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Realizing the quantum baker’s map on a NMR quantum computer
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By numerically simulating an implementation of the quantum baker’s map on a NMR quantum computer
based on the molecule trichloroethylene, we demonstrate the feasibility of quantum chaos experiments on
present day quantum computers. We give detailed descriptions of proposed experiments that investigate~a! the
rate of entropy increase due to decoherence and~b! the phenomenon of hypersensitivity to perturbation.
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I. INTRODUCTION

The quantum baker’s map@1,2# is a simple map invented
for the theoretical investigation of quantum chaos. Its ma
ematical properties have been studied extensively, but
experimental quantum systems are known which embod
Recently, one of us has shown that the quantum baker’s
has a simple realization on a quantum computer@3#. In this
paper, we present realistic numerical simulations of a NM
quantum computer@4–6# using 3 quantum bits~qubits! to
explore the chaotic properties of the quantum baker’s m

In Sec. II we review the definition of the quantum bake
map and its qubit realization. We present a simple argum
@7# showing that the quantum baker’s map is equivalent t
shift map@8,9# on a string of qubits. This leads to the de
nition of a simplified quantum baker’s map which we use
the later parts of this paper.

In Sec. III we review the 3-qubit NMR quantum comput
based on the molecule trichloroethylene used in Ref.@10#
and give the radio-frequency~rf! pulse sequence for the pro
ton and carbon spins of the molecule implementing the qu
tum baker’s map. Since decoherence cannot be neglecte
this experiment, we model the NMR system by a mas
equation of Lindblad form@11#, including the Hamiltonian
time evolution, the rf pulses, and phase noise due to
environment, using the actual experimental parameters.

Finally, in Sec. IV we propose two specific quantu
chaos experiments. In both experiments, we compare
quantum baker’s map with a trivialregular map. One experi-
ment analyzes the rate of increase of the von Neumann
tropy due to decoherence@12,13#, which is related to a quan
tum generalization of the Kolmogorov-Sinai~KS! entropy
@8,14#. The other experiment examines whether the 3-qu
quantum baker’s map ishypersensitive to perturbation. Hy-
persensitivity to perturbation is an information-theoretic c
terion for classical and quantum chaos@15–18# which has
been shown to be equivalent to a standard definition of c
sical chaos under general assumptions@16#.

*Present address: Department of Physics, Carnegie Mellon
versity, Pittsburgh, PA 15213.
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II. THE QUANTUM BAKER’S MAP
AS A SHIFT MAP ON QUBITS

The classical baker’s transformation@19#, which maps the
unit square 0<q,p<1 onto itself, has a simple descriptio
in terms of its symbolic dynamics@20#. Each point in
phase space is represented by a symbolic st
s5•••s22s21s0 .s1s2••• wheresk50 or 1. In the strings,
the bits to the right of the dot are the binary expansion of
q coordinate, and the bits to the left of the dot, read ba
wards, are the binary expansion of thep coordinate. Written
formally, s is identified with a point (q,p) in the unit square
by settingq5(k51

` sk2
2k and p5(k50

` s2k2
2k21. The ac-

tion of the baker’s map on a symbolic string is given by t
shift mapU defined by (Us)k5sk11 , which means that, a
each time step, the entire string is shifted one place to the
while the dot remains fixed. Geometrically, ifq labels the
horizontal direction andp labels the vertical, the baker’s ma
on the unit square is equivalent to stretching theq direction
and squeezing thep direction each by a factor of 2, the
stacking the right half on top of the left. The definition of th
baker’s map through its symbolic dynamics emphasizes
prototypical character for investigations of chaotic maps:
very large class of chaotic maps can be shown to be equ
lent to shifts on symbolic strings@20#. Furthermore, it is
shown below that the quantum baker’s map is equivalent
shift on a string of qubits.

To define the quantum baker’s map@1#, we quantize the
unit square as in@2,21#. To represent the unit square i
D-dimensional Hilbert space, we start with unitary ‘‘dis
placement’’ operatorsÛ and V̂, which produce displace
ments in the ‘‘momentum’’ and ‘‘position’’ directions, re
spectively, and which obey the commutation relation@21#

ÛV̂5V̂Ûe, ~1!

whereeD51. We choosee5e2p i /D. We further assume tha
V̂D5ÛD51, i.e., periodic boundary conditions. It follow
@2,21# that the operatorsÛ and V̂ can be written as

Û5e2p i q̂ and V̂5e22p i p̂. ~2!

The ‘‘position’’ and ‘‘momentum’’ operatorsq̂ and p̂ both
have eigenvaluesj /D, j 50, . . . ,D21.

i-
2649 ©1999 The American Physical Society



2
as
e

it

e
laz

bi
ith
a
to

ve

e
-

he
m

fo

of
e of

uter
-

n a

thus
on-
lts
p
un-
nre-

2650 PRA 59TODD A. BRUN AND RÜDIGER SCHACK
In the following, we restrict the discussion to the caseD
52N, i.e., the dimension of Hilbert space is a power of
For consistency of units, we let the quantum scale on ‘‘ph
space’’ be 2p\51/D522N. A transformation between th
position basis$uqj&% and the momentum basis$upj&% is ef-
fected by the discrete Fourier transformFN , defined by

FNuqj&5upj&5A2p\ (
k50

D21

eip jqk /\uqk&

5
1

AD
(
k50

D21

e2p ik j /Duqk&. ~3!

The D52N-dimensional Hilbert space modeling the un
square can be realized as the product space ofN qubits~i.e.,
N two-state systems! in such a way that

uqj&5uaN21& ^ uaN22& ^ •••^ ua0&, ~4!

where j 5(ak2
k, akP$0,1% (k50, . . .N21), and where

each qubit has basis statesu0& and u1&. It follows that, writ-
ten as a binary expansion,qj50.aN21 . . . a0[aN21221

1•••1a022N.
There is no unique way to quantize a classical map. H

we adopt the quantized baker’s map introduced by Ba
and Voros@1#, which can be written as@3#

T5FN
21~ I ^ FN21!, ~5!

whereFN21 acts on theN21 least significant qubits, andI
is the identity operator acting on the most significant qu
Saraceno@2# has introduced a quantum baker’s map w
stronger symmetry properties by using antiperiodic bound
conditions, but in this article we restrict the discussion
periodic boundary conditions as used in@1#. It is straightfor-
ward to adapt the discussion in this paper to Saraceno’s
sion of the map@22#.

We define@23#

uc&[FN
21uaN21& ^ •••^ ua0&

5~ u0&1e22p i ~0.a0!u1&)

^ •••^ ~ u0&1e22p i ~0.aN22 . . . a0!u1&)

^ ~ u0&1e22p i ~0.aN21 . . . a0!u1&) ~6!

and

uf&[~ I ^ FN21!21uaN21& ^ •••^ ua0&

5uaN21& ^ ~ u0&1e22p i ~0.a0!u1&)

^ •••^ ~ u0&1e22p i ~0.aN22 . . . a0!u1&). ~7!

As uc&5Tuf&, T can be seen to perform a shift of th
qubits @7#, in which the most significant qubit of the argu
ment uf& is transformed in a way that depends on all t
other qubits, becoming the least significant qubit of the i
ageuc&. The quantum baker’s map~5! is thus equivalent to
a shift map on a quantum spin chain@8#, in analogy to the
symbolic dynamics for the classical baker’s map.

The quantum baker’s map can be realized using the
lowing basic unitary operations orquantum gates: the Had-
.
e

re
s

t.

ry

r-

-

l-

amard transform gateAm acting on themth qubit and defined
in the basis$u0&,u1&% by the matrix

Am5
1

A2
S 1 1

1 21D , ~8!

and the phase gateBmn(u) operating on themth and nth
qubits and defined by

Bmn~u! uaL21& ^ •••^ ua0&5eifaman uaL21& ^ •••^ ua0&,
~9!

where

faman
5H u if am5an51

0 otherwise.
~10!

In addition we define the gateSmn which swaps the qubitsm
andn.

In D58523-dimensional Hilbert space, one iteration
the quantum baker’s map is performed by the sequenc
gates

T5S02A0B01
† ~p/2!B02

† ~p/4!A1B12
† ~p/2!

3A2S01A0B01~p/2!A1 . ~11!

The corresponding pulse sequence on the NMR comp
is quite long and complicated~see Sec. III and the Appen
dix!. Therefore we introduce a simplified version,TM , of
the quantum baker’s map@7#. TM maps each of the states

uaN21& ^ ~ u0&1e22p i ~0.a0 . . . aN22!u1&)

^ ~ u0&1e22p i ~0.a1 . . . aN22!u1&)

^ •••^ ~ u0&1e22p i ~0.aN22!u1&), ~12!

to

~ u0&1e22p i ~0.a0 . . . aN22aN21!u1&)

^ ~ u0&1e22p i ~0.a1 . . . aN22aN21!u1&)

^ •••^ ~ u0&1e22p i ~0.aN21!u1&), ~13!

and is thus equivalent toN21 aN21-controlled rotations, a
Hadamard transform on the most significant qubit, and the
cyclic shift of the qubits. InD58523-dimensional Hilbert
space, one iteration of the mapTM is performed by the much
shorter sequence of gates

TM5S01S02A0B02
† ~p/4!B01

† ~p/2!. ~14!

Like the quantum baker’s mapT, the simplified mapTM
is a shift on a string of qubits, althoughTM leads to different
phase relations between the qubits. The two maps can
be expected to have similar chaotic behavior. We have c
firmed this expectation by comparing the numerical resu
of Sec. IV with simulations of the full quantum baker’s ma
T @24#; these simulations are not included here because,
like the results of the present paper, they are based on u
alistic assumptions for the experimental parameters.
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III. IMPLEMENTATION
ON A NMR QUANTUM COMPUTER

A. The system and its Hamiltonian

We choose for our physical system the molecule trich
roethylene~Fig. 1!, in which the nuclear spins of the hydro
gen and two carbons serve as our qubits. These spins we
interact with each other on a single molecule, but are eff
tively shielded from the environment by rapid tumbling. T
molecules are placed in a strong, uniform magnetic field
subjected to rf pulses at various frequencies.

We denote byX̂, Ŷ, and Ẑ the sx , sy , and sz Pauli
matrices, respectively, and indicate with a subscript~e.g.,
X̂H) to which spin they apply. The Hamiltonian of the thre
spins in the interaction picture is

Ĥ5
j 1

4
ẐHẐC1

1
j 2

4
~X̂C1

X̂C2
1ŶC1

ŶC2
1ẐC1

ẐC2
!

1
j 3

4
ẐHẐC2

1
d

2
ẐC2

, ~15!

where j 1'203 Hz, j 2'102 Hz, j 3'10 Hz, andd'2905
Hz @25#.

It is convenient to approximate the interaction term b
tween the two carbons by (j 2/4)ẐC1

ẐC2
, omitting the X̂X̂

and ŶŶ terms. This approximation is somewhat difficult
justify, but greatly simplifies the description of the quantu
gates. Generally, it works well if the spin precession f
quency of two spins differs by an amount large compared
the spin couplingj @26#. This is true betweenH and C1
~where the approximation has already been made!, but only
borderline betweenC1 and C2 . The approximate Hamil-
tonian is then

Ĥ85
j 1

4
ẐHẐC1

1
j 2

4
ẐC1

ẐC2
1

j 3

4
ẐHẐC2

1
d

2
ẐC2

. ~16!

For our numerical simulations, we will assume the formĤ8
of the Hamiltonian, but we have checked the dependenc
our results on this approximation. Whenever the data cur
obtained usingĤ differ from those obtained usingĤ8, we
present both curves.

Since j 3 is small compared to the other terms in t
Hamiltonian, it may be safely neglected for the design of
pulse sequences~see below!. The j 3 term cannot be ne
glected, however, in the simulation of the full dynamics
cluding noise@see Eq.~34!#, since it is of the same order o
magnitude as the leading noise terms. Thus, for the dis

FIG. 1. The molecule trichloroethylene.
-
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sion of the pulse sequences only, we will assume the follo
ing, further simplified form of the Hamiltonian:

Ĥ95
j 1

4
ẐHẐC1

1
j 2

4
ẐC1

ẐC2
1

d

2
ẐC2

. ~17!

In addition to these interactions, we can apply rf puls
which rotate the nuclear spins about thex and y axes. By
controlling the pulse frequencies, these can be selectiv
applied to single spins~soft pulses!, or to two or three spins
at once~hard pulses! @6#. In our simulations, we use instan
taneous pulses, i.e., we assume that the duration of the p
is very short compared to the time scale of the Hamilton
Ĥ9. This assumption is only marginally satisfied for so
pulses. The general conclusions of this paper, however,
not affected by this approximation, since they do not depe
on the precise form of the implemented map.

For the purposes of our simulations we also assume
the rf pulses are timed with perfect accuracy. Unfortunate
this is not the case in experiment, where one can exp
errors of 1–10 % or even higher@27#. This is an additional
complication, which muddies the argument without chang
its basic conclusions; hence we neglect it.

The general form of a quantum algorithm in a NMR com
puter is a sequence of pulses, causing rotations of the i
vidual bits, interspersed by precisely timed delays dur
which the undriven Hamiltonian couples the neighbori
spins@4–6#. In describing such a sequence,X(u) denotes a
rotation about thex axis by an angleu. This is equivalent to
multiplying the state by the operator exp(iuX̂/2). Y(u) de-
notes a similar rotation about they axis. U(t) indicates a
delay of durationt, during which the HamiltonianĤ9 acts. A
sequence is to be read from right to left, i.e., the rightm
operation is performed first. In this way, composition of t
operations follows the same sense as operator multiplicat
Subscripts indicate which spin is acted on.

The basic gates which form the algorithm are construc
from these simple pulse sequences, as we will show be
Note that in all cases we neglect the overall phase of
state. Thus, two gates will be considered equivalent if th
agree up to an overall phase.

B. 1-bit gates

We are already equipped with two families of 1-bit gate
the x and y rotations. Two other useful gates, however, a
lacking: z rotations and Hadamard transforms. Fortunate
in both cases these can be built from sequences of sim
pulses@28#.

Rotations aboutz can be constructed from a sequence
threex andy rotations@29#:

Z~u!5X~2p/2!Y~u!X~p/2!. ~18!

In fact, there are several such combinations which can
used to produce az rotation. As gates are put together in
quantum algorithm, it is often useful to choose their prec
form so that a certain number of pulses combine or e
cancel out, hence simplifying the overall sequence. Thus,
can write any of the following:
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Z~u!5X~2p/2!Y~u!X~p/2!5X~p/2!Y~2u!X~2p/2!

5Y~p/2!X~u!Y~2p/2!5Y~2p/2!X~2u!Y~p/2!,

~19!

as convenient in constructing the algorithm.
We also need the Hadamard transformA defined in Eq.

~8!, which can be effected by a pair ofx andy rotations

A5Y~p/2!X~p!5X~2p!Y~2p/2!. ~20!

Again, the form is chosen to simplify the sequence as m
as possible.

C. 2-bit gates

Given the large family of 1-bit gates to choose from, w
need only a limited selection of 2-bit gates. This is goo
because we have only a limited selection to choose from
build our algorithm, all we need is the phase gateBi j (u)
defined in Eq.~9! which couples pairs of bits. The phase ga
between bitsi and j can be decomposed into

Bi j ~u!5exp~ iuẐi /4!exp~ iuẐj /4!exp~ iuẐi Ẑ j /4!. ~21!

The Ẑi Ẑ j term is the critical one. Transformations of th
type are produced by the Hamiltonian evolution~17!. How-
ever, this includes unwanted additional terms. We can ef
tively eliminate these terms by the technique ofrefocusing,
in which we ‘‘undo’’ the evolution of all but the selecte
term in the Hamiltonian@29,4,5#. Because of the anticommu
tation of the Pauli matrices,

X̂i exp~ iuẐi Ẑ j !5exp~2 iuẐi Ẑ j !X̂i , iÞ j . ~22!

Thus, if we stick anx pulse in the middle of a period o
Hamiltonian evolution, it can effectively remove the u
wanted terms.

X̂H exp~2 iĤ 9t!X̂H exp~2 iĤ 9t!

5exp~2 i t j 2ẐC1
ẐC2

/22 i tdẐC2
!,

~23!

X̂C2
exp~2 iĤ 9t!X̂C2

exp~2 iĤ 9t!5exp~2 i t j 1ẐHẐC1
/2!.

We use this to build phase gates between neighboring sp

BC1H~2u!5ZH~2u/2!ZC1
~2u/2!XC2

~p!U~t!

3XC2
~p!U~t!, ~24!

wheret5u/2j 1 . Note that one can usey rotations instead of
x, and shuffle the order of these operations; also, one
choose any of the expressions~19! for thez rotations. A very
similar expression applies forBC1C2

, using XH instead of

XC2
, but we must also include an additionalZC2

rotation to

undo the effects of thedẐC2
/2 term in the Hamiltonian.
h

,
o

c-

s.

an

While the phase gate is useful in itself, it can also be u
to produce thecontrol-not~CNOT! gate by nesting it between
two Hadamard transforms,Ci j 5AiBi j (p)Ai .

D. Swaps

A disadvantage of the Hamiltonian~17! is that it only
couples neighboring spins. If we wish to perform a 2-bit ga
on H andC2 , we have to swap one of them with the centr
spin C1 , using the swap gatesSC1H andSC1C2

.
Swaps can be built from a sequence ofCNOT gates:

Si j 5Ci j Cji Ci j . ~25!

EachCNOT is composed of a phase gate and two Hadam
transforms, as shown above, and the phase gates in tur
built out of precisely timed Hamiltonian evolution inte
spersed with rf pulses. Thus, to swap theH and C1 spins
requires the sequence

SC1H5AHZH~p/2!ZC1
~p/2!XC2

U~t!

3XC2
U~t!AHAC1

ZH~p/2!ZC1
~p/2!

3XC2
U~t!XC2

U~t!AHAC1
ZH~p/2!

3ZC1
~p/2!XC2

U~t!XC2
U~t!AH , ~26!

wheret5p/2j 1 . The C1-C2 swap is similar. Since each o
the Hadamard transforms andz rotations is itself a product o
several rf pulses, we see that the swap gate is quite large
complicated. What is more, the three phase gates take
siderable time, allowing the system to be affected by de
herence. The number of rf pulses can be somewhat redu
by carefully choosing the expressions for the Hadamard
z gates to cancel as many pulses as possible, but the
nothing to be done about the time for the phase gates.

It is clearly to our advantage to perform as few swaps
possible. We follow this precept in designing the mapTM .
As it is, more than half the time of the algorithm is spent
swapping.

E. The map TM

In Sec. II we defined a simplified version of the quantu
baker’s map, which in the 3-bit case is given by Eq.~14!.
This map has two important traits. First, all of its 2-bit gat
involve bit 0. Second, the two swap gates perform a cyc
shift of the bits, 0→2→1→0.

Since we can only couple neighboring spins, it makes
most sense to make 0 the central bit,C1 . We can then iden-
tify bit 1 with H and bit 2 withC2 . In terms of the physical
bits, then, the map becomes

TM5SC1HSC1C2
AC1

BC1C2
~2p/4!BC1H~2p/2!. ~27!

Further examination reveals that theSC1C2
is unnecessary

The shift 1→0 is necessary in order to keep bit 0 in th
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central position. The labeling of bits 1 and 2, however,
arbitrary. We could have just as easily identified bit 1 w
C2 and bit 2 withH. Thus, we need not perform an actu
physical swap gate here; a mental relabeling of the bit
sufficient.

This means that the labeling of the bits will switch ba
and forth between even and odd iterations of the map. T
the physical realization of the map will also differ betwe
even and odd steps. We therefore have two alternating
quences,
es

or

ha
o
m
si

e
il-
th
ce

ou
s

is

s,

e-

Todd5SC1HAC1
BC1C2

~2p/4!BC1H~2p/2!,

~28!
Teven5SC1C2

AC1
BC1H~2p/4!BC1C2

~2p/2!.

Each of these gates represents a given series of rf pulses
delays. By choosing the form of thez rotations andA gates
carefully, and ordering the operators for theB gates appro-
priately, a certain amount of cancellation is possible, sim
fying the sequence somewhat. In this way we arrive at
following sequence of elementary pulses:
hat
Todd5XH~23p/2!YH~2p/2!YC1
~p/2!XC1

~2p/2!YC1
~2p/2!U~t1!XC2

~p!U~t1!XH~23p/2!XC1
~23p/2!YH~2p/2!

3YC1
~2p/2!U~t1!XC2

~p!U~t1!XH~23p/2!XC1
~23p/2!YH~2p/2!YC1

~2p/2!U~t1!XC2
~p!U~t1!

3XC2
~p/2!YC2

~dt12p/8!XC2
~p/2!XH~25p/4!YH~2p/2!XC1

~211p/8!YC1
~2p/2!U~t1!, ~29!

wheret15p/2j 1 . Note that becausej 1'2 j 2 we can combine the twoB gates into a single time delay forTodd.
This unfortunately works in exactly the wrong direction forTeven, which consequently makes the sequence somew

longer and more complex:

Teven5XC2
~2dt223p/2!YC2

~p/2!YC1
~p/2!XC1

~p/2!YC1
~p/2!U~t2!XH~p!U~t2!XC1

~23p/2!XC2
~2dt223p/2!

3YC1
~2p/2!YC2

~2p/2!U~t2!XC1
~p!U~t2!XC1

~23p/2!XC2
~2dt223p/2!YC1

~2p/2!

3YC2
~2p/2!U~t2!XC1

~p!U~t2!XH~p/2!YH~2p/8!XH~2p/2!XC2
~4dt325p/4!YC2

~2p/2!

3XC1
~211p/8!YC1

~2p/2!U~3t3/2!XH~p!U~5t3/2!, ~30!
e it

o-
n-
vo-
as

me
s
-
ith

per-
ule
,

where t252t1 and t35t1/2. ~Recall that these sequenc
should be read from right to left.! The total delay time for
Todd is 7t1 , while the delay time forTeven is 14t1 , taking
twice as long. Thus, intrinsic noise affects the system m
during even steps than odd ones.

F. The regular map TR

Having defined a quantized version of a classically c
otic map, we need to define a regular map for comparis
This map should take the same time per iteration as the
TM , on average, so that it is affected equally by the intrin
noise.

The simplest possibility would be a map that does ess
tially nothing. This implies that the effects of the Ham
tonian in coupling the spins must be suppressed. We do
by refocusing, as described above. Consider the sequen

TR5XC1
~p!U~t4!XC1

~p!U~t4!XC1
~p!U~t4!XC1

~p!

3U~t4!XC1
~p!U~t4!XC1

~p!U~t4!

3XC1
~p!U~t4!XC1

~p!U~t4!. ~31!

Thex rotations flip the sign of all terms containingẐC1
in the

Hamiltonian, so that the effects of these terms cancel
That is, all but thedẐC2

/2 term of Eq.~17! are effectively
eliminated:
e

-
n.
ap
c

n-

is

t.

XC1
~p!U~t!XC1

~p!U~t!'exp~2 idtẐC2
!. ~32!

Thus, we see that

TR'exp~24idt4ẐC2
!. ~33!

By performing an appropriatez rotation at the end we could
eliminate this cumulative rotation of theC2 spin, but as it
makes no difference to the regularity of the map we leav
unaltered for simplicity. The total time 8t4 should equal the
average iteration time of the mapTM , so t4521t1/16
521p/32j 1 .

G. Noise and the master equation

While the nuclear spins are fairly well isolated, this is
lation is not perfect. Interactions with the external enviro
ment cause the spins to deviate from strict Hamiltonian e
lution, a deviation which becomes increasingly important
the length of the NMR calculation increases.

The effects of the environment are described by two ti
scalesT1 andT2 @30#. T1 is the time scale on which the spin
relax to the thermal state.T2 is the time scale of phase de
coherence, the result of the spins becoming correlated w
the state of the environment and hence going from a su
position of states to a statistical mixture. For the molec
trichloroethylene,T1 exceedsT2 by an order of magnitude
and can be safely neglected for this problem.
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We model the effect ofT2 by replacing the state vecto
uc& with a density matrixr and the Schro¨dinger equation
with a Markovian master equation in Lindblad form@11#,

dr

dt
52 i @Ĥ8,r#1

1

2(k
2~ L̂krL̂k

†2L̂k
†L̂kr2rL̂k

†L̂k!,

~34!

where Ĥ8 is the Hamiltonian~16! and theL̂k are a set of
operators chosen to model the effects of decoherence.
simplest choice ofL̂k’s which capture the essential physi
are proportional to theẐ operator for each of the three spin

L̂15AGHẐH ,

L̂25AGC1
ẐC1

, ~35!

L̂35AGC2
ẐC2

.

The decay rateG is proportional to 1/T2 for each spin.
Using quantum trajectory techniques@31,32#, we can

solve the above master equation numerically for vario
choices ofT2 and various initial states. We treat the rf puls
as instantaneous unitary transformations, just as before. T
interrupt the continuous master equation evolution giv
above.

IV. MEASURES OF CHAOS

A. Rate of entropy increase

The Kolmogorov-Sinai entropy, equal to 1 bit per step
the classical baker’s map, measures the asymptotic ra
which information about an initial phase-space point must
supplied in order to keep the ability to predict thenth iterate
of the map to a given accuracy. Furthermore, if a stocha
perturbation is added to the map, the KS entropy meas
the average entropy increase per step that results from a
aging over the perturbation. Both of these properties are v
easily understood in the shift-map representation of the m
@20#.

For quantum systems, a constant rate of entropy incre
in the presence of environment-induced decoherence
been proposed@12,13# as a signature of chaos. This rate
entropy increase is closely related to the concept of quan
dynamical entropy@8,14#. As in the classical case, the anal
sis is greatly facilitated by the shift-map character of t
quantum baker’s map.

The entropy increase in a chaotic system is due to
exponential magnification of small-scale, local perturbatio
Since perturbing all qubits in the spin chain at the same
corresponds to a perturbation on all scales simultaneously
entropy increase can be regarded as a signature of chaos
if the qubits are perturbed at different rates. This condition
fulfilled in our system, since the spin relaxation time sca
T2 for the hydrogen and carbon atoms in trichloroethyle
differ by about one order of magnitude.

In our first proposed experiment, the system is prepare
the initial pure state
he
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uc0&5u0y& ^ u0y& ^ u0y&5
1

2A2
~ u0&1 i u1&) ^ ~ u0&1 i u1&)

^ ~ u0&1 i u1&). ~36!

To find the system entropy,S(n), after n steps (n
51, . . . ,6), the mapTM is iteratedn times by applying the
pulse sequences~29! and ~30! alternately. The final density
operatorr(n) is then measured using quantum state tom
raphy @33,10# and the entropy is determined fromS(n)5
2tr@r(n)log2 r(n)#. Although standard NMR technique
give one the traceless part of the density operator only, th
exist methods~at least in principle! to determiner(n) fully,
as is required for determining the entropyS(n). One such
method is to do tomography of the quantum operation@34#,
where the pulse sequence is applied to different initial sta
Another possibility would be to estimate the relative size
the traceless component by measuring the signal streng

We have simulated this experiment by numerically so
ing the master equation~34!. The result of the simulation is
shown by the data points labeled ‘‘chaotic’’ in Fig. 2. Th
data points labeled ‘‘regular’’ are the results of a cont
simulation using the regular mapTR defined in Sec. III F. In
both cases, the entropy increases rapidly and approache
value of 3 bits, which is the maximal von Neumann entro
in eight-dimensional Hilbert space. There is no clear diff
ence between the regular and chaotic cases. The app
reason is that due to the smallT2 time scales 1/GC1

and

1/GC2
two of the three qubits are strongly perturbed. T

show that our conclusions do not depend on the assumpt
leading to the simplified Hamiltonian~16!, we have repeated
the simulations leading to Fig. 2 using the full Hamiltonia
~15!. The data points labeled ‘‘regular1xy’’ show the result
in the regular case; in the chaotic case, the extra terms in
Hamiltonian made no significant difference.

If only one qubit is strongly perturbed, however, there is
clear difference between chaotic and regular behavior. In
simulation shown in Fig. 3, both 1/GC1

and 1/GH are rela-

FIG. 2. Entropy versus number of steps for the regular mapTR
and the simplified baker’s mapTM . The decoherence times ar
1/GC1

50.7 s, 1/GH54.0 s, and 1/GC2
50.4 s, i.e., realistic values

The curve labeled ‘‘regular1xy’’ was generated with theXX and
YY terms included in the Hamiltonian. For the chaotic map,
effect of the extra terms is negligible.
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tively large compared to the total delay times needed for
sequencesTodd and Teven ~see Sec. III E!, i.e., only theC2
spin is strongly perturbed. TheseT2 time scales cannot b
achieved with the molecule trichloroethylene, but there m
exist other molecules with the desired properties. In this c
the ‘‘regular1xy’’ plot differs more than in Fig. 2, but is
still clearly distinguishable from the chaotic case.

In Fig. 3, the entropy increase in the chaotic case does
have a well-defined linear regime. The reason for this is
relabeling of the qubits at each step, which was introduce
Sec. III E to reduce the complexity of the pulse sequence
alternate steps, the strongly perturbedC2 spin thus represent
either qubit 1 or qubit 2. One could eliminate this effect
performing extra physical swap operations as describe
Sec. III E. Another possibility is to introduce artificial pe
turbations.

One can apply an artificial perturbation to a mapT by
adding an extraz rotation to the least significant bit, produc
ing the perturbed mapT85eipẐ2/2T. At each step, one ran
domly chooses either the perturbed or unperturbed map
density operator results from averaging over the two poss
outcomes. This is equivalent to applying a superoperatoP,

P~r!5
1

2
~r1eipẐ2/2re2 ipẐ2/2!. ~37!

The results of this and the next section depend on
strength and locality of the perturbation, but are rather ins
sitive to its exact form. This is a general property of entro
measures for quantum chaos, which have to be defined
respect to a class of local perturbations~see, e.g.,@8#!.
Clearly, a perturbation that commutes with the unperturb
dynamics will not reveal any chaotic properties of the latt

To perturb the same logical qubit at even and odd step
the mapTM , we apply after each odd step the perturbat
superoperator

FIG. 3. Entropy versus number of steps for the regular mapTR
and the simplified baker’s mapTM . The decoherence times ar
1/GC1

510 s, 1/GH510 s, and 1/GC2
50.2 s, i.e., idealized values

The curve labeled ‘‘regular1xy’’ was generated with theXX and
YY terms included in the Hamiltonian. For the chaotic map,
effect of the extra terms is negligible.
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Podd~r!5
1

2
~r1eipẐH/2re2 ipẐH/2! ~38!

and after each even step the perturbation superoperator

Peven~r!5
1

2
~r1eipẐC2

/2re2 ipẐC2
/2! ~39!

to the density operatorr. For the regular mapTR , we apply
Podd at each step. In an actual experiment, a convenient
of averaging over different perturbations consists in apply
selected gradient fields@35#.

The results are shown in Fig. 4. We have assumed la
relaxation times for all three spins. The extra terms in
Hamiltonian had only a slight effect on the chaotic case, a
a negligible effect on the regular case. The simulation diff
entiates well between the regular and chaotic cases, and
latter shows the expected linear increase in entropy, follow
by saturation at 3 bits. Unfortunately, this simulation a
sumes possibly unrealistic relaxation times.

B. Hypersensitivity to perturbation

Hypersensitivity to perturbation is an information
theoretic criterion for classical and quantum chaos@15–17#
which has been shown to be equivalent to a standard de
tion of classical chaos under general assumptions@16#. Sup-
pose a system is perturbed, for instance by being acted o
an unknown force with a known distribution. Averaging ov
all possible perturbations causes the entropy of the stat
increase. One can reduce this entropy growth by obtain
information about the perturbation, such as the actual va
of the force to some precision. By having more informati
about the perturbation, the uncertainty in the state~and hence
its entropy! decreases. To reduce the entropy growth by
average amountDS requires informationI>DS about the
perturbation. In particular, we want to know the minimu
amount of informationI min needed to produce a given en

e

FIG. 4. Entropy versus number of steps for the regular mapTR
and the simplified baker’s mapTM in the presence of an artificia
perturbation as described in the text. The decoherence times
1/GC1

51/GH51/GC2
510 s, i.e., idealized values. The curve l

beled ‘‘chaotic1xy’’ was generated with theXX and YY terms
included in the Hamiltonian. For the regular map, the effect of
extra terms is negligible.
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tropy reductionDS. A system is hypersensitive to perturb
tion if the informationI min needed to lower the system e
tropy increase by an average amountDS is very large
compared toDS. Precise definitions of the quantitiesI min
and DS are given in@17#. For a general introduction, se
@18#.

We will show in this section that hypersensitivity to pe
turbation can be detected in the 3-qubit quantum baker’s m
even in the presence of the actual noise levels for trichlo
ethylene. As in the preceding section, we define pertur
maps TR8 5eipẐH/2TR and TM8 5eipẐH/2Todd or TM8

5eipẐC2
/2Teven for odd or even steps, respectively. Applyin

randomly at each step either the perturbed or the unpertu
map leads, aftern steps, to 2n possible differentperturbation
histories.

Due to the fast decoherence, it is necessary to limit
number of steps ton53, corresponding toNhist52n58 dif-
ferent perturbation histories. The proposed experiment i
apply, each time starting from the initial stateuc0& defined in
Eq. ~36!, all Nhist58 perturbation histories, to obtain the li
of final density operatorsL5$r̃1 , . . . ,r̃Nhist

% by quantum

tomography, and to analyze the distribution of theNhist den-
sity operators in density operator space. We assume that
random trial, allNhist perturbation histories would occur wit
the same probability 1/Nhist. We can find the entropyS̄max

52tr( r̃ log2 r̃) of the averagedensity operator

r̃5
1

Nhist
(
j 51

Nhist

r̃ j . ~40!

As argued in the preceding section, this should grow quic
with the number of iterationsn. Our simulation using the
relaxation times for trichloroethylene~Fig. 5! gave, for n

53, S̄max52.67 bits in the chaotic case,S̄max52.74 bits in
the regular case, andS̄max52.72 bits in the regular case wit

FIG. 5. Information needed about the perturbation versus
tropy reduction for the regular mapTR and the simplified baker’s
map TM . The decoherence times are 1/GC1

50.7 s, 1/GH54.0 s,
and 1/GC2

50.4 s, i.e., realistic values. The curve labeled ‘‘regu
1xy’’ was generated with theXX and YY terms included in the
Hamiltonian. For the chaotic map, the effect of the extra term
negligible.
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x and y terms: nearly identical values. The slightly lowe
entropy in the chaotic case arises because of the alterna
betweenTodd andTeven; it is otherwise of no significance.

The values for the entropy increase alone, therefore,
not reveal much about the distribution of the density ope
tors in the ensemble. In particular, they do not rev
whether the ensemble isorthogonal ~in which case the en-
tropy increase corresponds to purely classical information! or
nonorthogonal~corresponding to quantum information!. Ob-
taining information about which perturbation history h
been realized can reduce the entropy fromS̄max to a lower
value S̄; analyzing the dependence ofDS̄5S̄max2S̄ on the
information needed gives a measure of how nonorthogo
the ensemble is@17#.

We could obtain the total possible information by dete
mining exactly which perturbation history occurred. Th
corresponds to log2 Nhist53 bits of acquired information, and
would reduce us from considering the average density op
tor r̃ to considering only a single final density operatorr̃ j .
However, we could also obtainpartial information about the
perturbation history by partitioning theNhist final density op-
erators intoR,Nhist groups, and determining only whic
group the operator was in. Since we are actually intereste
the minimum informationI min needed to produce a give
entropy reduction, we would like to choose groupings wh
maximize the entropy reduction.

More precisely, consider a partitioning of the listL into R
groups, labeled byr 51, . . . ,R. We denote byNr the num-
ber of density operators in ther th group (( r 51

R Nr5Nhist).
TheNr density operators in ther th group and their probabili-
ties are denoted byr1

r , . . . ,rNr

r and q1
r , . . . ,qNr

r , respec-

tively. In our case, allqi
r51/Nhist. In a random trial, the

system state will be in ther th group with probability

pr5(
i 51

Nr

qi
r5

Nr

Nhist
. ~41!

The knowledge that the system state is in groupr is de-
scribed by the density operator

r r5pr
21(

i 51

Nr

qi
rr i

r5Nr
21(

i 51

Nr

r i
r . ~42!

We define@17# the system entropy conditional on being
group r,

Sr52tr~r r log2 r r !, ~43!

the average conditional entropy

S̄5(
r

prSr5S̄max2DS̄<S̄max, ~44!

and the average information

I 52(
r

pr log2 pr>DS̄. ~45!

n-
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The informationI min needed about the perturbation to redu
the system entropy by an amountDS is now defined as the

minimum of I over all groupings for whichDS̄>DS, i.e., all
groupings for which the system entropy is reduced by at le
DS.

The particular case we are treating is simple enough
we could actually try all possible groupings to find the o
which minimizesI for a givenDS. In general, however, for
large numbers of iterations the number of groupings gro
far too rapidly to exhaustively consider all possibilities. I
stead, we must find an efficient grouping algorithm whi
approximates this minimum.

To find an approximation toI min as a function ofDS, we
introduce the concept of nearly optimal groupings. Give
tolerable entropyDS, we want to partition the list of density
operatorsL into groups so as to minimize the informationI

without violating the conditionDS̄>DS or S̄<S̄max2DS.
To minimizeI, it is favorable to make the groups as large

possible. Furthermore, to reduce the contribution toS̄ of a
group containing a given number of density operators, i
favorable to choose density operators that are as close
gether as possible in some suitable sense~see below!.

To find a nearly optimal grouping intoR groups, we first
chooseR density operators at random from the listL. Then
for each of the remaining density operators in the list,
execute the following procedure. Letrk be the next density
operator in the list to be grouped, and letr i8 denote the
average of all density operators grouped into groupi so far
~i.e., excluding all those that have not yet been groupe!.
Thenrk is added to that groupj for which the ‘‘distance’’

d~r j8 ,rk!52tr
1

2
~r j81rk!log2

1

2
~r j81rk!

2
1

2
@2tr rk log2 rk2tr r j8 log2 r j8# ~46!

is minimal. Of course there exist many alternative group
algorithms, of which we tried several, but the one describ
above gave consistently the best results~i.e., the smallestI
for a givenDS).

Figure 5 showsI min versusDS for both the chaotic and
the regular case. The slope of the chaotic curve is roug
equal to 6, i.e., about 6n bits of information about the per
turbation are needed to reduce the system entropy incr
by n bits. In the regular case, 1 bit of information about t
perturbation is sufficient to reduce the system entropy
crease by almost 0.7 bit~0.5 bit with X̂X̂ andŶŶ terms!. The
criterion of hypersensitivity to perturbation thus differen
ates well between chaotic and regular behavior. Furtherm
the slope of 6 in the chaotic case is not very far from
dimension of Hilbert space,D58. A slope close toD is
characteristic for a random distribution of pure states in H
bert space, and has been conjectured to hold for cha
quantum systems@36#. The steep slope indicates that the e
semble is highly nonorthogonal.
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V. CONCLUSION

The quantum baker’s map can be implemented w
present day technology on a 3-qubit NMR quantum co
puter. In order to investigate the feasibility of quantum cha
experiments using this system, we have numerically sol
the master equation for the NMR system, including t
Hamiltonian time evolution, the rf pulses, and phase no
due to the environment.

We have proposed and analyzed two specific quan
chaos experiments. In both experiments, we compare
quantum baker’s map with a trivial map. One experime
analyzes the increase of the von Neumann entropy du
decoherence. We show that in principle this experiment d
tinguishes well between the chaotic and regular cases, b
successful execution requires lower decoherence rates
seem to be achievable at present.

The second proposed experiment looks for hypersens
ity to perturbation, an information-theoretic criterion fo
chaos. We have shown that hypersensitivity to perturba
can be detected in the 3-qubit quantum baker’s map eve
the presence of the actual noise levels for trichloroethyle
Using realistic estimates for the experimental parameters,
simulations show that this criterion differentiates very w
between chaotic and regular behavior.

We have thus shown that the quantum baker’s map
plays behavior of fundamental interest even for the eig
dimensional Hilbert space of 3 qubits. Quantum comput
can be used to study quantum chaos under highly contro
experimental conditions.
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APPENDIX

Here we give the rf pulses corresponding to the bake
map T defined by the sequence of gates~11!. This unfortu-
nately includes interactions between non-neighboring b
However, one can get around this problem by inserting
extra pair of swap gatesS01 at the beginning and end of th
iteration, making the gate sequence

T5S01S12A1B01
† ~p/2!B12

† ~p/4!

3A0S01B12
† ~p/2!A2A1B01~p/2!A0S01. ~A1!

The S01 gates cancel between iterations, so one need o
swap at the beginning and end of the entire run; and since
labeling of bits is arbitrary, these swaps can be absorbed
the process of initial state preparation and final state tom
raphy. Thus, for each iteration we perform the sequence
gates
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T85S12A1B01
† ~p/2!B12

† ~p/4!

3A0S01B12
† ~p/2!A2A1B01~p/2!A0 , ~A2!

which only couples neighboring bits.
A

.

-

Here there is no need to change representation every o
step, so we may fix a label onto the 3 bits. In this case,
will identify bit 0 with H, bit 1 with C1 , and bit 2 withC2 .
The sequence of pulses corresponding to each gate is
scribed in detail in Sec. III. All that is required is to combin
them into a pulse sequence for the entire map:
T85YC1
~p/2!XH~p!XC1

~p!U~4t!XH~p!U~4t!YC2
~p/2!XC2

~8td!YC2
~8td2p/2!

3XC1
~p/2!XC2

~p/2!U~4t!XH~p!U~4t!YC1
~p/2!YC2

~p/2!XC1
~p!XC2

~p!U~4t!XH~p!U~4t!

3XC1
~2p/2!XC2

~2p/2!YC1
~23p/4!XC1

~p/2!YC2
~8dt2p/2!XC2

~2p/2!U~t!XC2
~p!U~t!XC1

~p/2!XH~p/2!

3YH~p/4!XH~p/2!YC1
~p/8!XC1

~2p/2!U~t!XH~p!U~t!XC2
~p/2!YC2

~p/822dt!XC2
~p/2!U~2t!XC2

~p!U~2t!

3XC1
~p/2!XH~p/2!U~2t!XC2

~p!U~2t!XH~23p/2!YH~2p/2!XC1
~23p/2!YC1

~2p/2!U~2t!XC2
~p!U~2t!

3YH~p/2!U~2t!XH~p!U~2t!YC2
~p/2!XC2

~4dt2p/4!XC1
~2p/2!YC1

~2p/4!XC1
~25p/4!YC1

3~2p/2!U~3t!XC2
~p!U~3t!YH~p/2!XH~p/4!, ~A3!

where the basic time scale ist5p/4j 15t1/2.
R.

int

c.

R

m

tt.
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