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Perturbative approach in the WKB analysis: Application to the Stark effect

S. H. Patil
Department of Physics, Indian Institute of Technology, Bombay 400 076, India
and Max-Planck-Institut iuStromungsforschung, Bunsenstrasse 10, D-37078ii@®@n, Germany
(Received 28 July 1998

We have considered a perturbative approach in the WKB framework. Based on an expresgitfidforwe
have calculated perturbatively the Stark energy shifts for two important systems, a particle in a one-
dimensional power-law potential and the hydrogen atom. The results provide important insight into the prop-
erties of these systemsS1050-2947®9)00904-X]

PACS numbefs): 31.15.Md, 31.15.Gy

I. INTRODUCTION Il. PERTURBATIONS IN THE WKB ENERGIES

Consider a particle of mags in a one-dimensional po-

The WKB approach1] provides an important and useful Otfential, described by the Hamiltonian

description of the energy eigenvalues and wave functions
guantum systems. It is an eikonal expansion in powers, of 1
and is therefore described as a quasiclassical or semiclassical H=3 P>+ V(\,X), (2.9
approximation, and is particularly useful for the description

of a particle in large quantum number states. It has providegyhere) is a parameter. Then the WKB energies are given by
[2,3] simple expressions for the energy eigenvalues for many

potentials and for transmission across a potential barrier. It X2 1 12gy

allows us to obtairfi4] an expression for the electron density L (2mME,— V(N 0¥ dx=[n+c1+colhm,

in a Thomas-Fermi atom and largé-partial wave phase !

shifts[5] in electron-atom scattering. It has also been used to n=12,..., 2.2

obtain simple expressior®,6] for the expectation values
and matrix elements of many operators. As such, the WKByherex, andx, are the turning points;;= — % for the case
approach is an important component in our understanding afhere the potential varies linearly at the turning point, and
the quantum properties of atoms, molecules, and nuclei. ¢;=0 for the case where the potential shoots up to infinity at
There is one aspect of the WKB framework which has notthe turning point. Taking the derivative of E€R.2) with

received adequate attention. This concerns the analysis ofspect ta\, we get

perturbation effects in the WKB approach. Of course, one
could use the WKB wave functions to evaluate the expecta-

&XZ &Xl fx21 2 &En V
p(XZ)K_p(Xl)Kdl_ —(2m) -

tion values of the perturbing interaction, which may be taken x P

to be the first-order perturbation in the energy. However, it is (2.3
desirable that one has a systematic, self-contained procedure

for the evaluation of the perturbed energy in the WKB ap- p(x)=(2m)YAE,(A)—V(\,x)]¥2 (2.9

proach, to successive orders in the perturbation. ) ) ) . )

Here we consider an expression f/o\ in the WKB ~ Sincep(x) vanishes at the turning points, this leads to
framework wherek is the energy and is a parameter in the
Hamiltonian, which is analogous to the usual Feynman- aE”:fX’"E(ﬂ)dx/ fXZEdX (2.5
Hellmann relation. We suggest that this expression can be N Jx, PN x P '
expanded in powers ok to obtain the energy correct to
successive orders in the perturbation. We illustrate the ide&his relation is essentially a WKB realization of the
by evaluating the Stark energy shift in two important sys-Feynman-Hellmann theorem. In particular, for
tems. We calculate the second-order Stark energy and the
dipolar polarizabilities for the one-dimensional power-law V(N,X)=V(X) +AV1(X) (2.6
potentials. This result is relevant for the discussion of polar-
izabilities of long-chain molecules. We also calculate thee have
first-, second-, and third-order Stark energy shifts in the hy-

drogen atom. These shifts should be particularly useful in the 9En _ JXZEV (x)dx/ JXZEdX 2.7
description of the Stark effect in an excited hydrogen atom. IN x, P ! P '
It is expected that this approach will be useful in the analysis

of perturbative effects in other systems as well. p=(2m)YE,(N)—Vo(x)— AV (x)]¥2 (2.9
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One can then expand the various terms in powers ahd  with x, being the turning point,
deduce successive terms in the perturbed energy. For the

leading term, we have E—AX?—\x=0. (3.9
JE xp1 Xo1 . .
n :j 2—V1(x)dx/ f 2—dx, 2.9 We solve for thex; iteratively and get
IN |y Zo I P x P \
p=(2m) ¥ Ex(0) ~Vo(x)]* (210 X=Xl I ggXet ) 39
which gives us the first-order shift in the energy, Xo=(E/A)Y2, (3.6)
5E$11>:)\(‘9E“) (2.11)  The integral in Eq(3.3) can now be obtained in powers of
IN \e0 \, and to orden we get
We can also obtain the first-order perturbation in the wave x”“’a’z{ 1 n+1 N
function. Starting from the expression [,(N)= XN LB >3 1-(n+ 1—a/2)§ix0]
1 1 (x _
$(X) = —sin —f 2p(x’)dx’+c1z (2.12 x5 2 1 n+1 1 n+2
pre : BT e e e U
with p(x) given in Eq.(2.8), we get for the first-order per- (3.7

turbation in the wave function
whereB(p,q) is the beta function,

1Y
SYV0="—g5

2p5’2 sin

1> [
7] pocrax ey _I'p) I

T(p+aq) 39

B(p.q)
1 (x2m(\V;— SEWD)
dX"

- 2p1/2ﬁ X1 p(X")

with T'(p) being the gamma function. Some of the details of
the integration are given in Appendix A. Substituting this

1 (x T expression in Eq(3.2), we get
xoos{% p(x’)dx’+clz . (2.13
“ 11 3
Here the inadequacy of the WKB wave function at the turn- JE XS r 2+ a r a
ing points gets enhanced and the wave function is not nor- N —A E 1 1 3\° 3.9
malizable, except for the special case=0. It may be men- F(g) r 573

tioned that for a particle in a box, with;=0, and a linear
potential perturbation, Eq2.13 does give the correct first-
order perturbation to the wave function. However, for the
general case wheoy #0, it is not very useful.

Here we consider the perturbations in the energy, and JE
illustrate the procedure for obtaining higher-order perturba-
tion energies from Eq92.7) and(2.8), by considering two
important examples.

Since this expression is correct to orderusing the expres-
sion for xq in Eq. (3.6), we get

=0, (3.10

N,

11
—F —
a

32

Il. STARK SHIFTS IN A POWER-LAW POTENTIAL J%E
— _ EZ/a* 1A72/a

A charged particle in an even, power-law potential and an %
external electric field is governed by a potential

V(x)=A|x|2+Ax, A>0, a>0, (3.

where\ is proportional to the electric field. In this case, Eq. with the corresponding Stark energy shift

(2.7 can be written in the form 1 1 3
T(z+=|T=
JE 1{(N)—=11(—=N) 1 L 2 a a
= 1 1 (3 2) 5E(2): ——)\ZEZ/a 1A 2/a (312
N o) FIo(—N)” ' 2 F(E)F 1.3
2
where a a
iy WNdx correct to ordein?. With the energy shift related to the di-
I”()\):J P (3.3  polar polarizabilitya as SE®=—(1/2)a\?, the dipolar po-
0 [E—AX®—ax]¥? larizability is given by
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This result is valid for 6<b<2.

IV. STARK EFFECT IN THE HYDROGEN ATOM

As a second application of the WKB perturbative analy-
sis, we consider the energy shifts in different states of the

We can also express the polarizability in terms of the quanpydrogen atom, in the presence of a constant, external elec-

tum numbem in Eq. (2.2),

n=12,...,
(3.19

where we have ignored the additive constaptc, in Eq.
(2.2). Using the substitution

X fi
Zf O(E—Axa)l’zdx: il n,
0 (2m)*?

A a
y= EX (3.15

one can carry out the integration and obtgit for the un-
perturbed energy,

2a/2+a

hira  T(3/2+1/a)
(2m)¥2 T (1/2)T (1/a)

E = n2al2+tap2/2ta

(3.16
Substituting this in Eq(3.13, we have for the polarizabil-
ities «,

a=n22-al2rap-42tag q),

(3.17

hma  T(3/2+1/) |22/

(2m)¥2 T (1/2T (1/a)
(1 1 3)
Fata)tla

222
I''=|I'l —=+—
a 2 a

g(a)=

r

. (3.18

It has been suggestéfl] on the basis of numerical calcula-

tions that the polarizabilitya for large n changes sign

roughly ata~6. Our closed analytical expressions in Egs.

(3.13 and(3.17 establish thatr vanishes at exactlg=6, is
positive fora<6, and is negative foa>6.

We can extend our calculations to the case of potentials

with negative powers,

V(x)=—B|x| "+Axx, B>0, b>0. (3.19

tric field. In this case the potential may be written as

V(r,z)=—%+)\z, 4.1

where\ is the electric field in the direction, and we have
used atomic units. The Stark shifts in the hydrogen atom are
most conveniently describgd@] in terms of parabolic coor-
dinates,

u=r+z, v=r—z, ¢=tan (y/x). 4.2
In terms of parabolic coordinates, the Satinmer equation
separates into equations

d? 1df 1 m? 1
—fi L ZE- —-2hulfy —Blfl,
d u du 2 4u2 4
4.3
d? 1df, (1 m? 1 B2
dvsz dv (E 4_,,2+Z)‘”)f2__7f2'
(4.4
Bl+62:11 (45)

where 8, and 3, are the separation constants. These equa-
tions are similar to the equation in the two-dimensional polar
radial coordinate, for which there are no Langer-type correc-
tions. The corresponding WKB equations for the bound
states are

1 Bl m2 11/2
J —5 E +F—F+au du=(n;+1/2)m,
u
(4.6
1 Bz m2 11/2
f ) E +7—F—av dv=(n,+1/2),
L U B
4.7

Since the analysis is similar to that for the positive powers,

we only present the results. We get

rf1+ X3 3)
a,:|E|7172/b82/b b 2 b (3 2@
e[ Lo e 3) |
2" b b
E:
#mb ra+imy [0

— 2bl(b-2)g2/2-b)

(2m)¥2 (12T (1b—1/2)
(3.20)

wherea= —\/4. We need to solve these equations for the
energyE subject to the condition in Edq4.5), i.e., 81+ 8>
=1. However, it is more convenient to treBtas a fixed
parameter, solve foB; and 3, in terms ofE, and then de-
termineE by requiring thatB; and B3, satisfy the condition
B1+ B>=1. We solve for3; and3, as perturbation series in
a, and hence obtain the perturbation seriesHor

To start with, the unperturbed values gf, and B,y are
obtained from Eq94.6) and(4.7) by evaluating the integrals
for a=0. The integrals are standard and give

1
+ —

Bio=(2|E])*2 5. .9

1
ni+§ m
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For obtaining the higher-order terms, we take the derivative€ollecting these terms, we have 85 correct to ordem?,
of Egs.(4.6) and(4.7) with respect taa. Since the integrand

vanishes at the turning points, we get 385 m? 17 B30 9 Bigm?|a?
b |32 22|22 3 & |2
9B (3 .9
dga  J_q(a)’ ' 11258%, 38782m2 33m*|ad
. |16 16 o5 eaa|3z 418
Jn(a):f—u”du, (4.10 . . _
P1 The corresponding expression 8 is
1 B, m v 3% m?| [178%, 9 Bym?|a?
Pi=|—5 E+F—E+au (4.1) Bo= Bt E%_E - ?6—?—2'326;'?7
We carry out the integrations as a series in powera, @nd 1125p3, 387 B5m* 33m*|a®
obtain EF_E &5 +a? ER (4.19

2 3
9By |3B1_ m?| 13_1_3/31”12 We now add these terms and impose the condition in Eq.
Ja 2 2 de & &3 (4.5 that B, + B,=1. Using the relations

221184 65182m% 75m’ Biot+ B2o=n(2€)Y2, n=n;+n,+|m/+1, (4.20

2 -
16 6 16 & 644

, (412

B1o— Bao=(N1—Ny)(2€)*? (4.21

where e=|E|. Some of the details of the integrations arewe get

given in Appendix B. We now expand the two sides of Eq.

(4.12 in powers ofa, and equate terms of the same order. 1 (n;—ny)
The leading term gives n(26)1’2:1_ (26)2 a

761 __[ﬁﬁ_%o_m_z @13 : NP
Ja | _, 2 &2 4el| —[17n“+51(n;—n,)“—9m ](26)3a
The terms first order im give —(n;— Ny [11252+ 1125 n; — n,)?
&P Bio B Bio 1 2a°
=—|13—-3——+3— B, 4149 —387m? —. 4.2
da? . { et e €2 Pro ](26)9/2 3 422

where 3, represents the derivative gf, ata=0. Using the ~We iterate and invert this relation to get
expression for the first derivative given in E4.13), we get

1
=— 43 _
7By 17 B3 9 Bigm? = 2n? #(n=N)mh
2 = ? —4 - Z 3 . (4.15
9 |0 € € —&[17n%=3(n;—ny)%2—9m?]n*\2
The terms which are of order® in Eq. (4.12) give + & (n;—n,)[69n%—3(n;—Nny)%+33m?In"\ 3,
4.2
B, 221187, 651Bigm> 75m?* “-23
9’ 7416 & 16 5 64 4 where we have useE=—e and a=—\/4, X being the
a=0 strength of the electric field.
12 ) 2 o1 " It is interesting to compare our WKB results with the
3 Bio _3,810m 9,310310 3 B1oB1o exact result§2],
2 62 63 64 2 62 '
1
(4.16 E=—F+§(n1—n2)n)\
n
where 87, represents the second derivative ®f at a=0. . ) ) , .
Using the relations in Eqg$4.13 and(4.15, we get —16[17n°=3(n;—Nn2)"—9M*+19]In"\° (4.29
2 .
P 112584 387 B2m? 33 m? to ordern E Th first two terms are the same. It may be noted
’il =— —’8—20—— Blo;n +—— that the first term when calculated in the WKB approach
Ja” | _, 16 16« 64 ¢ with spherical coordinates requires a correction in the angu-

(4.17 lar momentum term, the Langer correction, to get the exact
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expression for the hydrogenic energy. However, with the useve note that
of parabolic coordinates, the equations are similar to the

equation in two-dimensional polar coordinates and give the E=AX2+\X,. (A2)
exact energy expression. What is surprising is that the WKB

analysis gives the exact results for the second term as welSubstituting this expression f&, and using the variable,
For the term which is quadratic i, only the constant term

19 is missing in the WKB expression. Consequently for the u=x/Xy, (A3)
ground state, the WKB term quadratic & is smaller in

magnitude by a factor of about 2. For the first excited state itve get

is smaller by about 25% and rapidly approaches the exact 1

value for higher excited states. The WKB perturbative ap- |n(7\)=A_1/2X?+1_a/2f u(1-ud) "2

proach provides a simple expression for the third-order term 0

as well.

u ) 11/2
|| du (A%
u

1
X 1+)\A‘1xt1a<
V. CONCLUSIONS

We have demonstrated that a perturbative approach in thExpanding in powers ok and keeping the first two terms
WKB analysis is a powerful technique. Our approach isleads to
based on an expression f@E/J\, similar to the usual
Feynman-Hellmann theorem. We have used this expression
to develop a perturbation series for the Stark energy shift in
two important systems. We have calculated the second-order
energy shift and hence the polarizability for a particle in a X (1—u)(1—u?® ~%?]du. (A5)
one-dimensional power-law potential. We find that the polar-
izability vanishes when the power is exactly equal to 6, beingSubstituting
positive for powers less than 6 and negative for powers
greater than 6. These results could be useful in the analysis z=u?, (AB6)
of polarizabilities of long-chain molecules. These molecular
polarizabilities have been analyzed in terms of a particle in ave get
box [9] It may be useful to consider the higher-order polar-
izabilities of the molecules in terms of power-law potentials.

We have also calculated the Stark energy for the hydro-
gen atom to third order in the electric field. It is found that

()\) A~ 1/2 n+1 alzf n[(l ua) 1/2__ 1)\A 1 1 a

1
| ()\):A—1/2Xn+1—a/2a—1f Z(n-%—l—a)/a
n t

0

the first-order term agrees with the exact result and the X[(1—2) Y= 3NA"Ix} 2
second-order term is close to the exact result for excited Va e
states. Our third-order term is a new result. X(1=z")(1-2) "]dz (A7)
We expect that the perturbative approach in the WKB_ )
analysis would be useful in many other situations. This is related to beta functions,
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(A8)
APPENDIX A
ing the i B(p,q)= D (A9)
For evaluating the integral , T(p+q)
n
N )_f L (A1) We also substitute fox, the expression in Eq3.5) correct
o [E—AX®—ax]¥? to order\, to get
|
1 n+1 A
In(\) =AY+ 1-a2g—1 (2, |1 (n+1-a2) — ]
l)\AllaB 1 n+1 B 1 n+2 AL0
M %o 27a 27a (AL0)

correct to ordein.
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APPENDIX B

The integrald,(a) may be written in the form

un+1du

J(a)=a" 1/2f ., (Bl

[(u=ug)(uz—u)(uz—u)]

where

_m2 B2
u1UZU3—E y ( )
u1u2+u2u3+u3u1=%, (B3)
+u,+ _° B4
U U+ Uz=57" (B4)

Here,u; andu, are the usual turning points ang is the
new zero introduced by thau term.We can solve fou,
iteratively by using the relation for the zeros,

1
u?’

m2
4a

1
u

€
U= -——
2a

B

a (BS)

Sinceus is very large fora—0, we obtain by iteration

T (B6)

correct to the first three orders m Using the relations in
Egs.(B2)) and(B3), we get

m2
U1U2:Z+a

63

2,81m2) +a2( 1682m?> m*

€ €

2

2B 8pr m

u;+ u2=T+a 3 3
€ €

a2( iﬁi _ 1231m2)

€ e

(B8)

correct to the first three orders @

For evaluating the integral in E¢B1), we note that; is
large fora— 0, and expanduz—u) ~2in inverse powers of
Us:

Uy u"t1ldu
12
Tn@)=a jul[(u—ul)(uz—U)]”z

1 3
u31’2( 1+ =—u+ —u+- -

B9
2u3 8u3 (B9

One can write the integral in the form
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_ 1 3
Jn(a):al/2u31/2(Kn+l+2_u?’Kn+2+8—u:.23Kn+3+... ,
(B10)
where
K _J’ u™du (611
") LU= ug) (U w) M
In particular we have
Kn=m for m=0,
1
=§w(u1+u2) for m=1,
:W[%(U1+U2)2_%U1U2] for m=2,
=l 15(Us+Up) %~ F(ug+uy)uyu,] for m=3,
:W[%(ul+u2)4_%(u1+u2)2U1U2+%UiU§
for m=4. (B12)

Using Eqs(B10), (B11), (B12), we obtain fordB,/da in Eq.
4.9,

Ji(a)
J_i(a)

9B _
Ja

1
_ 3 2 3
=—[5(us+uy)®—3usuy]— u_s[ﬁ(ul"‘ uz)

1
—z(Up+Uz)uqUy]

1
35 4 19 2 3 2,,2
_E[m(uﬁ‘uz) —135(Ug+Up) U Uy + 5z UTUS],
3

(B13)

where we have expanded in powers afi;tf a and retained

the three leading terms. Finally, substituting the expressions

for uz,u u,, andu; +u, given in Eqs(B6), (B7), (B8), and
expanding in powers od, we get

By |3B7 m?
da |2 2 de
B3 m?
~a 13—2—3&3
€ €

221187 65182m> 75m®

16 & 16 ¢S

2

sa |- (B14
€

—a
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