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The nonpenetrating approximation appears to be the simplest way to allow one to incorporate nonadiabatic
effects in the polarization potential calculated by means of the polarized orbital method. Unfortunately, this
approximation is not well suited for an efficient implementation in quantum chemistry codes which, nowadays,
use exclusively Gaussian-type orbitals. This computational limitation is remedied by replacing the incident
point charge by a spherical Gaussian charge distribution, the exponent of which is suitably chosen. In so doing,
we obtain a very efficient numerical algorithm that may be used with any molecular target regardless of its
complexity or geometry.S1050-294©9)10201-4

PACS numbegps): 34.80—i, 34.85+x

[. INTRODUCTION corporating a local polarization potential into the SV numeri-
cal procedure becomes a hard task. Rimatrix method,
When studying low-energy electrofpositron) molecule ~ also referred to as the dichotomic method, starts by partition-
scattering, one of the main concerns is to elaborate compi®d the configuration space into sevefat least two re-
tationally attractive methods which could be impIem@ntedg"?ns'bThe (\I+1b)-pardt|clte tproblleml 'ts.’ first _?rcl).lved W'Lh'n a ¢
and applied easily regardless of the size and complexity OEn!te ox (e.g., bound-state calculation within a sphere o
2 ipite radiug but the scattering information is extracted by
the target. In the past few decades, several computatlonﬂE

hni h d il did I merically propagating the scattering wave function from
techniques have emerged as possible candidates, allowiige gyrface of the box into the asymptotic region. The work

one to investigate quantitatively various facets of electroryp this procedure gave rise to the so-called. scattering
(positron scattering, especially those which are difficult to packagd11]. Although this package is presently restricted to
reach experimentally. In the context of time-independent for{inear targets since it is based ancHEMY 11 [23], its exten-
mulation, there have been at least four important reviewsion to handle targets with arbitrary geometries is obviously
and/or conference proceedings concerned with the theorfgasible, especially by using Gaussian-type orbitals to repre-
and computational aspects of this subjeict4]. These have sent the continuum functions describing the scattered elec-
reviewed a number of different methods, all with varying trons (positrons [14]. As a consequence, we can conjecture
degrees of success and sophistication. The methods used &f@t implementation of the ideas of tRematrix method into

traditionally classified under one of two general headingsa System Such aBsAUSSIAN Or ACES ||_vy(_)uld normally Ie"."d n
the near future to a package exhibiting the same high stan-

(1) numerical and2) square mt_egrable also known s dard of efficiency already achieved in bound-state calcula-
methods. Although the boundaries between these approachggns However, even though fullgb initio methods like SV
are quite blurred, the first category customarily encom-r the R-matrix procedure are already available for use, they
passes linear-algebrajé], single-center expansiol8,6,7,  are computationally limited by the size of the targets since
and partial differential approachgg8]. The second group of these calculations require very large basis sets in order to
methods, i.e.l.2, mainly includes th&-matrix[9—15], com-  predict correct estimations of cross sections. As a useful al-
plex Kohn[16], T-matrix[17,18], and so-called Schwinger- ternative to the abovab initio oriented procedures, two less
variational[19—22 procedures. rigorous methods using a static-exchange-polarization poten-
From a practical viewpoint, i.e., collisions of electrons tial received special attention, namely, the polarized orbital
with complex molecular targets larger than diatomics,ahe (PO) method originated by Temkif24] and that of Gian
initio oriented Schwinger variationalSV) and R-matrix  turco and co-worker$4,25. These two approaches, which
methods proved to be viable approaches which attracterkly uponad hocassumptions in order to simplify the math-
much attention in the past few years. Without going into aematics, were successful for small diatom[&6,27] and
detailed discussion of these methods, let us just recall thatimple polyatomicggenerally symmetrical[25,28,29.
the former, which is inherently nonlocal, was designed to be The PO method24,26,27,30—-3Bis probably the most
accurate at the static-exchange level. As a consequence, istraightforward method since it basically replaces the
(N+1)-particle problem with a much more tractable prob-
lem of a single particle moving in a potential field. Unfortu-
*Present address: Department of Chemistry, University ofnately, this approach, which intrinsically is adiabatic, suffers
Ottawa, Ontario, Canada K1N 6N5. drastically when the incident particle is in the close neigh-
"Present address: Departamento de Quimica Fisica Aplicada, Faborhood of the target. As a matter of fact, in such a region
ultad de Ciencias C-XIV Universidad Autonoma de Madrid, 28049the polarization potential calculated within the PO ansatz is
Madrid, Spain. known to be abnormally too strong, hence leading to incor-
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rect cross sectiong34]. This major drawback was empiri- iy \which #(r,, R;) represents the Hamiltonian of the iso-

cally corrected by Temkin and Lamk{80], who proposed |ated molecule depending only on the coordinates of the
to “turn off” the coulombic interaction between the projec- pound electrons{r .} ,—1 » n. and those of the nuclei
2, Ng

tile and bound electrons whenever the former is within the

: gRi}izlz _..N.- The interaction of the projectile with the
target charge cloud. Although this procedure may seem - n . .
little crude, it is nonetheless founded on a physical ide electrons and the nuclei of the target molecule is accounted

(semiclassicalin which the projectile is supposed to acquirea‘:Or by Vs-m, which is explicitly defined by

a comparable velocity to that of bound electrons once “in- N
side” the target cloud. Consequently, within this region the y — 2’: 1 _ Z
incident particle is considered as if it had no noticeable effect smm lta —s| & |Ri—s] @)
on the polarizatio33]. Temkin's method, which was suc- el <N Yoo d

cessfully applied to modelize various electron-atom scatter, order to simplify the mathematics, it is customatiyough
ing processes, was also known as the nonpenetrating apey a\ways justifiedl[2] to introduce various approximations
proximation. In the case of molecular targets, a variation ok,o most important of which is the so-called fixed nuclei

Temkin's prescription, called the better than adiabatic dipOIPapproximation(FNA). As a consequence, one will have to
(BTAD) method was thoroughly investigated and applied bYsolve the equation ’

Gibson and Morrisofi27] to studye™ +H, and by Morrison,

Saha, and Gibson foe™ +N, [35]. In this approach, the [7:{H(e>(ra,s;Ri)—E]\If(ra,s;Ri)=O, (3)
polarization potential is calculated using an interaction po- A

tential of the form ¢/s?)P[(r/r)-(s/9)]18(r<s), in which  in which the Hamiltoniar{(®) describes the motion of the
o(r<s) is a step function. Unfortunately, the integrals electrons in the field of fixed nuclei and is written as
needed to elaborate a computational procedure using the cut- ~ ~

off approximation, either BTAD or Temkin’'s, constitute a HE(r,, s Ri)=H(rff)(ra, Ri)+VS_m—%V§, 4
serious practical limitation especially for nonsymmetrical

targets. Indeed, in such cases the scattering potential has #§'€re the coordinates of the nuclgR;}, now appear as
be evaluated on a relatively tight three-dimensional grigP@rameters whose values are fixed in advance. In what fol-

leading to very time-consuming calculations. More precisely,'OWS' these parameters will deliberately be omitted from the

all the advantages provided by Gaussian-type orbita)§€finition of the wave functions in order to avoid unneces-
(GTO’s) are destroyed by the cutoff since the above-S&7y complicated expressions. -
mentioned integrals are to be calculated within a finite NOW that we have written the formal Scldioger equa-

sphere. As a consequence, it is no longer possible to ugiPn describing the problem under study, it is time to make
those integral transformatiori86], allowing one to obtain the very difficult decision as regard; the computational pro-
efficient algorithms. cedure that should be used for solving E8). In the present

The present work aims at investigating an approach that ig1vestigation, we will be using the PO method, which, ac-
computationally attractive and suited for use on any molecu¢0rding to the introductory remarks, proved to be very useful
lar targets within the PO method. For such a purpose, wéPr the modelization oé™ +atom,e” +H,, ande™ + N, col-
propose to replace the incident point charge by a smoothiSions. As a starting point of the PO method, the
exponentially decaying charge distribution, i.e., of Slater o{Ne*1)-particle wave function is assumed to have the form
Gaussian type. However for obvious practical reasons, the i (d) e
natural choice is ultimately a spherical Gaussian charge den- V(a9 = ALV 9D(S)], ®)
sity that is steadily made more diffuse as the projectile apin which, ¥(9(r;s)represents thél.-particle wave function
proaches the target. This approach allows one to avoid agf the target as distorted by a stationary external charge lo-
integration over a finite spherevhich spoils the practical cated ats, while ®(s) describes the scattered particle. The
gspects.of GTOXsince the interactions between th? Imping- operator:4 antisymmetrizes the functioW(r,,s) with re-
ing particle and the target are weakened by adjusting thgpect to the interchange of any bound electrons with the scat-

exponent which controls the spread of the distribution. ASered one. Before going into further details, it should be

a f”?‘ te§t of this mEthOd' we have |nve§tlgated thenoted that if exchange were not allowed, the above definition
reactione™ + H,, following closely the work of Gibson and

. . ; would be formally analogous to the wave function obtained
Morrison[27]. Our calculated elastic cross sections are COM3p the framework of the ENA in the sense that both of them
_pared_to the BTAD results of these authors as well as Otheére intrinsically adiabatic. To be more specific, E5) ex-
investigators. presses the idea that the motion of the bound electrons and

that of the projectile remain constantly uncoupled no matter

how closely the projectile approaches the molecule. This
Il. THEORY: AN OUTLINE nonadiabaticity may also be depicted by saying that the elec-
fron density of the molecule is allowed to adjust its shape
Instantaneouslyi.e., bound electrons moving at high veloc-
ity) in such a way as to minimize the repulsions with the
impinging particle (i.e., low energy. Obviously, even in
low-energy scattering, this model is only valid when the pro-
- - 12 jectile is far enough from the target, and is expected to break
Hr(r g0 Riy ) =Hi(F 40 Ri) + Voom— 3 Vs, (1) down as soon as the incident particle closely approaches the

g:l

In the time-dependent approach to electron-molecule sca
tering, the objective is to solve the ScHinger equation in-
volving the following Hamiltonian:



2714 BOUFERGUENE, EMA, AND WEATHERFORD PRA 59

molecule. The experimental evidence of such a situation is

H H “ ” . . . - TAD r r-s Nn Zi
the possible existence of a “stable” anionic species during VSB,m == Py 5(r<s)—_2 . (7)
the collision process, in which case all the electrons are to be S rs =1|Ri—¢

treated on an equal footing. In their attempt to remedy this

problem, Temkin and Lamkif30] suggested taking nona- Thus far, we have made some general comments regard-
diabatic effects into account by empirically modifying the ing the PO method and the polarization potential obtained
form of the interaction potential;_. of Eq. (2). More ex-  from the adiabatic form of the wave function introduced in
plicitly, Vs_. is multiplied by a step function which “shuts Eg. (5). In the following, we will briefly review how the
down” the interaction, i.e.);_.=0, inside the sphere cen- polarization potential enters the scattering equation, and give
tered on the center of mag8OM), and limited by the loca- its explicit definition as obtained in the framework of the PO

tion of the projectile. This yields method. Basically, the derivation of the scattering equation is
N \ carried out by requesting that the projection of E3). over
- S O(r,<r) & Z the unperturbed wave function satisfies
V= — (6)

=1 [r,—8  =1|Ri—9’ .
(PO )| HO(r,,9) —E[W(r,,9)=0, 8)
where §(r ,<r) is a Boolean-type functioistep function
such that it is equal to 1 if its argument were true, and Qyhere w(O)(r )is the unperturbed function describing the
otherwise. It should be pointed out that even whgny, is  isolated target. According to Drachman and Temfag],

weakened by means of the above procedure, the corresponglis is a necessary condition foF(r,,s) to satisfy the

ing polarization potential still exhibits a strong attraction atschralinger equation, but is not sufficient. However, these
small and intermediate radial distandey]. This behavior  5ihors also reported that use of the above equation yields
is, once more, corrected empirically by dropping selecteqaer satisfactory results provided that the perturbed target
terms from the expansion of_ in terms of Legendre poly- function w(@(r ,:s) is good enough. Thus, starting with Eq.

nomials. There is a compelling theoretical reason for dropg) one obtains, after some algebra, an “adiabatic” scatter-
ping the monopol¢27], at least when the projectile is out- jng equation which reads

side the target cloud, in which case the monopole cancels out
in the polarized and unpolarized energies. However, for the
other terms(except the dipolethe reasons are rather ob-
scure, since they do not have any theoretical justifications. ) o . .
The dipole term, which is the only term appearing in theWhere t'he static and the polarization potentials, respectively,
BTAD approximation, is always kept since it ensures a cor-are defined as follows:

rect long range decrease, i.er*/of the polarization poten-

tial: V(9 =(TO(r )| Vs ¥ O(r ), (10

[—3VE+Vs+ VP —1k?|d(s)=exchange terms, (9)

VA2(s) = (UO(re; ) [HO(x0) + Vour| ¥0(ra;8)) —~BO - V, 11

E&)

where E©® and EY, respectively, are the energies of the pose, the full Coulomb potentiak_,, occurring in Eq(11)
isolated target and when subjected to the field of a points replaced by that of TemkifiEq. (6)] or by that of the
charge located as. In the case of many electron targets, BTAD method[Eq. (7)].

these energies are variationally determined using the well-

known Hartree-Fock-Roothaan procedure. The first of the

above equations, i.e., the static potential, is in fact the first- IIl. COMPUTATIONAL PROCEDURE

order perturbation of the energy due to the poterital,,.

Accordingly, the full adiabatic polarization given by E4.1) In the framework of the BTAD or more generally the
includes all the corrections of the energy starting vitf? ~ nonpenetrating PO method, the determination of the cross
and going up tcE™). sections is generally carried out in two major steps. The first

To close this section, it should be mentioned that wherpf these consists in determining the scattering potential
calculated from Eq(11), the strength o¥4is overestimated  VS“T acting on the projectile, while the second addresses
as soon as the projectile closely approaches the target. Tliee resolution of the corresponding equati@n
nonpenetrating procedure attempts to correct this defect by Among the most cumbersome tasks in evalua¥ing”' is
empirically incorporating some of the nonadiabatic effects inthe elaboration of a reliable numerical procedure allowing
the definition of the polarization potential. For such a pur-one to generate the following matrix elements:
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INP:(Qi,j,k[gli|r_a|2]|VsBIéD|gi’,j',k’[§2a|r—a|2]>0grss everywhere, which makes it more consistent with the conti-
12 nuity principle of quantum mechanltisl] as compared to
the cutoff. It should, however, be pointed out that according
where the integration is carried out inside a sphere centere@ Drachman and Temkif26], the noncontinuous step func-
on the COM, and such thatss. The location of the GTO’s  tion of Egs.(6) and(7) may be regarded as the leading term
may be the same, i.ea=Db, in which case the above integral of the series representation describing a smooth cutoff. Sec-
reduces to a two-center one-electron integral. For numericaind, if the exponent is large enough, the potentikilffﬂ
purposes, the above integrals may be evaluated either angill ultimately mimic the interaction potential of a point
lytically by means of some series expansion, or numericallytharge with the target. In other words, this would lead to the
using a hybrid method involving both analytical and numeri-well-known adiabatic potentials. Finally, in contrast to
cal integration[27]. To be more specific, Gibson and Morri- Temkin’s procedure, the above potential does not necessarily
son first expanded the GTOG; j  andg;: j v in terms of  enforce the polarization to vanish in the COMnless one
spherical harmonics, making the integration oveand ¢  chooses the valug=0, in which case there is no projeciile
very straightforward. The remaining integral, i.e., ovefls  As a matter of fact, in the case of molecules there is no
finally carried out using a numerical scheme, namely, a fixeghysical evidence for a zero polarization in the COM. More
step-size trapezoidal quadrature. However, in either of thesgrecisely, in the neighborhood of the COM, where short-
computational strategies the time expense is expected to ifiange effects are normally dominant, it suffices to adjust the
crease dramatically when dealing with large molecular tarexponent so as to obtain a sufficiently weak polarization.
gets even when more sophisticated integration techniques are Regarding the exchange term, i.e., the right-hand side of
applied to carry out the radial integrals. Eq. (9), it will be approximated by the so-called Hara free-
As pointed out in Sec. |, it should be remembered that alklectron-gas model potentidHFEG). This procedure was
of the practical advantages of GTO's, in simplifying the cal-thoroughly discussed by Morrison and Collif&7]. The ad-
culations of molecular integrals and hence making GTOvantage of this strategy is the ease of its computational
based quantum chemistry codes so efficient, are to a larggplementation, which is made possible by the removal of
extent destroyed by Temkin's cutoff. Indeed, because theéne nonlocality that is intrinsically built into the exact ex-
radial integration is carried out within a finite sphere, it is nochange potential. More specifically, the HFEG model ex-
longer possible to use those integral transformatif86 change is defined by
which allow one to obtain rapid and reliable algorithms for
the evaluation of multicenter integrals. Consequently, when
large nonsymmetrical molecular systems are considgozd Ve o= — (2imke(9 AL n(9)], (19
which the potentials, i.e., static, polarization, and exchange,
are calculated over a very large number of grid poinise i which ke(s) is the Fermi momentum, and where the func-
of the cutoff procedure exhibits serious practical limitations.tion £ is defined as
An interesting alternative to Temkin’s prescription is to re-
place the impinging point charge by a normalized spherical

Gaussian charge distribution giving rise to the interaction _1 1- 772(5)I 1+ 77(5)\

potential: Hn(s)]=5+ pyo e} (16)
Ne _d2

VEIAEDS <—’3(§|5’|rs f')> with
a= le—rg r
Nn _ k(s)
plLsilrs—d°) (5= and ke(9=[37%p(9]%,  (17)

Zal ") o "9 M ol

in which (---), indicates that the integration is performed Where the local momenturk(s) is related to the ioniza-

over the variables and wherep({,|rs—s?)is a spherical 10", energy according 2t0 the relat'OKZ(S):z(Eianl)
Gaussian charge distribution such that +kg(s),in which Ej,.=k®/2 is the energy of the incident
particle whilel is the ionization potential of the target mol-
p(Ls,|rs—9?) =(2¢s1m) ¥ %exp — 224rs—9?), (14 ecule. Althoughl is defined as the ionization potential, it is
in fact used as an adjustable parameter for tuning the HFEG
where{, is an adjustable parameter. It is clear that the abov¢37]. Consequently, the numerical value attached ts in
definition may be made more flexible and hence improve oufact case dependent. In the present work we use the tuned
results by expressing the densjtyls,|rs—s?) as a linear value of Gibson and Morrisof27], namely,| =2.27 eV.
combination of spherical Gaussians with more variational The second step of the present electron-molecule scatter-
parameters. However, at this stage of our work this generaling computational procedure is to extract the cross sections
zation would be too ambitious, since one first needs to elabdsy solving Eqg.(9). For such a purpose it is customary, at
rate the automatic procedure allowing the exponents to bkeast for small molecules, to expand the scattering wave
adequately chosen. function d(s) in terms of spherical harmonics. This yields
The analytical form of the new interactiqi3) deserves the following coupled differential equations for the radial
few comments. First, the above defined potential is smootipart:
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d?> 1(1+1)

_ 2
@ 2 K

f'(s)

=22 (Y"(8,9)|VSAT(9|Y](8,0))(s),
I"=0

(18)

where Y{"(6,¢) represent surface spherical harmonics and
the scattering potentid>“AT=V +V,+ V. For numerical
purposes, the coefficients of the right-hand side are evaluate:
by expanding the scattering potential in terms of spherical
harmonics which in the case of linear moleculgsng on

the Z axis) reduce to Legendre polynomials. As a conse-
guence, the RHS of the above equation may be written as

Polarization energy (rydberg)

20+ 1
?<|m|>\o|l'm>V§CAT(s)]f.”7(S),

>

I+’
B
I"=0 | A=[I—1"|

(19

where(l;m4|l,m,|l3m3) denotes the so-called Gaunt coeffi-
cients (also related to Clebsch-Gordon’s. See REH8],

p. 751). The symbol” indicates that the summation is to be
carried out with a step of 2. The coefficien&“"'(s)are
determined by a numerical integration according to

Polarization energy (rydberg)

20 +1 (1
VR (s)=—— J ] 1VSCAT(s) P, (x)dx

=2, wiVSAT(5)P, (), (20
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FIG. 1. Comparison of the BTAD and the full Gaussian polar-
izations along theZ (a) and X (b) axes. Continuous curves corre-
spond to 8=0.1 (solid line), 5=0.2 (long dashes and 3=0.3
(pointg. Values indicated by pluses are from Rd7].

where{w;};<;<,and{x;},<i<n are the weights and the roots
of the Gauss-Legendre quadratuaegriori chosen to be used
for the calculation of the coefficient&;“*'(s). Accordingly,

the set of vector§s };<;<, corresponds to the location of the projectile which at infinity behaves as a point charge-

projectile such thas;=(s, 6;). In practice, the values of the : . ! . ) i
scattering potential are first calculated over a polar grid inScrlbed by a highly contracted Gaussian densitgadily be

which each ray corresponds to a root of the Gauss—Legendr:E(aOmes more "delocalized'(corresponding to a more dif-
quadrature used in Eq20). sed Gaussian charge dengityhile approaching the target.

Obviously, when close to the COM, our proposed choice for
s yields a very diffused charge density because we are try-

IV. RESULTS AND DISCUSSION ing to compensate for the strong distortion of the talget

In this section, we will essentially compare the numerics )
obtained with the procedure presented above and those of the _TABLE I. Integrated cross sections fqr selected values of the
BTAD approximation. The molecular system we are consid- ncident energy. In Eq(13), the exponent is assumed to have the
ering is H,,which, somehow, constitutes a necessary StOFgorm {s=PBstnin WhICh sis the separation _of the prOJectlle_from
before going into any other investigation. As a first instancen® Center of mass while)~0. Following Gibson and Morrison
(Fig. 1) we have calculated the full Gaussian polarization(Ref' [27)), the moments defined by of ERO) are evaluated using

K . . . . a Gauss-Legendre quadrature of order 7.

potential for an exponeni varying linearly with the dis-
tance s separating the projectile from the COM, i.€, Table IV

=Bs+e¢, and such that—0. In so doing we enforce the E(nRy) B=0.1 B=02 B=0.3 B=0.4 B=05 of Ref.[27]
polarization to be very small in the neighborhood of the

COM, and in the meantime increase the contraction of the 0.1 41.929 39.942 38.168 36.742 35.275  32.939
Gaussian density once far enough so as to mimic a point 0.09  54.910 55.788 56.180 56.340 56.421  52.356
charge. As may be seen, the polarization potential becomes 0.20  55.343 59.200 61.868 63.890 65.527  60.330
stronger in the region of intere€te., short and intermediate  0.36  47.552 51.642 54.419 56.454 58.026  54.172
separationsfor increasing values oB. The upper limit, of 0.64 33957 36.771 38.716 40.145 41.248  39.073
course, is the full adiabatic polarization for whigh- +oc. 1.00 23238 25.090 26.430 27.445 28247  26.960

From a physical viewpoint, this amounts to saying that the
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sulting from that of the adiabatic approximatjooy an in- 1.0
crease in the spread of the incident charge density. Here it it

of interest to note that the present procedure is, from a dis- 6o}
tance, similar to the time-dependent description of electrons
scattering in which the incident particle polarizes the target
which in turn acts back on the projectile by modifying the
wave packet accompanying it.

Practically, using the same atomic basis as Gibson anc
Morrison (cf. Table | of Ref.[27]), in Fig. 1 we plot the full
Gaussian polarization for some selected valueg.ot can
be seen that, along the axis, the value8=0.30 yields a
quite similar polarization to that obtained in the BTAD ap- 8o f
proximation; however, in th& direction, BTAD results are
bracketed by the potentials corresponding3te0.2 and 0.3.

140

16 omr2)

/
120 |
i

100

Total cross sections (10

This comparison indicates thég should not only depend on 00 10 20 30 40 50 60 70 B8O 90 100

Impact energy (eV)

the separation between the projectile and the COM but also

on the angled;=(Z,s).Furthermore, we can conjecture at  FIG. 2. Comparison of calculated cross sections using the sym-
this stage that the valug=0.30 would normally lead to metriesX, ,+11,+ A, ,with those of previous theoretical and ex-

since in both directions our Gaussian polarization is compa#=0-3 (solid line and 3=0.2 (long dashes Pluses are from Gib-
rable to the BTAD. son and MorrisoriRef.[27]), diamonds from Henry and Lar{Ref.

£40]), and squares are the experimental values of JdRet [39])

In Table I we list some values of integrated cross section
for Ej,c=1 eV).

for some selected values of the incident energy which wer
obtained using t_he [parameters gathefed. in Table . Thesgnd intermediate separations, that has the great advantage of
values seem to indicate that, for low incident energies, th

cross sections increase wh@ndecreases. This situation is %eing efficiently implementable iab initio quantum chem-
£n ' L istry codes. Indeed, replacing the incoming particle by a
reversed for large values d&;,., where larger@'s yield

) . herical Gaussian charge distributiomith a suitably cho-
larger total cross sections. The discrepancy between our va P 9 v y

., SEN exponent;) enables us to describe the interaction pro-
:ﬁ(smafnodr g]n?zﬁ ﬁ]fc:fjee)ﬁriﬂer?g%?:;s to be a problematic situ jectile and/or molecule by means of well-known integrals

In order to have a fairly good idea of the behavior of the(er]:ﬂC'entIy compu.ted since they involve GTO's over the
A ole spacg Obviously, for a large value of, our ap-
present method, in Fig. 2 we plot our calculated values o h d h Its of the full adiabati .
total elastic cross sections using the symmetbigs,, 11 proach reproduces the results of the full adiabatic approxi-
and A as well as those aiven previously b %th’er i“n’ves_matmn. For short and intermediate separations the interac-
i g.u> o given p y oy . tion projectile and/or target is weakened by making the
tigators. From this figure, it is clear that our choice of

5—0.30 is rather satisfactory in the regida eV, 10 eV, charge distribution more and more diffusédhoosing a

! . . . small value for{,).This strate ields a polarization poten-
since our cross sections are in good agreement with the ré- &) oy P P

Sial which, to a good extent, is similar to that obtained using
sults of the BTAD approximation and more importantly with ! I, ; i
experimental results of Jong39]. However, in spite of the the BTAD [27] approximation. However, like any param

discrepancies for small values &,., this comparison is etrized method, the present approach requires _tuning the_ex-
quite encouraging, since we shoulgcrémemberthat our choi onent/s so as to obtain an acceptable scattering potential.

of the form of the exponent. was done in a somewhat his point still needs further investigations to establish a
P s systematic procedure allowing us to make the best guess for

heuristic manner. In other words, one may expect that a mor; uch a parameter. Although such an issue will hopefully be
careful choice of this parameter would allow us to impr_ove ettled as we gain. more experience with our method, we can
point of view, s method remains far more fficient thanCOreCLe that stch a procedre wilprobably use the over-
one using thé nonpenetrating procedure Igp betwgen the charge distribution and the target as a prlte—
' rion leading to a “good” value of;. Nevertheless, the ini-
tial results reported in this work seem to be encouraging
enough so as to motivate further applications of this ap-
In this work, we have investigated an alternative methodproach in order to develop a computational intuition from
allowing one to obtain a well-behaved polarization for shortwhich we can, if no other choice is given, elaborate an em-

V. CONCLUDING REMARKS

TABLE Il. Summary of the parameters used in the present investigation.

In Eq. (20) Amax=6 andn=72
In Eq. (15 1=2.27 e\?
a=— ZVSTO(O,OZ)Z4 6.637 42 az=10 a.u.
o, =2V ™(x,0,0* 451514 aix=10 a.u.
Basis set for the calculation &f, VS'TO, andVgy GM? (Table )

8As used in Ref[27].
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pirical method for the determination ¢f. Finally, it is also

BOUFERGUENE, EMA, AND WEATHERFORD
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Morrison for answering many questions. |.E. gratefully ac-

important to test the present approach on large molecules ilmowlc_adges the.fina.r)cial support of the Direccion General de
order to determine how sensitive the results are to thénvestigacion Cientifica y TecnicéGrant No. PB94-0160

changes in the value of such a parameter.
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