dynamic symmetry group across
the double ionization threshold is isomorphic to the homogeneous Lorentz gr@®i).OThe infinite-
dimensional irreducible representations of3(Q) provide approximate wave functions, which incorporate
electron-electron angular correlations. Moreover, the labels of the representations can be interpreted as ap-
proximate quantum numbers, which allow the extension of well-known propensity rules from double excitation
to double ionization. Employing thdynamicO(3,1) symmetry group and a new method to calculetenplex
Wigner (94) coefficients, we determine the angular distributions of the photoelectrons for double photoion-
ization of helium near threshold. We find remarkable agreement with recent measurements. Similarities to and
differences from other calculations are discus$8d.050-294{9)00204-9

PACS numbds): 32.80.Fb, 31.15.Ja, 31.25v

I. INTRODUCTION of irreducible representations of the final state rather than
from the explicit evaluation of transition matrix elements.
The understanding of correlation effects arising in the dy-This resembles threshold laws within which the asymptotic
namics of two electrons escaping from a charged core is gproperties in theE—0 limit (E, excess energy above the
fundamental importance in atomic and few-body physicsbreakup thresholds independent of the pathway with which
Much attention has been given to the double ionization of Héhe final state is accessed, provided the processes access the
and H™ by a single photon because this process occurs onl§ame sector of final states characterized by th.e. same exact
through the effects of correlation. At photon energies neaflu@ntum numbers, for example;.S—'P  transitions in
the double-ionization threshold, the studies have focused oRnotoionization. Similar to the WRP theory, such an ap-
the angular and energy distribution of the escaping electronsroaCh can provide information about the energy and angular

and on the energy dependence of the total cross section. O gnamics bu.t not about the absolute cross section. We show
In the following that by solely exploiting the approximate

milestone of these studies was the Wannier-Rau-Peterko namical symmetry. the angular correlation pattern for two-
(WRP) theory[1-3] that predicted that the total cross section y ymmetry, 9 patle .
lectron emission near threshold can be determined without

for dgfbler;:hotomnlza}uon of an atom varies above thresholcgny explicit calculation of the transition operator and without
aso” T<E™ whereE is the energy shared by the two pho- any adjustable parameter.

toelectrons andhn is an exponent depending on the charge
of the residual ion. The theoretical values=1.127 forZ
=1 andm=1.056 forZ=2 are consistent with experiments Il. ANALYTIC CONTINUATION OF O (4)

for H™ and K targets/4,5] and for He[6-9]. Moreover, the The starting point of our analysis is the well-known ap-

WRP theqry predicts a gtrong angular correlation betWe?'E)roximate @4) symmetry of doubly excited resonand@§—
the escaping electrons with preferred back-to-back emissiofg]. The dynamical symmetry group belongs to the group
near threshold. Several theoretical methods have been devehain

oped to investigate angular correlations in double ionization
[10-15. While the region close to thresholg: eV) is still
difficult to access by fully numericahb initio treatments,
close agreement with experimental data at higher energies
has been achievdd5-19. where 4)X0(4) is the product group of hydrogenic elec-
In the following paper we present an alternative approachrons with quantum numbergr labels of the irreducible
to electron-electron angular correlation, which is solelyrepresentationsn; ,,/; ,,m; , while O(3) is the exact geo-
based on the existence of an approximate dynamical symmeaetric symmetry group with quantum numbédel. The la-
try group of the problem. Within this framework, angular bels of the irreducible representations of the dynamidd) O
correlations follow “automatically” from the proper choice group,K andT, are approximate collective quantum numbers
describing bending vibrations and the projection of the an-
gular momentum along the interelectronic axis. Using scaled
*Present address: Institute for Theoretical Physics, Vienna Unicoordinatesr;=T;/Z, p;=p;Z, it is seen from the scaled
versity of Technology, A-1040 Vienna, Austria. Hamiltonian,
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- 1., <, 1 1 1 tion of generators of the dynamic Lie algebrag4® and
H=— §(V1+V2)_~r~_i_~f_2+)‘7_12' 2 O(4), of electrons 1 and 2 for hydrogenic orbits. Diagonal-
ization of B2 is obtained naturally in the irreducible repre-
with A=1/Z, that in the limit ofA -0 (Z—o) the symmetry sentations of the @) group. The labels of the irreducible
group chairEq. (1)] becomes exact. For helium €0.5) it  representation are the quantum numbers of the doubly ex-
has been showf20-29 that the supermultiplet structure, cited state basi€DESB),
propensity rules, and the angular correlation pattern of dou-
bly excited states are well described by the approximate dy-
namic Q4) group. Here, we extend the approximate dynami-
cal symmetry group to doubly excited states across the INNKTLM )= 2, [NI;nl,LM L77>D§|T1%’|T2, (7
double-ionization threshold based on analytical continuity ol
and obtain an approximate dynami¢31) group symmetry
for the double continuum states. Based on th8,0 repre- i )
sentation of the two-electron wave functions, we investigatdVhereM is thez component oL, I; (i=1,2) are the usual
the triply differential cross sectifDCS) of He, which can hydrogenic angular-momentum quantum numbargnd n
be evaluated from the flux of the final-state wave funciign ~ @re the principal quantum numbers of the inner and outer

with the proper boundary condition1,27,2§, i.e., electrons, respectively. Sindd¢ and n are assumed to be
approximate quantum numbers, radial correlations are ne-
dio ) glected. The sum in Eq4) is over all values of; andl,
mml Uil =12 3 compatible with a givei. and . TheD mixing coefficient is

obtained in terms of Wigner (9} symbols a§20-22
where(), , are the solid angles of the emitted electrons and
E, is the energy of one of the electrons. For a hydrogenic
atom, the electron moves in a central fietd/r. The angu- -
lar momentum=rX p and the Runge-Lenz vectar= (pX| DE,T;”Z:(—1)'2[(P+T+1)(P—T+ 1)
—Zf)/J2|E| are constants of motion, whepds the momen-
tum of the electron ané& the energy. The angular momen-
tum | is perpendicular to the orbit, and the Runge-Lenz vec-
tor a is in the plane of the orbit and pointing from the
nucleus toward the perigee. When the electron is in a bound 2 2 2

X(21;+1)(21,+1)]*2

(N-1) (n-1) (P+Q)

_1\T+S
state, the orbit is elliptic while for the electrons in the con- x{ (N=1) (n—-1) (P-Q) M
tinuum state, the orbit becomes hyperbolic. The angular mo- 5 5 2 V2(1+ 61 )) ’
mentum and the Runge-Lenz vector form Lie algebras with
the following commutation rulef29,30: l1 P L
[ll,lj]:|€|'1'k|k, (4) (8)
[li,aj]=i€ k. (5

where P=n—1+K andK and T (=|Q|) are the DESB
Al - guantum numbers. The range of values t&;T) follows
[alva]] —lel,J,kan (6) . . . N - )
directly from the triangle inequalities incorporated in the 9-
where the+ (—) sign refers to negativépositived one- Symbol. The energetically most favored state that minimizes
electron energies. Equatiot$—(6) correspond to the infini- the electron-electron repulsion among the doubly excited
tesimal generators of the(g) (for the + sign) and the @3,1)  states for giverN,n,Lis the state with the maximum positive
symmetry groupfor the — sign). The analytic continuation K value and with the minimunfiT| value that also satisfies
of O(4) across the threshold is thereforé3(1). m(—1)T"S=1 [28,26], specifically, for fixedL=1, S=0,

For two-electron atomic systems, the electron-electron inthe most favored state has quantum numletsN—2 and
teraction leads to the mixing of the degenerate hydrogeniT=1. The DESB functions incorporate most of the angular
manifolds. The average Coulomb repulsion of the electrongorrelations. The corresponding appropriate quantum num-
is determined by the relative orientation of the orbits. Forpers, therefore, permit us to formulate propensity rules for
pairs of degenerate orbits with total angular momentum excitation processes, which reflect the conservation of intrin-
=1;+1,, the simplest measure of this orientation is the scalasic few-body correlations.

B2=(a,—a,). Orbits directed toward opposite sidéarger The idea is now to preserve these salient features for two-
B?) of the nucleus repel each other less than two orbits orlectron continuum states by an analytic continuation of the
the same sidésmallerB?) of the nucleus. The simultaneous dynamic symmetry group @) across the double-ionization
diagonalization of the commuting operatd$,L2,S? (total  threshold. As a result, we obtain the dynamit3@) group
spin), and total paritysr for doubly excited states in a sub- for the double continuum states. As a noncompact group, the
space of degenerate two-electron hydrogenic configurationsomogeneous Lorentz group possesses infinite-dimensional
yields approximate mixing coefficients induced by the per-irreducible representations. The labels of the infinite-
turbation 1f,,, i.e., B? and 1f,, commute with each other dimensional irreducible representation of the principal series
approximately. MoreoverB? can be represented as a func- for the Q3,1) group aren;, 7,, L, n, T, and, wherey,,
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75, andz, take continuous value{§0—34]. These labels can gous|y, we takel max%l/‘/maxazl’Ez) for the double con-
be directly mapped from the @) group onto the @,1)  tinuum state. We note, however, tHat, will be automati-
group as follows: cally determined when the transition amplitude is explicitly
evaluated usingy; . We note that Eq(13) contains the well-
known selection ruleg35], which originate from the geomet-
ric quantum numbers of @) (including parity and spin
Moreover, it contains the approximate dynamical propensity
9) rules based on the symmetry groug3cl).

The implication of Eq(13) is that the angular distribution
where 7; (i=1,2) are related to the single-particle energiesand angular correlation pattern can be determined with
asE;=Z2?%(27?). The irreducible representation of the prin- group-theoretical methods without an explicit evaluation of
cipal series for the (3,1) group can be obtained by applying the transition matrix element. The key input to EIg) is the

the analytic continuation from double excitation to doublecalculation of complex Wigner (9) coefficients. Extensive
ionization: studies of thecomplexangular momentum coupling have

been performed in the 1960s. Two methods developed by
Dolginov and Toptygif31] and by Andersoret al. [32,33
_ Tl
|77177277kTLML7T>_|2| |72l 1772l LMD O were specifically devoted to the calculation of templex
v (100  Wigner coefficients. However, we found the method sug-
gested by Dolginov and Toptygin to be impractical to imple-

N—i»n,, L—L,
n—in,, T—T,

K—ing, w—m,

where ment while the formulas derived by Andersehal. do not
Tl | obviously preserve analytical continuity across the threshold.
,751,72.2:(—1) L(P+T+1)(P-T+1) Our method uses recursion relations that hold for regl 9-
s symbols and which permit analytic continuation. Since we
X(211+1)(21,+1)] need in the following (9F) symbols withL=1 andT=1,
. . we consider for simplicity,
(im=1) (in=1) (P+T) i
2 2 2 X(N,I1;n,12;Q,T=1L=1)=(-1)'7(2l;+1)(2l,+1)
im—1) (im,—1) (P-T -
X (I 1 ) (I 72 ) ( ) X(P+2)P]1/2Dﬁilfn|2
2 2 2
Il |2 L W|th Q:n+K

After some tedious algebra starting from the commutation

y 1+(-1)"" 57 rules in Eqs(4)—(6), we arrive at the recursive relations

11
V2(1+ 67 p) n2—1\2
and P=i7n,—1+i7x. Note that the ©@,1) mixing coeffi- X(N.1n,0:Q.1.1)= = N2—1 X(N,0:n,1,Q.1,1),
cientD is now a function of complex argument. The infinite- (14

dimensional irreducible representations provide approximate

wave functions for double continuum staigs, which incor- 3|2 Q

porate electron-electron angular correlatiol? is also ap- X(N,l;n,l;Q,1,1)=(§) (WZT)MX(N’O;WLQ'LD'
proximately conserved for the double continuum states. The (15)
asymptotic form of the double continuum wave function en-
tering Eq.(3) is 12

Id+1) X(N,I;n,1+1;Q,1,1)

2[[“2—“ + 1)2] m

ei(k1r1+k2r2)

TLw a
Pr(re,r2)e, o= D* > Yim,(F1)
2

farz  fir 7 = —(I+ D)YQX(N,I;n,1;Q,1,1)
XY pm,(F2)(lamlomy|LM ). (12 FLINZ=12)(21 + 1)TY2X(N,I - 1:n,1:Q,1,1)
Consequently, we obtain (nZ_|2 1/2x N - 1:011 16
PBo I max Tl ) ) 21+1 (N.Ein, QL) (16
aﬁgﬁzﬁgzxIﬂszM%b%%zYwMUﬁmegu) 41|22
, 4““‘“+”ﬁ(m+n X(N,I+1:n,1;Q,1,1)

X(1amylomy|LM )| . (13

=(1+1)YQX(N,I;n,;Q,1,1) +[(n?>~1?)(2] +1)]*?

For doubly excited states,,,, in the sum oved (,l, for N2—|2\ 12

givenL and is constrained by the principal quantum num- XX(N,I;n, 1= 1;Q,1,1)—( 11
berN (I;=<N,n) while the single particlé distribution in the
correlated wave-function peaks nel@rw\/ﬁ [26]. Analo- XX(N,I-1;n,1;Q,1,1), (17
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{IN2—(1+1)2]2(1+2)}¥2X(N,1 +1;n,1 +1;Q,1,2) y

=[2(21+3)]¥QX(N,I;n,| +1:Q,1,1)
21(21+3)) 2 o
W X(N,I,n,I,Q,l,l). e1 X

(18

+i{[n*=(1+1)?%]

It is easy to show that Eq§13)—(17) give the same values of
X for real 9 symbols as the direct calculation in terms of the
3j expansion. With the replacement Nf—i»;, n—iz,, o :
and Q—i7, the recursion relations yield the corresponding. FIG. 1. _TDCS for douple photqlonlzatlon of helium. The TDCS

- - is plotted in polar coordinates with respect to the an@je the
values of thecomplex9-j symbols. Moreover, since the re-

. . . emission direction of the second electron with enefgywhile the
cursion relations coincide at thresh_old for both bound Stategmission direction of the first electron with energy is fixed along
(n—o, N—w) and double continuum statesy{—oe,

. AT - the polarization vectok of the photon, i.e.f;,= 6,. Equal energy
1n,— ), the analytic continuity is explicitly preserved. For sharing WithE, = E,=10"%eV.

doubly excited states, the(d) angular correlation pattern is
approximately valid fom>1. In turn, by analytic continua- ) )
tion, the range of validity in the continuum is expected to beth® correct exponent fa=2 (m=1.056). The differential
limited to 7;>1, i.e., in the near-threshold region for three- €nergy distribution is uniform over the intervaE, <E in
body breakup. reasonable agreement with classi@] andab initio quan-
tum calculationg 16] that show an almost uniform distribu-
tion with a slight dip of the differential cross section near the
end point €,~0) by a few percent. These deviations reflect
The characterization of the two-electron continuum statdhe fact that the approximate two-electron states neglect ra-
in terms of the @B,1) state labels allows now the straight- dial correlations. Angular correlations, on the other hand, are
forward extension of the propensity rules for continuum finalexpected to be more accurately represented. For the Eimit
states for a given process. We consider in the following—0™, the angular distribution can also be derived from the
double photoionization of helium, where the two electronsO(4) group representation for photon energy just below the
are excited from the ground statéS] to a doubly-ionized Wannier threshold E;=E,=0") invoking the continuity
state £P) after receiving all of the photon energy and oneacross the double ionization limit.
unit of angular momentum. At this point, we can make ex- As the electron energies increase, the angular distribution
plicit use of the fact that the same quantum numbers thagepends on the shared total energy and the partition of the
describe the collective motion in doubly excited states carenergy. For given total energy=0.2 eV with equal energy
also describe the internal motion of continuum states. Spesharingg,=E,=0.1eV[Fig. 2a)], the maximum TDCS ap-
cifically, the propensity rules well known for resonances carpears at an anglé;,~154°. For equal energy sharing {
be extended to the continuum. Accordingly, as for doubly=E,), the cross section vanishes &t= 6,,=180°, giving
excited states, the most favoré® double continuum state rise to a “cusp” in the TDCS. This is due to the fact that for
for a given 51, 7y, is the state withT=1 and »x=7; a total angular momentunh =1, (F,—r7)=0 [see Eq.
+2i. The propensity off=1 states has been recently di- (12)]. The peak position of the TDCS as a function®f,
rectly demonstrated in multidifferential measurements byprovides a simple measure for the distribution. For unequal
Dorner et al.[36]. Therefore, we can evaluate the TDCS for energy sharingg;=0.2eV andE,=0" eV [Fig. 2(b)], the
double photoionization in Eq.l1) with L=1, S=0, T=1, peak in the TDCS is ab,,~161°, which is 7° larger than
and nx=7,+2i. Near threshold, we havE;—0, 7;>1, that of equal energy sharing. For unequal energy sharing
and 7k~ 7. E,=0" eV andE,=0.2 eV[Fig. 2(c)], the maximum of the
The angular correlation between the two electrons is deTDCS is located a#,,=180°. The angular distribution in
scribed by the interelectronic anghe;, and is in the follow-  the extremely asymmetric energy sharing is significantly dif-
ing displayed for the specific geometry with one electronferent from that for the equal energy sharing for fixed total
emitted along the direction of photon polarization. At thresh-energyE. WhenE; #E,, a finite value of TDCS a#,= 7 is
old (E;=E,~0"), the two electrons move imea) oppo-  possible. This gives rise to either a butterfly-shaped distribu-
site directiongFig. 1), which is in agreement with the WRP tion for the correlatedemission of the slower electron or a
theory. Note that the observed angular correlation alsaingle-lobe distribution a@= 7 for the faster electron. There
closely corresponds to the one observed for doubly excitedre no experimental data available for comparison for such
states. ForK=K,ax, the two electrons are localized pre- low energies, possibly due to the difficulties in detecting low
dominantly on opposite sides of the nucleus and moved raelectron energies.
dially out of phase or in phase corresponding to(ant At somewhat higher energies, a comparison with experi-
symmetric stretch mode. Unlike quasibound resonancesnent andab initio quantum calculations is possible. In Fig. 3
however, for double ionization the in-phase symmetricwe show our results along with two different theoretical re-
stretch mode is essential for the escape near threshold.  sults of Pontet al.[15] and the measurements of Lablanquie
The (3,1) description yields the threshold exponent for et al.[7] at E=4 eV. The different plots have been rescaled
theZ—oo limit, i.e., m=1 that is close to but not identical to so that the TDCS has the same value at its maximum for all

Ill. ANGULAR CORRELATION IN PHOTOIONIZATION
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FIG. 2. As Fig. 1 but for energies,(a) E;=E,=0.1¢eV; (b)

E,=0.2eV,E,=10 6eV; (c) E;=10 ¢ eV, E,=0.2 eV. FIG. 3. Comparison between experimental and theoretical angu-

lar distributions atE=4 eV and different energy partitionsi(a)

. E,=E,=2¢V; (b) E;=3.3eV, E,=0.7eV; (c) E;=0.7eV, E,
sets of data f‘?r a given case. For. equal energy_shaﬁrﬂg, =3.3eV. Open squares, experimental data from Lablangua.
=E,=2eV [Fig. 3a)], the peak |r_1 the TDCS is a#;, [7]; solid circles, experimental data from Huegt al. [38]; full
~122°. qu unequal energy sharing, =3.3eV andE; curves, current group-theoretical results; dashed and dotted curves,
=0.7eV [Fig. 3b)], the maximum of the TDCS can be yelocity gauge results of 3C theory and 2SC theory from Roai.
found at 6,,~127°. For the caseE;=0.7eV andE, [15]. The TDCS is plotted in polar coordinates with respect to the
=3.3eV[Fig. 3c)], the maximum of the TDCS appears at angled, of the second electron with enery while the first elec-
01,=122°. The differences between the angles of the peakon with energyE, is emitted along the polarization axis.

position are now smaller but still noticeable. Note that our

TDCS are exaclly zero at,,=180° for equal energy shar- symmetric with respect to the polarization direction. Since

ing. This node is the direct consequence of the exact sym- : -
metry of the 'P state[35]. The peak position of the distri- retardation effects are expected to be negligible at such low

. . . . energies and, hence, the angular distribution should be sym-
glzgol?’sgavﬁgﬁ;’ ;Oggverned by the approximégamic metric with respect to the polarization direction, the differ-
T’he Q3,1) for the anéular distribution lies “in between” €nce of the peak position in the angular distributions on both

the experimental data and tlab initio 2SC calculation of ~Sides of the polarization axis can be regarded as a lower
Pontet al.[15] and is in somewnhat closer agreement with thePound for the experimental errors, which are about 11° in
data. We have shown both the original experimental data ofigs- 38-3(c). We note that there are now more data avail-
Ref.[7] as well as the corrected data for equal-energy shar@ble for other geometrie39] for which further tests will

ing [Fig. 3(@)] [38]. The agreement is significantly improved become possible in the near future.

for the revised data. We emphasize that our present results In conclusion, we have proposed the analytic continuation
contain no adjustable parameter and yield comparable, if n@f the approximate @) dynamical symmetry across the
better, agreement as a fully numerical state-of-the-art calcudouble-ionization limit in terms of the 3,1 group, the ho-
lation such as the 2SC approach. There are substantial disiogeneous Lorentz group. The group-theoretical approach
crepancies between the 2SC results and the approximate 3@ angular correlations in the continuum provides direct in-
results in the same gauge. The experimental peak positiorsghts into the emission pattern in double ionization. The
in the angular distribution are approximately equal for equalkngular distribution near threshold can be well described
and unequal energy sharifig] in agreement with the @3,1) based on the approximate dynamical symmetry of the two-
prediction. Note that the data of Lablanquéeal. are not electron system without an explicit calculation of the
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