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Perturbative approach in the WKB analysis: Application to the Stark effect

S. H. Patil
Department of Physics, Indian Institute of Technology, Bombay 400 076, India

and Max-Planck-Institut fu¨r Strömungsforschung, Bunsenstrasse 10, D-37073 Go¨ttingen, Germany
~Received 28 July 1998!

We have considered a perturbative approach in the WKB framework. Based on an expression for]E/]l, we
have calculated perturbatively the Stark energy shifts for two important systems, a particle in a one-
dimensional power-law potential and the hydrogen atom. The results provide important insight into the prop-
erties of these systems.@S1050-2947~99!00904-X#

PACS number~s!: 31.15.Md, 31.15.Gy
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I. INTRODUCTION

The WKB approach@1# provides an important and usefu
description of the energy eigenvalues and wave function
quantum systems. It is an eikonal expansion in powers o\,
and is therefore described as a quasiclassical or semiclas
approximation, and is particularly useful for the descripti
of a particle in large quantum number states. It has provi
@2,3# simple expressions for the energy eigenvalues for m
potentials and for transmission across a potential barrie
allows us to obtain@4# an expression for the electron dens
in a Thomas-Fermi atom and large-l partial wave phase
shifts @5# in electron-atom scattering. It has also been use
obtain simple expressions@2,6# for the expectation value
and matrix elements of many operators. As such, the W
approach is an important component in our understandin
the quantum properties of atoms, molecules, and nuclei.

There is one aspect of the WKB framework which has
received adequate attention. This concerns the analys
perturbation effects in the WKB approach. Of course, o
could use the WKB wave functions to evaluate the expe
tion values of the perturbing interaction, which may be tak
to be the first-order perturbation in the energy. However, i
desirable that one has a systematic, self-contained proce
for the evaluation of the perturbed energy in the WKB a
proach, to successive orders in the perturbation.

Here we consider an expression for]E/]l in the WKB
framework whereE is the energy andl is a parameter in the
Hamiltonian, which is analogous to the usual Feynm
Hellmann relation. We suggest that this expression can
expanded in powers ofl to obtain the energy correct t
successive orders in the perturbation. We illustrate the i
by evaluating the Stark energy shift in two important sy
tems. We calculate the second-order Stark energy and
dipolar polarizabilities for the one-dimensional power-la
potentials. This result is relevant for the discussion of po
izabilities of long-chain molecules. We also calculate t
first-, second-, and third-order Stark energy shifts in the
drogen atom. These shifts should be particularly useful in
description of the Stark effect in an excited hydrogen ato
It is expected that this approach will be useful in the analy
of perturbative effects in other systems as well.
PRA 591050-2947/99/59~4!/2684~7!/$15.00
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II. PERTURBATIONS IN THE WKB ENERGIES

Consider a particle of massm in a one-dimensional po
tential, described by the Hamiltonian

H5
1

2m
p21V~l,x!, ~2.1!

wherel is a parameter. Then the WKB energies are given

E
x1

x2
~2m!1/2@En2V~l,x!#1/2dx5@n1c11c2#\p,

n51,2, . . . , ~2.2!

wherex1 andx2 are the turning points,ci52 1
4 for the case

where the potential varies linearly at the turning point, a
ci50 for the case where the potential shoots up to infinity
the turning point. Taking the derivative of Eq.~2.2! with
respect tol, we get

p~x2!
]x2

]l
2p~x1!

]x1

]l
1E

x1

x21

p
~2m!F]En

]l
2

]V

]l Gdx50,

~2.3!

p~x!5~2m!1/2@En~l!2V~l,x!#1/2. ~2.4!

Sincep(x) vanishes at the turning points, this leads to

]En

]l
5E

x1

x21

pS ]V

]l DdxY E
x1

x21

p
dx. ~2.5!

This relation is essentially a WKB realization of th
Feynman-Hellmann theorem. In particular, for

V~l,x!5V0~x!1lV1~x! ~2.6!

we have

]En

]l
5E

x1

x21

p
V1~x!dxY E

x1

x21

p
dx, ~2.7!

p5~2m!1/2@En~l!2V0~x!2lV1~x!#1/2. ~2.8!
2684 ©1999 The American Physical Society
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One can then expand the various terms in powers ofl and
deduce successive terms in the perturbed energy. For
leading term, we have

]En

]l U
l50

5E
x1

x21

p
V1~x!dxY E

x1

x21

p
dx, ~2.9!

p5~2m!1/2@En~0!2V0~x!#1/2, ~2.10!

which gives us the first-order shift in the energy,

dEn
~1!5lS ]En

]l D U
l50

. ~2.11!

We can also obtain the first-order perturbation in the wa
function. Starting from the expression

c~x!5
1

p1/2
sinF 1

\Ex1

x2
p~x8!dx81c1

p

4 G ~2.12!

with p(x) given in Eq.~2.8!, we get for the first-order per
turbation in the wave function

dc~1!~x!5
mlV1

2p5/2
sinF 1

\Ex1

x

p~x8!dx81c1

p

4 G
2

1

2p1/2\
E

x1

x 2m~lV12dE~1!!

p~x9!
dx9

3cosF 1

\Ex1

x

p~x8!dx81c1

p

4 G . ~2.13!

Here the inadequacy of the WKB wave function at the tu
ing points gets enhanced and the wave function is not n
malizable, except for the special casec150. It may be men-
tioned that for a particle in a box, withc150, and a linear
potential perturbation, Eq.~2.13! does give the correct first
order perturbation to the wave function. However, for t
general case whenc1Þ0, it is not very useful.

Here we consider the perturbations in the energy,
illustrate the procedure for obtaining higher-order pertur
tion energies from Eqs.~2.7! and ~2.8!, by considering two
important examples.

III. STARK SHIFTS IN A POWER-LAW POTENTIAL

A charged particle in an even, power-law potential and
external electric field is governed by a potential

V~x!5Auxua1lx, A.0, a.0, ~3.1!

wherel is proportional to the electric field. In this case, E
~2.7! can be written in the form

]E

]l
5

I 1~l!2I 1~2l!

I 0~l!1I 0~2l!
, ~3.2!

where

I n~l!5E
0

xt xndx

@E2Axa2lx#1/2
~3.3!
he

e

-
r-

d
-

n

.

with xt being the turning point,

E2Axt
a2lxt50. ~3.4!

We solve for thext iteratively and get

xt5x0S 12
l

Ea
x01••• D , ~3.5!

x05~E/A!1/a. ~3.6!

The integral in Eq.~3.3! can now be obtained in powers o
l, and to orderl we get

I n~l!5
x0

n112a/2

A1/2a
FBS 1

2
,
n11

a D H 12~n112a/2!
l

Ea
x0J

2l
x0

12a

2A H BS 2
1

2
,
n11

a D2BS 2
1

2
,
n12

a D J G ,
~3.7!

whereB(p,q) is the beta function,

B~p,q!5
G~p! G~q!

G~p1q!
, ~3.8!

with G(p) being the gamma function. Some of the details
the integration are given in Appendix A. Substituting th
expression in Eq.~3.2!, we get

]E

]l
52lS x0

2

E D GS 1

2
1

1

aD GS 3

aD
GS 1

aD GS 2
1

2
1

3

aD . ~3.9!

Since this expression is correct to orderl, using the expres-
sion for x0 in Eq. ~3.6!, we get

]E

]l U
l50

50, ~3.10!

]2E

]l2 U
l50

52E2/a21A22/a

GS 1

2
1

1

aD GS 3

aD
GS 1

aD GS 2
1

2
1

3

aD ,

~3.11!

with the corresponding Stark energy shift

dE~2!52
1

2
l2E2/a21A22/a

GS 1

2
1

1

aD GS 3

aD
GS 1

aD GS 2
1

2
1

3

aD ~3.12!

correct to orderl2. With the energy shift related to the d
polar polarizabilitya asdE(2)52(1/2)al2, the dipolar po-
larizability is given by
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a5E2/a21A22/a

GS 1

2
1

1

aD GS 3

aD
GS 1

aD GS 2
1

2
1

3

aD . ~3.13!

We can also express the polarizability in terms of the qu
tum numbern in Eq. ~2.2!,

2E
0

x0
~E2Axa!1/2dx5

p\

~2m!1/2
n, n51,2, . . . ,

~3.14!

where we have ignored the additive constantc11c2 in Eq.
~2.2!. Using the substitution

y5
A

E
xa ~3.15!

one can carry out the integration and obtain@7# for the un-
perturbed energy,

E5n2a/~21a!A2/21aF \pa

~2m!1/2

G~3/211/a!

G~1/2!G~1/a!G 2a/21a

.

~3.16!

Substituting this in Eq.~3.13!, we have for the polarizabil-
ities a,

a5n2~22a!/~21a!A24/21ag~a!, ~3.17!

g~a!5F \pa

~2m!1/2

G~3/211/a!

G~1/2!G~1/a!G 2~22a!/~21a!

3

GS 1

2
1

1

aDGS 3

aD
GS 1

aDGS 2
1

2
1

3

aD . ~3.18!

It has been suggested@8# on the basis of numerical calcula
tions that the polarizabilitya for large n changes sign
roughly ata'6. Our closed analytical expressions in Eq
~3.13! and~3.17! establish thata vanishes at exactlya56, is
positive fora,6, and is negative fora.6.

We can extend our calculations to the case of potent
with negative powers,

V~x!52Buxu2b1lx, B.0, b.0. ~3.19!

Since the analysis is similar to that for the positive powe
we only present the results. We get

a5uEu2122/bB2/b

GS 11
1

bDGS 3

2
1

3

bD
GS 1

2
1

1

bDGS 11
3

bD , ~3.20!

E5

2n2b/~b22!B2/~22b! F \pb

~2m!1/2

G~111/b!

G~1/2!G~1/b21/2!G 2b/~b22!

~3.21!
-

.

ls

,

This result is valid for 0,b,2.

IV. STARK EFFECT IN THE HYDROGEN ATOM

As a second application of the WKB perturbative ana
sis, we consider the energy shifts in different states of
hydrogen atom, in the presence of a constant, external e
tric field. In this case the potential may be written as

V~r ,z!52
1

r
1lz, ~4.1!

wherel is the electric field in thez direction, and we have
used atomic units. The Stark shifts in the hydrogen atom
most conveniently described@2# in terms of parabolic coor-
dinates,

u5r 1z, v5r 2z, f5tan21~y/x!. ~4.2!

In terms of parabolic coordinates, the Schro¨dinger equation
separates into equations

d2

du2
f 11

1

u

d f1

du
1S 1

2
E2

m2

4u2
2

1

4
luD f 152

b1

u
f 1 ,

~4.3!

d2

dv2
f 21

1

v
d f2

dv
1S 1

2
E2

m2

4v2
1

1

4
lv D f 252

b2

v
f 2 ,

~4.4!

b11b251, ~4.5!

whereb1 and b2 are the separation constants. These eq
tions are similar to the equation in the two-dimensional po
radial coordinate, for which there are no Langer-type corr
tions. The corresponding WKB equations for the bou
states are

E F2
1

2UEU1
b1

u
2

m2

4u2
1auG 1/2

du5~n111/2!p,

~4.6!

E F2
1

2UEU1
b2

v
2

m2

4v2
2avG 1/2

dv5~n211/2!p,

~4.7!

wherea52l/4. We need to solve these equations for t
energyE subject to the condition in Eq.~4.5!, i.e., b11b2
51. However, it is more convenient to treatE as a fixed
parameter, solve forb1 andb2 in terms ofE, and then de-
termineE by requiring thatb1 andb2 satisfy the condition
b11b251. We solve forb1 andb2 as perturbation series in
a, and hence obtain the perturbation series forE.

To start with, the unperturbed values ofb10 and b20 are
obtained from Eqs.~4.6! and~4.7! by evaluating the integrals
for a50. The integrals are standard and give

b i05~2uEu!1/2S ni1
1 UmU1 1D . ~4.8!

2 2
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For obtaining the higher-order terms, we take the derivati
of Eqs.~4.6! and~4.7! with respect toa. Since the integrand
vanishes at the turning points, we get

]b1

]a
52

J1~a!

J21~a!
, ~4.9!

Jn~a!5E 1

p1
undu, ~4.10!

p15F2
1

2UEU1
b1

u
2

m2

4u2
1auG 1/2

. ~4.11!

We carry out the integrations as a series in powers ofa, and
obtain

]b1

]a
52F3

2

b1
2

e2
2

m2

4e G2aF13
b1

3

e4
23

b1m2

e3 G
2a2F2211

16

b1
4

e6
2

651

16

b1
2m2

e5
1

75

64

m4

e4 G , ~4.12!

where e5uEu. Some of the details of the integrations a
given in Appendix B. We now expand the two sides of E
~4.12! in powers ofa, and equate terms of the same ord
The leading term gives

]b1

]a U
a50

52F3

2

b10
2

e2
2

m2

4e G . ~4.13!

The terms first order ina give

]2b1

]a2 U
a50

52F13
b10

3

e4
23

b10m
2

e3
13

b10

e2
b108 G , ~4.14!

whereb108 represents the derivative ofb1 at a50. Using the
expression for the first derivative given in Eq.~4.13!, we get

]2b1

]a2 U
a50

52F17

2

b10
3

e4
2

9

4

b10m
2

e3 G . ~4.15!

The terms which are of ordera2 in Eq. ~4.12! give

]3b1

]a3 U
a50

522F2211

16

b10
4

e6
2

651

16

b10
2 m2

e5
1

75

64

m4

e4

1
3

2

b108
2

e2
23

b108 m2

e3
139

b10
2 b108

e4
1

3

2

b10b109

e2 G ,

~4.16!

where b109 represents the second derivative ofb1 at a50.
Using the relations in Eqs.~4.13! and ~4.15!, we get

]3b1

]a3 U
a50

522F1125

16

b10
4

e6
2

387

16

b10
2 m2

e5
1

33

64

m4

e4 G .

~4.17!
s

.

.

Collecting these terms, we have forb1 correct to ordera3,

b15b102F3

2

b10
2

e2
2

m2

4e Ga2F17

2

b10
3

e4
2

9

4

b10m
2

e3 Ga2

2

2F1125

16

b10
4

e6
2

387

16

b10
2 m2

e5
1

33

64

m4

e4 Ga3

3
. ~4.18!

The corresponding expression forb2 is

b25b201F3

2

b20
2

e2
2

m2

4e Ga2F17

2

b20
3

e4
2

9

4

b20m
2

e3 Ga2

2

1F1125

16

b20
4

e6
2

387

16

b20
2 m2

e5
1

33

64

m4

e4 Ga3

3
. ~4.19!

We now add these terms and impose the condition in
~4.5! that b11b251. Using the relations

b101b205n~2e!1/2, n5n11n21umu11, ~4.20!

b102b205~n12n2!~2e!1/2, ~4.21!

we get

1

n~2e!1/2
5126

~n12n2!

~2e!3/2
a

2@17n2151~n12n2!229m2#
1

~2e!3
a2

2~n12n2!@1125n211125~n12n2!2

2387m2#
1

~2e!9/2

2a3

3
. ~4.22!

We iterate and invert this relation to get

E52
1

2n2
1 3

2 ~n12n2!nl

2 1
16 @17n223~n12n2!229m2#n4l2

1 1
32 ~n12n2!@69n223~n12n2!2133m2#n7l3,

~4.23!

where we have usedE52e and a52l/4, l being the
strength of the electric field.

It is interesting to compare our WKB results with th
exact results@2#,

E52
1

2n2
1 3

2 ~n12n2!nl

2 1
16 @17n223~n12n2!229m2119#n4l2 ~4.24!

to orderl2. Th first two terms are the same. It may be not
that the first term when calculated in the WKB approa
with spherical coordinates requires a correction in the an
lar momentum term, the Langer correction, to get the ex
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expression for the hydrogenic energy. However, with the
of parabolic coordinates, the equations are similar to
equation in two-dimensional polar coordinates and give
exact energy expression. What is surprising is that the W
analysis gives the exact results for the second term as w
For the term which is quadratic inl, only the constant term
19 is missing in the WKB expression. Consequently for
ground state, the WKB term quadratic inl is smaller in
magnitude by a factor of about 2. For the first excited stat
is smaller by about 25% and rapidly approaches the e
value for higher excited states. The WKB perturbative a
proach provides a simple expression for the third-order te
as well.

V. CONCLUSIONS

We have demonstrated that a perturbative approach in
WKB analysis is a powerful technique. Our approach
based on an expression for]E/]l, similar to the usual
Feynman-Hellmann theorem. We have used this expres
to develop a perturbation series for the Stark energy shif
two important systems. We have calculated the second-o
energy shift and hence the polarizability for a particle in
one-dimensional power-law potential. We find that the pol
izability vanishes when the power is exactly equal to 6, be
positive for powers less than 6 and negative for pow
greater than 6. These results could be useful in the ana
of polarizabilities of long-chain molecules. These molecu
polarizabilities have been analyzed in terms of a particle
box @9# It may be useful to consider the higher-order pol
izabilities of the molecules in terms of power-law potentia

We have also calculated the Stark energy for the hyd
gen atom to third order in the electric field. It is found th
the first-order term agrees with the exact result and
second-order term is close to the exact result for exc
states. Our third-order term is a new result.

We expect that the perturbative approach in the W
analysis would be useful in many other situations.
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APPENDIX A

For evaluating the integral

I n~l!5E
0

xt xndx

@E2Axa2lx#1/2
~A1!
e
e
e
B
ll.

e

it
ct
-
m

he
s

on
in
er

-
g
s
sis
r
a
-
.
-

t
e
d

P.

we note that

E5Axt
a1lxt . ~A2!

Substituting this expression forE, and using the variableu,

u5x/xt , ~A3!

we get

I n~l!5A21/2xt
n112a/2E

0

1

un~12ua!21/2

3F11lA21xt
12aS 12u

12uaD G21/2

du. ~A4!

Expanding in powers ofl and keeping the first two term
leads to

I n~l!5A21/2xt
n112a/2E

0

1

un@~12ua!21/22 1
2 lA21xt

12a

3~12u!~12ua!23/2#du. ~A5!

Substituting

z5ua, ~A6!

we get

I n~l!5A21/2xt
n112a/2a21E

0

1

z~n112a!/a

3@~12z!21/22 1
2 lA21xt

12a

3~12z1/a!~12z!23/2#dz. ~A7!

This is related to beta functions,

I n~l!5A21/2xt
n112a/2a21FBS 1

2
,
n11

a D
2

1

2
lA21xt

12aH BS 2
1

2
,
n11

a D2BS 2
1

2
,
n12

a D J G ,
~A8!

B~p,q!5
G~p!G~q!

G~p1q!
. ~A9!

We also substitute forxt the expression in Eq.~3.5! correct
to orderl, to get
I n~l!5A21/2x0
n112a/2a21FBS 1

2
,
n11

a D H 12~n112a/2!
l

Ea
x0J

2
1

2
lA21x0

12aH BS 2
1

2
,
n11

a D2BS 2
1

2
,
n12

a D J G ~A10!

correct to orderl.
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The integralJn(a) may be written in the form

Jn~a!5a21/2E un11du

@~u2u1!~u22u!~u32u!#
1/2, ~B1!

where

u1u2u35
m2

4a
, ~B2!

u1u21u2u31u3u15
b1

a
, ~B3!

u11u21u35
e

2a
. ~B4!

Here, u1 and u2 are the usual turning points andu3 is the
new zero introduced by theau term.We can solve foru3
iteratively by using the relation for the zeros,

u5
e

2a
2S b1

a D1

u
1S m2

4aD 1

u2
. ~B5!

Sinceu3 is very large fora→0, we obtain by iteration

u35
e

2a
2

2b1

e
2

a

e2S 8b1
2

e
2m2D 1••• ~B6!

correct to the first three orders ina. Using the relations in
Eqs.~B2!! and ~B3!, we get

u1u25
m2

2e
1aS 2b1m2

e3 D 1a2S 16b1
2m2

e5
2

m4

e4 D , ~B7!

u11u25
2b1

e
1aS 8b1

2

e3
2

m2

e2 D 1a2S 64b1
3

e5
2

12b1m2

e4 D ,

~B8!

correct to the first three orders ina.
For evaluating the integral in Eq.~B1!, we note thatu3 is

large fora→0, and expand (u32u)21/2 in inverse powers of
u3 :

Jn~a!5a21/2E
u1

u2 un11du

@~u2u1!~u22u!#1/2

u3
21/2S 11

1

2u3
u1

3

8u3
2

u21••• D . ~B9!

One can write the integral in the form
Jn~a!5a21/2u3
21/2S Kn111

1

2u3
Kn121

3

8u3
2

Kn131••• D ,

~B10!

where

Km5E umdu

@~u2u1!~u22u!#1/2
. ~B11!

In particular we have

Km5p for m50,

5
1

2
p~u11u2! for m51,

5p@ 3
8 ~u11u2!22 1

2 u1u2# for m52,

5p@ 5
16 ~u11u2!32 3

4 ~u11u2!u1u2# for m53,

5p@ 35
128~u11u2!42 15

16 ~u11u2!2u1u21 3
8 u1

2u2
2#

for m54. ~B12!

Using Eqs.~B10!, ~B11!, ~B12!, we obtain for]b1 /]a in Eq.
~4.9!,

]b1

]a
52

J1~a!

J21~a!

52@ 3
8 ~u11u2!22 1

2 u1u2#2
1

u3
@ 1

16 ~u11u2!3

2 1
4 ~u11u2!u1u2#

2
1

u3
2@ 35

1024 ~u11u2!42 19
128~u11u2!2u1u21 3

64 u1
2u2

2#,

~B13!

where we have expanded in powers of 1/u3;a and retained
the three leading terms. Finally, substituting the expressi
for u3 ,u1u2 , andu11u2 given in Eqs.~B6!, ~B7!, ~B8!, and
expanding in powers ofa, we get

]b1

]a
52F3

2

b1
2

e2
2

m2

4e G
2aF13

b1
3

e4
23

b1m2

e3 G
2a2F2211

16

b1
4

e6
2

651

16

b1
2m2

e5
1

75

64

m4

e4 G . ~B14!
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