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Kinetic-energy systems, density scaling, and homogeneity relations in density-functional theory
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We examine the behavior of the Kohn-Sham kinetic ené@rgy] and the interacting kinetic energy p ]
under homogeneous density scalipgr) — {p(r). Using convexity arguments, we derive simple inequalities
and scaling constraints for the kinetic energy. We also demonstrate that a recently derived homogeneity
relation for the kinetic energ}S. B. Liu and R. G. Parr, Chem. Phys. L8 341(1997] does not hold in
real systems, due to nonsmoothness of the kinetic-energy functional. We carry out a numerical study of the
density scaling off [ p] usingab initio densities, and find it exhibits an effective homogeneity close to 5/3. We
also explore alternative reference systems for the kinetic energy which have fewer particles than the true
N-particle interacting system. However, we conclude that the Kohn-Sham reference system is the only viable
choice for accurate calculation, as it contains the necessary phy8ik350-294709)05903-X]

PACS numbd(s): 31.15.Ew

I. INTRODUCTION reasons. First, we do not consider the problem of represent-
ing the kinetic energy in density-functional theory, a solved
Density-functional theory yields observables, such as th@roblem. This is because, although the Kohn-Sham kinetic
energy, as functionals of the densjt{r) [1]. In recent years energy functionall  p] [2] gives a good representation of
the Kohn-Sham version of density-functional thed],  the kinetic energy, it is not a simple density functional, as it
which offers a set of exact, self-consistent field equationsgepends on an auxiliary set of orbitas(r). We wonder, as
has become the principal computational 'method of moleculaﬁave many other§7—9], if it is not possible to find some
and condensed-matter physics. The main problem is that thgmpler representation of the kinetic energy, which is a suf-
form of the energy functionat[ p] is unknown. ficiently accurate approximation in certain density regimes,

In the de\/_elopmer_]t of new deqsity functionals, there hag, TJp] or T[p]. Accordingly, knowledge of the density
been much interest in the behavior of energy component%ca"ng behavior of the kinetic energy will aid in the con-

when p(r) undergoes some form of scaling. Most Workersstruction of suitable alternative kinetic-energy functionals.

ha"g" focus_ed on coor_dmate ?’C"""r@]’ _wh.ere_p(r) Second, from a different point of view, because the ex-
—{°p(Lr), i.e., electronic coordinate scaling: this effec- licit form of the Kohn-Sham kinetic energi p] is known
tively explores the effect of changing the external potentialgn d can be calculated from any density using recently d’evel-
associated wittp(r), but not the particle number. One ap- oped procedureE10], we can study the density scaling of

plication of this formalism is in the construction of function- . o T L2 T
als, since constraining functionals to satisfy derived coordi-' s.P] numerically. This information is interesting in its own

nate scaling requirements extends the effective range dfdht, and also, sinc&4[p] is a tight lower bound ta[p],
validity of the data set used to parametrize the functional$tudying the scaling of | p] yields much information on the
[4]. A second application is to derive virial relatiofg],  scaling of T[p].

where if a functionalsuch as the exchange enefgy p]), Our study proceeds as follows. Density scaling does not
has a single polynomial dependence &none can write preserve normalization, but instead simultaneously scales the
down exact relations likeE,[p]=—[drp(r)r-Vuo,(r), particle number. This requires us to consider kinetic energies
whereuv,(r) is the functional derivative of,[ p]. and other quantities at noninteger particle numbers, for

Here, we investigate a different type of scaling, homogewhich the density matrix, rather than the wave function, be-
neous density scalingrom now on, simply “density scal- comes the object of interest in quantum mechanics. In Sec.
ing” ), wherep(r)— ¢p(r). Through density scaling, we are Il, we give the density-matrix definitions of[p], T4 p],
changing both the particle number and the external potenti@nd other relevant density-functional quantities, for general
associated withp(r). We believe that density scaling may particle numbers. In addition, we define the auxiliary quan-
offer an approach to the derivation of exact conditions orfity T, p]=TJ{p]/{, the-kinetic energy, which relates the
functionals. Also, if functionals exhibit simple behavior with density scaling off [ p] to the particle numberN) scaling
density scaling, we can expect to derive relations analogousf a generalized Kohn-Sham reference system. Fsuch
to the virial relations of coordinate scaling theory. The latterthat N/ is an integer,T [ p] is a kinetic-energy functional
aspect has previously been investigated in the recent work dhat depends oN/{ auxiliary orbitals, and is thus a possible
Parr and Liu5], and Liu and Parf6], who proposed simple candidate for a simpler kinetic-energy functional. For ex-
“homogeneity relations” for separate components of the enample, whery=N, T, p] is the von Weizseker kinetic en-
ergy. ergy.

In this study of density scaling, we focus on the kinetic  Next, in Sec. Ill, we examine density scalingTaf p] and
energy(the interacting kinetic energy[p], as well as the T[p] from a formal point of view, usind@ [ p] as an inter-
Kohn-Sham kinetic energ¥{ p]). This is for two related mediary. The concepts of convexity and homogeneity are
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introduced. Using convexity, we present simple inequalities,

such as
1
2

Tdp]={Tdp] ({>1),

Tdpl<Tolp] ({>{'10'=1),

KINETIC-ENERGY SYSTEMS, DENSITY SCALING, ...

2671

However, under the operation of density scalipgr)
—{p(r), the number of particles changes frdwnto ¢N,
whereN= [p(r)dr. Thus, as{ is varied, we pass through
densities with noninteger particle numbers, which the defini-
tions(3) and(4) do not handle. How do we interpret this? No
real isolatedsystem can possess a noninteger particle num-
ber, and thus there is no unique interpretation. Howesudy;

which seem obvious, though we have not encountered thesystemsof larger systems may well have an average nonin-
in the literature. We also highlight an important scaling con-teger particle number[15], and such subsystems are

straint due to Lieb and Thirring11]. Using these scaling
conditions onTy p] and T[p], we demonstrate that the
kinetic-energy homogeneity relation of Liu and Pigt can-

described using density matrices, rather than wave functions.
Thus the natural context in which to treat noninteger par-
ticle numbers, in density-functional theory, is simply to ex-

not hold, and that simple homogeneity is not precise enougtend the constrained search over the density-matrix operator
a concept to describe nonsmooth functionals. We introduc¢ [16]. T has the spectral representation
the concept of an effective homogeneity, for nonsmooth

functionals.

Then, in Sec. IV, we study the density scalingTaf {p]
with £, numerically. We first compute thé&kinetic energy
T/ p], from theab initio densities of the closed-shell spheri-

cal atoms Be, Mg, Ne, and Ar, and then calculate the corre*

sponding T {p] through a scaling relation. We briefly
present our computational scheme, based on the inversion

f:% fail P i) (Pl )

whereV,; is theith M-particle eigenfunction of a Hamil-
tonian, andfy,; are occupations numbers which satisfy the
gpnditions, 6<fy;<1, andZy;fy;=1. In terms of the den-

the generalized Kohn-Sham orbital equations associated witity matrix, the expectation value of an operafbis yielded

T/p], through the method of Zhao-Morrison-Pdrt2],

by the linear operation TF()]. Note thatl’ may yield an

though we relegate the full derivation of the orbital equationsaverage noninteger particle number.

and Zhao-Morrison-Parr method to Appendix B. Our calcu-

lations verify the scaling conditions derived in Sec. Ill, and

Then, replacing the wave function by the density-matrix
operator, the extended definitions for the energy functionals

we further demonstrate that the Kohn-Sham kinetic energgorresponding to Eq93) and (4), which are valid for all

T4 p] displays areffectivehomogeneity close to 5/3. Also,
we demonstrate, through,| p], that we cannot easily com-

pute the kinetic energy unless we have the same number of

reference orbitals as we have particles in the system.
Finally in Sec. V, we summarize our findings, and indi-
cate some future directions.

II. DEFINITIONS

particle numbers, become

E[p]l= min T (T+V)]+
)

fp(r)v(f)df, (6)

T{p]= min T T],
[—p(r)

)

We first consider the definitions of the relevant quantitieswhere T[p] is given by TfI',,T], andI',, minimizes Eq.
in this study, and how they encompass the operation of dens). At the integer densities used in this work, we shall as-
sity scaling. Note that we assume all densities concerned aime that the density matri®), (7) and wave function defi-

N- andv-representable.
Following the work of Levy[13] and Lieb[14], we usu-
ally define energy density functionals through constraine

nitions (3), (4) are identical. Similar generalizations Bf p|

in terms ofl" have been used previously by Mernfit¥] and
erdewet al. [15].

minimizations. For example, we have, for the total energy pgefore proceeding, several points must be noted. First,

E[p] and Kohn-Sham kinetic energVy p] of an integer
number of particles,

E[p]= min(\lf|?+\7|«1f>+f p(r)v(r)dr, 3)
Vp
Tdp]= min(¥[T|¥), (4)

Vop

where T and V are the kinetic and potential operators, re-
spectively, and (r) is the external potential. The interacting
kinetic energyT[p], is defined ag ¥ | T|¥,,), whereW¥ ,
minimizes Eq.(3). Note, that since the minimizing in Eq.
(4) is a Slater determinant & orbitals ¢;(r), we can write
T{p] in the familiar form, Ts[p]ZminziNd,iZ_,,)EiN

— KBV ).

although scaling(r)— ¢p(r) is a linear procedure, the map
of T';,— p(r) is highly nonlinear, and moreover, has a non-
trivial dependence ol [15,14. Thus,a priori, we do not
expect the general energy functiondh), (7) to have a
simple behavior under density scaling. Second, we mention
again that under density scaling the ground-state external
potential associated with(r) (through the Hohenberg-Kohn
theorem changes in a nontrivial fashion. However, from
Egs.(6) and(7), we see that the external potential dows
enter into the definitions of thkinetic energyand thus will

not concern us in this work.

In the case of the Kohn-Sham kinetic enerd@y p],
greater insight into density scaling is gained by considering
the link with particle number scaling in the reference system
for the kinetic energy. We thus digress a little to define an
auxiliary quantity used in this workT [ p], which we term
the {-kinetic energy.
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The Kohn-Sham kinetic energy is the kinetic energy of aThe classical Coulomb repulsion J[p]
ground-statéN-electron,N-orbital noninteracting system that =1 [ [[p(r,)p(r,)/r,]dr,dr,, andE,J p] is the exchange-
represents the trubl-electron density. However, for some correlation functional, which incorporates all nonclassical
N-electron density p(r), we can instead choose an correlation effects. Its functional derivative, the exchange-
M-electron noninteracting reference system with ground<correlation potentiab,.(r)=SE.Jp]/dp(r) appears in the
state density(r)/ ¢, where=N/M. For integersN andM, Kohn-Sham orbital equations. Analogously, usifgp], we
this corresponds to choosing arorbital reference system, can write a partitioning of the energy
e.g., in the neon atom, instead of a ten-orbital reference sys-
tem, we could consider a six-orbitals32s?3s? reference
system(where M =6, {=5/3), or even a two-orbital £ E[P]:Tg[P]+J[P]+ngc[P]+f p(rv(r)dr, (15
reference systerfwhereM =2, {=5). The{-kinetic energy
T/ p] is then defined ag timesthe kinetic energy of the where we have defined th&exchange-correlation energy

M-electron reference system, that is, for intelyemN, E«xd pl, and its corresponding functional derivativg,(r)
M :5E§XC[P]/5P(r)-
B i 1 2 5 With the relevant quantities defined, we proceed to inves-
Tdpl= Mmm 3¢ : (il Vil ® tigate the explicit density scaling behaviortf p] andT[p]
) in the next sections.
(> 62p

Ill. FORMAL STUDY OF DENSITY SCALING

M
p(N=¢> (1), (9) Here we consider the density scaling of the kinetic energy
i from a formal point of view, as a first step towards the goal
of bounds and strict inequalities that can be used to construct

or more generally, wheM andN are any number, new functionals. Formally, the density scaling behavior of
L the kinetic energie3 p] andT[p] is closely related to the
Tdpl= min {Tr[I'T], (100 properties of convexity and homogeneity. We start by defin-
—p(n) ing these.

R A functional F[ p] is convex inp(r), when
p(r)=¢Tr'p], (11
Fl{p1+t (1= 0p2l<{Flpi]+(1-0F[p2], (16
T/ p] is not an unfamiliar quantity. Important choicesfoh . _ .
this work aref=1 (M=N) and {=N (M=1). In these for {<1, andp(r) in the domain ofF[p]. F[p] is homoge-

imits, Ty[p]=Tdp], and Ty[p)=—4[p}(r)V%pE(ryar, ~ MEOUS OF ordercin plr), when
the von Weizseker kinetic energy18,19.

The relation betweefT[p] and the density scaling of
T p] is made explicit through simple scaling relations
which we derive as follows. If— «{, the number of par- scribed in Appendix A then Eq.(17) implies
ticles M in the reference system goes fraWi{—N/(«{),
and if we simultaneously scalg(r) by «, thenM is un- SF[p]
changed by the combined two scaling procedures. So, we KF[p]:f—p(l’)dr. (18
have relations op(r)

FL{p]=¢"F[p]. 17

'If F[p] is also smooth, or differentiablén the sense de-

o Note that it follows simply, if a functional is both homoge-

—}, (12 neous and convex, it must be homogeneous of okdet.

K How does this relate to the density scaling of the kinetic
energy? We deal first with convexity. It is a simple exercise

(13) to show that the density-matrix definitions a%[p] and

' E[p] (see Sec. )lare convex functionals ip(r), and a brief
proof is given in Appendix A. Then, since the kinetic energy

where Eq.(13) is just a specific case of Eq12) (with k  of a zero particle system must be zero by definition, i.e.,

=1), and is a scaling relation for the Kohn-Sham kineticTJ0]=0, we have the simple density scaling inequality

energy, sincel [ p/{]1=T4 p/{]. Thus, studying the behav-

TKg[P] = KTg

P
'

Tp]={Ty

ior of Tp] with { is equivalent to studying the scaling T Lp]=LTdpl, >1, (19
behavior ofT{ p], and we shall use this relation later in this
work. where the inequality is reversedgf 1. Equation(19) is not

We finish by defining other energy quantities that appeaa very strong bound on the kinetic energy, although the von
in the Kohn-Sham version of density-functional theory. InWeizsaker functional, — % [ p*?(r)V2p/?(r)dr, lies “on
Kohn-Sham theory, the energy functional is partitioned as the limits” of the inequality(19). Note, however, that Eq.
(19 holds for densities of any particle number.

For densities withintegernumbers of particles, there ex-

Elp]=Tdpl+Jlp]+ EXC[pr p(Mu(ndr. (4 55 4 stronger inequality, proved by Lieb and Thirrfid]:
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Theorem. The kinetic energy homogeneity relation, Eq.
Tlp]=(8m)" chJ p>'¥(r)dr, (200 (24), is false.

Proof. Equation(24), for sufficiently largep(r), does
with K.=(3/5)(672)%3, and where the same inequality not agree with the Lieb-Thirring boun@0), which requires
holds forT[p]. Constraint(20) plays a key role in the proof the kinetic energy to contaiat least one component of ho-
of stability of fermionic matter. EquatiofR0) becomes an mogeneityx=5/3.
increasingly strong constraint on the kinetic energy, as the Comment. Note that the Lieb-Thirring bound was only
density increases. For example, for sufficiently lagde), derived for densities with integer numbers of particles, and

the von Weizseker functional does not obey E(RO0). thus we are restricting our attention to that class of densities
From the scaling relation&l3) and (19), we can derive in the above statement. For a more explicit proof, consider
further conditions on thg-kinetic energyT [ p]: the following. Assume the homogeneity relati¢#¥) is true.
, , Define N= [p(r)dr. Then from the scaling relatiofl3),
Tlpl<Tulpl. ({={'|8,07=0), (2D remembering thafTp] is T4[p], and TdLp]=(Tlp]l,
comparing with Eq(24) yields
Tpl<Tulpl, ((<{EE<D). (22)

For specific choices of, the above relations yield familiar Tdpl=Tdpl. (29

bounds. For example, taking=N and {'=1, we recover
Harriman’s resul{20], that the von Weizsker kinetic en- Take, for example/=N, which corresponds to a choice of
ergy is never larger than the Kohn-Sham kinetic energy; the von Weizseker kinetic energy fofl [ p]. Equation(25)
TJpl=Tnp]. More generally, the inequalitie€1) and states that as a consequence of homogeneity, the Kohn-Sham
(22) state thatT[p] as a function off has a maximum at kinetic energy is identical to the von Weizsar kinetic en-
(=1 (the Kohn-Sham kinetic energjy In other words, ergy. There are numerous counterexamples to this, and so
choosing anything other thaX orbitals to represent the ki- supposition (24) must be false. Note that sinc&[p]
netic energy results in &,[ p] that is less thaT{p]. Since =T4p], and the equality is satisfied for one-electron sys-
the Kohn-Sham kinetic energy is a lower boundrfe], the  tems, we have also proved that the homogeneity relation
Kohn-Sham choice of =1 is thebestchoice of, as one does not hold foff[p].
recovers the maximum amount of the interacting kinetic en- If Eq. (24) does not holdT[ p] andT[p] cannotbe con-
ergy T[p]. sidered to be homogeneous of order 1 in the density. What
We now discuss homogeneity of the kinetic energy. Ho-do we then make of the Liu-Parr relation, E@3)? The
mogeneous functionals occupy a special place in densitygssence of the matter lies in the fact that the kinetic-energy
functional theory, as they obey the very simple scaling relafunctionals T[p] and T4 p] are not smooth[15]. For ex-
tion (18). It is also known that any functional which has, to ample, for the Kohn-Sham kinetic energy, when we increase
all orders, well-defined functional derivatives that arethe number of electrong.g., through density scalingn a
strongly vanishing, can be expressed as a sum of homogsystem with an integer number of particles, the extra density
neous functional§21]. A priori we would not expect the goes into new orbitalsby the Pauli principlg which, from
kinetic energy to be homogeneous, as bbfp] andTJp]  the discrete eigenvalue spectrum of the orbitals, leads to non-
have a complex dependence Nrwhich does not seem ad- smooth behavior o p].
equately described by a relation of the fofdi7). Despite As a consequence of nonsmoothness, the necessary func-
this, using the one-electron density matrix as an intermeditional derivatives ofT[p] and T p] do not exist every-
ary, Liu and Par6] showed thatunder conditions where where, which is a necessary condition for the Liu-Parr proof.

the necessary functional derivatives exist Instead, 6T4[p]/dp(r) is in general undefined; we must
specify the pathr(r) used to define the derivative. Even if

ST p] there exists some(r) such that Eq(23) holds, it does not

Tdpl= f mp(r)dr. 23 follow that Eq.(24) is true. In view of the poor behavior of

functional derivatives, in density-functional theory, we
We term this equation the Liu-Parr relation. From Exj), it ~ should be cautious when interpreting predicted homogene-

would follow naivelythat ities of other energy componeriis].
However, this does not rule out there being a restricted set
T lp]={Tdpl, (24)  of densitiesS, for which the kinetic energyf[p] or T4 p]

does satisfy a homogeneity relati¢ti7). The conditions un-

and similarly forT[p]. Equation(24) states thafl[p] and  der which this can occur, and the implications for the behav-
T p] are homogeneous of order 1 in the densitye shall  ior of the functional derivatives, are discussed in greater de-
term it the kinetic-energy homogeneity relation. tail in Appendix A. Forp(r) e S, we might term the kinetic

Is Eq.(24) too good to be true? Clearly it is a very strong energyeffectivelynomogeneous of order. An example of a
equality, which lies “on the limits” of the convexity of setsS is the set of uniform densities, where the Thomas-
T{ p], and in fact, we immediately see that EB4) does not  Fermi [22] functional T[p]=K2 23 p5¥(r)dr is exact,
agree with the Lieb-Thirring bound (20). It is too optimistic and displays an effective homogeneity of 5/3. Whefhgr]
to assume that Eq. (24) follows from Eq. (23), and there areor T p] exhibits an effective homogeneity in other classes
many ways to demonstrate the homogeneity relation (249f densities, is a question that can only be answered by com-
does nothold. These we summarize now. putation, and is investigated in the next section.
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IV. NUMERICAL STUDY OF DENSITY SCALING because the computational effort is less than that required in
the conventional Kohn-Sham scheme. In particular, there has
%een considerable interest in the case widre1 (or 2, for

" closed shells which corresponds to an “exact” extended
lower bound to the true kinetic energyp]. To compute Thomas-Fermi theory. In such a case, the orbital equation

T Zp], we computeT,p] for several values ot, for a : : : - -
given ab initio density, and then infef{ {p] from the scal- :)el(/jz?rc)efzgozi]dlfferenual equation for the density amplitude

ing relation (13). In the first subsection, we introduce the

generalized Kohn-Sham orbital equations, and Zhaos In light of the above, we now digress briefly to ask the
Morrison-Parr procedure, associated with calculafigtp] following: are the generalized Kohn-Sham equations, {for

from a qiven densit >1, a viable simplification of the Kohn-Sham procedure?
In thg second sugéection we present our computed resul}—his Is equivalent to asking wheth[ p] is a suitable sub-
' b P Situte forT p]. There are two foreseeable obstacles. First,

for the closed shell atomic systems Be, Ne, Mg, Ar. Wethe residualz-exchange-correlation energg,Jp] in the
carry out a study of effective homogeneity, and also investi- 9 oxdP

. C o ~ partitioning (15 may be quite large. Whei=1 (conven-
gg;zlwhetheﬂ'g[p] (£>1) is a useful kinetic-energy func tional Kohn-Shamj we know the exchange-correlation com-

ponent is small, but this may no longer be the casgsifl,
since the contribution from the kinetic-energy term
ol op(r)(TLp]—T4 p]) may be quite large. The second ob-
The Kohn-Sham orbital equations are the starting poinstacle is thaE,{ p] may simply be hard to approximate. By
for a Kohn-Sham density-functional calculation. We can de-this we mean that the functional may be highly nonlocal and
rive a similar scheme involving [ p], through the partition- nonanalytic. The behavior of the functional derivative
ing (15). Recall thatf=N/M. Henceforth, we are concerned v 4(r) will yield information on the behavior o ,{ p].
only with M,N integer, where we write dowll generalized The inversion of the generalized Kohn-Sham E@$) is
Kohn-Sham orbital equations the basis for our computation 8% p], v (), andT4 {p],
from given input densitiepy(r). The problem may be posed
thus: given some densityy(r), we wish to findM orbitals,
for which we also need ;,(r), a total ofM +1 unknowns.
We have theM orbital equations, and the relation(r)

Here we perform a numerical study of the density scalin
of the Kohn-Sham kinetic energ¥4 p], which is a tight

A. Methodology

1
- §V2+U(r)+UJ(r)+U§xc(r) ¢i(r)= € ;(r),

1<isM, (26)  =7=Mg?(r). Solutions to this problem have been known
. ) for some time, and are summarized in van Leeuweéal.
with the density resolved as [10]. We adopt the method of Zhao-Morrison-P&AMP)
M [12], which is derived in Appendix B. Here, we note only
po(r)=(N/M )zi ¢i2(f)- 27) that, for given integeM orbitals in the reference syste@nd

corresponding=N/M), we solve theMl ZMP orbital equa-
tions, which are just Eqs(26), with v, replaced by the
Here, vy(r) is the Coulomb potential ;(r)=f[p(r,)/ quantity
rio]dry, anduv (1) is termed thef-exchange-correlation
potential (defined in Sec. )l For the closed-shell systems x oo [ P(r2)=po(ra) 1(p(ra)
studied in this work,¢;(r)=¢;.4(r), for oddi, i.e., the v;xc(r)—hf o, dro— Nj
orbitals are paired. The full derivation of the orbital equa-
tions is not relevant here, and is left until Appendix B. How- where po(r) is the input density, ang(r) is the density
ever, we briefly elaborate on thieexchange-correlation po- Yielded by the orbitals. When we take the solutions in the
tential. When/=1, the above equations are the Kohn-Shamlimit A —o, v?XC(r)vaxc(r), and the orbitalsg;(r) yield
equations, that isvi(r)=vy(r). In general, however, T/[p] through Eq.(8).
v xo(r) is notthe Kohn-Sham exchange-correlation potential  In the ZMP method there are two technical difficulties
associated with densi§p(r). This is because, as mentioned which are relevant to the calculations in this work. First, in a
earlier, the ground-state external potential changes under thimite basis setp(r) —po(r) can never vanish, and the ZMP
operation of density scaling. Insteag,(r) is the many- orbital equations must be solved at a finite valuehoto
body effective local potential, that forces the scaledprevent divergent eigenvalues and potentias. There will
M-particle density[Eq. (27)] to reproduce theN-particle  be arbitrariness in our results from the choiceigf;, but
ground-state density, associated witfr). From Egs.(14)  there is a range ok over which the kinetic energies and
and(15), we see that thé-exchange-correlation potential is potentials we obtain are stable, and we chobgg in this
related to the usual Kohn-Sham exchange-correlation potemegion of stability. Note that in a finite basis set, as the num-
tial through ber of orbitalsM in the reference system increasesde-
5 creasep the representation of the input densjy(r) im-
_ proves, and we can use higheg,; values.
VoM =uxdN Sp(r) (Tdp]=TdpD). (28) The second difficulty is our need for suitable guess orbit-
als, to solve the ZMP orbital equations. Here we study only
To minimize E[ p], the orbital equation§26) are solved closed-shell spherical systems, and thus the basic criterion is
iteratively to find the ground-state densipy(r). If we  that our set ofM guess orbitals yields an overall spherical
choosel>1, there areM <N equations, which is enticing, guess density. A simple solution is to perform Hartree-Fock

dry, (29
2
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FIG. 1. The{ kinetic energyT,[p] (units of E,) against the
number of orbitals in the reference systéin for Ne (@).

calculations on the systems to yield guess orbitals, choosing

the lowest set(in the sense of the eigenvalue suof M

guess orbitals which yield a spherical guess density. For ex-

ample, for theM=6 treatment of neon, we choose a
1s22523s? guess configuration of neon Hartree-Fock orbit-

als. The Hartree-Fock guess orbitals will, of course, be spa-

tially contracted from the solution orbitals. Again, kkin-
creases { decreasgswe expect the suitability of our guess
orbitals to improve.

Because of the various difficulties, in practice, the self-

consistent solution of the ZMP equations may not converge

for all values of{. When it does, the calculated kinetic en-
ergiesT [ p], Td {p], andv 4(r), will be accurate only to a
few percent, with the accuracy decreasingZas1l. Such
calculations are still useful, however, as the qualitative be
havior of the quantities will not be affected.

B. Computations

Using the Zhao-Morrison-Parr method, we computed

Tdp] and v,(r) for the closed shell atoms: beryllium,
neon, magnesium, and argon, fateger Mand the associ-
ated values of{=N/M. The input densitiespy(r) were
second-order Mier-Plessetab initio densities, calculated
from CADPAC([26], using large Partridge-1 uncontractgul
basis setdBe 14, Ne 149p, Mg 18s10p, Ar 17s12p)
[27], with the densities “relaxed” such that they correspond
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FIG. 2. (a) T ¢p] (units of E,)) against{ in Ne (¢) and Be
{0). The dashed line is the cung®’*T{ p] for Ne, and the solid
line is the same curve for Béb) Ty ¢p] (En) againsty in Ar (<)
and Mg(0). The dashed line is the cund&3T p] for Ar, and the
solid line the same curve for Mg.

g

In Figs. 2a) and Zb), we plotT{ {p] against in Be, Ne,
and Mg, Ar, respectively. We see thR{ {p] obeys the scal-
ing condition (19). In addition, the data points can be
smoothly interpolated between the points by a polynomial of
the formC(¢*, indicative of effective homogeneity ifig p].
Taking C=T,[p] and k=5/3, we plot the curve®3T [ p],
for each system. This fits the energy data well, and demon-
strates that there is much good physics in Thomas-Fermi

to the density matrix used when evaluating derivatives of theheory, which predicts exactly a homogeneity ©f£5/3 in

MP2 energy. FoM <N, we used\,,~=50; for M=N, we
usedA o= 200. Correspondind [ {p] values were then cal-
culated fromT [ p] via the scaling relatiori13).

In Fig. 1, we plotT | p] against the number of orbitald,
for the neon atomT [ p] displays the expected behavior; it
increases adM increases { decreasesobeying condition
(21). Similar behavior is observed fof {p] in the other
atoms. Note that foM =N—2 (one less closed-shell orbital
in the reference systenthe corresponding value @ p] is
significantlyless tharT{ p]. In generalT [ p], for reference
systems with fewer thaN orbitals, is a poor approximation
to T{p] andT[p]. In contrast,T[ p] is a good approxima-
tion to T[p], with the difference being of the order of the
correlation energy.

the kinetic energy. The effective homogeneity Tg p] is

also consistent with previous studies of effective homogene-
ity in Hartree-Fock energief28]. We can optimize the ex-
ponentx of the fitted polynomial curve to the kinetic energy
data in a least-squares sense, to find a better value for the
effective homogeneity. The optimizes are given for the
various systems in Table |. We expect similar effective ho-
mogeneities to hold over a wide range of atomic and molecu-
lar densities, though it remains to be seen whether these ef-
fective homogeneities are of predictive value. Note of
course, that these effective homogeneities are not consistent
with a naive interpretation of the Liu-Parr relatiq@23),
which supports our analysis in the previous section. Since
this manuscript was submitted, further numerical evidence
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TABLE I. Effective kinetic-energy homogeneities, for some

atoms. See Sec. V.
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Kohn-Sham choice of =1, and the corresponding partition-
ing of the density into orbitals, is the only one to be useful
computationally, because it contains the necessary physics.
We stress, that in the search for simpler forms of the kinetic-
energy functional, it is important that the simplifications are

Be 1.16 k B .

Ne 121 themselves physically motivated, e.g., from spherical sym-
M 1'18 metry, or the natural separation of the density into core and
A? 1'20 valence regions, rather than purely of a mathematical nature

(as forT p]).

. . . . . V. CONCLUSIONS
against a naive interpretation of the Liu-Parr relation has also

appeared?29]. In this work, we have undertaken the study of the density
In Fig. 3, we plot thel-exchange-correlation potential scaling of the kinetic energy, in particular, the Kohn-Sham
vxelr), for the neon atom. As the number of orbitals in thekinetic energyT ([ p] and the interacting kinetic energy p].
reference system increasesNq {— 1), there is a decrease In the formal part of this work, several simple density scaling
in magnitude ob ;((r), reflecting the decreasing magnitude inequalities were derived from the convexity of the kinetic-
of the -exchange-correlation energy. For most the  energy functional. We showed also that the homogeneity re-
,-exchange-correlation potentials are dominated by the poslation deduced by Liu and P&8] does not hold in practice,
tive “bumps” which characterize the depletion of density in because the kinetic energy is a nonsmooth functional, and
the atomic intershell regions, and yield the shell structure irinstead introduced the concept of an effective homogeneity
the densityp(r) through the orbital Eqs26). As {—1, the  for nonsmooth functionals.
nodal structure of the density is better reproduced and the Inthe numerical part of this work, we defined an interme-
size of the “bumps” decreases, so that whdn=N (/=1, diary quantity, the scaled kinetic energy,[p], which is
the Kohn-Sham cagethe intershell bumps are barely vis- related to the discussion of the density scalingTgfp].
ible. For large{, the intershell bumps are so large that T, p] for {>1, is also a simpler functional thai| p], as it
vexo(r) is often a positive quantity. Far away, however, all depends on fewer auxiliary orbitals. Using the method of
the potentials die off with a- 1/r tail. This can be proved to Zhao-Morrison-Parr, we computefy {p] via T, p] from
be the correct long-range decay law for thethe ab initio densities of Be, Ne, Mg, and Ar. The kinetic
{-exchange-correlation potentia},(r) [30]. Similar behav-  energies obeyed the scaling inequalities derived in this work.
ior is observed fow ;(r) in the other atomic systems. Moreover, the Kohn-Sham kinetic energy exhibited an effec-
It seems that not only is the Kohn-Sham choice of referdive homogeneity very close to 5/3 in these systems.
ence systemNI=N,/=1) a good choice, it idy far the By examiningT [ p], and the associated scaled exchange-
best choice This is because whefi=1, T,[p] is a good correlation potentials ;,.(r), we also showed that the Kohn-
approximation toT[p], and the scaled exchange-correlation Sham choice oN orbitals to represent aN-particle system,
potential is(i) nonoscillatory,(ii) small in magnitude, and is the only one to contain the necessary physics, and other
(i) simple in structure. The failure of extended Thomas-models which partition the density in an unphysical fashion
Fermi type theorieg8] can be attributed to the need to model face considerable difficulties.
the difficult potentialv y,(r); nor is the problem made sig-  There are many open problems raised by this study. Can
nificantly easier ad (restricted to be integpis increased, We extend this work to derive strong constraints on the

until the critical pointM=N. We thus conclude that the kinetic-energy functional, which will help in the construction
of functionals? Can we exploit the effective homogeneity of

the kinetic energy? And how does the other nontrivial com-

35.0

| M=2 ‘ ponent of the energy, the exchange-correlation energy, scale?
/!\\ Further study is clearly needed.
T 1
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APPENDIX A

1. Proof of convexity

In this section we prove convexity of the density-matrix

-15.0
0.0

FIG. 3. The {-exchange-correlation potential,(r) (a.u)
against in the neon atom, for differemd (the number of orbitals in

the reference system

definitions of the functionals used in this work.
Theorem. Define an energy functional Q[p]

=infp_ , TQT], where the infimum is over
N-representable density matricEs and() is a linear opera-
tor. ThenQ[p] is convex inp(r).
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Proof. Define a setS to be convex if for any elements Comparing Egs(A2) and (A3), we identify e=d{/y and
(4,€) in the set, (:-\)5+\e is also in the set, wherg o(r)=vyp(r) (i.e., variations along the density scaling path,
<1. Then the set of density matricds characterized by Wherey is an arbitrary number, whose sign is such taas
spectral occupation numbefrig; <1 andS;fyi=1, formsa  POsitive. We can then relat€[p] to 6F[p, o]/ 5p(r):

convex set. Next, so long 43 is a linear operator, by acting

A oF[p,o]
onT it picks out a convex set. The infimum of the trace of kF[p]= f drp(r)|— "7y~ () (A4)
this set, over the linear maP— p, is then a convex func- G
tional in p(r). This is analogous to Eq18), and defines effective homoge-

Since bothT, and T+V are linear operators, it follows neity for nonsmooth functionals. Note that along the path
that T{p] andE[p]—Jp(r)v(r)dr are convex functionals o(r)=vyp(r), a nonsmooth functional which obeys E44)
in p(r). Note that this does not resolve the long-standingo€haves smoothly.
guestion of the convexity of the ground-st&eas a function
of N. Essentially, this is because we have not proved the APPENDIX B
equivalence of the density-matrix and wave-function defini-

tions of the ground-stat at integerN. Note also that we yong ‘anq discuss the Zhao-Morrison-Parr method for invert-
have used the infimum in the above proof for greater rlgor‘ng them, as used in Sec. IV, in the numerical study of den-
but in this work we have generally assumed the existence (glty scaling.

a minimum.

Here we derive the generalized Kohn-Sham orbital equa-

2. The generalized Kohn-Sham equations

2. Functional derivatives . .
The generalized Kohn-Sham equations are the natural

Here we discuss aspects of functional derivatives relevarftamework to compute the-kinetic energy. We consider
to this work. We begin by reviewing the definition of the only the case forM,N integer (and correspondingl
functional derivative, and define smooth and nonsmooth be=N/Mm).
havior in functionals. Then we discuss the homogeneity of At the ground-state density,(r) associated with an ex-
nonsmooth functionals. ternal potentiab (r), the interacting energy function&l p]

Define a variationdp(r) =ea(r), whereo(r) indicates  satisfies an Euler equatidl]. Using the partitioning15)
the path(direction of the variation, ande is some small  for E[p], this is written as

positive number. Then the functional derivative

SF[p]/6p(r) of a functionalF is defined in the limite 6
e e 35| TLP1+ 3001+ Escd p]+ | p<r>v(r>er_po—u=o,
(B1)
5F=f OFLeY ooy, (A1) | . o
op(r) where u is the Lagrange multiplier associated with the con-
straint of constant particle number, andr) is held fixed.
It follows simply, that Next, define a noninteractinlyl-particle reference system
with density p(r)/{, in an effective potentiab .x(r), with
f :f SF[p] (rydr (A2) energyTpl/{+ [p(r)ven(r)/Zdr, and which minimizes at
del__, Sp(r) 7 density p(r) =po(r) [when the reference system density is

po(r)/]. The Euler equation for this system (iswultiplying
If SF[p]/8p(r) exists, and is independent ofr), then  all quantities by?),
SF[p]/6p(r) corresponds to a total derivative, aRflp] is
said to be smooth, or differentiable. Correspondingly, if the g
: A S { g[P]"'j p(rves(r)
functional derivative depends on the pdthrection o(r), op(r)
we havedF[p,o]/dp(r), which is a directional derivative,
andF[p] is nonsmooth at the point where the derivative isEquating the functional derivativéB1) and(B2), and equat-
taken. This is analogous to the nonsmoothness of functionsg chemical potentials, identifies the effective potential of
which occurs at points where the left and right derivatives dahe reference system as
not match.
If a nonsmooth functionaF[p] is effectivelyhomoge- Ver(1) =0 5(1) + v (1) Ho(r). (B3)

neous of ordek for a densityp € S, what does this mean for _.
the functional derivativesF[p,o]/Sp(r)? This question is Finally, at the ground state of the reference system,Mhe

raised in Sec. Ill. For suclF[p] and pesS, then F[¢p]  'Eference system orbitaks;(r) satisfy 2 ¢7(r) = po(r)/¢,
=(*F[p], and d9/9¢(F[¢p])=r{* *F[p]. Taking {=1 and are eigenfunctions of the orbital equations

and writing out the derivative with respect fexplicitly, we
have

 —w=0. (B2

P=Pg

1
—§v2+veﬁ<r>}¢i(r>=ei¢i<r>. B4

i: im CLptpdc]=Flp] . (A3) Substituting the expression for the effective poter(f&8) in
IE 4r0 d¢ Eq. (B4), we arrive at the generalized Kohn-Sham E@$).
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2. The Zhao-Morrison-Parr method

The Zhao-Morrison-Parr metholl2] centers on the
Levy-Perdew 32] constrained search definition of the Kohn-
Sham kinetic energysee Egq.(4)]. We modify the ZMP
method to handle theg-kinetic energyT [p] and related
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ALp1= 3001+ [ o010 (r)

3/

[p(rz)—po(rz)][p(rl)—po(rl)]d

rdry
2

guantities, for which the corresponding constrained search

(for M,N intege) is Eq. (8).

Levy and Perdew32], showed that we can enforce the
constraint of fixed density in the energy minimizati)
through a Lagrange constraint function&[p]. Then, we
have the Lagrangiaf[{¢;}], expressed as

M
1
OU{¢1=¢2 (4= 5ViId)+ALp].  (BS)

Minimizing explicitly with respect to the orbitalg;(r), with

the usual diagonal orthonormality constraints associated wit

€, yields the orbital equations

SA[p]
op(r)

Comparison with Eq(B4) yields the effective potential as
the functional derivative of the constraintpg(r)
=0A[p])/Sp(r).

Zhao, Morrison, and Parrl2] chose the following ex-
plicit form for the Lagrange constraint functional p],

1 2
- EV + (B6)

}(ﬁi(r)zfi(r)d’i(r)-

- el ®7)

where p(r) is the density yielded by the orbitalg(r)
=¢3M@p2(r), po(r) is the input density, ana(r) is the
ground-state external potential associated vpiglir). Note
that the double integral, with a dependencepg(r), is the
only actual constraint term on the density. Then, since at the
solution point,p(r) = po(r) and the kernel of the double in-
tegral vanishes, we must take the solution point at the limit
A— Functionally differentiatingA[p], and comparing
with the vex(r) in the orbital Eqgs.(B4) and (26), yields
DN =My _ovho(r),  where  vh()=A[[p(rp)
—po(r2)/r2]dro— 1N [[p(r2)/r1o]dr .

This is now an explicit computational method to invert
from po(r) 10 v (r), and thus tog;(r) and T p]. Solve
the ZMP orbital equationgEq. (26) with v () replaced by
v}xc(r)], for values ofA, and take the limih — oo to recover
the physicalg;(r) and related quantities. There are, how-
ever, technical problems with this method, which are dis-
cussed in Sec. IV.
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