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Nonadiabatic polarization potentials in electron- and positron-molecule scattering:
Application to e21H2

Ahmed Bouferguene,* Ignacio Ema,† and Charles A. Weatherford
Florida A&M University–Army High Performance Computing Research Center

and Department of Physics, Florida A & M University, Tallahassee, Florida 32307
~Received 30 March 1998!

The nonpenetrating approximation appears to be the simplest way to allow one to incorporate nonadiabatic
effects in the polarization potential calculated by means of the polarized orbital method. Unfortunately, this
approximation is not well suited for an efficient implementation in quantum chemistry codes which, nowadays,
use exclusively Gaussian-type orbitals. This computational limitation is remedied by replacing the incident
point charge by a spherical Gaussian charge distribution, the exponent of which is suitably chosen. In so doing,
we obtain a very efficient numerical algorithm that may be used with any molecular target regardless of its
complexity or geometry.@S1050-2947~99!10201-4#

PACS number~s!: 34.80.2i, 34.85.1x
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I. INTRODUCTION

When studying low-energy electron-~positron-! molecule
scattering, one of the main concerns is to elaborate com
tationally attractive methods which could be implemen
and applied easily regardless of the size and complexity
the target. In the past few decades, several computati
techniques have emerged as possible candidates, allo
one to investigate quantitatively various facets of elect
~positron! scattering, especially those which are difficult
reach experimentally. In the context of time-independent f
mulation, there have been at least four important revie
and/or conference proceedings concerned with the the
and computational aspects of this subject@1–4#. These have
reviewed a number of different methods, all with varyin
degrees of success and sophistication. The methods use
traditionally classified under one of two general headin
~1! numerical and~2! square integrable also known asL2

methods. Although the boundaries between these approa
are quite blurred, the first category customarily enco
passes linear-algebraic@5#, single-center expansion@3,6,7#,
and partial differential approaches@8#. The second group o
methods, i.e.,L2, mainly includes theR-matrix @9–15#, com-
plex Kohn @16#, T-matrix @17,18#, and so-called Schwinger
variational@19–22# procedures.

From a practical viewpoint, i.e., collisions of electro
with complex molecular targets larger than diatomics, theab
initio oriented Schwinger variational~SV! and R-matrix
methods proved to be viable approaches which attra
much attention in the past few years. Without going into
detailed discussion of these methods, let us just recall
the former, which is inherently nonlocal, was designed to
accurate at the static-exchange level. As a consequence
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corporating a local polarization potential into the SV nume
cal procedure becomes a hard task. TheR-matrix method,
also referred to as the dichotomic method, starts by partiti
ing the configuration space into several~at least two! re-
gions. The (N11)-particle problem is first solved within a
finite box ~e.g., bound-state calculation within a sphere
finite radius! but the scattering information is extracted b
numerically propagating the scattering wave function fro
the surface of the box into the asymptotic region. The wo
on this procedure gave rise to the so-calledU.K. scattering
package@11#. Although this package is presently restricted
linear targets since it is based onALCHEMY II @23#, its exten-
sion to handle targets with arbitrary geometries is obviou
feasible, especially by using Gaussian-type orbitals to rep
sent the continuum functions describing the scattered e
trons ~positrons! @14#. As a consequence, we can conjectu
that implementation of the ideas of theR-matrix method into
a system such asGAUSSIAN or ACES II would normally lead in
the near future to a package exhibiting the same high s
dard of efficiency already achieved in bound-state calcu
tions. However, even though fullyab initio methods like SV
or theR-matrix procedure are already available for use, th
are computationally limited by the size of the targets sin
these calculations require very large basis sets in orde
predict correct estimations of cross sections. As a usefu
ternative to the aboveab initio oriented procedures, two les
rigorous methods using a static-exchange-polarization po
tial received special attention, namely, the polarized orb
~PO! method originated by Temkin@24# and that of Gian
turco and co-workers@4,25#. These two approaches, whic
rely uponad hocassumptions in order to simplify the math
ematics, were successful for small diatomics@26,27# and
simple polyatomics~generally symmetrical! @25,28,29#.

The PO method@24,26,27,30–33# is probably the most
straightforward method since it basically replaces
(N11)-particle problem with a much more tractable pro
lem of a single particle moving in a potential field. Unfortu
nately, this approach, which intrinsically is adiabatic, suffe
drastically when the incident particle is in the close neig
borhood of the target. As a matter of fact, in such a reg
the polarization potential calculated within the PO ansatz
known to be abnormally too strong, hence leading to inc
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PRA 59 2713NONADIABATIC POLARIZATION POTENTIALS IN . . .
rect cross sections@34#. This major drawback was empiri
cally corrected by Temkin and Lamkin@30#, who proposed
to ‘‘turn off’’ the coulombic interaction between the projec
tile and bound electrons whenever the former is within
target charge cloud. Although this procedure may seem
little crude, it is nonetheless founded on a physical id
~semiclassical! in which the projectile is supposed to acqui
a comparable velocity to that of bound electrons once ‘‘
side’’ the target cloud. Consequently, within this region t
incident particle is considered as if it had no noticeable eff
on the polarization@33#. Temkin’s method, which was suc
cessfully applied to modelize various electron-atom scat
ing processes, was also known as the nonpenetrating
proximation. In the case of molecular targets, a variation
Temkin’s prescription, called the better than adiabatic dip
~BTAD! method was thoroughly investigated and applied
Gibson and Morrison@27# to studye21H2 and by Morrison,
Saha, and Gibson fore21N2 @35#. In this approach, the
polarization potential is calculated using an interaction
tential of the form (r /s2)P1@„r /r )•(s/s…#d(r ,s), in which
d(r ,s) is a step function. Unfortunately, the integra
needed to elaborate a computational procedure using the
off approximation, either BTAD or Temkin’s, constitute
serious practical limitation especially for nonsymmetric
targets. Indeed, in such cases the scattering potential h
be evaluated on a relatively tight three-dimensional g
leading to very time-consuming calculations. More precise
all the advantages provided by Gaussian-type orbi
~GTO’s! are destroyed by the cutoff since the abov
mentioned integrals are to be calculated within a fin
sphere. As a consequence, it is no longer possible to
those integral transformations@36#, allowing one to obtain
efficient algorithms.

The present work aims at investigating an approach tha
computationally attractive and suited for use on any mole
lar targets within the PO method. For such a purpose,
propose to replace the incident point charge by a smo
exponentially decaying charge distribution, i.e., of Slater
Gaussian type. However for obvious practical reasons,
natural choice is ultimately a spherical Gaussian charge d
sity that is steadily made more diffuse as the projectile
proaches the target. This approach allows one to avoid
integration over a finite sphere~which spoils the practica
aspects of GTO’s! since the interactions between the impin
ing particle and the target are weakened by adjusting
exponent which controls the spread of the distribution.
a first test of this method, we have investigated
reactione21H2, following closely the work of Gibson and
Morrison @27#. Our calculated elastic cross sections are co
pared to the BTAD results of these authors as well as o
investigators.

II. THEORY: AN OUTLINE

In the time-dependent approach to electron-molecule s
tering, the objective is to solve the Schro¨dinger equation in-
volving the following Hamiltonian:

ĤT~ra, Ri , s!5Ĥm~ra, Ri !1Vs2m2 1
2 ¹s

2, ~1!
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in which Ĥ(ra, Ri) represents the Hamiltonian of the iso
lated molecule depending only on the coordinates of
bound electrons$ra%a51,2, . . . ,Ne

, and those of the nucle

$Ri% i 51,2, . . . ,Nn
. The interaction of the projectile with the

electrons and the nuclei of the target molecule is accoun
for by Vs2m , which is explicitly defined by

~2!

In order to simplify the mathematics, it is customary~though
not always justified! @2# to introduce various approximation
the most important of which is the so-called fixed nuc
approximation~FNA!. As a consequence, one will have
solve the equation

@ĤH~e!~ra ,s;Ri !2E#C~ra ,s;Ri !50, ~3!

in which the HamiltonianĤ(e) describes the motion of the
electrons in the field of fixed nuclei and is written as

Ĥ~e!~ra, s;Ri !5Ĥm
~e!~ra, Ri !1Vs2m2 1

2 ¹s
2, ~4!

where the coordinates of the nuclei,$Ri%, now appear as
parameters whose values are fixed in advance. In what
lows, these parameters will deliberately be omitted from
definition of the wave functions in order to avoid unnece
sary complicated expressions.

Now that we have written the formal Schro¨dinger equa-
tion describing the problem under study, it is time to ma
the very difficult decision as regards the computational p
cedure that should be used for solving Eq.~3!. In the present
investigation, we will be using the PO method, which, a
cording to the introductory remarks, proved to be very use
for the modelization ofe21atom,e21H2, ande21N2 col-
lisions. As a starting point of the PO method, th
(Ne11)-particle wave function is assumed to have the fo

C~ra, s!5Ã@C~d!
„ra; s!F~s!], ~5!

in which, C (d)(r ;s)represents theNe-particle wave function
of the target as distorted by a stationary external charge
cated ats, while F~s! describes the scattered particle. T

operatorÂ antisymmetrizes the functionC(ra ,s) with re-
spect to the interchange of any bound electrons with the s
tered one. Before going into further details, it should
noted that if exchange were not allowed, the above definit
would be formally analogous to the wave function obtain
in the framework of the FNA in the sense that both of the
are intrinsically adiabatic. To be more specific, Eq.~5! ex-
presses the idea that the motion of the bound electrons
that of the projectile remain constantly uncoupled no ma
how closely the projectile approaches the molecule. T
nonadiabaticity may also be depicted by saying that the e
tron density of the molecule is allowed to adjust its sha
instantaneously~i.e., bound electrons moving at high velo
ity! in such a way as to minimize the repulsions with t
impinging particle ~i.e., low energy!. Obviously, even in
low-energy scattering, this model is only valid when the p
jectile is far enough from the target, and is expected to br
down as soon as the incident particle closely approaches
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molecule. The experimental evidence of such a situatio
the possible existence of a ‘‘stable’’ anionic species dur
the collision process, in which case all the electrons are to
treated on an equal footing. In their attempt to remedy t
problem, Temkin and Lamkin@30# suggested taking nona
diabatic effects into account by empirically modifying th
form of the interaction potentialVs2e of Eq. ~2!. More ex-
plicitly, Vs2e is multiplied by a step function which ‘‘shut
down’’ the interaction, i.e.,Vs2e50, inside the sphere cen
tered on the center of mass~COM!, and limited by the loca-
tion of the projectile. This yields

Vs2m
T 5 (

a51

Ne d~r a,r !

ura2su
2(

i 51

Nn Zi

uRi2su
, ~6!

where d(r a,r ) is a Boolean-type function~step function!
such that it is equal to 1 if its argument were true, and
otherwise. It should be pointed out that even whenVs2m is
weakened by means of the above procedure, the corresp
ing polarization potential still exhibits a strong attraction
small and intermediate radial distances@27#. This behavior
is, once more, corrected empirically by dropping selec
terms from the expansion ofVs2e

T in terms of Legendre poly-
nomials. There is a compelling theoretical reason for dr
ping the monopole@27#, at least when the projectile is ou
side the target cloud, in which case the monopole cancels
in the polarized and unpolarized energies. However, for
other terms~except the dipole! the reasons are rather ob
scure, since they do not have any theoretical justificatio
The dipole term, which is the only term appearing in t
BTAD approximation, is always kept since it ensures a c
rect long range decrease, i.e., 1/r 4, of the polarization poten-
tial:
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Vs2m
BTAD5

r

s2
P1F r•s

rs Gd~r ,s!2(
i 51

Nn Zi

uRi2su
. ~7!

Thus far, we have made some general comments reg
ing the PO method and the polarization potential obtain
from the adiabatic form of the wave function introduced
Eq. ~5!. In the following, we will briefly review how the
polarization potential enters the scattering equation, and g
its explicit definition as obtained in the framework of the P
method. Basically, the derivation of the scattering equatio
carried out by requesting that the projection of Eq.~3! over
the unperturbed wave function satisfies

^C~0!~ra!uĤ~e!~ra ,s!2EuC~ra ,s!&50, ~8!

where C (0)(ra)is the unperturbed function describing th
isolated target. According to Drachman and Temkin@26#,
this is a necessary condition forC(ra ,s) to satisfy the
Schrödinger equation, but is not sufficient. However, the
authors also reported that use of the above equation yi
rather satisfactory results provided that the perturbed ta
function C (d)(ra ;s) is good enough. Thus, starting with Eq
~8!, one obtains, after some algebra, an ‘‘adiabatic’’ scatt
ing equation which reads

@2 1
2 ¹s

21Vs1Vp
AD2 1

2 k2#F~s!5exchange terms, ~9!

where the static and the polarization potentials, respectiv
are defined as follows:

Vs~s!5^C~0!~ra!uVs2muC~0!~ra!&, ~10!
~11!
e
oss
rst
tial
ses

ing
where E(0) and E(d), respectively, are the energies of th
isolated target and when subjected to the field of a po
charge located ats. In the case of many electron targe
these energies are variationally determined using the w
known Hartree-Fock-Roothaan procedure. The first of
above equations, i.e., the static potential, is in fact the fi
order perturbation of the energy due to the potentialVs2m .
Accordingly, the full adiabatic polarization given by Eq.~11!
includes all the corrections of the energy starting withE(2)

and going up toE(`).
To close this section, it should be mentioned that wh

calculated from Eq.~11!, the strength ofVp
ADis overestimated

as soon as the projectile closely approaches the target.
nonpenetrating procedure attempts to correct this defec
empirically incorporating some of the nonadiabatic effects
the definition of the polarization potential. For such a p
t

ll-
e
t-

n

he
by
n
-

pose, the full Coulomb potentialVs2m , occurring in Eq.~11!
is replaced by that of Temkin@Eq. ~6!# or by that of the
BTAD method@Eq. ~7!#.

III. COMPUTATIONAL PROCEDURE

In the framework of the BTAD or more generally th
nonpenetrating PO method, the determination of the cr
sections is generally carried out in two major steps. The fi
of these consists in determining the scattering poten
VSCAT acting on the projectile, while the second addres
the resolution of the corresponding equation~9!.

Among the most cumbersome tasks in evaluatingVSCAT is
the elaboration of a reliable numerical procedure allow
one to generate the following matrix elements:
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INP5^gi , j ,k@z1 ,ur2au2#uVs2e
BTADugi 8, j 8,k8@z2 ,ur2au2#&0<r<s

~12!

where the integration is carried out inside a sphere cent
on the COM, and such thatr<s. The location of the GTO’s
may be the same, i.e.,a5b, in which case the above integra
reduces to a two-center one-electron integral. For numer
purposes, the above integrals may be evaluated either
lytically by means of some series expansion, or numeric
using a hybrid method involving both analytical and nume
cal integration@27#. To be more specific, Gibson and Morr
son first expanded the GTO’sgi , j ,k andgi 8, j 8,k8 in terms of
spherical harmonics, making the integration overu and f
very straightforward. The remaining integral, i.e., overr, is
finally carried out using a numerical scheme, namely, a fi
step-size trapezoidal quadrature. However, in either of th
computational strategies the time expense is expected t
crease dramatically when dealing with large molecular
gets even when more sophisticated integration technique
applied to carry out the radial integrals.

As pointed out in Sec. I, it should be remembered that
of the practical advantages of GTO’s, in simplifying the c
culations of molecular integrals and hence making GT
based quantum chemistry codes so efficient, are to a l
extent destroyed by Temkin’s cutoff. Indeed, because
radial integration is carried out within a finite sphere, it is
longer possible to use those integral transformations@36#
which allow one to obtain rapid and reliable algorithms f
the evaluation of multicenter integrals. Consequently, wh
large nonsymmetrical molecular systems are considered~for
which the potentials, i.e., static, polarization, and exchan
are calculated over a very large number of grid points!, use
of the cutoff procedure exhibits serious practical limitation
An interesting alternative to Temkin’s prescription is to r
place the impinging point charge by a normalized spher
Gaussian charge distribution giving rise to the interact
potential:

Vs2m
GTO~s;zs!5 (

a51

Ne K r~zs ,ur s2su2!

ura2r su
L

rs

2(
i 51

Nn

Zi K r~zs ,ur s2su2!

uRi2r su
L

rs

, ~13!

in which ^¯& rs
indicates that the integration is performe

over the variabler s and wherer(zs ,ur s2su2)is a spherical
Gaussian charge distribution such that

r~zs ,ur s2su2!5~2zs /p!3/2exp~22zsur s2su2!, ~14!

wherezs is an adjustable parameter. It is clear that the ab
definition may be made more flexible and hence improve
results by expressing the densityr(zs ,ur s2su2) as a linear
combination of spherical Gaussians with more variatio
parameters. However, at this stage of our work this gene
zation would be too ambitious, since one first needs to ela
rate the automatic procedure allowing the exponents to
adequately chosen.

The analytical form of the new interaction~13! deserves
few comments. First, the above defined potential is smo
ed
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everywhere, which makes it more consistent with the co
nuity principle of quantum mechanics@31# as compared to
the cutoff. It should, however, be pointed out that accord
to Drachman and Temkin@26#, the noncontinuous step func
tion of Eqs.~6! and~7! may be regarded as the leading ter
of the series representation describing a smooth cutoff. S
ond, if the exponentzs is large enough, the potentialVs2m

GTO

will ultimately mimic the interaction potential of a poin
charge with the target. In other words, this would lead to
well-known adiabatic potentials. Finally, in contrast
Temkin’s procedure, the above potential does not necess
enforce the polarization to vanish in the COM~unless one
chooses the valuezs50, in which case there is no projectile!.
As a matter of fact, in the case of molecules there is
physical evidence for a zero polarization in the COM. Mo
precisely, in the neighborhood of the COM, where sho
range effects are normally dominant, it suffices to adjust
exponent so as to obtain a sufficiently weak polarization.

Regarding the exchange term, i.e., the right-hand side
Eq. ~9!, it will be approximated by the so-called Hara fre
electron-gas model potential~HFEG!. This procedure was
thoroughly discussed by Morrison and Collins@37#. The ad-
vantage of this strategy is the ease of its computatio
implementation, which is made possible by the removal
the nonlocality that is intrinsically built into the exact ex
change potential. More specifically, the HFEG model e
change is defined by

Vex
HFEG52~2/p!kF~s!F@h~s!#, ~15!

in which kF(s) is the Fermi momentum, and where the fun
tion F is defined as

F@h~s!#5
1

2
1

12h2~s!

4h~s!
lnU11h~s!

12h~s!U, ~16!

with

h~s!5
k~s!

kF~s!
and kF~s!5@3p2r~s!#1/3, ~17!

where the local momentumk~s! is related to the ioniza-
tion energy according to the relationk2(s)52(Einc1I )
1kF

2(s), in which Einc5k2/2 is the energy of the inciden
particle whileI is the ionization potential of the target mo
ecule. AlthoughI is defined as the ionization potential, it
in fact used as an adjustable parameter for tuning the HF
@37#. Consequently, the numerical value attached toI is in
fact case dependent. In the present work we use the tu
value of Gibson and Morrison@27#, namely,I 52.27 eV.

The second step of the present electron-molecule sca
ing computational procedure is to extract the cross sect
by solving Eq.~9!. For such a purpose it is customary,
least for small molecules, to expand the scattering w
function F(s) in terms of spherical harmonics. This yield
the following coupled differential equations for the radi
part:
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F d2

ds2
2

l ~ l 11!

s2
1k2G f l

m~s!

52 (
l 850

^Yl
m~u,w!uVSCAT~s!uYl 8

m
~u,w!& f l 8

m
~s!,

~18!

where Yl
m(u,w) represent surface spherical harmonics a

the scattering potentialVSCAT5Vs1Vp1Vex. For numerical
purposes, the coefficients of the right-hand side are evalu
by expanding the scattering potential in terms of spher
harmonics which in the case of linear molecules~lying on
the Z axis! reduce to Legendre polynomials. As a cons
quence, the RHS of the above equation may be written

(
l 850

F (
l5u l 2 l 8u

l 1 l 8 A2l11

4p
^ lmul0u l 8m&Vl

SCAT~s!G f l 8
m

~s!,

~19!

where^ l 1m1u l 2m2u l 3m3& denotes the so-called Gaunt coef
cients ~also related to Clebsch-Gordon’s. See Ref.@38#,
p. 751!. The symbol(9 indicates that the summation is to b
carried out with a step of 2. The coefficientsVl

SCAT(s)are
determined by a numerical integration according to

Vl
SCAT~s!5

2l11

2 E
21

1

VSCAT~s!Pl~x!dx

5(
i 51

n

wiV
SCAT~si !Pl~xi !, ~20!

where$wi%1< i<nand$xi%1< i<n are the weights and the roo
of the Gauss-Legendre quadrature,a priori chosen to be used
for the calculation of the coefficientsVl

SCAT(s). Accordingly,
the set of vectors$si%1< i<n corresponds to the location of th
projectile such thatsi5(s,u i). In practice, the values of th
scattering potential are first calculated over a polar grid
which each ray corresponds to a root of the Gauss-Lege
quadrature used in Eq.~20!.

IV. RESULTS AND DISCUSSION

In this section, we will essentially compare the numer
obtained with the procedure presented above and those o
BTAD approximation. The molecular system we are cons
ering is H2 ,which, somehow, constitutes a necessary s
before going into any other investigation. As a first instan
~Fig. 1! we have calculated the full Gaussian polarizati
potential for an exponentzs varying linearly with the dis-
tance s separating the projectile from the COM, i.e.,zs
5bs1e, and such thate→0. In so doing we enforce the
polarization to be very small in the neighborhood of t
COM, and in the meantime increase the contraction of
Gaussian density once far enough so as to mimic a p
charge. As may be seen, the polarization potential beco
stronger in the region of interest~i.e., short and intermediat
separations! for increasing values ofb. The upper limit, of
course, is the full adiabatic polarization for whichb→1`.
From a physical viewpoint, this amounts to saying that
d

ed
l
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the
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e

projectile which at infinity behaves as a point charge~de-
scribed by a highly contracted Gaussian density! steadily be-
comes more ‘‘delocalized’’~corresponding to a more dif
fused Gaussian charge density! while approaching the target
Obviously, when close to the COM, our proposed choice
zs yields a very diffused charge density because we are
ing to compensate for the strong distortion of the target~re-

FIG. 1. Comparison of the BTAD and the full Gaussian pola
izations along theZ ~a! and X ~b! axes. Continuous curves corre
spond to b50.1 ~solid line!, b50.2 ~long dashes!, and b50.3
~points!. Values indicated by pluses are from Ref.@27#.

TABLE I. Integrated cross sections for selected values of
incident energy. In Eq.~13!, the exponent is assumed to have t
form zs5bs1h in which s is the separation of the projectile from
the center of mass whileh'0. Following Gibson and Morrison
~Ref. @27#!, the moments defined by of Eq.~20! are evaluated using
a Gauss-Legendre quadrature of order 7.

E ~in Ry! b50.1 b50.2 b50.3 b50.4 b50.5
Table IV

of Ref. @27#

0.1 41.929 39.942 38.168 36.742 35.275 32.939
0.09 54.910 55.788 56.180 56.340 56.421 52.356
0.20 55.343 59.200 61.868 63.890 65.527 60.330
0.36 47.552 51.642 54.419 56.454 58.026 54.172
0.64 33.957 36.771 38.716 40.145 41.248 39.073
1.00 23.238 25.090 26.430 27.445 28.247 26.960
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sulting from that of the adiabatic approximation! by an in-
crease in the spread of the incident charge density. Here
of interest to note that the present procedure is, from a
tance, similar to the time-dependent description of electr
scattering in which the incident particle polarizes the tar
which in turn acts back on the projectile by modifying th
wave packet accompanying it.

Practically, using the same atomic basis as Gibson
Morrison ~cf. Table I of Ref.@27#!, in Fig. 1 we plot the full
Gaussian polarization for some selected values ofb. It can
be seen that, along theZ axis, the valueb50.30 yields a
quite similar polarization to that obtained in the BTAD a
proximation; however, in theX direction, BTAD results are
bracketed by the potentials corresponding tob50.2 and 0.3.
This comparison indicates thatzs should not only depend on
the separation between the projectile and the COM but

on the angleus5(Z,ŝ).Furthermore, we can conjecture
this stage that the valueb50.30 would normally lead to
reasonable elastic cross sections for the case under s
since in both directions our Gaussian polarization is com
rable to the BTAD.

In Table I we list some values of integrated cross secti
for some selected values of the incident energy which w
obtained using the parameters gathered in Table II. Th
values seem to indicate that, for low incident energies,
cross sections increase whenb decreases. This situation
reversed for large values ofEinc , where largerb’s yield
larger total cross sections. The discrepancy between our
ues and those of Ref.@27# appears to be a problematic sit
ation for small incident energies.

In order to have a fairly good idea of the behavior of t
present method, in Fig. 2 we plot our calculated values
total elastic cross sections using the symmetries(g,u , )u ,
andDg,u , as well as those given previously by other inve
tigators. From this figure, it is clear that our choice
b50.30 is rather satisfactory in the region~3 eV, 10 eV!,
since our cross sections are in good agreement with the
sults of the BTAD approximation and more importantly wi
experimental results of Jones@39#. However, in spite of the
discrepancies for small values ofEinc , this comparison is
quite encouraging, since we should remember that our ch
of the form of the exponentzs was done in a somewha
heuristic manner. In other words, one may expect that a m
careful choice of this parameter would allow us to impro
our results. Note has to be taken that, from a computatio
point of view, this method remains far more efficient th
one using the nonpenetrating procedure.

V. CONCLUDING REMARKS

In this work, we have investigated an alternative meth
allowing one to obtain a well-behaved polarization for sh
is
s-
s
t

d

o

dy,
-

s
re
se
e

al-

f

-

e-

ce

re

al

d
t

and intermediate separations, that has the great advanta
being efficiently implementable inab initio quantum chem-
istry codes. Indeed, replacing the incoming particle by
spherical Gaussian charge distribution~with a suitably cho-
sen exponentzs) enables us to describe the interaction p
jectile and/or molecule by means of well-known integra
~efficiently computed since they involve GTO’s over th
whole space!. Obviously, for a large value ofzs , our ap-
proach reproduces the results of the full adiabatic appro
mation. For short and intermediate separations the inte
tion projectile and/or target is weakened by making t
charge distribution more and more diffused~choosing a
small value forzs).This strategy yields a polarization poten
tial which, to a good extent, is similar to that obtained usi
the BTAD @27# approximation. However, like any param
etrized method, the present approach requires tuning the
ponentzs so as to obtain an acceptable scattering poten
This point still needs further investigations to establish
systematic procedure allowing us to make the best guess
such a parameter. Although such an issue will hopefully
settled as we gain more experience with our method, we
conjecture that such a procedure will probably use the ov
lap between the charge distribution and the target as a c
rion leading to a ‘‘good’’ value ofzs . Nevertheless, the ini-
tial results reported in this work seem to be encourag
enough so as to motivate further applications of this
proach in order to develop a computational intuition fro
which we can, if no other choice is given, elaborate an e

FIG. 2. Comparison of calculated cross sections using the s
metries(g,u1)u1Dg,uwith those of previous theoretical and ex
perimental investigations. Smooth curves were obtained w
b50.3 ~solid line! andb50.2 ~long dashes!. Pluses are from Gib-
son and Morrison~Ref. @27#!, diamonds from Henry and Lane~Ref.
@40#!, and squares are the experimental values of Jones~Ref. @39#!
~for Einc>1 eV!.
TABLE II. Summary of the parameters used in the present investigation.

In Eq. ~20! lmax56 andn57a

In Eq. ~15! I 52.27 eVa

a i522Vp
GTO(0,0,z)z4 6.637 42 atz510 a.u.

a'522Vp
GTO(x,0,0)x4 4.515 14 atx510 a.u.

Basis set for the calculation ofVs , Vp
G,TO, andVex GMa ~Table I!

aAs used in Ref.@27#.
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pirical method for the determination ofzs . Finally, it is also
important to test the present approach on large molecule
order to determine how sensitive the results are to
changes in the value of such a parameter.
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