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We derive lower bounds for the attainable fidelity of standard entanglement purification protocols when
local operations and measurements are subjected to errors. We introduce an error parameter which measures
the distance between the ideal completely positive map describing a purification step and the one in the
presence of errors. We derive nonlinear maps for a lower bound of the fidelity at each purification step in terms
of this parameter.S1050-294{©9)01104-X

PACS numbegs): 03.67.Hk, 03.65.Bz

I. INTRODUCTION tanglement purification together with a generic error model
is used to estimate the possibilities of quantum communica-
Entanglement purificatiofl—3] is one of the most impor- tion over long distances using quantum repeaters. The em-
tant tools in the theory of quantum information and, in par-ployed entanglement purification protocols explicitly utilize
ticular, in quantum communication. It allows, in principle, two-way classical communicatipwhich makes them much
creation of maximally entangled states of particles at differmore efficient for quantum communication. In the present
ent locations, even if the channel that connects those locdaper we use purification protocols which utilingo-way
tions is noisy[4]. These entangled particles can then be useglassical communicatiorand therefore our error thresholds

for faithful teleportatior{5] or secure quantum cryptography are much less demanding than those derived from the theory
[6,7]. of Knill and Laflamme[12]. On the other hand, we are in-

The basic idea in entanglement purification is to “distill” terested in a rigorous lower bound for the achievable fidelity
a few N’ pairs of particlefquantum bits(qubits, for ex-  for arbitrary errors, and not in an estimatidr6]. The results
ample, the case which we will consider exclusively in theand methods developed here can be generalized to derive
following] in highly entangled states out bE=N’ pairs in a lower bounds for other interesting problems in which local
mixed state with lower fidelity of the entanglemeiorr, in ~ Operations and measurements are imperfect, such as quantum
short, fidelity using local operations and measurementsteleportation or quantum cryptography.
This fidelity is defined as the maximum overlap of the den-  This paper is organized as follows. Section Il contains a

sity operator of a pair of qubits with a maximal entangledSummary of the main results of this paper, and is directed to
state. If the initial pairs are in a nonseparable sta@], then  the reader who is interested neither in the technical details of

one can obtain asymptoticallfin the limit N—o) maxi- the definitic_)ns of our error parameter, nor in the dleriv_ations
ma”y entang'ed Statdio] provided all local Operations and Of the non“near mapS for the |0Wer bound Of the f|del|ty. In
measurements are perf{ayll] In practice, there will be Sec. lll we introduce the error paramet@and derive some
errors in both the local operations and measurements. Theroperties related to the fact that it is a distance between
purpose of this paper is to analyze this problem for the pucompletely positive linear maps. Finally, in Sec. IV we de-
rification protocols introduced in Ref§l,7]. We are inter- five the nonlinear map for the fidelity of entanglement in
ested in analyzing the conditions under which one can purifyerms of this distance and sketch its dynamics.

in the presence of errors, as well as in the limitations of the

purification protocols. In particular, we find a nonlinear mapll. SUMMARY OF THE MAIN RESULTS AND DISCUSSION

which relates a lower bound for the fidelity at two consecu-

tive steps of the purification protocol, which allows us to i | : h irs of qubi
derive lower bounds for the reachable fidelity. In order totWO Partners at different locations shakepairs of qubits,

analyze this problem, we introduce a paramefewhich each _p_air _being in a state described by a.deF‘S‘W opepator
characterizes the errors. It measures the distance between tﬁfu”f'cat'on procedure producéé’<N pairs in a state

ideal operations and measurements and the ones in the pr?g_oser to a maximally entangled statge by only using
ence of errors ocal operations, local measurements, and classical commu-

Quantum communication in the presence of errors hagicat_ion _between the partners. More specifically, if we define
been considered previously by Knill and Laflamfde] ina  the fidelity of the entanglement
general context, and by Van Emt al. [13] for a particular _
experimental setupl4]. The work of Knill and Laflamme F(p)=maXyindpdme). @)
introduced ideas of fault-tolerant quantum computafitb|
to show that there exists an accuracy threshold for storage o¥here the maximization is taken with respect to maximally
guantum information, which also applies to the case of quanentangled stateg,., thenF(p’)>F(p). In the following
tum communication. As shown by Bennettal.[2] one can  we will call F(p) simply fidelity.
rephrase this result in terms of entanglement purification It has been show[il0] that if p is nonseparablét cannot
with one-way classical communicatiotn Ref. [16], en-  be written as a convex combination of factorized density

In the standard scenario of entanglement purificatin

'v/’me
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operatorg8,9]) then there are purification procedures whichthe second pair We denote byP, (x=0,...,3) the map
obtainF(p’)=1 in the asymptotic limitN—. In particu- defined as follows:
lar, if F(p)>1/2 one can reach this goal by using the puri-
fication procedure devised by Bennettal. [1] and im- Pulp12= 2{X|U(p12)[X)>. 2
proved by Deutsclet al.[7]. It consists of a concatenation of
purification stepsnvolving two pairs of qubits, which give
rise to a single pair with higher fidelity. In all these proce-
dures, one assumes that the local operations and measu
ments are error free. In a real situation, however, there wil
be errors due to the coupling to the environment, imprecise
apparatus, etc. Although small, they will limit the maximum . Polp12) +Pap1d)
attainable fidelity and will dictate whether purification is p1= :
possible or not. Po(p12) + P1(p12)

In this section we first briefly review the purification pro- Thus, each(successful step of the purification protocol is
tocol introduced in REfS[1,7], and define the notation that Comp|ete|y characterized by the maps ;. (Note that’PX
we will use later on. Then we consider the same procedure igtand for different maps depending On'Whether we are dis-
the presence of general errors, and characterize these er@jgssing scheme | or scheme)Il.
in terms of a single parametéy; which basically expresses  On the other hand, if one is only interested in the fidelity
the departure of the purification step in the presence of errorgt each step, one can use a simpler characterization of each
from the ideal one. Next, we express the lowest possiblguyrification step in terms of four real numbers. In the purifi-
fidelity (worst casgin each purification step as a function of cation protocols | and II, the local operations characterized
the lowest possible fidelity in the previous step, which leadsyy 7/ consist of a bilateral controlled-NOT gate and specific
to a non-linear map. We analyze this map and discuss thsingle qubit rotations. In that case, the diagonal elements of
conditions required for purification with imperfect means. the density operatgs’ in the Bell basis only depend on the
The properties of our definitions and the technical details argiagonal elements of the density operagorand therefore
presented in the following sections. each purification step can be characterized by a nonlinear
map between these four diagonal matrix elements. We de-
note byA,=(¢'|p,|¢'), wherep, is the density operator of
each pair after thenth purification step and¢') are the

In this subsection we review the two purification proce-elements of the Bell basis €0,1,2,3),
dures introduced in Reffl,7]. Subsequently we will refer to

This map is linear and completely positive. The probability

of obtaining the outcome is p,(p12) =t Py(p12)]. If the

gutcome isx= 2,3, then the first pair is discarded and other-
ise it is kept. In the latter case, the state of the first pair will

)

A. Error-free purification protocols

them as scheme | and Il, respectively. We characterize them 0 1

in two different ways: first, in terms of a completely positive |4%9)= E(IOOﬁIll)),
linear map between the initial density operator and the one

after the measurement; secondly, in terms of a nonlinear map 1

relating the diagonal matrix elements of the density operator |p1d=—(]01)=|10)).
(in the Bell basiy at each step with the ones in the previous \/f

step. In the next subsection we will generalize the first char- . 0 o
acterization to the case of imperfect operations in order to In particular,A;=F,, the entanglement fidelity at each
introduce the parameter describing the errors, and then weep. For scheme I there is, according to R&{, a simple
will generalize the second characterization to find a lowemonlinear map that relates, , ; to A,, namely

bound for the fidelity.

Both purification protocols | and Il consist of a sequence i :<¢i|PO(pn®pn)+Pl(Pn®Pn)|¢i> . f'(An)
of steps in which local operations are applied to two pairs of n+1 t[ Po(pn® pn) +Pi(pn®pn) ] "g(Ay)’
qubits, followed by a measurement of one of the pairs which 4

is then discarded. Depending on the outcome of the measure-
ment, the other pair is discarded or not. In the latter case thwhere
fidelity F; of the remaining pair ion averagglarger than 0 L ADN2 1,2

that of the original ones. This step is applied to Meairs (AR = (An) ™ (An)7, (53
obtainingN;<N/2 pairs of fidelityF,. Then it is applied to

the resultingN, pairs obtainingN, pairs of fidelity F, fl(A”):ZAﬁAﬁ' (50)

>F,. Continuing in this vein, one can reach asymptoticall

21 whennoe. ympTesly (A= (A + (A2, (50
Let us consider a single purification step. It starts out with

two pairs 1 and 2 in the state,,=p®p, applies the local f3(An) =2A0A;, (50)

operations described by the superoperéatpand then mea-

sures each of the qubits of the second pair in the basis g(AL)=(A2+AH2+(AZ+A3)2, (50

{]0),|1)}. We denote by the outcome of the measurement:

x=0 if the qubits are found in the sta@),=|00),; x=1if  The map(4) has a fixed point aA=(1,0,0,0), which is
they are in|1),=|11),; x=2 if they are in|2),=|01),; reached if the initial state ha&J=F>1/2 [17]. This fact

and x=3 if they are in|3)=|10), (the subscript 2 denotes expresses that in the absence of errors, one can use this pu-
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rification protocol to purify states witlF>1/2 and reach a the process, we have to work with mapg that do not pre-
fidelity as close to one as we please. serve the trace. In Sec. Il we discuss why it is advantageous
Scheme I[1] is governed by a similar map. The main to use those maps instead of trace-preserving maps.
difference is that at the end of each step the resulting state is Some remarks concerning the adopted description of er-
brought into Werner form, that is, the three diagonal elerors are in order: We envisioR as the reduced dynamics of
mentsA!, A% A% are made equal to (1A%)/3. Therefore one the two entangled pairs coupled to some environni2.
can concentrate on the first diagonal element, the fidafity |n taking the imperfect system dynamics to be completely
only. The fidelity after thenth purification step is then given positive we do(as discussed if20]) essentially assume that

by there isno initial entanglemenbetween the system and any
0/ n0 0 environment to which it might be coupled during gate opera-
o FAL(I-A)R) ®) tions. There may be, however, initial entanglement of the
n+1—

system with another environment that is not affected by the
gate operations. As in the error-free purification schemes

Like Eq. (4), this map has an attractive fixed pointat  [1,7] we also assume the two pairs that participate in a puri-
=1, and allA}>1/2 are attracted to it. fication step to be disentangled from each other.

g(A.(1-AY3)

B. Characterization of errors C. Purification with imperfect means

In practice, while performing the purification protocols, ©Once we have defined a parameter that characterizes the
errors will occur, both in the local operation and in the mea-10rs at each purification step, we can analyze the whole
surements. The imperfections in the local operations can bRurification procedur¢l, 7] in the nonideal case. In order to
accounted for by substituting the action of the superoperatatio that, we defined,=(¢'|p,|¢') wherep, is the density
U in Eq. (2) by the action of some other completely positive, operator after theath purification step. We are particularly
trace-preserving linear map. The errors in the measurementsterested in the fidelity at each stE{ﬂ:ﬁn. In Sec. IV we
will be related to the following fact: in practice, the out- show that for suitable initial condition&, and error param-
comesx=0,1 will be ultimately attributed to the presence/ eter s,
absence of clicks in some kind of detectors. Due to imper- _ _
fections, the projection operatoréor, more generally, Aﬂ? a,, Aﬁi b, (n=1.2,...), (9
POVMs) corresponding to those clicks are not exactly the
same as the ideal onfsee Eq(2)]. Consequently, the prob- Where
abilities of the outcomes=0,1 as well as the state remain-

2, m2_
ing after the measurement will differ from the ideal ones. In A= ant+b,—26 (108
general, we can describe both these erroneous operations and N (an+bp)?+(1—a,—by)2+26
measurements in terms of a single completely positive linear
map ﬁx which does not necessarily preserve the trege (1-a,)%/2+268
will use tildes in the case in which there are erjoihat is, n+1= (10b

T a2 2 ’
if the two pairs are initially in the statg;,=p®p, a purifi- apt(l-ay)"-296

cation step yields the outcomewith a probabilityﬁx(plz) andaoszxo bo=ﬂé For scheme | only the fidelit&\o and
il . n

=tr[P,(p1»)]. The state of the pair after the measurement iSherefore the boundlL0a with by, replaced by (+a,)/3 is

~ ~ relevant.
~,:7~)0(P12)+131(912) . @ Equationg10) define a nonlinear map that can be iterated
Po(p12) + P1(p12) to yield a lower bound for the attainable fideliy,,=a.,

_ which depends on the value &f In the following we will
Thus, as before, the maf#%, ; completely characterize each analyze the mag10).

purification step. Let us first concentrate on the fixed points (b¢) of this
We characterize the errors by a single parameter as folmap, and consider in particular scheme |II. In Fig(sblid
lows: line) we have plotted; as a function of the error parameter
_ 6. For small values 06=0.01 there are three fixed points.
S:=maxd(Py,Py), (8)  The ones with largest and the smallest valuaoére attrac-
x=0,1 tive, whereas the intermediate one is a saddle point attractive

_ _ in one direction and repulsive in the others. For larger values
where d(P,P) denotes a distance betweghand P. The  of §, only the smallest one survives. This means that for the
explicit form of this distance is given in E¢L3) below. We  appropriate initial values o, and b, if 5<0.01 one in-
emphasize that for a given set-up, one garmprinciple) per-  creases the fidelity using the purification protocol Il to a
form local measurements to completely charactefizeand ~ value larger than the one given by the right wing of the
therefore obtain the value of experimentally{18,19. The  appropriate curve of Fig. 1. For example, f8+=0.005 one
error paramete$ has a clear physical meaning since it mea-can obtain a fidelity- =0.95.
sures the distance between the ideal process and the errone-Now, let us analyze for which initial conditiong{,bg)
ous one. We would like to remark here that due to the facthe map converges to the fixed point with the larggsti.e.,
that there are measurements and postselection involved for which the protocol achieves purification. In Fig. 2 we
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1Pl I=Ilpll. (12)

For positive operators, the trace norm simply coincides with
the trace, and therefore E(l1) is equivalent to

t{P(p)]<tr(p)<1. (12)

Given two completely positive mapa Pe P(H,H’), we
define their distance

d(P,P)= max ||P(p)—P(p)ll.
p €C(H)

13

FIG. 1. The fixed points of the nonlinear map: the intersections

of a horizontal line ats with the plotted curve give tha coordi-

nates of the fixed points for scheme(lbroken and scheme I
(solid).

have plotted in thed,b) parameter space the curigepara-
trix) between the stable regions for several value$ dfé,
=0.00%, k=0,1,...,5). For anynitial value (ay,bg) ly-

It is straightforward to show thal is indeed a distance by
using the fact that the trace norm is a norm.

With this definition, we can characterize the errors by
using the parametef as defined in Eq(8). The motivation
for this definition with respect to other possible definitions is
that it easily gives lower bounds even for physical processes
where there are measurements and postsele@®iit is in

ing to the right of each curve, the map will converge to thethe case of entanglement purification, cf. next segtiae.,

corresponding fixed poinfasterisks in the plot For &

when the map describing the physical process is not trace

=0.006 k=3 in the plo}, for example, one can purify from preserving. On the other hanalthough we will not use this

values of a;=0.69 up to values ofF=a;~0.94; for &
=0.002, one can readh=0.98 starting fronay<0.61. The

property herg it allows one to easily bound the distance
between processes which are composed of several individual

results show that the error threshold for purification is muchprocesses in terms of the distances between the individual

less restrictive than the one for quantum computafiti.

[ll. DISTANCE BETWEEN TWO POSITIVE MAPS

processes themselvésee next subsectipn

One can define other distances between trace preserving
maps: for example, one can consider the rthat trans-
forms p1,—p1, Wherep; is given in Eq.(7) in terms of the

We denote byH a finite dimensional complex Hilbert linear mapSTDO‘l. This new map, although trace preserving,
space and by (H) the complex Banach space of linear op-is nonlinear. If one defines distances betwé@nand the

erators A:H—H with the trace norm||A||=tr(|ATA|Y?)
=tr(|A]) (as usual, |A|=|ATA|Y?. We denote by
C(H)CL(H) the convex set of positive linear operatgrs
acting onH with ||p||<1, and byP(H,H’) the set of com-
pletely positive linear map®:C(H)—C(H") fulfilling

0.4}
3=0.0
0.3
0.2}
0.1}
ol — ‘ ‘ a
0.5 0.6 0.7 0.8 0.9 1

correspondindtrace-preservingideal mapP’, problems re-
lated to the nonlinearity arise: for example, it can happen that
while the distanced between the linear mapB,P is very
small, the similarly defined distance between the nonlinear
mapsP’, P’ is of the order of 1, which makes the definition
useless to derive bounds. The reason is that low probability
processes get “magnified” by the normalization and then
dominate the maximization used to define the distance.

One can still define other error parameters to find sharper
bounds to the fidelity in entanglement purification. However,
by increasing the number of parameters one does not gain
too much and the bounds become more complicated to ana-
lyze. On the other handd(P®1Pe1)#d(P,P) [19],
which would allow us to usel in processes for which the
system in which we perform operations and measurements is
entangled with another system, without having to include the
other system in the error analysis. This may be useful, for
example, in quantum computation where operations are per-
formed on single qubits that are entangled with many other
qubits. In that case, one can define other distances, as it is
done in Ref[19]. In any case, in quantum communication if

FIG. 2. The solid lines show the border between the two stablgve can bound the fidelity when the system is not entangled,

sets(the separatrix for six values of5. The asterisks show the we can automatically derive a bound for the entanglement
corresponding § increasing from right to leftupper fixed points.  fidelity [12,4].
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A. Properties of d

In this subsection we derive some properties of the dis-
tanced introduced above. Givef®,P< P(H,H’) we have

the following.

(1) We can restrict the maximization in E¢L3) to one

dimensional projectors, i.e.,

1P o)D) =P ) w)Il. (14

max
veH |l [9)ll=1

d(P,P)=

LOWER BOUNDS FOR ATTAINABLE FIDELITIES N.. ..
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d(P-Q,P°Q)= max ||PLQ(p)]1-PLO(p)]l|
peC(H)
= max ||P[Q(p)— O(p)]|l. (21)
peC(H)

Now, sinceQ(p) — Q(p) is self-adjoint, we can substitute in
this last equation its spectral decomposition

Qp)— “Q‘(p):; | ) Bl( b Q(p)— D(p)|¢p) (22)

Proof. We just have to prove that the distance as given in
Eqg.(14) is always larger than or equal to the one given in Eq.obtaining

(13), since the converse is clearly true. For any C(H) we

write p=3P;|¢;){¢;| with =;P;<1 and ¢; normalized
states ofH. Using the linearity of ? and P and that

||=iPAll|<max||All, we find that ||P(p)—P(p)|l

<max||P(| i) i) = P(|¢i)(#i])]]. Taking the maximum

with respect tg in this inequality completes the proof.
(2) For all peC(H) and ¢ eH (normalized statewe
have

(oI P(p)| ) —d(P,P)<(|P(p)| py<( | P(p)| $)
+d(P,P), (153

tr[P(p)]—d(P,P)<tr[P(p) <t P(p)]+d(P,P).
(15b)

Proof. For Eq.(158 we use

[(6P(p)—P(p)| $)|<IP(p)—P(p)||<d(P,P), (16)

whereas for Eq(15b) we use

[t P(p) — P(p) <t |P(p) — P(p)|1=d(P,P). (17

d(PeQ,P20)= max 2, [(¢|Q(p)—O(p)| )l
peC(H) ¢
X||P(| ) S
< max 2, (¢|Q(p)—Q(p)| )| (239
peC(H) ¢

= max ||Q(p)— Q(p)||=d(Q,0),
peC(H)
(24)

which completes the proof.

(4) Finally, we show that the distana# stems from a
norm, which may be useful to derive some other properties.
First, let us enlarge the s€{(H) so that it becomes a Banach
space. The simplest way is to defi®H)=Iing{C(H)},
that is, the set of operators that can be written dfingte)
linear combination of positive operators with real coeffi-
cients. The real Banach spa&H)CL(H) is simply the
space of self-adjoint operators actingldnin the same way,
we can enlarge the sé®(H,H’). First, given a mappP
e P(H,H’) we defineP: S(H)— S(H) by using the linearity
of P[thatis, ifS(H) s A=X,\;p; with p; e C(H), we define
P(A)=Zi\iP(p))]. Then, we define Q(H,H’)

Next, we give a property that allows one to bound the=ling{P(H,H’)}, which is a real vector space. Using the
distance when one applies sequential maps. This may be usgperator norm

ful when one has a concatenation of processes.

(3) Given Pe P(H',H") and Qe P(H,H"), we define

PQe P(H,H") according to P-Q)(p)=7[Q(p)]. Then,
we have

d(P-Q,P-Q)<d(P,P)+d(Q,9). (18
Proof. Using the properties of a distance, we have
d(PeQ, P Q)<d(P-Q,PQ)+d(P-0,P°Q). (19

On the one hand, we have
d(P-Q,P>0)= max ||P{Q(p)]-PLO(p)]ll
peC(H)

< max [|[P(p")]—P(p")||=d(P,P),
p' eC(H")

(20

where we have used E@L1) for Q. On the other hand,

max
AeS(H)||All=<1

[ Pllop= IYZGVIP (25

it becomes a real Banach space. With this definition we have
d(P,P)=|P—Pllop- (26)

Proof: We show that the distance given in E@6) is
smaller than or equal to the one defined in B@), since the
converse is obviously true sindg(H)C S(H). For anyA
e S(H) with [|A||<1 we can writeA=3;\;| $){ $|, where
=i|\j|=<1. Now, arguing as in the proof of the prope(t),
we obtain that ||P(A)—P(A)||=maxIP(|$)(4])

—P(|$){(¢|)||. Taking the maximum over all possible
e S(H) we complete the proof.

The distancel is not unrelated to other quantities used in
the literature to characterize erroneous operations. Typically,
given one of the other quantities, one can bodridnd vice
versa within the respective domains of applicabjlitgpe-
cifically this is true for the minimum fidelity, the error am-
plitude[12], and the generic error modgl6]. The diamond
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The upper and lower fixpoints are attractive, while the

used here and particularly useful to discuss operations omtermediate is repulsive. Consequently even an imperfectly

systems that are strongly entangled with other systems.

IV. NONLINEAR MAP FOR ENTANGLEMENT
PURIFICATION

In this section we derive the nonlinear méko) for the

implemented scheme | allows us to purify ensembles with
initial fidelity F;,>a;(6) up to a fidelityF,,=a,(J), pro-
vided that6<0.008.

B. Scheme I

bounds of the diagonal matrix elements in the Bell basis of Scheme Il converges faster than scheme | and can tolerate
the density operator after each step of the purification proSomewhat larger errors, but the analysis becomes signifi-

cess. As above, lehl =('[p,¢'), i=0...3. Analogous
to Eq. (4), we have

% (& Po(pn®pn) + Pi(pa®pn) | ¢')

= (27)
it [ Po(pn® pn) + P1(pn® pn) ]
Using Eq.(10) we have that
fiA)—26 . fi(A)+26
(~n) A= (~n) | 29
9(An)+20 9(Ay)—20

wheref' andg are defined in Eq(5). In the following sub-

sections we will discuss the two purification schemes sep

rately in detail.

A. Scheme |

As stated above for scheme | we can use @y instead
of 0
gives

0
An+l

(A%2+[(1-A%/31?-26

2 4 x ~ ~ .
[A2+(1—A2/3]2+[1—A2+(1—A2)/3]2+25(29)

Now we observe that the right hand side of E2f) is mono-
tonically increasing withA for all A%=1/8. Therefore re-
placingA? by $<a,<A? in Eq. (29 yields a lower bound
for A%, , . Since the interval1/8,1] is mapped into itself by
the left hand side of Eq(29) we arrive at the dynamical
system defined by,=AJ and

a+[(1—ay)/3]?>—26

[a,+(1—a,)/3]?+[1—a,— (1—a,)/3]>+25
(30

Any1=

For everyn the value ofa, is a lower bound of the fidelity
after n purification steps.

In the case6=0 the original map of Bennettt al. is
recovered. The three fixed points of that map agfd)
~0.25,a;(6)~0.5, anda,(d)~1 survive even for nonzero
S and are given by the roots of the cubic polynomial

7,9,
8 4

1 95
g8 2°)

They are plotted as a function &fin Fig. 1 (broken ling.
For 6=0.008 only the lower fixpoint survives.

X—

3 2
— —X%4
X X

a_

and forget about the other three diagonal elements. Thiio

cantly more complicated, since all four diagonal elements of
the density matrix come into play. Using E@8) we have

(AD)2+(A})?—-268
(A0+AN2+ (A2+A3)2+26

A0
n+1=

(313

2A2A3+26
(A0+AN2+ (A2+A3)2-26

A1
Ani1S

(31b

To proceed the same way as in the preceding subsection
we need again a monotonicity property of the right hand

sides of Egs.(31) so that we can replace the valu&ﬁ
(which are typically not known, since their exact value de-

pends on the unkown errors ) by lower or upper bounds,
respectively.

Using EfAL=1 we can express the right hand side of Eq.
(313 in terms of A% Al only. It is straightforward to check
that the resulting expression is monotonically increasing in
% and monotonically decreasing A for all (A2, AY) ful-
filling

F0—

0> %Jr =55 and Al<o0.5. (32
Thus, provided thab®=a,,, Al<b,, and @,,b,) fulfill the
condition (32), thena,,; as given in Eq.(109 is a lower
bound forA2, ;.

It remains to justify Eq(10b). Starting from Eq(31b) we
can this time express the right hand side only in terms of
an=A2+A2 and 8,=A2—A2 using the normalization con-
dition

3 (ap—ph)+26
a?+(1—ay)?—26

7l
<
n+1—

Now it is easy to check that the right hand side of this in-
equality is monotonically increasing ua, (for fixed 8,,) and
takes(for fixed ) its maximum aiB,,= 0, where we use the
fact that a,<1—A° and A’>0.5. Sincea,=A2+A3<1
—A%<1-a, we arrive at Eq(10b) by replacing8,—0 and
an—1—a,.

The discrete dynamical system defined by the Q)
has for 0= §=<0.01 three fixpoints witla coordinate around
a,~0.5,a;~0.6,a,~1. Figure 1(solid line) shows them as
a function of §. For 6>0.01 only the lower fixpoint sur-
vives. The exach values are given by the real roots of a
polynomial of seventh degree or equivalently by the intersec-
tions of the curved,, ((a) and
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br(a)=—a+ \/a_ 2 1) % B3 os|
the latter of which is defined by, (a,,bs(an))=a,.
The corresponding coordinates areb,,,q(ay), where x 04}

=1,i,u.

As in the previous case the upper and lower fixpoints are
attractive, while the intermediate one is now a saddle point, |
attractive in one direction and repulsive in the others. Now
essentially the same argument as in the preceding subsectiog 2 |
applies: points between intermediate and upper fixed points
are purified to a final fidelity~,,=a,. There are, however,
two complications: first, the eventual fate of a poiat,tf) 011 b, (a)
depends on both andb. Second, we need to make sure that
the conditiong32) are fulfilled in every step of the iteration, , , , , )
otherwise it is no longer valid to interprea(,b,) as bounds 0.5 0.6 0.7 0.8 0.9 1

of the actual valuesA®,Al). For both of these complica- 3
tions we have been unable to find complete analytical an- FIG. 3. For6=0.006 the curveb, (10b) andbyy (33) are plot-

. . . ted. Their intersections are fixed points of the dynamical system.
swers. Therefore we first give the numerical results before P y y

mentioning partial analytical solutions. o L .
Numerical calculations show that the physically meaning—(a ,b") then this will also be true for the images of these

. P : oints after one iteration of the dynamical system.
ful set{(a,b):0=<a<1,0sb=<1-a} is divided in two parts P Now compareX with X' = (a’ :ayb’) betwe)(/en the cUrves
by a curve passing through the intermediate fixed point, th%ut with thepsamea as X. and Wiﬂ"l X'—(a"=a, b"=b)
separatrix(see Fig. 2 Points to the right of that curve con- Clearly X is better than(’7but worse tha_r)(” gin?:é b;[hx,'
verge to the upper fixed point, points to the left towards the q ,}" ds th i N d
lower one. Moreover, all points to the right satisfy the con—an(i\)/() Xc’;\rﬁgf ;crmijar;esn;[ ae ”ﬁg:r if'xv‘\)/g":;[(’);o aroeez oint
ditions (32) and so do the orbits of all these points. For all , ' g 't applies, 1w P P
ensembles described by density matrices with diagonal eIeY_(a'b>bfi;§(a))H with ,,Y =(a'<a,b’=b) between the
mentsAQ,A} in that region,a,,b, as defined in Eq(10)  CUrves and”=(a"=a,b"<b) below the curves: the primed
provide lower and upper bounds for the respective fidelitie o![?ts tchcm\ﬁrge (th the upflherr:(l/)’(po(;nt, and tftlasb()_r—hbelng
after n purification steps. For initial values to the left of the Ieter than a? worse thary™—does so, too. This com-
separatrix our approach allows no statement. The case pietes the proot.
=0 in Fig. 2 indicates how many “good” points our worst-
case consideration misses: as showfilif] the exact border V. SUMMARY

of the set of purifiable points in thea(b) plane is given b
b P (b) p g y The entanglement purification protoc¢ls7] in the pres-

the straight linea=0.5. ¢ . . d h
For a subset of the points to the right of the separatrix it i€"'C€ Of €rrors in gate operations and measurements have

easy toprove convergence: All the pointsa(b) fulfiling a ~ °€€"n invgsti.ga':je(?. Theherrors are quar\l/ti/fieﬁ by ahsingle r‘])a'
—a, b=b;, anda-+b=1 converge to the upper fixed point 'aMeter derived from the trace norm. We have shown that

P, (except forP,, of course. these protocols allow us to increase the fidelity of the en-

Proof: The proof proceeds in four steps. The main tool istanglement even if implemented with imperfect quantum
the monotonic dependence af, ;, b, ., ona andb. [t is gates and measurements, as long as the errors are below a

easily checked by calculation that the coordinates of the in'EhreShOIOI of the order 1%. We d.e“"?d a nonlm_e_ar map to

termediate fixed point satisfy the conditiof82) for all § so calculate a '°W‘?f bound _for the fidelity aftgrpupﬂcatmn

that monotonicity holds. steps. Polynomials are given, a root of \{vh|c_h gives a lower

(i) Consider ,b) in the set enclosed by the two curves bound for the asymptotha!ly atta}lnable f|del'|ty. :

by, 1(a) andbg,(a) [Eq. (33), cf. Fig. 3. For these points, The _methods an_d deflnl_tlons mtroduc_ed in this vv_ork can

wrg%ave for alln be applied to other interesting problems in quantum informa-
tion, like teleportation or quantum cryptography. Further-

ap+1=a, and b, =<b,. more, they can be used to analyze other purification proto-

cols which, under certain circumstances, are more efficient

Sincea, andb, are bounded by the coordinates of the upperthan the ones studied hefgee, for example, Reffl,2]).

and intermediate fixpoints, they form monotonical, bounded

sequences and therefore converge. Smcmcreases an,,
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