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Nonadiabatic coupling using a corrected Born-Oppenheimer basis:
The vibronic spectrum of HD*
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We apply a method suggested by DelBgv. Mod. Phys53, 287(1981)] to correct the Born-Oppenheimer
basis by incorporation of proper boundary conditions for bound states of molecular systems. We calculate the
correct nonadiabatic coupling matrix elements fgi Hand its isotopic variants and use them to determine the
HD™ vibronic spectrum[S1050-294799)00504-1

PACS numbg(s): 33.20.Vq, 31.10+z, 31.30—i, 31.70~f

The Born-OppenheimefBO) approximation is funda- (Mu+Mp) is a positive mass asymmetry factor. In what fol-
mental to much of molecular quantum chemistry. Expandindows we assume thafl ,=Mg. The electronic Hamiltonian
the total wave function in terms of BO basis states allowss given byh= —(1/2m)V§—[1/rA+ lrg]=T+V. We de-

one to include nonadiabatic effects representing the couplingge its set of eigenfunctions by the s{@tk(FQ R)}. Nona-

between the nuclear motion and the electronic motion. HoWgiabatic interactions are commonly introduced by expanding

ever, when applied to molecular systems, e.g,, Hthe . N
asymptotic motion of the electron with one of the nuclei isthe total wave fu'nct|on\1f(r R) In te.rms of the Born-
Oppenheimer basis-s@8OBS) functions:

not incorporated correctly, resulting in incorrect boundary

conditions on the wave function. In a semiclassical treat- L. R R

ment, such problems can be overcome by introducing elec- \If(rg,R):Z e(rg,RIF(R), (2)

tron translation factorgl—5]. These factors, defined in terms K

of nuclear velocities, have no quantum equivalents. One way R ) i

to include the effects of the motion of the electron with theWhereFy(R) are the nuclear wave functions. This formula-

nuclei in a quantum-mechanical framework is to introduce di0n is sometimes called perturbed stationary st&®€S

generalized reaction coordinate which is a function of botitheory[14]. Using this expansion, the radial wave equation is

the nuclear and electronic coordinates. This idea, discusséiven by

previously by Thorson and Del¢g], Davis and Thorsof6], 1

Green[7], and Delog 1], has never been applied to bound- | _ _—_[1V24 2p(R)- V5+B%(R)]+U(R) | F(R)=EF(R),

state calculations of molecular systems. In this paper we ret 2ux

port our results of high-precision calculations of vibronic )

transition energies of the molecular hydrogen ion and its - - - - - -

isotopic variants using a modified version of the theory ofhere P =Jdr ¢ (r,R)[Vr—(M2)Vgle(r,R)  and

Delos[1]. It should be noted that although other methodng,k=fdr cpkr(r,R)[VR—(A/Z)Vg]chk(r,R) are the first

exist to calculate high-precision vibronic transition energiesand second derivative coupling terms, dnds the potential.

of this system[8—10], their implementation to calculate Standard scattering boundary conditions require that asymp-

bound states of excited electronic states is limited. Theotically, all coupling matrices will vanish. However, when

method presented here is general and can be used for alpplied to molecular systems such as'K these conditions

electronic states. The other methods are summarized in Refare not fulfilled. This result stems from the fact that the in-

[11,17. dividual terms of the expansion in E() do not satisfy the
The Hamiltonian representing the two-nuclei, one-scattering boundary conditior{d,13]. Asymptotically, the

electron system, after separation of the center-of-mass meiectron moves with one of the nuclei. This implies that an

tion, is given(in atomic unitg by atomic basis which moves with the nuclei should be more

suitable to describe the correct dynamics asymptotically.

2 . . .
1 1 - 1 1 1 1) However, the BO basis-set functions are molecular in nature,

—_ 2 Vi
H=— -V (VR—EVQ o

R rp rg therefore they fail to describe the correct physics asymptoti-

S . ] cally. The problem is evident when one tries to calcuRte
Here R is the nuclear coordinate going frof to B. The As R— oo, Iskfk(R)—>const, which is not necessarily zero.

electrom.c coordinate is chosgn .a§, which co»nniacts the Furthermore, matrix elements &f between states with dif-
geometric center of the nuclei with the electrop(rg) are  ferent parity ,u) do not vanish as they should, and give
vectors connecting nucleuws(B) with the electronVy and  rise to non-negligible fictitious contributions. This is particu-

Vg are the gradients with respect to the electronic andary important in the ground-state manifold of HDwhere
nuclear coordinates, respectively.is the reduced mass of the only contribution to the matriR is fictitious.

the nuclei,m is the reduced electronic mass given by Steps to overcome these problems have been taken by
=mg(Ma+Mg)/(Mm+Ma+Mg), and A=(Mp—Mg)/  Thorson and Delof2] and Davis and Thorsd®]. Delos[1]

2m 9 2u
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generalized those methods and developed a theory in whidheory has resolved many of the problems of the BOBS
the effect of the asymptotic motion of the electrons with thetheory[1]. However, there is still freedom in the choice of
nuclei is treated quantum mechanically. A generalized scathe switching function.

tering coordinate which is a function of both the nuclear A complete derivation of the coupled equations resulting
coordinate and the electronic coordinate is used. In thifrom Eq. (4) is presented in Ref.16]. Here we summarize
theory, which we call the modified Born-Oppenheimer basisthe main steps. First, the original BO basis{ga{(Fg R)Vis

set (MBOBS) method, the problems of the BOBS theory mapped to create the new basis &%&(Fg,ﬁ)}- In the sec-

discussed gbove are e”m‘”f"‘ted- Th_e ggneralize_d scatteri%d step, the total Hamiltonian is written in terms of the new
coordinate is constructed using a switching function that de- '

- = . . . -
scribes an electron translation and is a function of the eleccoordinateR. The resulting expression is then expanded in
tron’s local behavior. As a consequence, the scattering cooowers ofym/u, which, from a semiclassical point of view,

dinate switches between the nuclear coordirfatat short 1S Proportional to the nuclear velocity divided by the elec-
. s tronic velocity. For simplicity, terms of the ordem{u)%?
range and the atomic coordina®(i=A,B) at long range.

L ~107° for H,") and higher powers are consistently ne-
To the best of our knowledge, applications of these me'_[hod lected. In adéition terms of orden/ . which are also pro-
were not performed in the context of bound-state energies !

the hydrogen molecular ion nor any other molecular syste ortional to derivatives of the switching function or related
2_ .
An outline of the theory is drawn below. Details can be actorsfe.g., (*~1)] are also neglected. Finally, one should

. note that for the purpose of numerical integration over elec-
found in Refs[15,16 . i i - . . . .
Three different Jacobi sets of coordinates can be used f0Nic coordinatesR is a dummy integration variable. It is
describe the one-electron two-nuclei system at differenth€refore designated for convenience Ryn what follows.

stages of the scattering process, in which the electron i§ NeW set of coupled equations for the radial wave function
bound to nucleus,B, or both. A realistic scattering coordi- €Sults, very similar to the original BOBS radial ),

nate must be able to smoothly transform from the molecular
picture with R as the scattering coordinate to the atomic ‘—Z[1V§+2ﬁ(R)~ﬁR+ B(R)]+U(R)+I(R)]F(§)
situation at dissociation described By or Rg as the scat-

tering coordinate If{i being the coordinate of the electron to =EF(R), (6)
nucleusi). One can therefore expect that the scattering co- _ o o
ordinate will be a function of both the nuclear coordinge Whereu is as before; and to within approximations already

and the electronic coordinalrfng. Following Delos[1] we made, the new coupling matrices are given by
thus define the scattering coordinate toﬁn(ef, R). In gen-

eral, the coordinat® could be state-dependent. However, in
such cases, Hermiticity of the resulting Hamiltonian cannot R R
be assured. A complete treatment with a state-dependentBk,k=J dr ¢y (rg,R)

- - I - -
Hk,sz dr <pk,(rg,R)(VR— EVg—m[h,s])qok(rg \R),

. fo 2L
Vet _Vg} exl(rg,R),

scattering coordinate can be found in Hdf]. In the calcu- 2 @
. = 1 - -
lations we present here, we have takéh as state- |k/k:_f dre(fg,R) (fH\)Vg
independent. The BOBS expansion of the total wave func- 2
tion is thus replaced by the ansatz . 1 .
-2ms VR(V+ ﬁ) e(rg,R).

V(g R)=3 il RF(R). (4)

o The first and second derivative coupling matric&a(nd B)
If the basis-set functione,(ry,R)} are of atomic character that appear in Eq6) are similar to the BOBS coupling ma-

(i.e., single-center functiojsone may replac® by Ra(Rs) trices (P and BY), except the new matrices obey the scatter-
or a constant time®,(Rg). But, if the basis-set functions N9 Poundary conditions and vanish asymptotically. The ma-
= trix | is the electron reduced mass coupling matrix
are of molecular charactéiwo-centgr functions R mustbe  qriginating from differences between asymptotic electronic
a curvilinear coordinate. In generd&, can be written as reduced masses. In the molecular BO basis-set framework
the reduced electronic mass taken into accoyn
B 1 | TR =Mg(Ma+Mg)/(Mg+Mp+Mg)] is different from the
R(rg’R):R”L;S(rg’R)' (®)  atomic reduced electronic mass appearing in the channels:
m;=meM; /(m.+ M,),i=A,B. The matrix| is proportional
to the difference between these reduced masses, and is there-

- T -
=5 +

whleres Ii Ehosen to»be Of. the for_na .Z[f(rg ’R_) )\]r_g fore very small. A detailed derivation of these coupling ma-

—5(1—-\)R. Heref(rgy,R) is a switching function which trices can be found in RefE15,16].

is antisymmetric with respect t_o the e_Iectronic coordirf@_t,e The solution of Eq(6) is performed in several step&)

and asR—«,f—=x1. With this choice of heavy particle The eigenfunctions and eigenenergies of the electronic
~ - . . . . . .

coordinateR is proportional asymptotically t&(i=A,B). Hamiltonianh are found. This is carried out by transforming

This particular choice of scattering coordinate in a classicathe problem into prolate spheroidal coordinateég
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035 3 H(R)(lscg-Zscg) The issue of Hermiticity requires special attention in for-
2 010 3 PR(156 256 ) mulating this theory, since the DVR method can lead to sig-
;; g § @ At nificant numerical errors if the Hamiltonian matrix is not
é 025 3 S 50, written in an explicitly Hermitian form[21]. Therefore,

i 110, -3s6,) tt licity Hermitian form[21]. Theref

S 3 : —----p<R)(1sog-3sog) when deriving specific formulas, each coupling matrix
& 0.20 3 "1\[‘5“”‘15&‘(@3‘}1‘(;‘2‘6”‘2‘5‘”‘30 _________ T®™(1s0 -3do ) should be examined carefully. Since all operators and basis-
§ 0.15 3 ot set functions are real, one should require that the nuclear
3 ] ST P™(1s6,-3do ) Hamiltonian be symmetric with respect to interchanging
2 0107 e basis-set indices. Such Hermitian formulas have been de-
g 0050 AN~ rived for each coupling matrikl5,16].
g g The MBOBS method was used to calculate vibration-
w003 rotation energies of the hydrogen molecular ion and its iso-
i 0050 1° topic variants (H* ,HD",D,"). Figure 1 presents a com-

=U. |II||I||I||II||IIII||II||I|II|II|I|I|II|

parison between several matrix elements of the radial parts
5 10 15 20 25 30 35 40

R (Bohr) of the matricesIi and P. The inset shows the relevant
otential- energy curves. The most important difference be-
FIG. 1. Comparison between matrix elements of the BOBS andyyeen the BOBS results and the MBOBS results, as is evi-
MBOBS radial first derivative matrices for HD for various o dent from Fig. 1, is the asymptotic limit of the matrix ele-
states. Inset shows the relevant potential-energy surfaces. L . R) .
ments. In addition, the matrix elementsI#f® are smaller in

=(&7.x), in which the electronic Hamiltonian is separable. magnitude as compared with the matrix elementsP6?.
In our calculations, we used the algorithm of Hadinger andThese results suggest that convergence with respect to basis-
co-workers, which is based on the Killingbeck method assoset size can be much faster in the MBOBS method.
ciated with Miller's algorithm[17-19. (b) Equation(6) is We calculated vibronic transition energies for Hand
converted to a radial equation by transformation to a rotatingompared them with experimental results. Convergence as a
coordinate system, expansion of the wave function in symfunction of the DVR parameters was examined. The integra-
metric top functions, and integration over angular coordi-tion region wasRe[0.5,10qQ bohr, and 150 grid points were
nates(see, for exampld15,20). The radial equation is then used with a nonlinear grid. With these parameters the result-
solved to obtain the bound-state energies and the wave fungig bound states are believed to be accurate to at least nine
tion. This is performed using a specially designed Fouriessignificant digits. Table | presents results of several transition
grid Hamiltonian—discrete variable representatidGH-  energies(the lowest and highest experimentally determined
DVR) schemd21]. ones including Born-Oppenheimer, adiabatic, and two-state
The switching function was determined using the methochonadiabatic calculation of the transition frequencies of
of Thorson and co-worker®2]. It was chosen to have the HD* and their comparison to experimental values. Radiative
analytic form f(#,R)=tanfjb(R)R7], where the function and relativistic correctionéncluding hyperfine effectf23])
b(R) was determined so that the magnitude of the correctewere taken as per Refl0] and added to the two-state re-
coupling matrices of the ground state to higher-lying statesults. The two-state nonadiabatic calculation was performed
as compared with the BOBS coupling matrices was mini-within the 1soy and 2o, manifold of HD". The matrix|
mized. The functiorb(R) was determined empirically on a was estimated by its asymptotic value. Table | demonstrates
grid of points inR, and was then interpolated to obtain its the agreement between the two-state nonadiabatic results and
value for any givenR. For simplicity, derivatives of the experiment; the average discrepancy of all of our results is of
switching function have been consistently neglected. order 0.015%. In order to improve the accuracy of the cal-

TABLE |. BO, adiabatic, nonadiabatic two-state, radiatively and relativisitically corrected nonadiabatic
two-state, and experimental transition frequencies of Hbcm™1. Percent difference refers to the differ-
ence between the radiatively and relativisitically corrected two-state nonadiabatic calculations and experi-
mental values. Experimental values are taken from Rif].

Transition BO Adiabatic  Two-state  Corrected two-state  Experiment % difference
1-0 A1) 1869.7222 1869.1685 1869.1683 1869.2044 1869.1340 0.0038
1-0 R2) 1824.1013 1823.5666 1823.5664 1823.5453 1823.5330 0.0007
1-0 R3) 1777.0063 1776.4916 1776.4914 1776.4717 1776.4590 0.0007
2-1 RO) 1857.3311 1856.8028 1856.8025 1856.7798 1856.7780 0.0001
3-2 R0O) 1762.0999 1761.6312 1761.6309 1761.6106 1761.6160 0.0003
3-2 R1) 1798.0181 1797.5370 1797.5366 1797.5153 1797.5220 0.0004
3-2R2) 1831.5890 1831.0970 1831.0967 1831.0744 1831.0830 0.0005
3-2R2) 1642.5451 1642.1220 1642.1217 1642.1047 1642.1080 0.0002
22-17 RO)  1018.0736 1021.6011 1006.8769 1006.9413 1006.9650 0.0024
22-17 R1) 1005.1215 1008.6131  994.1299 994.1940 994.1120 0.0082

22-17 R2) 980.6685 984.1649 969.4429 969.5072 969.5300 0.0024
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culations, more states should be included in the calculationyhere these matrix elements include the modifications nec-
including IT states[10]. In addition, a complete calculation essary to incorporate the asymptotic motion of the electrons

of the | matrix will increase the accuracy. with the nuclei into the calculation of the nonadiabatic ma-
To conclude, the modified Born-Oppenheimer basis-sefrix elements. Initial steps along these lines have been taken

(MBOBS) method was adapted for calculating bound-statgs 24].

energies of the molecular hydrogen ion and its isotopic vari-

ants. The nuclear derivative coupling matrices were calcu- . ]

lated in a manner so as to give their correct asymptotic be- This work was supported in part by grants from the U.S.—

havior. Our results show that the coupling matrices ardsrael Binational Science Foundation and the Israel Academy
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therefore faster convergence of bound-state energies ascalculate the integrals ovey andé needed to form the elec-

function of basis-set size is expected. This method can btonic matrix elements, and Monique Aubert-Eoe, Alain
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