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Nonadiabatic coupling using a corrected Born-Oppenheimer basis:
The vibronic spectrum of HD1

Inbal Tuvi and Y. B. Band
Department of Chemistry, Ben-Gurion University, Beer-Sheva, Israel

~Received 6 August 1998!

We apply a method suggested by Delos@Rev. Mod. Phys.53, 287~1981!# to correct the Born-Oppenheimer
basis by incorporation of proper boundary conditions for bound states of molecular systems. We calculate the
correct nonadiabatic coupling matrix elements for H2

1 and its isotopic variants and use them to determine the
HD1 vibronic spectrum.@S1050-2947~99!00504-1#

PACS number~s!: 33.20.Vq, 31.10.1z, 31.30.2i, 31.70.2f
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The Born-Oppenheimer~BO! approximation is funda-
mental to much of molecular quantum chemistry. Expand
the total wave function in terms of BO basis states allo
one to include nonadiabatic effects representing the coup
between the nuclear motion and the electronic motion. Ho
ever, when applied to molecular systems, e.g., H2

1 , the
asymptotic motion of the electron with one of the nuclei
not incorporated correctly, resulting in incorrect bounda
conditions on the wave function. In a semiclassical tre
ment, such problems can be overcome by introducing e
tron translation factors@1–5#. These factors, defined in term
of nuclear velocities, have no quantum equivalents. One
to include the effects of the motion of the electron with t
nuclei in a quantum-mechanical framework is to introduc
generalized reaction coordinate which is a function of b
the nuclear and electronic coordinates. This idea, discu
previously by Thorson and Delos@2#, Davis and Thorson@6#,
Green@7#, and Delos@1#, has never been applied to boun
state calculations of molecular systems. In this paper we
port our results of high-precision calculations of vibron
transition energies of the molecular hydrogen ion and
isotopic variants using a modified version of the theory
Delos @1#. It should be noted that although other metho
exist to calculate high-precision vibronic transition energ
of this system@8–10#, their implementation to calculat
bound states of excited electronic states is limited. T
method presented here is general and can be used fo
electronic states. The other methods are summarized in R
@11,12#.

The Hamiltonian representing the two-nuclei, on
electron system, after separation of the center-of-mass
tion, is given~in atomic units! by

H52
1

2m
¹g

22
1

2mS ¹W R2
l

2
¹W gD 2

1
1

R
2

1

r A
2

1

r B
. ~1!

Here RW is the nuclear coordinate going fromA to B. The
electronic coordinate is chosen asrWg , which connects the
geometric center of the nuclei with the electron.rWA(rWB) are
vectors connecting nucleusA(B) with the electron.¹W g and
¹W R are the gradients with respect to the electronic a
nuclear coordinates, respectively.m is the reduced mass o
the nuclei,m is the reduced electronic mass given bym
5me(MA1MB)/(me1MA1MB), and l5(MA2MB)/
PRA 591050-2947/99/59~4!/2680~4!/$15.00
g
s
g
-

y
t-
c-

y

a
h
ed

e-

s
f
s
s

e
all
fs.

-
o-

d

(MA1MB) is a positive mass asymmetry factor. In what fo
lows we assume thatMA>MB . The electronic Hamiltonian
is given byh52(1/2m)¹g

22@1/r A11/r B#5T1V. We de-

note its set of eigenfunctions by the set$wk(rWg ,R)%. Nona-
diabatic interactions are commonly introduced by expand
the total wave functionC(rWg ,RW ) in terms of the Born-
Oppenheimer basis-set~BOBS! functions:

C~rWg ,RW !5(
k

wk~rWg ,R!Fk~RW !, ~2!

whereFk(RW ) are the nuclear wave functions. This formul
tion is sometimes called perturbed stationary state~PSS!
theory@14#. Using this expansion, the radial wave equation
given by

H 2
1

2m
@1¹W R

212P¢ ~R!•¹W R1B0~R!#1U~R!J F~RW !5EF~RW !,

~3!

where PW k8k5*drW wk8(r
W,R)@¹W R2(l/2)¹W g#wk(rW,R) and

Bk8k
0

5*drW wk8(r
W,R)@¹W R2(l/2)¹W g#2wk(rW,R) are the first

and second derivative coupling terms, andU is the potential.
Standard scattering boundary conditions require that asy
totically, all coupling matrices will vanish. However, whe
applied to molecular systems such as H2

1 , these conditions
are not fulfilled. This result stems from the fact that the
dividual terms of the expansion in Eq.~2! do not satisfy the
scattering boundary conditions@1,13#. Asymptotically, the
electron moves with one of the nuclei. This implies that
atomic basis which moves with the nuclei should be m
suitable to describe the correct dynamics asymptotica
However, the BO basis-set functions are molecular in nat
therefore they fail to describe the correct physics asympt
cally. The problem is evident when one tries to calculateP¢ .
As R→`, PW k8k(R)→const, which is not necessarily zer
Furthermore, matrix elements ofP¢ between states with dif-
ferent parity (g,u) do not vanish as they should, and giv
rise to non-negligible fictitious contributions. This is partic
lary important in the ground-state manifold of HD1, where
the only contribution to the matrixP¢ is fictitious.

Steps to overcome these problems have been taken
Thorson and Delos@2# and Davis and Thorson@6#. Delos@1#
2680 ©1999 The American Physical Society
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generalized those methods and developed a theory in w
the effect of the asymptotic motion of the electrons with t
nuclei is treated quantum mechanically. A generalized s
tering coordinate which is a function of both the nucle
coordinate and the electronic coordinate is used. In
theory, which we call the modified Born-Oppenheimer bas
set ~MBOBS! method, the problems of the BOBS theo
discussed above are eliminated. The generalized scatte
coordinate is constructed using a switching function that
scribes an electron translation and is a function of the e
tron’s local behavior. As a consequence, the scattering c
dinate switches between the nuclear coordinateRW at short
range and the atomic coordinateRW i( i 5A,B) at long range.
To the best of our knowledge, applications of these meth
were not performed in the context of bound-state energie
the hydrogen molecular ion nor any other molecular syst
An outline of the theory is drawn below. Details can
found in Refs.@15,16# .

Three different Jacobi sets of coordinates can be use
describe the one-electron two-nuclei system at differ
stages of the scattering process, in which the electro
bound to nucleusA,B, or both. A realistic scattering coord
nate must be able to smoothly transform from the molecu
picture with RW as the scattering coordinate to the atom
situation at dissociation described byRW A or RW B as the scat-
tering coordinate (RW i being the coordinate of the electron
nucleusi ). One can therefore expect that the scattering
ordinate will be a function of both the nuclear coordinateRW

and the electronic coordinaterWg . Following Delos@1# we

thus define the scattering coordinate to beR̃W (rW,RW ). In gen-

eral, the coordinateR̃W could be state-dependent. However,
such cases, Hermiticity of the resulting Hamiltonian can
be assured. A complete treatment with a state-depen
scattering coordinate can be found in Ref.@15#. In the calcu-

lations we present here, we have takenR̃W as state-
independent. The BOBS expansion of the total wave fu
tion is thus replaced by the ansatz

C~rWg ,RW !5(
k

ŵk~rWg ,R̃!Fk~R̃W !. ~4!

If the basis-set functions$ŵk(rWg ,R̃)% are of atomic characte

~i.e., single-center functions!, one may replaceR̃W by RW A(RW B)
or a constant timesRW A(RW B). But, if the basis-set function

are of molecular character~two-center functions!, R̃W must be

a curvilinear coordinate. In general,R̃W can be written as

R̃W ~rWg ,RW !5RW 1
m

m
sW~rWg ,RW !, ~5!

where sW is chosen to be of the formsW5 1
2 @ f (rWg ,R)1l#rWg

2 1
8 (12l2)RW . Here f (rWg ,R) is a switching function which

is antisymmetric with respect to the electronic coordinaterWg ,
and asR→`, f→61. With this choice of heavy particle

coordinate,R̃W is proportional asymptotically toRW i( i 5A,B).
This particular choice of scattering coordinate in a class
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theory has resolved many of the problems of the BO
theory @1#. However, there is still freedom in the choice
the switching function.

A complete derivation of the coupled equations result
from Eq. ~4! is presented in Ref.@16#. Here we summarize
the main steps. First, the original BO basis set$wk(rWg ,R)% is
mapped to create the new basis set$ŵk(rWg ,R̃)%. In the sec-
ond step, the total Hamiltonian is written in terms of the ne

coordinateR̃W . The resulting expression is then expanded
powers ofAm/m, which, from a semiclassical point of view
is proportional to the nuclear velocity divided by the ele
tronic velocity. For simplicity, terms of the order (m/m)3/2

('1025 for H2
1) and higher powers are consistently n

glected. In addition, terms of orderm/m which are also pro-
portional to derivatives of the switching function or relate
factors@e.g., (f 221)] are also neglected. Finally, one shou
note that for the purpose of numerical integration over el
tronic coordinates,R̃ is a dummy integration variable. It is
therefore designated for convenience byR in what follows.
A new set of coupled equations for the radial wave funct
results, very similar to the original BOBS radial Eq.~3!,

H 2
1

2m
@1¹R

212P¢ ~R!•¹W R1B~R!#1U~R!1I ~R!J F~RW !

5EF~RW !, ~6!

whereU is as before; and to within approximations alrea
made, the new coupling matrices are given by

Pk8k5E drW wk8~rWg ,R!S ¹W R2
l

2
¹W g2m@h,sW# Dwk~rWg ,R!,

Bk8k5E drW wk8~rWg ,R!F¹W R1
f

2
¹W gG2

wk~rWg ,R!,

I k8k5
1

2mE drWwk8~rWg ,R!H ~ f 1l!¹g
2

22m sW•F¹W RS V1
1

RD G J wk~rWg ,R!.

~7!

The first and second derivative coupling matrices (P¢ andB)
that appear in Eq.~6! are similar to the BOBS coupling ma
trices (P¢ andB0), except the new matrices obey the scatt
ing boundary conditions and vanish asymptotically. The m
trix I is the electron reduced mass coupling mat
originating from differences between asymptotic electro
reduced masses. In the molecular BO basis-set framew
the reduced electronic mass taken into account@m
5me(MA1MB)/(me1MA1MB)# is different from the
atomic reduced electronic mass appearing in the chann
mi5meMi /(me1Mi),i 5A,B. The matrixI is proportional
to the difference between these reduced masses, and is t
fore very small. A detailed derivation of these coupling m
trices can be found in Refs.@15,16#.

The solution of Eq.~6! is performed in several steps.~a!
The eigenfunctions and eigenenergies of the electro
Hamiltonianh are found. This is carried out by transformin
the problem into prolate spheroidal coordinates,rWg
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5(j,h,x), in which the electronic Hamiltonian is separab
In our calculations, we used the algorithm of Hadinger a
co-workers, which is based on the Killingbeck method as
ciated with Miller’s algorithm@17–19#. ~b! Equation~6! is
converted to a radial equation by transformation to a rota
coordinate system, expansion of the wave function in sy
metric top functions, and integration over angular coor
nates~see, for example,@15,20#!. The radial equation is then
solved to obtain the bound-state energies and the wave f
tion. This is performed using a specially designed Fou
grid Hamiltonian–discrete variable representation~FGH-
DVR! scheme@21#.

The switching function was determined using the meth
of Thorson and co-workers@22#. It was chosen to have th
analytic form f (h,R)5tanh@b(R)Rh#, where the function
b(R) was determined so that the magnitude of the correc
coupling matrices of the ground state to higher-lying sta
as compared with the BOBS coupling matrices was m
mized. The functionb(R) was determined empirically on
grid of points inR, and was then interpolated to obtain i
value for any givenR. For simplicity, derivatives of the
switching function have been consistently neglected.

FIG. 1. Comparison between matrix elements of the BOBS
MBOBS radial first derivative matrices for HD1, for varioussg

states. Inset shows the relevant potential-energy surfaces.
.
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The issue of Hermiticity requires special attention in fo
mulating this theory, since the DVR method can lead to s
nificant numerical errors if the Hamiltonian matrix is n
written in an explicitly Hermitian form@21#. Therefore,
when deriving specific formulas, each coupling mat
should be examined carefully. Since all operators and ba
set functions are real, one should require that the nuc
Hamiltonian be symmetric with respect to interchangi
basis-set indices. Such Hermitian formulas have been
rived for each coupling matrix@15,16#.

The MBOBS method was used to calculate vibratio
rotation energies of the hydrogen molecular ion and its i
topic variants (H2

1 ,HD1,D2
1). Figure 1 presents a com

parison between several matrix elements of the radial p

of the matricesP¢ and P¢ . The inset shows the relevan
potential- energy curves. The most important difference
tween the BOBS results and the MBOBS results, as is e
dent from Fig. 1, is the asymptotic limit of the matrix ele
ments. In addition, the matrix elements ofP(R) are smaller in
magnitude as compared with the matrix elements ofP(R).
These results suggest that convergence with respect to b
set size can be much faster in the MBOBS method.

We calculated vibronic transition energies for HD1 and
compared them with experimental results. Convergence
function of the DVR parameters was examined. The integ
tion region wasRP@0.5,100# bohr, and 150 grid points were
used with a nonlinear grid. With these parameters the res
ing bound states are believed to be accurate to at least
significant digits. Table I presents results of several transit
energies~the lowest and highest experimentally determin
ones! including Born-Oppenheimer, adiabatic, and two-st
nonadiabatic calculation of the transition frequencies
HD1 and their comparison to experimental values. Radiat
and relativistic corrections~including hyperfine effects@23#!
were taken as per Ref.@10# and added to the two-state re
sults. The two-state nonadiabatic calculation was perform
within the 1ssg and 2psu manifold of HD1. The matrixI
was estimated by its asymptotic value. Table I demonstra
the agreement between the two-state nonadiabatic results
experiment; the average discrepancy of all of our results i
order 0.015%. In order to improve the accuracy of the c

d

batic
r-
experi-

nce
TABLE I. BO, adiabatic, nonadiabatic two-state, radiatively and relativisitically corrected nonadia
two-state, and experimental transition frequencies of HD1 in cm21. Percent difference refers to the diffe
ence between the radiatively and relativisitically corrected two-state nonadiabatic calculations and
mental values. Experimental values are taken from Ref.@10#.

Transition BO Adiabatic Two-state Corrected two-state Experiment % differe

1-0 P~1! 1869.7222 1869.1685 1869.1683 1869.2044 1869.1340 0.0038
1-0 P~2! 1824.1013 1823.5666 1823.5664 1823.5453 1823.5330 0.0007
1-0 P~3! 1777.0063 1776.4916 1776.4914 1776.4717 1776.4590 0.0007
2-1 R~0! 1857.3311 1856.8028 1856.8025 1856.7798 1856.7780 0.0001
3-2 R~0! 1762.0999 1761.6312 1761.6309 1761.6106 1761.6160 0.0003
3-2 R~1! 1798.0181 1797.5370 1797.5366 1797.5153 1797.5220 0.0004
3-2 R~2! 1831.5890 1831.0970 1831.0967 1831.0744 1831.0830 0.0005
3-2 P~2! 1642.5451 1642.1220 1642.1217 1642.1047 1642.1080 0.0002
22-17 R~0! 1018.0736 1021.6011 1006.8769 1006.9413 1006.9650 0.0024
22-17 P~1! 1005.1215 1008.6131 994.1299 994.1940 994.1120 0.0082
22-17 P~2! 980.6685 984.1649 969.4429 969.5072 969.5300 0.0024
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culations, more states should be included in the calculat
including P states@10#. In addition, a complete calculatio
of the I matrix will increase the accuracy.

To conclude, the modified Born-Oppenheimer basis-
~MBOBS! method was adapted for calculating bound-st
energies of the molecular hydrogen ion and its isotopic v
ants. The nuclear derivative coupling matrices were ca
lated in a manner so as to give their correct asymptotic
havior. Our results show that the coupling matrices
smaller in magnitude than the BOBS coupling matrices, a
therefore faster convergence of bound-state energies
function of basis-set size is expected. This method can
used to include nonadiabatic effects when bound-state e
gies of higher-lying electronic states are calculated.

For multielectron systems, efficient configuratio
interaction methods for calculating first and second nuc
derivative coupling matrix elements need to be develop
B
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where these matrix elements include the modifications n
essary to incorporate the asymptotic motion of the electr
with the nuclei into the calculation of the nonadiabatic m
trix elements. Initial steps along these lines have been ta
@5,24#.
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