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Realizing the quantum baker’'s map on a NMR quantum computer
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By numerically simulating an implementation of the quantum baker’s map on a NMR quantum computer
based on the molecule trichloroethylene, we demonstrate the feasibility of quantum chaos experiments on
present day quantum computers. We give detailed descriptions of proposed experiments that int@stigate
rate of entropy increase due to decoherence(bBnthe phenomenon of hypersensitivity to perturbation.
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PACS numbd(s): 03.67.Lx, 03.67—a, 05.45-a

I. INTRODUCTION Il. THE QUANTUM BAKER'’S MAP
AS A SHIFT MAP ON QUBITS

The quantum bgker s_ma{p,Z] is a simple map invented The classical baker’s transformatiftg], which maps the
for the theoretical investigation of quantum chaos. Its math-

: : . ; unit square 8=q,p=<1 onto itself, has a simple description
ematical properties have been studied extensively, but np, terms of its symbolic dynamic$20]. Each point in

experimental quantum systems are known which embody itphase space is represented by a symbolic string
Recently, one of us has shown that the quantum baker's map_ 'S .5 150.5,S,- - - Wheres,=0 or 1. In the strings

has a simple realization on a quantum compli@rin this 4 hits 1 the right of the dot are the binary expansion of the
paper, we present realistic numerical simulations of a NMRy cqordinate, and the bits to the left of the dot, read back-

quantum computef4—6| using 3 quantum bitsqubits 10 4145 are the binary expansion of heoordinate. Written
explore the chaoth properties o.f.the guantum baker's ma,pformally, sis identified with a point §,p) in the unit square
In Sec. Il we review the definition of the quantum bakers?y settingq=3%_,52 % andp=37 s 2 ¥ L The ac-

= <k=1 T 2k=0"- :

En?phand its ?]ubitr{ealization. \éVekpresent a simple alrgumeq on of the baker's map on a symbolic string is given by the
7] showing that the quantum baker’s map is equivalent to a . : a ;
shift map[8,9] on a string of qubits. This leads to the defi- shift mapU defined by Us)=S. 1, which means that, at

nition of a simolified quantum baker's manp which we use ineach time step, the entire string is shifted one place to the left
pimed q P while the dot remains fixed. Geometrically, df labels the
the later parts of this paper.

In Sec. I1l we review the 3-qubit NMR quantum computer horizontal direction ang labels the vertical, the baker's map
based on the molecule trichloroethylene used in iRED] on the unit square is equivalent to stretching ¢hairection

. g _and squeezing the direction each by a factor of 2, then
and give the radio-frequendyf) pulse sequence for the pro stacking the right half on top of the left. The definition of the

ton and carbon spins of the molecule implementing the quan .. er's man throuah its svmbolic dvnamics emphasizes its
tum baker’'s map. Since decoherence cannot be neglected for P 9 y y P

this experiment, we model the NMR system by a mastelprototyplcal character for investigations of chaotic maps: A

: : ; . L very large class of chaotic maps can be shown to be equiva-
equation Of. Lindblad formj11], including the l—_|am|It0n|an lent to shifts on symbolic stringf20]. Furthermore, it is
time evolution, the rf pulses, and phase noise due to th

i ) . €hown below that the guantum baker’s map is equivalent to a
environment, using the actual experimental parameters.

Finally, in Sec. IV we propose two specific quantum shift on a string of qubits.
Yy, N : propose P q To define the quantum baker's m@p|, we quantize the

chaos experiments. In both experiments, we compare the . 7221 T h . i

uantum baker’s map with a triviségular map. One experi- tnit square as ”.[ ,21]. To represent t e unit square in
9 . ) D-dimensional Hilbert space, we start with unitary “dis-
ment analyzes the rate of increase of the von Neumann en- i N N ) )
tropy due to decoheren¢#2,13, which is related to a quan- Placement oeeratorsiJ a’ld v, v‘\{h|ch_ 'pr(’),du'ce displace-
tum generalization of the Kolmogorov-SinékS) entropy ~ Ments in the “momentum” and “position” directions, re-
[8,14]. The other experiment examines whether the 3-qubiBPectively, and which obey the commutation relatia)]
guantum baker’'s map isypersensitive to perturbatiomy- NN
persensitivity to perturbation is an information-theoretic cri- UV=VUe, @
terion for classical and quantum chad$s-18 which has wheree®=1. We choosa=e2/0 \We further assume that

been shown to be equivalent to a standard definition of clasz b_ ~D ) o »
sical chaos under general assumptifiba. VP=U"=1, i.e., periodic boundary conditions. It follows

[2,2]] that the operatorﬁl andV can be written as
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In the following, we restrict the discussion to the c&8se amard transform gat&,, acting on themth qubit and defined
=2N, i.e., the dimension of Hilbert space is a power of 2.y the basis{|0),|1)} by the matrix
For consistency of units, we let the quantum scale on “phase
space” be 2ri=1/D=2"N. A transformation between the 1/1 1
position basis{|g;)} and the momentum bas($p;)} is ef- Am=ﬁ(1 _1),
fected by the discrete Fourier transfoffy, defined by

®

D-1 and the phase gatB,,,(6) operating on themth and nth
Fala)=|p;)= 2mh D ePiok/"| g, ) qubits and defined by
k=0

b1 Bmn(0) [aL-1)® - - ®]ag) =€ |a,1)® - - ®|ap),

1 o
:_Z eZTrlkJ/D|qk>_ (3)
Dk=0 where
The D=2N-dimensional Hilbert space modeling the unit 9 ifa.—a=1
square can be realized as the product spad¢ iibits(i.e., ba 0= mon (10)
N two-state systemsn such a way that mn [0 otherwise.
laj)=lan_1)®|ay_2)® - - ®|ag), (4) In addition we define the gat®,,,, which swaps the qubits
andn.
where j=3a,2%, a,e{0,1} (k=0,...N—1), and where In D=8=23-dimensional Hilbert space, one iteration of

each qubit has basis staf@ and|1). It follows that, writ-  the quantum baker's map is performed by the sequence of
ten as a binary expansiom;=0.ay_; .. .ap=ay_12" ! gates
4. 4ag2 N ) ) )
There is no unique way to quantize a classical map. Here T=S02A0Bos( 7/2) B m/4) A1 By 7/2)
we adopt the quantized baker's map introduced by Balazs
and Voros[1], which can be written aE3] X A2SorAoBoi T2)A, . (1D

(5) The corresponding pulse sequence on the NMR computer
is quite long and complicatesee Sec. Il and the Appen-

whereFy_, acts on theN—1 least significant qubits, anid dix). Therefore we introduce a simplified versioh,,, of
is the identity operator acting on the most significant qubitthe guantum baker's mgg]. T, maps each of the states
Saracend 2] has introduced a quantum baker's map with —omi(0an . A

stronger symmetry properties by using antiperiodic boundary |an-1)®(|0)+e 27 (O% - an-2)]1))
conditions, but in this article we restrict the discussion to
periodic boundary conditions as used if. It is straightfor-
ward to adapt the discussion in this paper to Saraceno’s ver-

T=Fy (1®Fn_1),

®(|0> + e—27-ri(0.a1 .. .aN,2)| 1>)

sion of the magf22]. ®---®(|0)+e"?mO0N-2|1)), (12
We defing[23] to
|¢>EF§1|aN_1)®. - ®|ag) (|O>+e—2wi(o.a0...aN,ZaN,1)|1>)

=(|0)+e 2m(020)]1))
®--- ®(|o>+672ﬂ'i(0.aN,2 .. ao)|1>)

®(|0)+e 2701 -20[1)) ®)

®(|0> + e—ZWi(O.al .. .aN,ZaN,1)| 1>)
®---®(|0)+e 2m(0an-1)|1)), (13

and is thus equivalent th—1 ay_4-controlled rotations, a
and Hadamard transform on the most significant qubit, and then a
1)=(19F )‘1|a V& - - ®|ag) cyclic shift of the qubits. InD=8=23-dimensional Hilbert
N—1 N-1 0 space, one iteration of the map, is performed by the much
= |aN,1>®(|O)+e*2”i(°-a0>|l}) shorter sequence of gates

®---a(|0)+ e 2mi(0ay_p.. .a0)| 1)). (7) Ty= S(nsoonBgz( 77/4)551( l2). (14

As |)=T|¢), T can be seen to perform a shift of the  Like the quantum baker's map the simplified magr .,
qubits[7], in which the most significant qubit of the argu- is a shift on a string of qubits, although,, leads to different
ment|¢) is transformed in a way that depends on all thephase relations between the qubits. The two maps can thus
other qubits, becoming the least significant qubit of the im-be expected to have similar chaotic behavior. We have con-
age|#). The quantum baker's map) is thus equivalent to firmed this expectation by comparing the numerical results
a shift map on a quantum spin chdi8l, in analogy to the of Sec. IV with simulations of the full quantum baker's map
symbolic dynamics for the classical baker's map. T [24]; these simulations are not included here because, un-

The quantum baker’'s map can be realized using the follike the results of the present paper, they are based on unre-
lowing basic unitary operations quantum gatesthe Had-  alistic assumptions for the experimental parameters.
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sion of the pulse sequences only, we will assume the follow-

@ ing, further simplified form of the Hamiltonian:
\jl 8 7
N _d ¢ ~y iz o J2o, 5 O
_____ H"= ZZHZCl+ ZZCIZC2+ EZCZI (17)
In addition to these interactions, we can apply rf pulses
which rotate the nuclear spins about theandy axes. By
_ controlling the pulse frequencies, these can be selectively
FIG. 1. The molecule trichloroethylene. applied to single spinésoft pulsey or to two or three spins

at once(hard pulsep[6]. In our simulations, we use instan-
taneous pulses, i.e., we assume that the duration of the pulses
is very short compared to the time scale of the Hamiltonian

A. The system and its Hamiltonian H”. This assumption is only marginally satisfied for soft

We choose for our physical system the molecule trichloPUSes. The general conclusions of this paper, however, are
roethylene(Fig. 1), in which the nuclear spins of the hydro- not affected by this approximation, since they do not depend
gen and two carbons serve as our qubits. These spins weakly? the precise form of the implemented map.
interact with each other on a single molecule, but are effec- O the purposes of our simulations we also assume that
tively shielded from the environment by rapid tumbling. The th€ rf pulses are timed with perfect accuracy. Unfortunately,
molecules are placed in a strong, uniform magnetic field and!iS 1S not the case in experiment, where one can expect

subjected to rf pulses at various frequencies. errors of 1-10% or even highg27]. This is an additional
We denote byX. ¥, andZ the oy, oy, ando, Paul complication, which muddies the argument without changing

: ) . ; . its basic conclusions; hence we neglect it.
matrices, respectively, and indicate with a subsc(@y., The general form of a quantum algorithm in a NMR com-

Xp) to which spin they apply. The Hamiltonian of the three pyter is a sequence of pulses, causing rotations of the indi-

IIl. IMPLEMENTATION
ON A NMR QUANTUM COMPUTER

spins in the interaction picture is vidual bits, interspersed by precisely timed delays during
. . which the undriven Hamiltonian couples the neighboring
H= %ZHzclJr %2(5(615(02+ ?01?C2+2C12C2) spins[4—6]. In describing such a sequencg,d) denotes a

rotation about thex axis by an angle. This is equivalent to
R multiplying the state by the operator ek@X/2). Y(6) de-
5Zcy (15  notes a similar rotation about theaxis. U(t) indicates a
delay of duratiort, during which the Hamiltoniafi” acts. A
where j;~203 Hz,j,~102 Hz, j;~10 Hz, andé~—905 sequence is to be read from right to left, i.e., the rightmost
Hz [25]. operation is performed first. In this way, composition of the
It is convenient to approximate the interaction term be-operations follows the same sense as operator multiplication.
tween the two carbons byj £/4)Z¢ Zc,, omitting the XX Subscripts indicate which spin is acted on.

A ) i e . The basic gates which form the algorithm are constructed
and YY terms. This approximation is somewhat difficult t0 .o these simple pulse sequences, as we will show below.

justify, but greatly simplifies the description of the quantumygie that in all cases we neglect the overall phase of the

gates. Generally, it works well if the spin precession fre-ga1e Thys, two gates will be considered equivalent if they
guency of two spins differs by an amount large compared t%gree up to an overall phase.

the spin couplingj [26]. This is true betweerHd and C;

(where the approximation has already been maolet only _

borderline betweerC; and C,. The approximate Hamil- B. 1-bit gates

tonian is then We are already equipped with two families of 1-bit gates,
. . the x andy rotations. Two other useful gates, however, are
A= ]_12Hzcl+ 1_22C12C2+ 1_32H2c2+ ézcz. (16)  lacking: z rotations and Hadamard transforms. Fortunately,

4 4 4 2 in both cases these can be built from sequences of simple
_ _ _ _ . pulses[28].
For our numerical simulations, we will assume the fdfh Rotations abour can be constructed from a sequence of

of the Hamiltonian, but we have checked the dependence ahreex andy rotations[29]:

our results on this approximation. Whenever the data curves

obtained usingH differ from those obtained using’, we Z(0)=X(=m2)Y(O)X(m/2). (18)
present both curves.

Since j3 is small compared to the other terms in theIn fact, there are several such combinations which can be
Hamiltonian, it may be safely neglected for the design of theused to produce a rotation. As gates are put together in a
pulse sequenceéee below The j; term cannot be ne- quantum algorithm, it is often useful to choose their precise
glected, however, in the simulation of the full dynamics in-form so that a certain number of pulses combine or even
cluding noisgsee Eq(34)], since it is of the same order of cancel out, hence simplifying the overall sequence. Thus, we
magnitude as the leading noise terms. Thus, for the discusan write any of the following:
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Z(0)=X(—7I2)Y(O)X(7I2)=X(ml2)Y(— O)X(— 7/2) While the phase gate is useful in itself, it can also be used
to produce theontrol-not(CNOT) gate by nesting it between
=Y(mI2)X(0)Y(—7l2)=Y (= 7I2)X(— )Y (7/2), two Hadamard transforme;; = A;B;;(m)A, .
(19
. . . . D. Swaps
as convenient in constructing the algorithm.
We also need the Hadamard transfofndefined in Eq. A disadvantage of the Hamiltoniafi?) is that it only

(8), which can be effected by a pair ®fandy rotations couples neighboring spins. If we wish to perform a 2-bit gate

onH andC,, we have to swap one of them with the central
B B spin C,, using the swap gatese 4 and Sc,c,
A=Y(m2)X(m)=X(=m)Y (= 7/2). (20 Swaps can be built from a sequencecnioT gates:

Again, the form is chosen to simplify the sequence as much
as possible. S;=Ci;C;iC;; - (25)
C. 2-bit gates EachcNoT is composed of a phase gate and two Hadamard
Given the large family of 1-bit gates to choose from, wetransforms, as shown above, and the phase gates in turn are
need only a limited selection of 2-bit gates. This is good,built out of precisely timed Hamiltonian evolution inter-
because we have only a limited selection to choose from. Tépersed with rf pulses. Thus, to swap tHeand C; spins
build our algorithm, all we need is the phase g&g(0) requires the sequence
defined in Eq(9) which couples pairs of bits. The phase gate
between bits andj can be decomposed into
SClH:AHZH(’iT/Z)ZCl( ’7T/2)XC2U(T)

Bij(0)=expl(i 0Z;/4)exp(i 0Z;/4)exp(i 0Z,Z;/4). (21) X Xe,U()AwAc, Zu(ml2)Zc (l2)
The Z;Z; term is the critical one. Transformations of that XX, V(1) X U(7)AAc, Zu(72)
type are produced by the Hamiltonian evolutid). How-
ever, this includes unwanted additional terms. We can effec- XZc (mI2)Xc U(T) X U(T) Ay, (26)

tively eliminate these terms by the techniquerefocusing
in which we “undo” the evolution of all but the selected
term in the Hamiltoniai29,4,5. Because of the anticommu-
tation of the Pauli matrices,

where 7= 7/2j,. The C;-C, swap is similar. Since each of
the Hadamard transforms amdotations is itself a product of
several rf pulses, we see that the swap gate is quite large and
complicated. What is more, the three phase gates take con-
& R A VSR R C siderable time, allowing the system to be affected by deco-
Xiexpi0z,z)) =exp(—10Z,2)Xi, 1#]. (22 herence. The number of rf pulses can be somewhat reduced
Thus, if we stick anx pulse in the middle of a period of by carefully choosing the expressions for the Hadamard and

Hamiltonian evolution, it can effectively remove the un- Z 9ates to cancel as many pulses as possible, but there is
wanted terms. nothing to be done about the time for the phase gates.

It is clearly to our advantage to perform as few swaps as
possible. We follow this precept in designing the niap .

Xy exp(—iH" 1) Xy exp(—iA"7) As it is, more than half the time of the algorithm is spent in
PN .- swapping.
=exp—i7j 2201202/2— | 7-52(;2),
(23 E. The map Ty,
)A(C2 exr(—iﬂ”r)f(cz exp(—iH"7)=exp(—i7j 12H201/2). In Sec. Il we defined a simplified version of the quantum

baker's map, which in the 3-bit case is given by Ety).
We use this to build phase gates between neighboring spinghis map has two important traits. First, all of its 2-bit gates
involve bit 0. Second, the two swap gates perform a cyclic
shift of the bits, -2—1—0.

Since we can only couple neighboring spins, it makes the
most sense to make 0 the central kit,. We can then iden-
tify bit 1 with H and bit 2 withC,. In terms of the physical
bits, then, the map becomes

B~ )= Zu(— 012)Zc,(— 012 Xc,(m)U(7)
XX, (mU(7), (24

wherer= 6/2j,. Note that one can userotations instead of
x, and shuffle the order of these operations; also, one can

choose any of the expressiofi®) for thez rotations. A very Tm=Sc,nSc,c,Ac,Be,c,(— m4)Bc n(—7/2). (27)
similar expression applies deClcz’ using Xy instead of

Xc,» but we must also include an additiori&, rotation t0  Further examination reveals that ti ¢, is unnecessary.
undo the effects of th62C2/2 term in the Hamiltonian. The shift 1 -0 is necessary in order to keep bit 0 in the
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central position. The labeling of bits 1 and 2, however, is Todd= SclHAClBClCZ(_77/4)BCIH(_7T/2)1

arbitrary. We could have just as easily identified bit 1 with 28)

C, and bit 2 withH. Thus, we need not perform an actual Tever=Sc.c.Ac.Be.n(— m/4)Be.c.(— m/2).

physical swap gate here; a mental relabeling of the bits is e 1re

sufficient. Each of these gates represents a given series of rf pulses and

This means that the labeling of the bits will switch back delays. By choosing the form of therotations andA gates
and forth between even and odd iterations of the map. Thugarefully, and ordering the operators for tBegates appro-
the physical realization of the map will also differ betweenpriately, a certain amount of cancellation is possible, simpli-
even and odd steps. We therefore have two alternating séying the sequence somewhat. In this way we arrive at the
guences, following sequence of elementary pulses:

Toga= Xu(—3m/2)Y (= m2) Y (m12)Xe (= m/2) Yo (— m2)U (1) X (MU (1) Xn(— 37/ Xe (— 3m/2) Y(— m/2)
XY (= w/2)U (1) X (m)U (1) X = 3m/2) X (= 37/2) Yy(— /) Y (= m2)U (1) X (m)U (1)
X Xe,(112)Y (81— w8 Xc,(112) Xy = 57/4) Y (= ml2) X (— 11m/8) Y (— ml2)U (), (29)

where ;= 7/2j,. Note that becausp ~2j, we can combine the twB gates into a single time delay fdi,qq-
This unfortunately works in exactly the wrong direction fbg,.n, Which consequently makes the sequence somewhat
longer and more complex:

Tever=Xc,(287,— 3m/2) Y (m12) Y (12)Xc, (712) Yo (12)U () Xpu(m)U (75) Xe (— 3m/2)Xc (2875~ 3m12)
XYCl(_ 7T/2)YC2(_ 7T/2)U(7'2)XC1(7T)U(T2)XC1( _377/2)X02(25T2_37T/2)YC1( - 77/2)
XYCZ(_ 7T/2)U(Tz)XCl(’7T)U(7'2)XH(7T/2)YH(_ ’7T/8)XH( - 7T/2)XC2(45T3_57T/4)Y02( - ’77/2)

XX, (—11m/8) Y (= m2)U(373/2) Xpy(m)U(575/2), (30)

where =271, and 73=14/2. (Recall that these sequences Xe (m)U ()X (w)U(r)~exp(—i572c ). (32

should be read from right to leftThe total delay time for ! 1 2

Togq IS 771, While the delay time fofT e, iS 147, taking Thus. we see that

twice as long. Thus, intrinsic noise affects the system more '

during even steps than odd ones. Tr~exp —4i 8742¢.). (33
2

F. The regular map T By performing an appropriaterotation at the end we could

Having defined a quantized version of a classically chagliminate this cumulative rotation of th€, spin, but as it
otic map, we need to define a regular map for comparisonnakes no difference to the regularity of the map we leave it
This map should take the same time per iteration as the magnaltered for simplicity. The total time§ should equal the
T\, ON average, so that it is affected equally by the intrinsicaverage iteration time of the map,,, so 7,=217,/16
noise. =21m/32) ;.

The simplest possibility would be a map that does essen-
tially nothing. This implies that the effects of the Hamil- G. Noise and the master equation
tonian in coupling the spins must be suppressed. We do this

by refocusing, as described above. Consider the sequence While the nuclear spins are fairly well isolated, this iso-

lation is not perfect. Interactions with the external environ-

Tr=Xc.(mMU(19)Xc. (m)U(75) Xe. (1)U (1) Xe. () ment cause the spins to deviate from strict Hamiltonian evo-
! ! 1 ! lution, a deviation which becomes increasingly important as
><U(T4)Xcl(7T)U(T4)Xc1(7T)U(T4) the length of the NMR calculation increases.
The effects of the environment are described by two time
X Xcl(W)U(T4)Xc1(7T)U(T4)- (31 scalesT, andT, [30]. T, is the time scale on which the spins

relax to the thermal statd., is the time scale of phase de-
Thex rotations flip the sign of all terms containiﬁ@ in the coherence, the resu_lt of the spins becomin_g correlated with
. 1 the state of the environment and hence going from a super-
Hamiltonian, so thaE the effects of these terms cancel OUIposition of states to a statistical mixture. For the molecule
That is, all but thedZ¢ /2 term of Eq.(17) are effectively  trichloroethylene T, exceedsT, by an order of magnitude,
eliminated: and can be safely neglected for this problem.
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We model the effect off, by replacing the state vector 3 T T T T T T
|) with a density matrixp and the Schidinger equation . ° al
with a Markovian master equation in Lindblad fofrh], 2.5 o . +
<) +
d . 1 Ny aga o n 5 +
=it 14 5 2Ll Ll —pLiL0, io2r o g
dt 2% q v
-
(34 RN .
&
~ . . . ~ o}
whereH' is the Hamiltonian(16) and theL, are a set of £ 1} chaotic o ]
operators chosen to model the effects of decoherence. Th” regular +
simplest choice of \’'s which capture the essential physics 0.5 | requlartzy B
are proportional to the operator for each of the three spins:
O 1 1 1 1 1 1
0 1 2 3 4 5 6
|:l: '/FHZHr number of steps
R ) FIG. 2. Entropy versus number of steps for the regular map
L,= JI‘ClZCl, (35 and the simplified baker's map,,. The decoherence times are

1/FC1=0.7 s, I'y=4.0 s, and 117C2=O.4 s, i.e., realistic values.
R . The curve labeled “regularxy” was generated with theXX and
Ls= \/F_czzcz- Y'Y terms included in the Hamiltonian. For the chaotic map, the
effect of the extra terms is negligible.

The decay raté’ is proportional to IT, for each spin. L

Using quantum trajectory techniqué81,32, we can _ B . .
solve the above master equation numerically for various |”[lo>_|0>’>®|O>’>®|OY>_2\/§(|0>+'|l>)®(|0>+'|1>)
choices ofT, and various initial states. We treat the rf pulses

as instantaneous unitary transformations, just as before. They ®(|0)+i[1)). (36)
interrupt the continuous master equation evolution given
above. To find the system entropyS(n), after n steps 6

=1,...,6), the mafT,, is iteratedn times by applying the
pulse sequence®9) and (30) alternately. The final density
operatorp(n) is then measured using quantum state tomog-
A. Rate of entropy increase raphy [33,10 and the entropy is determined fro8(n)=
—tr p(n)log, p(n)]. Although standard NMR techniques
gi[ve one the traceless part of the density operator only, there
gxist methoddat least in principlgto determinep(n) fully,
as is required for determining the entroffn). One such
Enethod is to do tomography of the quantum operafi®4,

here the pulse sequence is applied to different initial states.
\nother possibility would be to estimate the relative size of
e traceless component by measuring the signal strength.
We have simulated this experiment by numerically solv-
g the master equatio{84). The result of the simulation is

own by the data points labeled “chaotic” in Fig. 2. The

ﬁta points labeled “regular” are the results of a control
simulation using the regular map, defined in Sec. Ill F. In
rHOth cases, the entropy increases rapidly and approaches the
value of 3 bits, which is the maximal von Neumann entropy
in eight-dimensional Hilbert space. There is no clear differ-

IV. MEASURES OF CHAOS

The Kolmogorov-Sinai entropy, equal to 1 bit per step for
the classical baker's map, measures the asymptotic rate
which information about an initial phase-space point must b
supplied in order to keep the ability to predict thin iterate
of the map to a given accuracy. Furthermore, if a stochasti
perturbation is added to the map, the KS entropy measur
the average entropy increase per step that results from av
aging over the perturbation. Both of these properties are ver
easily understood in the shift-map representation of the maﬁ)q
[20].

For quantum systems, a constant rate of entropy increa
in the presence of environment-induced decoherence h
been proposefll2,13 as a signature of chaos. This rate of
entropy increase is closely related to the concept of quantu
dynamical entropy8,14]. As in the classical case, the analy-
sis is greatly facilitated by the shift-map character of the .
quantum baker's map. ence be_tween the regular and chfiotlc cases. The apparent

The entropy increase in a chaotic system is due to th&e@son is that due to the smdl, time scales /¢, and
exponential magnification of small-scale, local perturbations1/I'c, two of the three qubits are strongly perturbed. To
Since perturbing all qubits in the spin chain at the same ratehow that our conclusions do not depend on the assumptions
corresponds to a perturbation on all scales simultaneously, deading to the simplified Hamiltoniafi6), we have repeated
entropy increase can be regarded as a signature of chaos omhe simulations leading to Fig. 2 using the full Hamiltonian
if the qubits are perturbed at different rates. This condition ig15). The data points labeled “regutaixy” show the result
fulfilled in our system, since the spin relaxation time scalesn the regular case; in the chaotic case, the extra terms in the
T, for the hydrogen and carbon atoms in trichloroethyleneHamiltonian made no significant difference.
differ by about one order of magnitude. If only one qubit is strongly perturbed, however, there is a

In our first proposed experiment, the system is prepared ialear difference between chaotic and regular behavior. In the
the initial pure state simulation shown in Fig. 3, both ]I(;l and 1I'y are rela-
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FIG. 3. Entropy versus number of steps for the regular map FIG. 4. Entropy versus number of steps for the regular map

and the simplified baker's map,,. The decoherence times are and the simplified baker's map,, in the presence of an artificial

1/I‘C1:10 s, I'y=10 s, and ]]TCZ:O.Z s, i.e., idealized values. perturbation as described in the text. The decoherence times are

The curve labeled “regularxy” was generated with thX and ~ 1T'c, =11y =1M¢,=10 s, i.e, idealized values. The curve la-

YY terms included in the Hamiltonian. For the chaotic map, thebeled “chaotict xy” was generated with theXX and Y'Y terms

effect of the extra terms is negligible. included in the Hamiltonian. For the regular map, the effect of the
extra terms is negligible.

tively large compared to the total delay times needed for the 1
sequencey ,qq and Tqen (S Sec. Il E i.e., only theC, _- imZyl2 A= imZpl2
spin is strongly perturbed. The§g time scales cannot be Poad ) 2(p+e e ") 38
achieved with the molecule trichloroethylene, but there may )
exist other molecules with the desired properties. In this cas@nd after each even step the perturbation superoperator
the “regular+xy” plot differs more than in Fig. 2, but is
still cle_arly distinguishab_le from the chaotic case. Poved )= l(erei w202/2pe—iw202/2) (39)
In Fig. 3, the entropy increase in the chaotic case does not 2
have a well-defined linear regime. The reason for this is the )
relabeling of the qubits at each step, which was introduced it the density operatqr. For the regular map , we apply
Sec. Il E to reduce the complexity of the pulse sequence. Afodd & €ach step. In an actual experiment, a convenient way
alternate steps, the strongly perturl@gspin thus represents of averaging over o_llfferent perturbations consists in applying
either qubit 1 or qubit 2. One could eliminate this effect by Selected gradient field85].
performing extra physical swap operations as described in The results are shown in Fig. 4. We have assumed large
Sec. Il E. Another possibility is to introduce artificial per- rélaxation times for all three spins. The extra terms in the
turbations. Hamiltonian had only a slight effect on the chaotic case, and
One can apply an artificial perturbation to a magy & n_egligible effect on the regular case. The s_imulation differ-
adding an extra rotation to the least significant bit, produc- entiates well between the regular and chaotic cases, and the
latter shows the expected linear increase in entropy, followed
Ry saturation at 3 bits. Unfortunately, this simulation as-
gumes possibly unrealistic relaxation times.

ing the perturbed map’ =e'™#2?T. At each step, one ran-
domly chooses either the perturbed or unperturbed map.
density operator results from averaging over the two possibl
outcomes. This is equivalent to applying a superopergfor o _
B. Hypersensitivity to perturbation

Hypersensitivity to perturbation is an information-
theoretic criterion for classical and quantum chfbs—17
which has been shown to be equivalent to a standard defini-
tion of classical chaos under general assumptjaég Sup-
pose a system is perturbed, for instance by being acted on by

The results of this and the next section depend on than unknown force with a known distribution. Averaging over
strength and locality of the perturbation, but are rather insenall possible perturbations causes the entropy of the state to
sitive to its exact form. This is a general property of entropyincrease. One can reduce this entropy growth by obtaining
measures for quantum chaos, which have to be defined witinformation about the perturbation, such as the actual value
respect to a class of local perturbatiofsee, e.g.,[8]).  of the force to some precision. By having more information
Clearly, a perturbation that commutes with the unperturbedbout the perturbation, the uncertainty in the statel hence
dynamics will not reveal any chaotic properties of the latter.its entropy decreases. To reduce the entropy growth by an

To perturb the same logical qubit at even and odd steps adverage amounA S requires information =AS about the
the mapT ,,, we apply after each odd step the perturbationperturbation. In particular, we want to know the minimum
superoperator amount of informationl ,;; needed to produce a given en-

1 . .
P(p)z E(p_’_elﬂ'ZZ/Zpe*MTZZ/Z). (37)
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x andy terms: nearly identical values. The slightly lower

1]

chaotic -o— ; entropy in the chaotic case arises because of the alternation

L regular -8-- ; 7 T i ianifi
regiion ey e X rﬂ betweenT ,4q and Ten it is otherwise of no significance.

3]
w

The values for the entropy increase alone, therefore, do
[ not reveal much about the distribution of the density opera-
o tors in the ensemble. In particular, they do not reveal
N whether the ensemble @thogonal(in which case the en-
tropy increase corresponds to purely classical informaton
nonorthogonalcorresponding to quantum informatjorOb-
taining information about which perturbation history has

been realized can reduce the entropy frgmlx to a lower

value S; analyzing the dependence AfS=S,,—S on the
N A L ! ! ! L L information needed gives a measure of how nonorthogonal
0 .1 0.2 0.3 0.4 0.5 0.6 0.7 the ensemble i17].

entropy reduction in bits We could obtain the total possible information by deter-

FIG. 5. Information needed about the perturbation versus enMining exactly which perturbation history occurred. This
tropy reduction for the regular map, and the simplified baker's —corresponds to lad\ps= 3 bits of acquired information, and
map T . The decoherence times ard’/=0.7 s, 1I';=4.0 s, would reduce us from considering the average densny opera-
and 1I'c,=0.4 s, i.e, realistic values. The curve labeled “regular tor p to considering only a single final density operap(pr
+xy” was generated with th&XX and Y'Y terms included in the However, we could also obtajartial information about the
Hamiltonian. For the chaotic map, the effect of the extra terms isperturbation history by partitioning thé,s; final density op-
negligible. erators iNtoR<<Ny;,; groups, and determining only which

group the operator was in. Since we are actually interested in
tropy reductionAS. A system is hypersensitive to perturba- the minimum informationl .,;, needed to produce a given
tion if the informationl ,;, needed to lower the system en- entropy reduction, we would like to choose groupings which
tropy increase by an average amouk§ is very large maximize the entropy reduction.
compared toAS. Precise definitions of the quantitigég,, More precisely, consider a partitioning of the lisinto R
and AS are given in[17]. For a general introduction, see groups, labeled by=1, ... R. We denote byN, the num-
[18]. ber of density operators in theh group EF_;N,=Npis).

We will show in this section that hypersensitivity to per- TheN, density operators in theth group and their probabili-
turbation can be detected in the 3-qubit quantum baker's mages are denoted by!,....pN andq},...,q . respec-
even in the presence of the actual noise levels for trichloro;. !
ethylene. As in the preceding section, we define perturbe

maps T’—e”TZH’ZT and T}, =l "ZH2T . or Ty

(o)
wl

perturbation information in bits
[
o

tively. In our case, allgj=1/Nyg. In a random trial, the
system state will be in theth group with probability

=¢ ”Zcz’zTeven for odd or even steps, respectively. Applying N,

randomly at each step either the perturbed or the unperturbed _ r_ N, (41)
map leads, aftem steps, to 2 possible differenperturbation P 9 N

histories

Due to the fast decoherence, it is necessary to limit thdhe knowledge that the system state is in groujs de-
number of steps ta= 3, corresponding td,,=2"=8 dif-  scribed by the density operator
ferent perturbation histories. The proposed experiment is to
apply, each time starting from the initial stdtg,) defined in N,
Eq. (36), all Ny,=8 perturbation histories, to obtain the list =p, 2 . 12 ol (42)
of final density operator={py, ... py, } by quantum -
tomography, and to analyze the distribution of Mg den-  We define[17] the system entropy conditional on being in
sity operators in density operator space. We assume that, inggoupr,
random trial, allNy,;s; perturbation histories would occur with

the same probability N,;;;. We can find the entropgmax S.=—tr(p, logy p,) (43)
r r

= —tr(p log, p) of the averagedensity operator
the average conditional entropy

Nhist

40 _ _ _
Nhlstl2 Pi- 40 S= E PrS = Siax— AS< Shax: (44)

As argued in the preceding section, this should grow quickly
with the number of iterations. Our simulation using the
relaxation times for trlchloroethylenéFlg 5 gave, forn

=3, smax—z 67 bits in the chaotic cassmax—z 74 bits in

the regular case, arﬁinax—ZJZ bits in the regular case with

and the average information

—~ E p: log, p,=AS. (45)



PRA 59 REALIZING THE QUANTUM BAKER'S MAP ON A NMR.. .. 2657

The informationl ,;, needed about the perturbation to reduce V. CONCLUSION

the system entropy by an amouks is now defined as the

minimum of | over all groupings for which S=AS, i.e., all The quantum baker's map can be implemented with

groupings for which the system entropy is reduced by at leagi"®S€nt day technology on a 3-qubit NMR quantum com-

AS. puter. In order to investigate the feasibility of quantum chaos
The particular case we are treating is simple enough thag]xperlments using this system, we have numerically solved

we could actually try all possible groupings to find the one e master equation for the NMR system, including the

. . . Hamiltonian time evolution, the rf pulses, and phase noise
which minimizesl for a givenAS. In general, however, for .

I b  iterati h ber of ) due to the environment.

argeé numbers of iterations th€ number OF groupings grows e paye proposed and analyzed two specific quantum

far too rapidly to exhaustively consider all possibilities. In- - o experiments. In both experiments, we compare the
stead, we must.find_ an efficient grouping algorithm WhichCluantum baker's map with a trivial map. One experiment
approximates this minimum. _ analyzes the increase of the von Neumann entropy due to
~ To find an approximation by, as a function oAS, we  gecoherence. We show that in principle this experiment dis-
introduce the concept of nearly optimal groupings. Given &inguishes well between the chaotic and regular cases, but a
tolerable entropyA S, we want to partition the list of density successful execution requires lower decoherence rates than
operatorsC into groups so as to minimize the informatibn  seem to be achievable at present.
without violating the conditiomAS=AS or S<S,,,—AS.  The second proposed experiment looks for hypersensitiv-
To minimizel, it is favorable to make the groups as large as'tK to R/?/ftutr]bat'onr'] an |rr1]forr:]1at|on-theprgtlc cntenonb for

. R chaos. We have shown that hypersensitivity to perturbation
possible. Fu.rthermor'e, to reduce the cont.nbunorStof a can be detected in the 3-qubit )C/JFl)Jantum bakilar’s Fnap even in
fgroup l;:Ion:alnlrr:g a glgj/erl: Ii1umberr cif rdert}?ltty orperatorls, It 'ts[rje presence of the actual noise levels for trichloroethylene.
avorable to choose density operators that are as close ?Jsing realistic estimates for the experimental parameters, our

gether as possible in some suitable sefsee below simulations show that this criterion differentiates very well

To find a nearly optimal grouping intB groups, we first between chaotic and regular behavior.
chooseR density operators at random from the list Then We have thus shown that the quantum baker's map dis-
for each of the remaining density operators in the list, wepjays behavior of fundamental interest even for the eight-
execute the following procedure. Lgj be the next density dimensional Hilbert space of 3 qubits. Quantum computers
operator in the list to be grouped, and |gt denote the can be used to study quantum chaos under highly controlled
average of all density operators grouped into grosp far  experimental conditions.
(i.e., excluding all those that have not yet been grolped
Thenp, is added to that groupfor which the “distance”
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APPENDIX

is minimal. Of course there exist many alternative grouping Here we give the rf pulses corresponding to the baker's

algorithms, of which we tried several, but the one describednap T defined by the sequence of gatdd). This unfortu-

above gave consistently the best resqits., the smallest  nately includes interactions between non-neighboring bits.

for a givenAS). However, one can get around this problem by inserting an
Figure 5 showd i, versusAS for both the chaotic and extra pair of swap gateSy,; at the beginning and end of the

the regular case. The slope of the chaotic curve is roughljteration, making the gate sequence

equal to 6, i.e., aboutrébits of information about the per-

turbation are needed to reduce the system entropy increase

by n bits. In the regular case, 1 bit of information about the

pgrturbation is su#icient to reduce the system entropy in- T=Sp;S12A1BY(7/2) B m/4)

crease by almost 0.7 Ki®.5 bit with XX andYY terms. The X AoSoiBlIA /2) AsA1Boy( m12)AgSer.  (AL)
criterion of hypersensitivity to perturbation thus differenti-

ates well between chaotic and regular behavior. Furthermore,

the slope of 6 in the chaotic case is not very far from theThe S,; gates cancel between iterations, so one need only
dimension of Hilbert spacelD=8. A slope close tdD is  swap at the beginning and end of the entire run; and since the
characteristic for a random distribution of pure states in Hil-labeling of bits is arbitrary, these swaps can be absorbed into
bert space, and has been conjectured to hold for chaotitie process of initial state preparation and final state tomog-

guantum systemis36]. The steep slope indicates that the en-raphy. Thus, for each iteration we perform the sequence of
semble is highly nonorthogonal. gates
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Here there is no need to change representation every other
step, so we may fix a label onto the 3 bits. In this case, we
will identify bit O with H, bit 1 with C,, and bit 2 withC,.

The sequence of pulses corresponding to each gate is de-
scribed in detail in Sec. lll. All that is required is to combine
them into a pulse sequence for the entire map:

T'=S,ABly(7/2) Bl m/4)

X ASoBlA m/2) AsABoy(mI2)Ag,  (A2)

which only couples neighboring bits.

T' = Yo (m12)Xu(m) X, (M) U(47) X (m)U(47) Y (12) X (876) Y (876~ ml2)
X Xe,(m12)Xc,(m2)U (A7) Xn(m)U (A7) Y ¢ (1) Yo (m12)Xe, () X, () U(47) Xy (m) U (47)
X X, (=l Xe (= m2)Ye (=34 Xe (112)Yc (88— m/2)Xc (— m2)U(7) X (mU(7)Xc (7/2) Xpy(7/2)
XY () X (12) Y ¢ (18) X (= w2V ()X (U (1) X (l2) Y e (18— 287) X (mI2)U(27) X (m)U(27)
X X, (m12)Xu(m12)U(27) X (m)U(27) Xy = 32) Yy — /)X (= 3ml2) Y e (= m/2)U(27) X (m)U(27)

XYy(m2)U(27)Xy(m)U (ZT)YCZ( 7/2)X52(457'— 77/4)X01( — 77/2)YC1( — 77/4)XC1( — 577'/4)YC1

X(— 7T/2)U(3T)Xcz( m)U(37)Yy(72)Xy(7/4),

where the basic time scale ts= 7/4j,=1,/2.
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