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Kinetic-energy systems, density scaling, and homogeneity relations in density-functional theory

Garnet Kin-Lic Chan and Nicholas C. Handy
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom

~Received 29 April 1998!

We examine the behavior of the Kohn-Sham kinetic energyTs@r# and the interacting kinetic energyT@r#
under homogeneous density scaling,r(r )→zr(r ). Using convexity arguments, we derive simple inequalities
and scaling constraints for the kinetic energy. We also demonstrate that a recently derived homogeneity
relation for the kinetic energy@S. B. Liu and R. G. Parr, Chem. Phys. Lett.278, 341 ~1997!# does not hold in
real systems, due to nonsmoothness of the kinetic-energy functional. We carry out a numerical study of the
density scaling ofTs@r# usingab initio densities, and find it exhibits an effective homogeneity close to 5/3. We
also explore alternative reference systems for the kinetic energy which have fewer particles than the true
N-particle interacting system. However, we conclude that the Kohn-Sham reference system is the only viable
choice for accurate calculation, as it contains the necessary physics.@S1050-2947~99!05903-X#

PACS number~s!: 31.15.Ew
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I. INTRODUCTION

Density-functional theory yields observables, such as
energy, as functionals of the densityr(r ) @1#. In recent years
the Kohn-Sham version of density-functional theory@2#,
which offers a set of exact, self-consistent field equatio
has become the principal computational method of molec
and condensed-matter physics. The main problem is tha
form of the energy functionalE@r# is unknown.

In the development of new density functionals, there h
been much interest in the behavior of energy compone
when r(r ) undergoes some form of scaling. Most worke
have focused on coordinate scaling@3#, where r(r )
→z3r(zr ), i.e., electronic coordinate scaling: this effe
tively explores the effect of changing the external poten
associated withr(r ), but not the particle number. One a
plication of this formalism is in the construction of function
als, since constraining functionals to satisfy derived coo
nate scaling requirements extends the effective range
validity of the data set used to parametrize the function
@4#. A second application is to derive virial relations@3#,
where if a functional~such as the exchange energyEx@r#),
has a single polynomial dependence onz, one can write
down exact relations likeEx@r#52*drr(r )r•“vx(r ),
wherevx(r ) is the functional derivative ofEx@r#.

Here, we investigate a different type of scaling, homo
neous density scaling~from now on, simply ‘‘density scal-
ing’’ !, wherer(r )→zr(r ). Through density scaling, we ar
changing both the particle number and the external poten
associated withr(r ). We believe that density scaling ma
offer an approach to the derivation of exact conditions
functionals. Also, if functionals exhibit simple behavior wi
density scaling, we can expect to derive relations analog
to the virial relations of coordinate scaling theory. The lat
aspect has previously been investigated in the recent wor
Parr and Liu@5#, and Liu and Parr@6#, who proposed simple
‘‘homogeneity relations’’ for separate components of the
ergy.

In this study of density scaling, we focus on the kine
energy~the interacting kinetic energyT@r#, as well as the
Kohn-Sham kinetic energyTs@r#). This is for two related
PRA 591050-2947/99/59~4!/2670~10!/$15.00
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reasons. First, we do not consider the problem of repres
ing the kinetic energy in density-functional theory, a solv
problem. This is because, although the Kohn-Sham kin
energy functionalTs@r# @2# gives a good representation o
the kinetic energy, it is not a simple density functional, as
depends on an auxiliary set of orbitalsf i(r ). We wonder, as
have many others@7–9#, if it is not possible to find some
simpler representation of the kinetic energy, which is a s
ficiently accurate approximation in certain density regim
to Ts@r# or T@r#. Accordingly, knowledge of the densit
scaling behavior of the kinetic energy will aid in the co
struction of suitable alternative kinetic-energy functionals

Second, from a different point of view, because the e
plicit form of the Kohn-Sham kinetic energyTs@r# is known,
and can be calculated from any density using recently de
oped procedures@10#, we can study the density scaling o
Ts@r# numerically. This information is interesting in its ow
right, and also, sinceTs@r# is a tight lower bound toT@r#,
studying the scaling ofTs@r# yields much information on the
scaling ofT@r#.

Our study proceeds as follows. Density scaling does
preserve normalization, but instead simultaneously scales
particle number. This requires us to consider kinetic energ
and other quantities at noninteger particle numbers,
which the density matrix, rather than the wave function, b
comes the object of interest in quantum mechanics. In S
II, we give the density-matrix definitions ofT@r#, Ts@r#,
and other relevant density-functional quantities, for gene
particle numbers. In addition, we define the auxiliary qua
tity Tz@r#5Ts@zr#/z, thez-kinetic energy, which relates th
density scaling ofTs@r# to the particle number (N) scaling
of a generalized Kohn-Sham reference system. Forz such
that N/z is an integer,Tz@r# is a kinetic-energy functiona
that depends onN/z auxiliary orbitals, and is thus a possib
candidate for a simpler kinetic-energy functional. For e
ample, whenz5N, Tz@r# is the von Weizsa¨cker kinetic en-
ergy.

Next, in Sec. III, we examine density scaling ofTs@r# and
T@r# from a formal point of view, usingTz@r# as an inter-
mediary. The concepts of convexity and homogeneity
2670 ©1999 The American Physical Society
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introduced. Using convexity, we present simple inequaliti
such as

Ts@zr#>zTs@r# ~z.1!, ~1!

Tz@r#<Tz8@r# ~z.z8uz,z8>1!, ~2!

which seem obvious, though we have not encountered t
in the literature. We also highlight an important scaling co
straint due to Lieb and Thirring@11#. Using these scaling
conditions onTs@r# and T@r#, we demonstrate that th
kinetic-energy homogeneity relation of Liu and Parr@6# can-
not hold, and that simple homogeneity is not precise eno
a concept to describe nonsmooth functionals. We introd
the concept of an effective homogeneity, for nonsmo
functionals.

Then, in Sec. IV, we study the density scaling ofTs@zr#
with z, numerically. We first compute thez-kinetic energy
Tz@r#, from theab initio densities of the closed-shell sphe
cal atoms Be, Mg, Ne, and Ar, and then calculate the co
sponding Ts@zr# through a scaling relation. We briefl
present our computational scheme, based on the inversio
the generalized Kohn-Sham orbital equations associated
Tz@r#, through the method of Zhao-Morrison-Parr@12#,
though we relegate the full derivation of the orbital equatio
and Zhao-Morrison-Parr method to Appendix B. Our calc
lations verify the scaling conditions derived in Sec. III, a
we further demonstrate that the Kohn-Sham kinetic ene
Ts@r# displays aneffectivehomogeneity close to 5/3. Also
we demonstrate, throughTz@r#, that we cannot easily com
pute the kinetic energy unless we have the same numbe
reference orbitals as we have particles in the system.

Finally in Sec. V, we summarize our findings, and ind
cate some future directions.

II. DEFINITIONS

We first consider the definitions of the relevant quantit
in this study, and how they encompass the operation of d
sity scaling. Note that we assume all densities concerned
N- andv-representable.

Following the work of Levy@13# and Lieb@14#, we usu-
ally define energy density functionals through constrain
minimizations. For example, we have, for the total ene
E@r# and Kohn-Sham kinetic energyTs@r# of an integer
number of particles,

E@r#5 min
C→r

^CuT̂1V̂uC&1E r~r !v~r !dr , ~3!

Ts@r#5 min
C→r

^CuT̂uC&, ~4!

where T̂ and V̂ are the kinetic and potential operators, r
spectively, andv(r ) is the external potential. The interactin
kinetic energyT@r#, is defined aŝ CmuT̂uCm&, whereCm
minimizes Eq.~3!. Note, that since the minimizingC in Eq.
~4! is a Slater determinant ofN orbitalsf i(r ), we can write
Ts@r# in the familiar form, Ts@r#5min(

i
Nf

i
2→r(i

N

21
2^fiu¹i

2ufi&.
,
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However, under the operation of density scaling,r(r )
→zr(r ), the number of particles changes fromN to zN,
whereN5*r(r )dr . Thus, asz is varied, we pass through
densities with noninteger particle numbers, which the defi
tions~3! and~4! do not handle. How do we interpret this? N
real isolatedsystem can possess a noninteger particle nu
ber, and thus there is no unique interpretation. However,sub-
systemsof larger systems may well have an average non
teger particle number@15#, and such subsystems a
described using density matrices, rather than wave functi

Thus the natural context in which to treat noninteger p
ticle numbers, in density-functional theory, is simply to e
tend the constrained search over the density-matrix oper
Ĝ @16#. Ĝ has the spectral representation

Ĝ5(
Mi

f Mi uCMi&^CMi u, ~5!

whereCMi is the i th M-particle eigenfunction of a Hamil-
tonian, andf Mi are occupations numbers which satisfy t
conditions, 0< f Mi<1, and(Mi f Mi51. In terms of the den-
sity matrix, the expectation value of an operatorV̂ is yielded
by the linear operation Tr@ĜV̂#. Note thatĜ may yield an
average noninteger particle number.

Then, replacing the wave function by the density-mat
operator, the extended definitions for the energy function
corresponding to Eqs.~3! and ~4!, which are valid for all
particle numbers, become

E@r#5 min
Ĝ→r~r !

Tr@Ĝ ~ T̂1V̂!#1E r~r !v~r !dr , ~6!

Ts@r#5 min
Ĝ→r~r !

Tr@Ĝ T̂#, ~7!

where T@r# is given by Tr@Ĝ mT̂#, and Ĝ m minimizes Eq.
~6!. At the integer densities used in this work, we shall a
sume that the density matrix~6!, ~7! and wave function defi-
nitions ~3!, ~4! are identical. Similar generalizations ofE@r#

in terms ofĜ have been used previously by Mermin@17# and
Perdewet al. @15#.

Before proceeding, several points must be noted. F
although scalingr(r )→zr(r ) is a linear procedure, the ma
of Gm→r(r ) is highly nonlinear, and moreover, has a no
trivial dependence onN @15,14#. Thus,a priori, we do not
expect the general energy functionals~6!, ~7! to have a
simple behavior under density scaling. Second, we men
again that under density scaling the ground-state exte
potential associated withr(r ) ~through the Hohenberg-Kohn
theorem! changes in a nontrivial fashion. However, fro
Eqs.~6! and ~7!, we see that the external potential doesnot
enter into the definitions of thekinetic energy, and thus will
not concern us in this work.

In the case of the Kohn-Sham kinetic energyTs@r#,
greater insight into density scaling is gained by consider
the link with particle number scaling in the reference syst
for the kinetic energy. We thus digress a little to define
auxiliary quantity used in this work,Tz@r#, which we term
the z-kinetic energy.
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The Kohn-Sham kinetic energy is the kinetic energy o
ground-stateN-electron,N-orbital noninteracting system tha
represents the trueN-electron density. However, for som
N-electron density r(r ), we can instead choose a
M-electron noninteracting reference system with grou
state densityr(r )/z, wherez5N/M . For integersN andM ,
this corresponds to choosing anM-orbital reference system
e.g., in the neon atom, instead of a ten-orbital reference
tem, we could consider a six-orbital 1s22s23s2 reference
system~where M56, z55/3), or even a two-orbital 1s2

reference system~whereM52, z55). Thez-kinetic energy
Tz@r# is then defined asz times the kinetic energy of the
M-electron reference system, that is, for integerM ,N,

Tz@r#5 min

z(
i

M

f i
2→r

2
1

2
z(

i

M

^f i u¹ i
2uf i&, ~8!

r~r !5z(
i

M

f i
2~r !, ~9!

or more generally, whenM andN are any number,

Tz@r#5 min
zĜ→r~r !

z Tr @ĜT̂#, ~10!

r~r !5z Tr@Ĝr̂ #, ~11!

Tz@r# is not an unfamiliar quantity. Important choices ofz in
this work arez51 (M5N) and z5N (M51). In these

limits, T1@r#5Ts@r#, and TN@r#52 1
2 *r

1
2 (r )¹2r

1
2 (r )dr ,

the von Weizsa¨cker kinetic energy@18,19#.
The relation betweenTz@r# and the density scaling o

Ts@r# is made explicit through simple scaling relation
which we derive as follows. Ifz→kz, the number of par-
ticles M in the reference system goes fromN/z→N/(kz),
and if we simultaneously scaler(r ) by k, then M is un-
changed by the combined two scaling procedures. So,
have relations

Tkz@r#5kTzF r

kG , ~12!

Tz@r#5zTsFrz G , ~13!

where Eq.~13! is just a specific case of Eq.~12! ~with k
51), and is a scaling relation for the Kohn-Sham kine
energy, sinceT1@r/z#5Ts@r/z#. Thus, studying the behav
ior of Tz@r# with z is equivalent to studying the scalin
behavior ofTs@r#, and we shall use this relation later in th
work.

We finish by defining other energy quantities that app
in the Kohn-Sham version of density-functional theory.
Kohn-Sham theory, the energy functional is partitioned a

E@r#5Ts@r#1J@r#1Exc@r#1E r~r !v~r !dr . ~14!
-

s-

,

e

r

The classical Coulomb repulsion J@r#
5 1

2 **@r(r1)r(r2)/r 12#dr1dr2 , andExc@r# is the exchange-
correlation functional, which incorporates all nonclassic
correlation effects. Its functional derivative, the exchang
correlation potentialvxc(r )5dExc@r#/dr(r ) appears in the
Kohn-Sham orbital equations. Analogously, usingTz@r#, we
can write a partitioning of the energy

E@r#5Tz@r#1J@r#1Ezxc@r#1E r~r !v~r !dr , ~15!

where we have defined thez-exchange-correlation energ
Ezxc@r#, and its corresponding functional derivativevzxc(r )
5dEzxc@r#/dr(r ).

With the relevant quantities defined, we proceed to inv
tigate the explicit density scaling behavior ofTs@r# andT@r#
in the next sections.

III. FORMAL STUDY OF DENSITY SCALING

Here we consider the density scaling of the kinetic ene
from a formal point of view, as a first step towards the go
of bounds and strict inequalities that can be used to const
new functionals. Formally, the density scaling behavior
the kinetic energiesTs@r# andT@r# is closely related to the
properties of convexity and homogeneity. We start by de
ing these.

A functional F@r# is convex inr(r ), when

F@zr11~12z!r2#<zF@r1#1~12z!F@r2#, ~16!

for z<1, andr(r ) in the domain ofF@r#. F@r# is homoge-
neous of orderk in r(r ), when

F@zr#5zkF@r#. ~17!

If F@r# is also smooth, or differentiable~in the sense de-
scribed in Appendix A!, then Eq.~17! implies

kF@r#5E dF@r#

dr~r !
r~r !dr . ~18!

Note that it follows simply, if a functional is both homoge
neous and convex, it must be homogeneous of orderk>1.

How does this relate to the density scaling of the kine
energy? We deal first with convexity. It is a simple exerc
to show that the density-matrix definitions ofTs@r# and
E@r# ~see Sec. II! are convex functionals inr(r ), and a brief
proof is given in Appendix A. Then, since the kinetic ener
of a zero particle system must be zero by definition, i
Ts@0#50, we have the simple density scaling inequality

Ts@zr#>zTs@r#, z.1, ~19!

where the inequality is reversed ifz,1. Equation~19! is not
a very strong bound on the kinetic energy, although the v
Weizsäcker functional,2 1

2 *r1/2(r )¹2r1/2(r )dr , lies ‘‘on
the limits’’ of the inequality~19!. Note, however, that Eq
~19! holds for densities of any particle number.

For densities withintegernumbers of particles, there ex
ists a stronger inequality, proved by Lieb and Thirring@11#:
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Ts@r#>~8p!2 2/3KcE r5/3~r !dr , ~20!

with Kc5(3/5)(6p2)2/3, and where the same inequali
holds forT@r#. Constraint~20! plays a key role in the proo
of stability of fermionic matter. Equation~20! becomes an
increasingly strong constraint on the kinetic energy, as
density increases. For example, for sufficiently larger(r ),
the von Weizsa¨cker functional does not obey Eq.~20!.

From the scaling relations~13! and ~19!, we can derive
further conditions on thez-kinetic energyTz@r#:

Tz@r#<Tz8@r#, ~z>z8uz,z8>1!, ~21!

Tz@r#<Tz8@r#, ~z<z8uz,z8<1!. ~22!

For specific choices ofz, the above relations yield familia
bounds. For example, takingz5N and z851, we recover
Harriman’s result@20#, that the von Weizsa¨cker kinetic en-
ergy is never larger than the Kohn-Sham kinetic energ
Ts@r#>TN@r#. More generally, the inequalities~21! and
~22! state thatTz@r# as a function ofz has a maximum a
z51 ~the Kohn-Sham kinetic energy!. In other words,
choosing anything other thanN orbitals to represent the ki
netic energy results in aTz@r# that is less thanTs@r#. Since
the Kohn-Sham kinetic energy is a lower bound toT@r#, the
Kohn-Sham choice ofz51 is thebestchoice ofz, as one
recovers the maximum amount of the interacting kinetic
ergy T@r#.

We now discuss homogeneity of the kinetic energy. H
mogeneous functionals occupy a special place in dens
functional theory, as they obey the very simple scaling re
tion ~18!. It is also known that any functional which has,
all orders, well-defined functional derivatives that a
strongly vanishing, can be expressed as a sum of hom
neous functionals@21#. A priori we would not expect the
kinetic energy to be homogeneous, as bothT@r# andTs@r#
have a complex dependence onN which does not seem ad
equately described by a relation of the form~17!. Despite
this, using the one-electron density matrix as an interme
ary, Liu and Parr@6# showed that,under conditions where
the necessary functional derivatives exist,

Ts@r#5E dTs@r#

dr~r !
r~r !dr . ~23!

We term this equation the Liu-Parr relation. From Eq.~17!, it
would follow naively that

Ts@zr#5zTs@r#, ~24!

and similarly forT@r#. Equation~24! states thatT@r# and
Ts@r# are homogeneous of order 1 in the density. We shall
term it the kinetic-energy homogeneity relation.

Is Eq.~24! too good to be true? Clearly it is a very stron
equality, which lies ‘‘on the limits’’ of the convexity of
Ts@r#, and in fact, we immediately see that Eq.~24! does not
agree with the Lieb-Thirring bound (20). It is too optimist
to assume that Eq. (24) follows from Eq. (23), and there
many ways to demonstrate the homogeneity relation (
does nothold. These we summarize now.
e

-

-
y-
-

e-

i-

e
4)

Theorem. The kinetic energy homogeneity relation, E
~24!, is false.

Proof. Equation ~24!, for sufficiently larger(r ), does
not agree with the Lieb-Thirring bound~20!, which requires
the kinetic energy to containat least one component of ho
mogeneityk>5/3.

Comment. Note that the Lieb-Thirring bound was onl
derived for densities with integer numbers of particles, a
thus we are restricting our attention to that class of densi
in the above statement. For a more explicit proof, consi
the following. Assume the homogeneity relation~24! is true.
Define N5*r(r )dr . Then from the scaling relation~13!,
remembering thatTs@r# is T1@r#, and Ts@zr#5zTz@r#,
comparing with Eq.~24! yields

Ts@r#5Tz@r#. ~25!

Take, for example,z5N, which corresponds to a choice o
the von Weizsa¨cker kinetic energy forTz@r#. Equation~25!
states that as a consequence of homogeneity, the Kohn-S
kinetic energy is identical to the von Weizsa¨cker kinetic en-
ergy. There are numerous counterexamples to this, an
supposition ~24! must be false. Note that sinceT@r#
>Ts@r#, and the equality is satisfied for one-electron sy
tems, we have also proved that the homogeneity rela
does not hold forT@r#.

If Eq. ~24! does not hold,Ts@r# andT@r# cannotbe con-
sidered to be homogeneous of order 1 in the density. W
do we then make of the Liu-Parr relation, Eq.~23!? The
essence of the matter lies in the fact that the kinetic-ene
functionalsT@r# and Ts@r# are not smooth @15#. For ex-
ample, for the Kohn-Sham kinetic energy, when we incre
the number of electrons~e.g., through density scaling! in a
system with an integer number of particles, the extra den
goes into new orbitals~by the Pauli principle!, which, from
the discrete eigenvalue spectrum of the orbitals, leads to n
smooth behavior ofTs@r#.

As a consequence of nonsmoothness, the necessary
tional derivatives ofT@r# and Ts@r# do not exist every-
where, which is a necessary condition for the Liu-Parr pro
Instead, dTs@r#/dr(r ) is in general undefined; we mus
specify the paths(r ) used to define the derivative. Even
there exists somes(r ) such that Eq.~23! holds, it does not
follow that Eq.~24! is true. In view of the poor behavior o
functional derivatives, in density-functional theory, w
should be cautious when interpreting predicted homoge
ities of other energy components@5#.

However, this does not rule out there being a restricted
of densitiesS, for which the kinetic energyT@r# or Ts@r#
does satisfy a homogeneity relation~17!. The conditions un-
der which this can occur, and the implications for the beh
ior of the functional derivatives, are discussed in greater
tail in Appendix A. Forr(r )PS, we might term the kinetic
energyeffectivelyhomogeneous of orderk. An example of a
set S is the set of uniform densities, where the Thoma
Fermi @22# functional T@r#5Kc2

22/3*r5/3(r )dr is exact,
and displays an effective homogeneity of 5/3. WhetherT@r#
or Ts@r# exhibits an effective homogeneity in other class
of densities, is a question that can only be answered by c
putation, and is investigated in the next section.
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IV. NUMERICAL STUDY OF DENSITY SCALING

Here we perform a numerical study of the density scal
of the Kohn-Sham kinetic energyTs@r#, which is a tight
lower bound to the true kinetic energyT@r#. To compute
Ts@zr#, we computeTz@r# for several values ofz, for a
given ab initio density, and then inferTs@zr# from the scal-
ing relation ~13!. In the first subsection, we introduce th
generalized Kohn-Sham orbital equations, and Zh
Morrison-Parr procedure, associated with calculatingTz@r#
from a given density.

In the second subsection, we present our computed re
for the closed shell atomic systems Be, Ne, Mg, Ar. W
carry out a study of effective homogeneity, and also inve
gate whetherTz@r# (z.1) is a useful kinetic-energy func
tional.

A. Methodology

The Kohn-Sham orbital equations are the starting po
for a Kohn-Sham density-functional calculation. We can d
rive a similar scheme involvingTz@r#, through the partition-
ing ~15!. Recall thatz5N/M . Henceforth, we are concerne
only with M ,N integer, where we write downM generalized
Kohn-Sham orbital equations

F2
1

2
¹21v~r !1vJ~r !1vzxc~r !Gf i~r !5e if i~r !,

1< i<M , ~26!

with the density resolved as

r0~r !5~N/M !(
i

M

f i
2~r !. ~27!

Here, vJ(r ) is the Coulomb potentialvJ(r )5*@r(r2)/
r 12#dr2 , and vzxc(r ) is termed thez-exchange-correlation
potential ~defined in Sec. II!. For the closed-shell system
studied in this work,f i(r )5f i 11(r ), for odd i , i.e., the
orbitals are paired. The full derivation of the orbital equ
tions is not relevant here, and is left until Appendix B. Ho
ever, we briefly elaborate on thez-exchange-correlation po
tential. Whenz51, the above equations are the Kohn-Sh
equations, that isv1xc(r )5vxc(r ). In general, however
vzxc(r ) is not the Kohn-Sham exchange-correlation poten
associated with densityzr(r ). This is because, as mentione
earlier, the ground-state external potential changes unde
operation of density scaling. Instead,vzxc(r ) is the many-
body effective local potential, that forces the scal
M-particle density@Eq. ~27!# to reproduce theN-particle
ground-state density, associated withv(r ). From Eqs.~14!
and ~15!, we see that thez-exchange-correlation potential
related to the usual Kohn-Sham exchange-correlation po
tial through

vzxc~r !5vxc~r !1
d

dr~r !
~Tz@r#2Ts@r#!. ~28!

To minimize E@r#, the orbital equations~26! are solved
iteratively to find the ground-state densityr0(r ). If we
choosez.1, there areM,N equations, which is enticing
g

-

lts

i-

t
-

-

l

he

n-

because the computational effort is less than that require
the conventional Kohn-Sham scheme. In particular, there
been considerable interest in the case whereM51 ~or 2, for
closed shells!, which corresponds to an ‘‘exact’’ extende
Thomas-Fermi theory. In such a case, the orbital equa
reduces to a differential equation for the density amplitu
r1/2(r ) @23,24#.

In light of the above, we now digress briefly to ask th
following: are the generalized Kohn-Sham equations, foz
.1, a viable simplification of the Kohn-Sham procedur
This is equivalent to asking whetherTz@r# is a suitable sub-
stitute forTs@r#. There are two foreseeable obstacles. Fi
the residualz-exchange-correlation energyEzxc@r# in the
partitioning ~15! may be quite large. Whenz51 ~conven-
tional Kohn-Sham!, we know the exchange-correlation com
ponent is small, but this may no longer be the case ifz.1,
since the contribution from the kinetic-energy ter
d/dr(r )(Tz@r#2Ts@r#) may be quite large. The second o
stacle is thatEzxc@r# may simply be hard to approximate. B
this we mean that the functional may be highly nonlocal a
nonanalytic. The behavior of the functional derivativ
vzxc(r ) will yield information on the behavior ofEzxc@r#.

The inversion of the generalized Kohn-Sham Eqs.~26! is
the basis for our computation ofTz@r#, vzxc(r ), andTs@zr#,
from given input densitiesr0(r ). The problem may be pose
thus: given some densityr0(r ), we wish to findM orbitals,
for which we also needvzxc(r ), a total ofM11 unknowns.
We have theM orbital equations, and the relationr(r )
5z( i

Mf i
2(r ). Solutions to this problem have been know

for some time, and are summarized in van Leeuwenet al.
@10#. We adopt the method of Zhao-Morrison-Parr~ZMP!
@12#, which is derived in Appendix B. Here, we note on
that, for given integerM orbitals in the reference system~and
correspondingz5N/M ), we solve theM ZMP orbital equa-
tions, which are just Eqs.~26!, with vzxc replaced by the
quantity

vzxc
l ~r !5lE r~r2!2r0~r2!

r 12
dr22

1

NE r~r2!

r 12
dr2 , ~29!

where r0(r ) is the input density, andr(r ) is the density
yielded by the orbitals. When we take the solutions in t
limit l→`, vzxc

l (r )→vzxc(r ), and the orbitalsf i(r ) yield
Tz@r# through Eq.~8!.

In the ZMP method there are two technical difficultie
which are relevant to the calculations in this work. First, in
finite basis set,r(r )2r0(r ) can never vanish, and the ZM
orbital equations must be solved at a finite value ofl to
prevent divergent eigenvalues and potentials@25#. There will
be arbitrariness in our results from the choice oflopt, but
there is a range ofl over which the kinetic energies an
potentials we obtain are stable, and we chooselopt in this
region of stability. Note that in a finite basis set, as the nu
ber of orbitalsM in the reference system increases (z de-
creases!, the representation of the input densityr0(r ) im-
proves, and we can use higherlopt values.

The second difficulty is our need for suitable guess orb
als, to solve the ZMP orbital equations. Here we study o
closed-shell spherical systems, and thus the basic criterio
that our set ofM guess orbitals yields an overall spheric
guess density. A simple solution is to perform Hartree-Fo
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calculations on the systems to yield guess orbitals, choo
the lowest set~in the sense of the eigenvalue sum! of M
guess orbitals which yield a spherical guess density. For
ample, for the M56 treatment of neon, we choose
1s22s23s2 guess configuration of neon Hartree-Fock orb
als. The Hartree-Fock guess orbitals will, of course, be s
tially contracted from the solution orbitals. Again, asM in-
creases (z decreases!, we expect the suitability of our gues
orbitals to improve.

Because of the various difficulties, in practice, the se
consistent solution of the ZMP equations may not conve
for all values ofz. When it does, the calculated kinetic e
ergiesTz@r#, Ts@zr#, andvzxc(r ), will be accurate only to a
few percent, with the accuracy decreasing asz→1. Such
calculations are still useful, however, as the qualitative
havior of the quantities will not be affected.

B. Computations

Using the Zhao-Morrison-Parr method, we comput
Tz@r# and vzxc(r ) for the closed shell atoms: beryllium
neon, magnesium, and argon, forinteger M and the associ-
ated values ofz5N/M . The input densitiesr0(r ) were
second-order Mo” ller-Plessetab initio densities, calculated
from CADPAC @26#, using large Partridge-1 uncontractedsp
basis sets~Be 14s, Ne 14s9p, Mg 18s10p, Ar 17s12p)
@27#, with the densities ‘‘relaxed’’ such that they correspo
to the density matrix used when evaluating derivatives of
MP2 energy. ForM,N, we usedlopt550; for M5N, we
usedlopt5200. CorrespondingTs@zr# values were then cal
culated fromTz@r# via the scaling relation~13!.

In Fig. 1, we plotTz@r# against the number of orbitalsM ,
for the neon atom.Tz@r# displays the expected behavior;
increases asM increases (z decreases! obeying condition
~21!. Similar behavior is observed forTz@r# in the other
atoms. Note that forM5N22 ~one less closed-shell orbita
in the reference system!, the corresponding value ofTz@r# is
significantlyless thanTs@r#. In general,Tz@r#, for reference
systems with fewer thanN orbitals, is a poor approximation
to Ts@r# andT@r#. In contrast,Ts@r# is a good approxima-
tion to T@r#, with the difference being of the order of th
correlation energy.

FIG. 1. Thez kinetic energyTz@r# ~units of EH) against the
number of orbitals in the reference systemM , for Ne ~d!.
ng
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e
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e

In Figs. 2~a! and 2~b!, we plotTs@zr# againstz in Be, Ne,
and Mg, Ar, respectively. We see thatTs@zr# obeys the scal-
ing condition ~19!. In addition, the data points can b
smoothly interpolated between the points by a polynomia
the formCzk, indicative of effective homogeneity inTs@r#.
Taking C5T1@r# andk55/3, we plot the curvez5/3T1@r#,
for each system. This fits the energy data well, and dem
strates that there is much good physics in Thomas-Fe
theory, which predicts exactly a homogeneity ofk55/3 in
the kinetic energy. The effective homogeneity inTs@r# is
also consistent with previous studies of effective homoge
ity in Hartree-Fock energies@28#. We can optimize the ex-
ponentk of the fitted polynomial curve to the kinetic energ
data in a least-squares sense, to find a better value for
effective homogeneity. The optimizedk are given for the
various systems in Table I. We expect similar effective h
mogeneities to hold over a wide range of atomic and mole
lar densities, though it remains to be seen whether these
fective homogeneities are of predictive value. Note
course, that these effective homogeneities are not consis
with a naive interpretation of the Liu-Parr relation~23!,
which supports our analysis in the previous section. Si
this manuscript was submitted, further numerical eviden

FIG. 2. ~a! Ts@zr# ~units of Eh) againstz in Ne ~L! and Be
~h!. The dashed line is the curvez5/3Ts@r# for Ne, and the solid
line is the same curve for Be.~b! Ts@zr# (EH) againstz in Ar ~L!
and Mg~h!. The dashed line is the curvez5/3Ts@r# for Ar, and the
solid line the same curve for Mg.
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against a naive interpretation of the Liu-Parr relation has a
appeared@29#.

In Fig. 3, we plot thez-exchange-correlation potentia
vzxc(r ), for the neon atom. As the number of orbitals in t
reference system increases toN (z→1), there is a decreas
in magnitude ofvzxc(r ), reflecting the decreasing magnitud
of the z-exchange-correlation energy. For mostz, the
z-exchange-correlation potentials are dominated by the p
tive ‘‘bumps’’ which characterize the depletion of density
the atomic intershell regions, and yield the shell structure
the densityr(r ) through the orbital Eqs.~26!. As z→1, the
nodal structure of the density is better reproduced and
size of the ‘‘bumps’’ decreases, so that whenM5N (z51,
the Kohn-Sham case!, the intershell bumps are barely vis
ible. For largez, the intershell bumps are so large th
vzxc(r ) is often a positive quantity. Far away, however,
the potentials die off with a21/r tail. This can be proved to
be the correct long-range decay law for t
z-exchange-correlation potentialvzxc(r ) @30#. Similar behav-
ior is observed forvzxc(r ) in the other atomic systems.

It seems that not only is the Kohn-Sham choice of ref
ence system (M5N,z51) a good choice, it isby far the
best choice. This is because whenz51, Tz@r# is a good
approximation toT@r#, and the scaled exchange-correlati
potential is~i! nonoscillatory,~ii ! small in magnitude, and
~iii ! simple in structure. The failure of extended Thoma
Fermi type theories@8# can be attributed to the need to mod
the difficult potentialvNxc(r ); nor is the problem made sig
nificantly easier asM ~restricted to be integer! is increased,
until the critical point M5N. We thus conclude that th

FIG. 3. The z-exchange-correlation potentialvzxc(r ) ~a.u.!
againstr in the neon atom, for differentM ~the number of orbitals in
the reference system!.

TABLE I. Effective kinetic-energy homogeneities,k, for some
atoms. See Sec. IV.

k

Be 1.16
Ne 1.21
Mg 1.18
Ar 1.20
o

i-

n

e

t
l

-

-
l

Kohn-Sham choice ofz51, and the corresponding partition
ing of the density into orbitals, is the only one to be use
computationally, because it contains the necessary phy
We stress, that in the search for simpler forms of the kine
energy functional, it is important that the simplifications a
themselves physically motivated, e.g., from spherical sy
metry, or the natural separation of the density into core a
valence regions, rather than purely of a mathematical na
~as forTz@r#).

V. CONCLUSIONS

In this work, we have undertaken the study of the dens
scaling of the kinetic energy, in particular, the Kohn-Sha
kinetic energyTs@r# and the interacting kinetic energyT@r#.
In the formal part of this work, several simple density scali
inequalities were derived from the convexity of the kinet
energy functional. We showed also that the homogeneity
lation deduced by Liu and Parr@8# does not hold in practice
because the kinetic energy is a nonsmooth functional,
instead introduced the concept of an effective homogen
for nonsmooth functionals.

In the numerical part of this work, we defined an interm
diary quantity, the scaled kinetic energy,Tz@r#, which is
related to the discussion of the density scaling ofTs@r#.
Tz@r# for z.1, is also a simpler functional thanTs@r#, as it
depends on fewer auxiliary orbitals. Using the method
Zhao-Morrison-Parr, we computedTs@zr# via Tz@r# from
the ab initio densities of Be, Ne, Mg, and Ar. The kineti
energies obeyed the scaling inequalities derived in this wo
Moreover, the Kohn-Sham kinetic energy exhibited an eff
tive homogeneity very close to 5/3 in these systems.

By examiningTz@r#, and the associated scaled exchan
correlation potentialsvzxc(r ), we also showed that the Kohn
Sham choice ofN orbitals to represent anN-particle system,
is the only one to contain the necessary physics, and o
models which partition the density in an unphysical fash
face considerable difficulties.

There are many open problems raised by this study. C
we extend this work to derive strong constraints on
kinetic-energy functional, which will help in the constructio
of functionals? Can we exploit the effective homogeneity
the kinetic energy? And how does the other nontrivial co
ponent of the energy, the exchange-correlation energy, sc
Further study is clearly needed.
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APPENDIX A

1. Proof of convexity

In this section we prove convexity of the density-matr
definitions of the functionals used in this work.

Theorem. Define an energy functional V@r#

5 infĜ→rTr@V̂Ĝ #, where the infimum is over
N-representable density matricesĜ, andV is a linear opera-
tor. ThenV@r# is convex inr(r ).
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Proof. Define a setS to be convex if for any element
(d,e) in the set, (12l)d1le is also in the set, wherel
<1. Then the set of density matricesĜ, characterized by
spectral occupation numbersf Mi<1 and(Mi f Mi51, forms a
convex set. Next, so long asV̂ is a linear operator, by acting
on Ĝ it picks out a convex set. The infimum of the trace
this set, over the linear mapĜ→r, is then a convex func-
tional in r(r ).

Since bothT̂, and T̂1V̂ are linear operators, it follows
that Ts@r# and E@r#2*r(r )v(r )dr are convex functionals
in r(r ). Note that this does not resolve the long-stand
question of the convexity of the ground-stateE as a function
of N. Essentially, this is because we have not proved
equivalence of the density-matrix and wave-function defi
tions of the ground-stateE at integerN. Note also that we
have used the infimum in the above proof for greater rig
but in this work we have generally assumed the existenc
a minimum.

2. Functional derivatives

Here we discuss aspects of functional derivatives relev
to this work. We begin by reviewing the definition of th
functional derivative, and define smooth and nonsmooth
havior in functionals. Then we discuss the homogeneity
nonsmooth functionals.

Define a variationdr(r )5es(r ), wheres(r ) indicates
the path~direction! of the variation, ande is some small
positive number. Then the functional derivativ
dF@r#/dr(r ) of a functionalF@r# is defined in the limite
→01, through

dF5E dF@r#

dr~r !
dr~r !dr . ~A1!

It follows simply, that

F]F

]e G
e50

5E dF@r#

dr~r !
s~r !dr . ~A2!

If dF@r#/dr(r ) exists, and is independent ofs(r ), then
dF@r#/dr(r ) corresponds to a total derivative, andF@r# is
said to be smooth, or differentiable. Correspondingly, if t
functional derivative depends on the path~direction! s(r ),
we havedF@r,s#/dr(r ), which is a directional derivative
andF@r# is nonsmooth at the point where the derivative
taken. This is analogous to the nonsmoothness of functi
which occurs at points where the left and right derivatives
not match.

If a nonsmooth functionalF@r# is effectivelyhomoge-
neous of orderk for a densityrPS, what does this mean fo
the functional derivativedF@r,s#/dr(r )? This question is
raised in Sec. III. For suchF@r# and rPS, then F@zr#
5zkF@r#, and ]/]z(F@zr#)5kzk21F@r#. Taking z51,
and writing out the derivative with respect toz explicitly, we
have

]F

]z
5 lim

dz→0

F@r1rdz#2F@r#

dz
. ~A3!
f
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e
-
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o

Comparing Eqs.~A2! and ~A3!, we identify e5dz/g and
s(r )5gr(r ) ~i.e., variations along the density scaling pa
whereg is an arbitrary number, whose sign is such thate is
positive!. We can then relateF@r# to dF@r,s#/dr(r ):

kF@r#5E drr~r !FdF@r,s#

dr~r ! G
s~r !5gr~r !

. ~A4!

This is analogous to Eq.~18!, and defines effective homoge
neity for nonsmooth functionals. Note that along the pa
s(r )5gr(r ), a nonsmooth functional which obeys Eq.~A4!
behaves smoothly.

APPENDIX B

Here we derive the generalized Kohn-Sham orbital eq
tions, and discuss the Zhao-Morrison-Parr method for inv
ing them, as used in Sec. IV, in the numerical study of d
sity scaling.

2. The generalized Kohn-Sham equations

The generalized Kohn-Sham equations are the nat
framework to compute thez-kinetic energy. We conside
only the case forM ,N integer ~and correspondingz
5N/M ).

At the ground-state densityr0(r ) associated with an ex
ternal potentialv(r ), the interacting energy functionalE@r#
satisfies an Euler equation@31#. Using the partitioning~15!
for E@r#, this is written as

d

dr~r !
FTz@r#1J@r#1Ezxc@r#1E r~r !v~r !dr G

r5r0

2m50,

~B1!

wherem is the Lagrange multiplier associated with the co
straint of constant particle number, andv(r ) is held fixed.
Next, define a noninteractingM-particle reference system
with density r(r )/z, in an effective potentialveff(r ), with
energyTz@r#/z1*r(r )veff(r )/zdr , and which minimizes at
densityr(r )5r0(r ) @when the reference system density
r0(r )/z]. The Euler equation for this system is~multiplying
all quantities byz),

d

dr~r !
FTz@r#1E r~r !veff~r !G

r5r0

2mz50. ~B2!

Equating the functional derivatives~B1! and~B2!, and equat-
ing chemical potentials, identifies the effective potential
the reference system as

veff~r !5vJ~r !1vzxc~r !1v~r !. ~B3!

Finally, at the ground state of the reference system, theM
reference system orbitalsf i(r ) satisfy ( i

Mf i
2(r )5r0(r )/z,

and are eigenfunctions of the orbital equations

F2
1

2
¹21veff~r !Gf i~r !5e if i~r !. ~B4!

Substituting the expression for the effective potential~B3! in
Eq. ~B4!, we arrive at the generalized Kohn-Sham Eqs.~26!.
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2. The Zhao-Morrison-Parr method

The Zhao-Morrison-Parr method@12# centers on the
Levy-Perdew@32# constrained search definition of the Koh
Sham kinetic energy@see Eq.~4!#. We modify the ZMP
method to handle thez-kinetic energyTz@r# and related
quantities, for which the corresponding constrained sea
~for M ,N integer! is Eq. ~8!.

Levy and Perdew@32#, showed that we can enforce th
constraint of fixed density in the energy minimization~8!
through a Lagrange constraint functionalL@r#. Then, we
have the LagrangianV@$f i%#, expressed as

V@$f i%#5z(
i

M

^f i u2
1

2
¹ i

2uf i&1L@r#. ~B5!

Minimizing explicitly with respect to the orbitalsf i(r ), with
the usual diagonal orthonormality constraints associated
e i , yields the orbital equations

F2
1

2
¹21

dL@r#

dr~r ! Gf i~r !5e i~r !f i~r !. ~B6!

Comparison with Eq.~B4! yields the effective potential a
the functional derivative of the constraint,veff(r )
5dL@r#/dr(r ).

Zhao, Morrison, and Parr@12# chose the following ex-
plicit form for the Lagrange constraint functionalL@r#,
es

i

y

h

th

L@r#5J@r#1E r~r !v~r !

1lF1

2E E @r~r2!2r0~r2!#@r~r1!2r0~r1!#

r 12
dr1dr2G

2
1

N
J@r#, ~B7!

where r(r ) is the density yielded by the orbitalsr(r )
5z( i

Mf i
2(r ), r0(r ) is the input density, andv(r ) is the

ground-state external potential associated withr0(r ). Note
that the double integral, with a dependence onr0(r ), is the
only actual constraint term on the density. Then, since at
solution point,r(r )5r0(r ) and the kernel of the double in
tegral vanishes, we must take the solution point at the li
l→`. Functionally differentiatingL@r#, and comparing
with the veff(r ) in the orbital Eqs.~B4! and ~26!, yields
vzxc(r )5 liml→`vzxc

l (r ), where vzxc
l (r )5l*@r(r2)

2r0(r2)/r 12#dr22 1/N *@r(r2)/r 12#dr2 .
This is now an explicit computational method to inve

from r0(r ) to vzxc(r ), and thus tof i(r ) and Tz@r#. Solve
the ZMP orbital equations@Eq. ~26! with vzxc(r ) replaced by
vzxc

l (r )], for values ofl, and take the limitl→` to recover
the physicalf i(r ) and related quantities. There are, ho
ever, technical problems with this method, which are d
cussed in Sec. IV.
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