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X-ray emission by ultrafast inner-shell ionization from vapors of Na, Mg, and Al
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The optimization of the physical processes of an inner-shell ionization x-ray laser is carried out theoretically.
Vapors of Na, Mg, and Al are adopted as a target material in order to avoid deleterious fast atomic processes
except for the inner-shell ionization process. The effects of the vapor density and x-ray intensity are studied.
Larmor x rays are suitable as a pump x-ray source because they have high brightness and short pulse. Their
peak intensity and energy spectrum are appropriate for inner-shell ionization. In the Mg vapor the gain of 10
and 103 cm21 can be obtained with the use of 1011- and 1014 W/cm2 intensity x rays, respectively.
@S1050-2947~99!00104-3#

PACS number~s!: 32.80.Hd, 32.80.2t, 42.55.Vc, 52.25.Nr
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I. INTRODUCTION

An x-ray-pumped inner-shell ionization laser has be
thought to be among the useful methods for x-ray laser em
sion @1–10#. Silfvast et al. @7# produced the laser at 441.
and 325 nm of Cd vapor pumped by a 12-eV soft-x-r
source with an approximated, blackbody distributio
Kapteyn and co-workers@8,9# made a laser at 108.9 nm b
the inner-shell ionization of Xe atom. However, there h
been no experimental demonstration of x-ray laser emis
through this process to the best of our knowledge. In orde
realize an inner-shell ionization x-ray laser, a higher brig
ness x-ray pumping source with higher photon energy
needed.~Meyeret al. @10# seem to have planned to employ
neonlike germanium soft-x-ray laser as a pump source fo
inner-shell ionization x-ray laser in Na vapor.! The necessary
brightness and photon energy of x rays are determined
target materials. In this paper we search for advantage
target materials as well as x-ray sources for the purpos
optimizing the physical processes of an inner-shell ionizat
x-ray laser.

The inner-shell ionization x-ray laser method was fi
proposed by Duguay and Rentzepis@1#. Kapteyn @3# and
Moon, et al. @4# theoretically showed that the lasing gain
10 cm21 associated with theKa transitions is possible by
irradiating x rays of 1014;1015W/cm2 intensity and 50-fs
duration on Ne or C atoms. In our previous paper@6# we
showed that the key to producing an x-ray laser is the cho
of target materials; we compared sodium atoms and car
atoms. The inner-shell 2p electron ionization cross section
of sodium atoms are much greater than those of the 1s elec-
trons in carbon atoms. Therefore, the use of sodium at
reduces the necessary intensity of an x-ray source. We
showed @6# that ultrafast inner-shell ionization processe
much faster than any other atomic processes, lead to a
conversion efficiency. Here we suggest making use of
ultrafast inner-shell ionization process while increasing
lifetime of inner-shell excited states~upper states! and reduc-
ing the secondary electron impact ionization rate. Let
note, as shown in Ref.@11#, that the inner-shell excited stat
of a (2p)21 hole in low Z matter such as Na, Mg, and A
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atoms has a much slower decay than aK- andL-shell hole of
any other atoms.~These materials were also selected in o
previous paper@6# because of large inner-shell ionizatio
cross sections.! In order to avoid secondary electron impa
ionization effect, Kapteyn@3# and Moonet al. @4# required a
relatively low density (1020cm23), which unfortunately
amounts to a~relatively! low gain. We show that a suffi-
ciently large gain can be obtained if we adopt the Na, M
and Al vapors with a density of 1017;1019cm23. ~Meyer
et al. @10# have also considered Na vapor as a target m
rial.! Our system of choice is an extension of that in t
experimental demonstration by Silfvastet al. @7#, who se-
lected no Auger states for the upper states of la
(4d95s2 2D) and a lower density of 1016;1017cm23.

A blackbody x-ray source has often been used as a pu
ing source@3,4,7–9,12#. In addition, the Larmor x-ray sourc
@6# may be employed. A recent progress of intense pul
lasers gives us new sources of high-brightness short-pul
rays, such as the Larmor radiation@13# ~due to the accelera
tion of electrons in the laser electromagnetic fields!, as well
as the high harmonic generation@14#, which is based on
laser-driven periodic bremsstrahlung.~Note that the Larmor
x-ray radiation has been well known, as written in Ref.@13#.
It has not yet been observed experimentally; however,
laser intensity just begins to reach an order of 1020W/cm2.)
Especially we consider the laser-induced Larmor radiatio
rays driven by relativistic short laser pulses because t
features~which follow! are suitable for a pumping source a
is demonstrated in Sec. IV B.~i! The radiative spectrum o
Larmor x rays has a peak atv5a0

3v0 , wherev0 anda0 are
the laser frequency and normalized laser field (a0
5eE0 /mv0c). This is in contrast to the bremsstrahlun
whose spectrum is flat. Only when the laser power enters
relativistic regime (a0>1), the laser-induced Larmor x ray
begin to appear. ~ii ! The radiative power of the Larmor x
ray increases linearly, proportional to the laser intensity a
to the density of electrons, whereas the bremsstrahl
power increases in proportion to 1.5 powers of the laser
tensity and square of the electron density. The intensity~in
W/cm2! of the Larmor x ray in the linear regime is@15,16#
2732 ©1999 The American Physical Society
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LLX;1011a0
2

a0
218

2a0
218

~10221ne!

3~Rs!
2

1

~114pRs /lLa0
2!~112pRs /lLa0!

, ~1!

where ne , lL , and Rs are the electron density~units of
cm23!, wavelength~units of mm! of the laser, and diamete
~units ofmm! of spot size. For example, at the laser power
30 TW focused on a target~electron density ne53
31022cm23) with Rs55 mm (a055, lL50.88), the x-ray
intensity due to the Larmor radiation is;1014 W/cm2 and
the peak energy is about 100 eV (;1011 W/cm2 for the
blackbody x rays with the same peak energy according
Stefan-Boltzmann’s law of radiation!. Since the large popu
lation of the upper states~inner-shell excited states! is re-
quired to obtain high gain, high brightness x rays are imp
tant to overcome the loss of population due to the fast Au
process. ~iii ! The duration of x rays is controlled by that o
laser. The x-ray power bursts in a very sharp and short p
~comparable to the laser pulse length!. On the other hand, in
the blackbody x rays, the duration time becomes mu
longer because it is decided by atomic processes. Irradia
such x rays on certain atoms with appropriate conditio
should lead to ultrafast inner-shell excitation.

II. ATOMIC PROCESSES

Illustrated in Fig. 1 are schematic atomic processes al
with the associated x-ray emission by inner-shell ionized
oms. The upper~lower! states of laser correspond
2p53s(2p6), 2p53s2(2p63s), and 2p53s23p(2p63s3p);
and the wavelengths are 40, 25, and 17 nm for Na, Mg,
atoms, respectively. Since the calculated gain length p
ucts agree well with those measured in their experiments
Cd vapor in Ref.@7#, we adopt a similar atomic proces
model. Namely, we consider only fast atomic processes,
is, photoionization, autoionization, electron-impact ioniz
tion, and radiative transition. The photoionization a

FIG. 1. Atomic processes in x-ray emission from the sing
excited states.
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electron-impact ionization cross sections (sP and se) are
derived from the data or empirical formulas in Refs.@17,18#
and @19,20#, respectively. The energy levels, radiative tra
sition probabilities, and autoionization rates are calcula
with the use of Cowan’s code@21,22#.

The rates of change of concentrations of the vario
atomic states as illustrated in Fig. 1 may be governed by
following equations:

Ṅ052~R0,11R0,2!N0 ,

Ṅ15R0,1N02D1N1 , ~2!

Ṅ25R0,2N01D2N2 ,

with Ri , j5Ri , j
e 1Ri , j

P . The subscripts 0, 1, 2 correspond
the initial atom, upper states~inner-shell excited states!, and
lower states, respectively. The coefficientDi expresses the
decay rate for statei, that is, D15Aa1Ar1R1,3 and D2
5R2,4. The ratesRP, Re, Ar , andAa are those of photoion-
ization, electron-impact ionization, radiative transition pro
ability, and autoionization, respectively. HereRP andRe are
given by

RP5E
EIion

` IsP

hn I
d~hn I !, ~3!

Re5E
Eeion

`

ves
enedEe , ~4!

respectively, whereEe , ne , I, and hn I are the electron-
impact energy, population of the electrons, intensity of
source~driving! x rays, and photon energy. The ionizatio
energiesEeion and EIion are those for photoionization an
electron-impact ionization, respectively. For the analysis
the x-ray laser, the gainG of soft x rays from the lasing
process by the transition between an upper state and a lo
state is given by

G52.731022f i

P

g
f ul ,

with

P5Nup2gNlow , g5glow /gup, ~5!

whereNup~low! , gup~low! , and f ul are the population, statistica
weight of the upper~lower! state, and oscillator strength, an
f i is the lifetime of the upper state.

III. X-RAY LASER CONDITIONS

The populationsN02N2 in Eq. ~2! may be analytically
solved as follows@6#:
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N05N00e
2~R0,11R0,2!t, N15

R0,1N00

R0,12D1
~e2D1t2e2~R0,11R0,2!

t!,

N25^ves0,2
e &R01N00

2 F 1

R0,12D1
S 1

D22D12R0,1
e2~D11R0,1!t2

1

D222R0,1
e22R0,1tD

1
1

~D222R0,1!~D22D12R0,1!
e2D2tG , ~6!
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where N00 is the density of the vapor andne can be the
population of electrons ejected mainly from the targ
through the inner-shell photoionization process. Therefo
we can set

ne;(
i

Ni;N1 . ~7!

The Ni values can be expanded in terms of low-ord
processes because of the short duration time. Then the p
lations of the upper (N1) and lower (N2) states can be ob
tained as@5#

N1;R0,1N00$t2~R0,11D1!t2/2%, ~8!

N2;^ves0,2
e &R0,1N00

2 t2/2. ~9!

Here in the Na, Mg, and Al vapor,D2 is so small that it is
ignored. The population inversionP in Eq. ~5! becomes as
follows:

P5R0,1N00@ t2~R0,11D11g^ves0,2
e &N00!t

2/2#, ~10!

where only fast processes such asR0,1
P , R1,3

P , andg^ves0,2
e &

are considered. The maximum valuePmax of population in-
version and duration time (tdur) of x-ray laser are given by

Pmax5
R0,1N00

2~R0,11D11g^ves0,2
e &/N00!

, ~11!

tdur52$R0,11D11g^ves0,2
e &N00%

21. ~12!

We find that the duration time in a vapor target is mu
longer than that in a solid target. For example,tdur5100 fs,
0.1 fs for vapor (1019cm3) and solid (1022cm3) for the typi-
cal values ofve5108 cm/s,s0,2

e ;10215cm2 andg510. The
maximum gainGmax in Eq. ~5! can be rewritten by

Gmax;2.731022
1

D1

R0,1N00

2g~R0,11D11g^ves0,2
e &N00!

f ul

;2.731022
1

D1

3
Is0,1

P N00

2g~ Is0,1
P 1D11g^ves0,2

e &N00hn I !
f ul . ~13!

We see that in the case ofD1;g^ves0,2
e &N00, the Gmax is

saturated. Then the initial density (N00,sat) is obtained as
t
e,

r
pu-

N00,sat5
D1

g^ves0,2
e &

. ~14!

With the use of previous values forD1 , g, ve , and s0,1
e ,

N00,sat51018cm23. Further, theG of ;10 cm21 may be ob-
tained in the case ofs0,1

P 510218cm2, hn I5100 eV, andI
51012W/cm2.

IV. THE TARGET AND DRIVER

We explore target materials and x-ray pumping source
order to find an optimized class of inner-shell ionizati
x-ray laser. We show that the Na, Mg, and Al vapor targ
and Larmor x rays are suitable for this laser.

A. Target material

The Auger rates for theL-shell inner-shell excited state
of vapor of Mg and Al (;1012s21) are much smaller than
those ofK-shell inner-shell excited states (.1014s21) @11#.
~In the Na, Auger decay does not occur.! As seen from Eq.
~5!, the longer lifetime of the inner-shell excited states
related to higher gain. Further, the lower density is expec
to produce a longer duration time@3,4,6#.

Figure 2 shows the gain as a function of time for Na, M
and Al vapor at 1019-cm23 density. We consider the x-ra
intensity of 1012W/cm2 with 0–500-eV photoenergy. A 10
cm21 gain at 100 fs is expected for these vapors. In o
previous paper@6# the x-ray intensities of 1015W/cm2 and
1013W/cm2 are required for the creation of hollow atoms a
for the inner-shell ionization x-ray laser method of Na
solid, respectively. The inner-shell ionization method of Na
solid is precarious, as the duration time is shorter than 1
On the other hand, the current inner-shell ionization x-r
laser method with these vapors is far more realistic beca
of the long duration time and high gain.

Figure 3 shows the x-ray intensity dependence for gain
a Mg vapor target with 1019-cm23 density. For I
<1013W/cm2, the gain increases, as the x-ray intensity b
comes larger. The gain duration time~;100 fs! is about the
same over a wide range of the pump power. On the ot
hand, for higher intensitiesI>1013 W/cm2, a different be-
havior is found. The maximum gain remains about the sa
for different I and the duration time decreases according
I 21. This is in agreement with Eqs.~11!, ~12!, and~13!. For
a low x-ray intensity (D1!g^ves0,2

e &N00), Pmax andtdur may
be rewritten as
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Pmax5
R0,1

g^ves0,2
e &

}I ,N00
0 , ~15!

and

tdur52$g^ves0,2
e &N00%

21}I 0,N00
21. ~16!

Namely,Pmax (tdur) is ~inversely! proportional toI (N00) and
remains constant for variousN00(I ). On the other hand, fo
D1@g^ves0,2

e &N00, we have

Pmax5
R0,1N00

2~R0,11D1!
}I 0,N00 ~17!

and

tdur52$R0,11D1%
21}I 21,N00

0 . ~18!

FIG. 2. Gain~1/cm! vs time~fs! for inner-shell ionization x-ray
laser of Na, Mg, and Al vapor with 1019-cm23 density. The pump-
ing x-ray source has the intensity of 1012 W/cm2 and constant pho-
toenergy distribution.

FIG. 3. Gain~1/cm! vs time~fs! for inner-shell ionization x-ray
laser of Mg vapor with 1019-cm23 density and various intensity o
x-ray source.
In this case,Pmax (tdur) increases~decreases! according to
N00(I

21) and is the same value for differentI (N00). As the
autoionization and radiative transition are independent of
intensity of x rays, only the multi-inner-shell ionizatio
dominates in high brightness x rays@6#.

Figure 4 shows the gainG as a function of time atI
51013W/cm2 for various densities of Mg vapor. At low den
sity, the gain increases in proportion to the density and
duration time remains constant~;1 ps! for various N00.
Equations~17! and~18! indicate these scalings. In this cas
the gain and duration time are determined by the x-ray
tensity and the lifetime of upper states, respectively. Wh
for high density (N00>1018cm23!, the duration time de-
creases as the density becomes greater andPmax remains
constant for variousN00, as shown in Eqs.~15! and ~16!.
The short duration time results from the secondary elect
impact ionization, which destroys the inversion population
shown in Refs.@2–4, 6#.

B. X-ray source

In Ref. @6# Larmor x rays are employed as a pump x-r
source for producing the inner-shell excited states of ato
Larmor x rays can have high brightness and short pulse
mentioned before. As the large population of the upper sta
~inner-shell excited states! is required in order to obtain high
gain, high brightness x rays are useful to overcome the
of population due to fast autoionization and electron-imp
ionization. By the short pulse, the intensity of x rays can
weakened after a large population of inner-shell exci
states is obtained. The high-intensity x rays play a role
disturbance for atomic structure. Since the Larmor x ra
have an energy peak, we can achieve high conversion
ciency from incoherent x rays to fluorescent x rays by sett
the peak energy just above the inner-shell ionization thre
old energy where the ionization cross sections are the larg

Figure 5 shows the same as Fig. 2 for a Larmor x-r
pump source atEpk5100 eV (a0;5). The gain is about

FIG. 4. Gain~1/cm! vs time~fs! for inner-shell ionization x-ray
laser of Mg vapor withI 51013 W/cm2 and various vapor density.
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three times as large as that in Fig. 2, though the duration t
is the same. In bremsstrahlung x rays, since the flat phot
ergy distribution is in the range of 0–1000 keV ata055, the
gain is much smaller than that in Fig. 2.

Figure 6 shows the gain vs time for various x-ray intens
I given by Eq.~1!. We treat the electron densityne as a
constant and we employ the scaling equation:

I 5I ~100 eV!~1022Epk!
2/3, ~19!

because ofEpk}a0
3 and I}a0

2 where the x-ray spectrum
peaks atEpk and the yielded x-ray intensity isI and I 100 eV
51012W/cm2. The gain decreases asEpk ~or a0) increases.
The duration time does not vary much except for the cas
Epk;80 eV. For Epk;80 eV, the energy spectrum of fre
electrons is mostly lower than the threshold energy and
secondary electron-impact ionization becomes slower.
should adjusta0 in such a way to makeEpk just above the
inner-shell ionization threshold energy~;80 eV!. Then we
can achieve higher conversion efficiency for x-ray las
However, we have a large enough gain even atEpk
5200 eV.

FIG. 5. Gain~1/cm! vs time~fs! for inner-shell ionization x-ray
laser of Na, Mg, and Al vapor with 1019-cm23 density pumped by
Larmor x-ray source withEpk5100 eV.

FIG. 6. Gain~1/cm! vs time~fs! for inner-shell ionization x-ray
laser of Mg vapor with 1019-cm23 density and Larmor x-ray sourc
with variousEpk values.
e
n-

of

e
e

r.

Figure 7 shows the gainG with the use of a time-
dependent x-ray pump source for Mg vapor. The tim
dependent intensity of the source may be given by

I ~ t !5I 0 exp@2a~ t2tpk!
2# ~20!

FIG. 8. An example of detailed requirements for the experime

FIG. 7. Gain~1/cm! vs time~fs! for inner-shell ionization x-ray
laser of Mg vapor of 1019-cm23 density and time-dependent Larmo
x-ray source withEpk5100 eV.
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with I 051012W/cm2, N0051019cm23, tpk550 or 100 fs.
The gain in Fig. 7~b! is about half as large as that in Fig
7~a! and 7~c!. However, the time dependence of the sou
does not change the result by much.

Figure 8 shows an example of detailed requirements
an experiment. As soon as the high-intensity (1020W/cm2,
a0;5) short-pulse~100 fs! laser irradiates the plasma wit
ne5331021cm23, Rs55 mm, and RL590mm, the high
brightness (1013W/cm2! short-pulse~100 fs! Larmor x rays
with Epk5100 eV are emitted. By using the Larmor x ra
for an x-ray pump source and Mg vapor with 1019-cm23

density for a target, the inner-shell ionization x-ray laser w
largeG ~;300 cm21! may be realized.

V. SUMMARY

We have optimized an inner-shell ionization x-ray las
with the use of a high-intensity short-pulse Larmor x-r
pump source and the adoption of vapor of Na, Mg, and A
a target material. Such vapor makes the inner-shell ioniza
process dominant. A high gain x-ray lasing~.10 cm21! may
be obtained with an x-ray source of 1012W/cm2. We have
also studied the gain as a function of the vapor density
x-ray intensity. The different trends are expected for the sa
-
t-
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et

m
.

le
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r

r

s
n

d
u-

rated and unsaturated regimes of the density and intensit
the unsaturated regime, the gain increases in proportio
the density and intensity. After the saturation occurs, the g
remains constant for various densities and x-ray intensit
On the other hand, the duration decreases, as the den
and intensities increase. Since the Larmor x rays have h
brightness and short pulse, it is suitable for the inner-sh
ionization. The high brightness is important for an ultrafa
inner-shell ionization. The short pulse plays an importa
role in keeping the atomic structure intact. A Larmor x-r
spectrum has an energy peak as a function of the laser in
sity of Epk}a0

3. The high conversion efficiency may b
achieved by setting the peak energy just above the in
shell ionization threshold energy where the ionization cr
sections are the largest.
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