
PHYSICAL REVIEW A APRIL 1999VOLUME 59, NUMBER 4
Lower bounds for attainable fidelities in entanglement purification
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We derive lower bounds for the attainable fidelity of standard entanglement purification protocols when
local operations and measurements are subjected to errors. We introduce an error parameter which measures
the distance between the ideal completely positive map describing a purification step and the one in the
presence of errors. We derive nonlinear maps for a lower bound of the fidelity at each purification step in terms
of this parameter.@S1050-2947~99!01104-X#

PACS number~s!: 03.67.Hk, 03.65.Bz
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I. INTRODUCTION

Entanglement purification@1–3# is one of the most impor-
tant tools in the theory of quantum information and, in p
ticular, in quantum communication. It allows, in principl
creation of maximally entangled states of particles at diff
ent locations, even if the channel that connects those lo
tions is noisy@4#. These entangled particles can then be u
for faithful teleportation@5# or secure quantum cryptograph
@6,7#.

The basic idea in entanglement purification is to ‘‘distil
a few N8 pairs of particles@quantum bits~qubits!, for ex-
ample, the case which we will consider exclusively in t
following# in highly entangled states out ofN>N8 pairs in a
mixed state with lower fidelity of the entanglement~or, in
short, fidelity! using local operations and measuremen
This fidelity is defined as the maximum overlap of the de
sity operator of a pair of qubits with a maximal entangl
state. If the initial pairs are in a nonseparable state@8,9#, then
one can obtain asymptotically~in the limit N→`) maxi-
mally entangled states@10# provided all local operations an
measurements are perfect@2,11#. In practice, there will be
errors in both the local operations and measurements.
purpose of this paper is to analyze this problem for the
rification protocols introduced in Refs.@1,7#. We are inter-
ested in analyzing the conditions under which one can pu
in the presence of errors, as well as in the limitations of
purification protocols. In particular, we find a nonlinear m
which relates a lower bound for the fidelity at two consec
tive steps of the purification protocol, which allows us
derive lower bounds for the reachable fidelity. In order
analyze this problem, we introduce a parameterd which
characterizes the errors. It measures the distance betwee
ideal operations and measurements and the ones in the
ence of errors.

Quantum communication in the presence of errors
been considered previously by Knill and Laflamme@12# in a
general context, and by Van Enket al. @13# for a particular
experimental setup@14#. The work of Knill and Laflamme
introduced ideas of fault-tolerant quantum computation@15#
to show that there exists an accuracy threshold for storag
quantum information, which also applies to the case of qu
tum communication. As shown by Bennettet al. @2# one can
rephrase this result in terms of entanglement purificat
with one-way classical communication. In Ref. @16#, en-
PRA 591050-2947/99/59~4!/2641~8!/$15.00
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tanglement purification together with a generic error mo
is used to estimate the possibilities of quantum commun
tion over long distances using quantum repeaters. The
ployed entanglement purification protocols explicitly utiliz
two-way classical communication, which makes them much
more efficient for quantum communication. In the prese
paper we use purification protocols which utilizetwo-way
classical communication, and therefore our error threshold
are much less demanding than those derived from the th
of Knill and Laflamme@12#. On the other hand, we are in
terested in a rigorous lower bound for the achievable fide
for arbitrary errors, and not in an estimation@16#. The results
and methods developed here can be generalized to de
lower bounds for other interesting problems in which loc
operations and measurements are imperfect, such as qua
teleportation or quantum cryptography.

This paper is organized as follows. Section II contain
summary of the main results of this paper, and is directed
the reader who is interested neither in the technical detail
the definitions of our error parameter, nor in the derivatio
of the nonlinear maps for the lower bound of the fidelity.
Sec. III we introduce the error parameterd and derive some
properties related to the fact that it is a distance betw
completely positive linear maps. Finally, in Sec. IV we d
rive the nonlinear map for the fidelity of entanglement
terms of this distance and sketch its dynamics.

II. SUMMARY OF THE MAIN RESULTS AND DISCUSSION

In the standard scenario of entanglement purification@1#,
two partners at different locations shareN pairs of qubits,
each pair being in a state described by a density operator.
A purification procedure producesN8<N pairs in a stater8
‘‘closer’’ to a maximally entangled statecme by only using
local operations, local measurements, and classical com
nication between the partners. More specifically, if we defi
the fidelity of the entanglement

F~r!5max
cme

^cmeurucme&, ~1!

where the maximization is taken with respect to maxima
entangled statescme, then F(r8).F(r). In the following
we will call F(r) simply fidelity.

It has been shown@10# that if r is nonseparable~it cannot
be written as a convex combination of factorized dens
2641 ©1999 The American Physical Society
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operators@8,9#! then there are purification procedures whi
obtain F(r8)51 in the asymptotic limitN→`. In particu-
lar, if F(r).1/2 one can reach this goal by using the pu
fication procedure devised by Bennettet al. @1# and im-
proved by Deutschet al. @7#. It consists of a concatenation o
purification stepsinvolving two pairs of qubits, which give
rise to a single pair with higher fidelity. In all these proc
dures, one assumes that the local operations and mea
ments are error free. In a real situation, however, there
be errors due to the coupling to the environment, imprec
apparatus, etc. Although small, they will limit the maximu
attainable fidelity and will dictate whether purification
possible or not.

In this section we first briefly review the purification pro
tocol introduced in Refs.@1,7#, and define the notation tha
we will use later on. Then we consider the same procedur
the presence of general errors, and characterize these e
in terms of a single parameterd, which basically expresse
the departure of the purification step in the presence of er
from the ideal one. Next, we express the lowest poss
fidelity ~worst case! in each purification step as a function
the lowest possible fidelity in the previous step, which lea
to a non-linear map. We analyze this map and discuss
conditions required for purification with imperfect mean
The properties of our definitions and the technical details
presented in the following sections.

A. Error-free purification protocols

In this subsection we review the two purification proc
dures introduced in Refs.@1,7#. Subsequently we will refer to
them as scheme I and II, respectively. We characterize t
in two different ways: first, in terms of a completely positiv
linear map between the initial density operator and the
after the measurement; secondly, in terms of a nonlinear
relating the diagonal matrix elements of the density opera
~in the Bell basis! at each step with the ones in the previo
step. In the next subsection we will generalize the first ch
acterization to the case of imperfect operations in orde
introduce the parameter describing the errors, and then
will generalize the second characterization to find a low
bound for the fidelity.

Both purification protocols I and II consist of a sequen
of steps in which local operations are applied to two pairs
qubits, followed by a measurement of one of the pairs wh
is then discarded. Depending on the outcome of the meas
ment, the other pair is discarded or not. In the latter case
fidelity F1 of the remaining pair is~on average! larger than
that of the original ones. This step is applied to theN pairs
obtainingN1<N/2 pairs of fidelityF1 . Then it is applied to
the resultingN1 pairs obtainingN2 pairs of fidelity F2
.F1 . Continuing in this vein, one can reach asymptotica
Fn→1 whenn→`.

Let us consider a single purification step. It starts out w
two pairs 1 and 2 in the stater125r ^ r, applies the local
operations described by the superoperatorU, and then mea-
sures each of the qubits of the second pair in the b
$u0&,u1&%. We denote byx the outcome of the measuremen
x50 if the qubits are found in the stateu0&2[u00&2 ; x51 if
they are inu1&2[u11&2 ; x52 if they are in u2&2[u01&2 ;
and x53 if they are inu3&[u10&2 ~the subscript 2 denote
-
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the second pair!. We denote byPx (x50, . . . ,3) the map
defined as follows:

Px~r12![ 2^xuU~r12!ux&2 . ~2!

This map is linear and completely positive. The probabil
of obtaining the outcomex is px(r12)5tr@Px(r12)#. If the
outcome isx52,3, then the first pair is discarded and othe
wise it is kept. In the latter case, the state of the first pair w
be

r185
P0~r12!1P1~r12!

p0~r12!1p1~r12!
. ~3!

Thus, each~successful! step of the purification protocol is
completely characterized by the mapsP0,1. ~Note thatPx
stand for different maps depending on whether we are
cussing scheme I or scheme II.!

On the other hand, if one is only interested in the fidel
at each step, one can use a simpler characterization of
purification step in terms of four real numbers. In the pur
cation protocols I and II, the local operations characteriz
by U consist of a bilateral controlled-NOT gate and spec
single qubit rotations. In that case, the diagonal element
the density operatorr8 in the Bell basis only depend on th
diagonal elements of the density operatorr, and therefore
each purification step can be characterized by a nonlin
map between these four diagonal matrix elements. We
note byAn

i 5^f i urnuf i&, wherern is the density operator o
each pair after thenth purification step anduf i& are the
elements of the Bell basis (i 50,1,2,3),

uf0,3&5
1

A2
~ u00&6u11&),

uf1,2&5
1

A2
~ u01&6u10&).

In particular,An
05Fn , the entanglement fidelity at eac

step. For scheme II there is, according to Ref.@7#, a simple
nonlinear map that relatesAn11 to An , namely

An11
i 5

^f i uP0~rn^ rn!1P1~rn^ rn!uf i&
tr@P0~rn^ rn!1P1~rn^ rn!#

5:
f i~An!

g~An!
,

~4!

where

f 0~An!5~An
0!21~An

1!2, ~5a!

f 1~An!52An
2An

3 , ~5b!

f 2~An!5~An
2!21~An

3!2, ~5c!

f 3~An!52An
0An

1 , ~5d!

g~An!5~An
01An

1!21~An
21An

3!2. ~5e!

The map ~4! has a fixed point atA5(1,0,0,0), which is
reached if the initial state hasA0

05F.1/2 @17#. This fact
expresses that in the absence of errors, one can use thi
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PRA 59 2643LOWER BOUNDS FOR ATTAINABLE FIDELITIES IN . . .
rification protocol to purify states withF.1/2 and reach a
fidelity as close to one as we please.

Scheme I@1# is governed by a similar map. The ma
difference is that at the end of each step the resulting sta
brought into Werner form, that is, the three diagonal e
mentsA1,A2,A3 are made equal to (12A0)/3. Therefore one
can concentrate on the first diagonal element, the fidelityA0,
only. The fidelity after thenth purification step is then given
by

An11
0 5

f 0
„An

0 ,~12An
0!/3…

g„An
0 ,~12An

0/3…
. ~6!

Like Eq. ~4!, this map has an attractive fixed point atA0

51, and allA0
0.1/2 are attracted to it.

B. Characterization of errors

In practice, while performing the purification protocol
errors will occur, both in the local operation and in the me
surements. The imperfections in the local operations can
accounted for by substituting the action of the superoper
U in Eq. ~2! by the action of some other completely positiv
trace-preserving linear map. The errors in the measurem
will be related to the following fact: in practice, the ou
comesx50,1 will be ultimately attributed to the presenc
absence of clicks in some kind of detectors. Due to imp
fections, the projection operators~or, more generally,
POVMs! corresponding to those clicks are not exactly t
same as the ideal ones@see Eq.~2!#. Consequently, the prob
abilities of the outcomesx50,1 as well as the state remain
ing after the measurement will differ from the ideal ones.
general, we can describe both these erroneous operation
measurements in terms of a single completely positive lin
map P̃x which does not necessarily preserve the trace~we
will use tildes in the case in which there are errors!. That is,
if the two pairs are initially in the stater125r ^ r, a purifi-
cation step yields the outcomex with a probability p̃x(r12)
5tr@P̃x(r12)#. The state of the pair after the measuremen

r̃185
P̃0~r12!1P̃1~r12!

p̃0~r12!1 p̃1~r12!
. ~7!

Thus, as before, the mapsP̃0,1 completely characterize eac
purification step.

We characterize the errors by a single parameter as
lows:

dªmax
x50,1

d~Px ,P̃x!, ~8!

where d(P,P̃) denotes a distance betweenP and P̃. The
explicit form of this distance is given in Eq.~13! below. We
emphasize that for a given set-up, one can~in principle! per-
form local measurements to completely characterizeP̃x , and
therefore obtain the value ofd experimentally@18,19#. The
error parameterd has a clear physical meaning since it me
sures the distance between the ideal process and the er
ous one. We would like to remark here that due to the f
that there are measurements and postselection involve
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the process, we have to work with mapsPx that do not pre-
serve the trace. In Sec. III we discuss why it is advantage
to use those maps instead of trace-preserving maps.

Some remarks concerning the adopted description of
rors are in order: We envisionP as the reduced dynamics o
the two entangled pairs coupled to some environment@20#.
In taking the imperfect system dynamics to be complet
positive we do~as discussed in@20#! essentially assume tha
there isno initial entanglementbetween the system and an
environment to which it might be coupled during gate ope
tions. There may be, however, initial entanglement of
system with another environment that is not affected by
gate operations. As in the error-free purification schem
@1,7# we also assume the two pairs that participate in a p
fication step to be disentangled from each other.

C. Purification with imperfect means

Once we have defined a parameter that characterizes
errors at each purification step, we can analyze the wh
purification procedure@1,7# in the nonideal case. In order t
do that, we defineÃn

i 5^f i ur̃nuf i& where r̃n is the density
operator after thenth purification step. We are particularl
interested in the fidelity at each stepÃn

05F̃n . In Sec. IV we
show that for suitable initial conditionsA0 and error param-
eterd,

Ãn
0>an , Ãn

1<bn ~n51,2, . . .!, ~9!

where

an115
an

21bn
222d

~an1bn!21~12an2bn!212d
, ~10a!

bn115
~12an!2/212d

an
21~12an!222d

, ~10b!

anda05Ã0
0 , b05Ã0

1 . For scheme I only the fidelityAn
0 and

therefore the bound~10a! with bn replaced by (12an)/3 is
relevant.

Equations~10! define a nonlinear map that can be iterat
to yield a lower bound for the attainable fidelityF̃`>a`

which depends on the value ofd. In the following we will
analyze the map~10!.

Let us first concentrate on the fixed points (af ,bf) of this
map, and consider in particular scheme II. In Fig. 1~solid
line! we have plottedaf as a function of the error paramete
d. For small values ofd&0.01 there are three fixed point
The ones with largest and the smallest value ofaf are attrac-
tive, whereas the intermediate one is a saddle point attrac
in one direction and repulsive in the others. For larger val
of d, only the smallest one survives. This means that for
appropriate initial values ofa0 and b0 if d&0.01 one in-
creases the fidelity using the purification protocol II to
value larger than the one given by the right wing of t
appropriate curve of Fig. 1. For example, ford.0.005 one
can obtain a fidelityF*0.95.

Now, let us analyze for which initial conditions (a0 ,b0)
the map converges to the fixed point with the largestaf , i.e.,
for which the protocol achieves purification. In Fig. 2 w
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have plotted in the (a,b) parameter space the curve~separa-
trix! between the stable regions for several values ofd (dk
50.002k, k50,1, . . . ,5). For anyinitial value (a0 ,b0) ly-
ing to the right of each curve, the map will converge to t
corresponding fixed point~asterisks in the plot!. For d
50.006 (k53 in the plot!, for example, one can purify from
values of a0*0.69 up to values ofF>af'0.94; for d
50.002, one can reachF*0.98 starting froma0&0.61. The
results show that the error threshold for purification is mu
less restrictive than the one for quantum computation@12#.

III. DISTANCE BETWEEN TWO POSITIVE MAPS

We denote byH a finite dimensional complex Hilber
space and byL(H) the complex Banach space of linear o
erators A:H→H with the trace normuuAuu5tr(uA†Au1/2)
[ tr(uAu) ~as usual, uAu[uA†Au1/2). We denote by
C(H),L(H) the convex set of positive linear operatorsr
acting onH with uuruu<1, and byP(H,H8) the set of com-
pletely positive linear mapsP:C(H)→C(H8) fulfilling

FIG. 1. The fixed points of the nonlinear map: the intersectio
of a horizontal line atd with the plotted curve give thea coordi-
nates of the fixed points for scheme I~broken! and scheme II
~solid!.

FIG. 2. The solid lines show the border between the two sta
sets ~the separatrix! for six values ofd. The asterisks show the
corresponding (d increasing from right to left! upper fixed points.
h

uuP~r!uu<uuruu. ~11!

For positive operators, the trace norm simply coincides w
the trace, and therefore Eq.~11! is equivalent to

tr@P~r!#<tr~r!<1. ~12!

Given two completely positive mapsP,P̃PP(H,H8), we
define their distance

d~P,P̃!5 max
r PC~H !

uuP~r!2P̃~r!uu. ~13!

It is straightforward to show thatd is indeed a distance by
using the fact that the trace norm is a norm.

With this definition, we can characterize the errors
using the parameterd as defined in Eq.~8!. The motivation
for this definition with respect to other possible definitions
that it easily gives lower bounds even for physical proces
where there are measurements and postselection~as it is in
the case of entanglement purification, cf. next section!, i.e.,
when the map describing the physical process is not tr
preserving. On the other hand~although we will not use this
property here!, it allows one to easily bound the distanc
between processes which are composed of several indivi
processes in terms of the distances between the indivi
processes themselves~see next subsection!.

One can define other distances between trace preser
maps: for example, one can consider the mapP̃8 that trans-
forms r12→r18 , wherer18 is given in Eq.~7! in terms of the

linear mapsP̃0,1. This new map, although trace preservin
is nonlinear. If one defines distances betweenP̃8 and the
corresponding~trace-preserving! ideal mapP8, problems re-
lated to the nonlinearity arise: for example, it can happen t
while the distanced between the linear mapsP,P̃ is very
small, the similarly defined distance between the nonlin
mapsP8,P̃8 is of the order of 1, which makes the definitio
useless to derive bounds. The reason is that low probab
processes get ‘‘magnified’’ by the normalization and th
dominate the maximization used to define the distance.

One can still define other error parameters to find shar
bounds to the fidelity in entanglement purification. Howev
by increasing the number of parameters one does not
too much and the bounds become more complicated to
lyze. On the other hand,d(P^ 1,P̃^ 1)Þd(P,P̃) @19#,
which would allow us to used in processes for which the
system in which we perform operations and measuremen
entangled with another system, without having to include
other system in the error analysis. This may be useful,
example, in quantum computation where operations are
formed on single qubits that are entangled with many ot
qubits. In that case, one can define other distances, as
done in Ref.@19#. In any case, in quantum communication
we can bound the fidelity when the system is not entang
we can automatically derive a bound for the entanglem
fidelity @12,4#.
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A. Properties of d

In this subsection we derive some properties of the d
tanced introduced above. GivenP,P̃PP(H,H8) we have
the following.

~1! We can restrict the maximization in Eq.~13! to one
dimensional projectors, i.e.,

d~P,P̃!5 max
cPH,uu uc&uu51

uuP~ uc&^cu!2P̃~ uc&^cu!uu. ~14!

Proof: We just have to prove that the distance as given
Eq. ~14! is always larger than or equal to the one given in E
~13!, since the converse is clearly true. For anyrPC(H) we
write r5(Pi uf i&^f i u with ( i Pi<1 and c i normalized
states of H. Using the linearity ofP and P̃ and that
uu( i PiAi uu<maxiuuAiuu, we find that uuP(r)2P̃(r)uu
<maxiuuP(uf i&^f i u)2P̃(uf i&^f i u)uu. Taking the maximum
with respect tor in this inequality completes the proof.

~2! For all rPC(H) and fPH ~normalized state! we
have

^fuP~r!uf&2d~P,P̃!<^fuP̃~r!uf&<^fuP~r!uf&

1d~P,P̃!, ~15a!

tr@P~r!#2d~P,P̃!<tr@P̃~r!#<tr@P~r!#1d~P,P̃!.
~15b!

Proof: For Eq.~15a! we use

u^fuP~r!2P̃~r!uf&u<uuP~r!2P̃~r!uu<d~P,P̃!, ~16!

whereas for Eq.~15b! we use

utr@P~r!2P̃~r!#u<tr@ uP~r!2P̃~r!u#5d~P,P̃!. ~17!

Next, we give a property that allows one to bound t
distance when one applies sequential maps. This may be
ful when one has a concatenation of processes.

~3! Given PPP(H8,H9) and QPP(H,H8), we define
P+QPP(H,H9) according to (P+Q)(r)5P@Q(r)#. Then,
we have

d~P+Q,P̃+Q̃!<d~P,P̃!1d~Q,Q̃!. ~18!

Proof: Using the properties of a distance, we have

d~P+Q,P̃+Q̃!<d~P+Q,P+Q̃!1d~P+Q̃,P̃+Q̃!. ~19!

On the one hand, we have

d~P+Q̃,P̃+Q̃!5 max
rPC~H !

uuP@Q̃~r!#2P̃@Q̃~r!#uu

< max
r8PC~H8!

uuP~r8!] 2P̃~r8!uu5d~P,P̃!,

~20!

where we have used Eq.~11! for Q̃. On the other hand,
-

n
.

se-

d~P+Q,P+Q̃!5 max
rPC~H !

uuP@Q~r!#2P@Q̃~r!#uu

5 max
rPC~H !

uuP@Q~r!2Q̃~r!#uu. ~21!

Now, sinceQ(r)2Q̃(r) is self-adjoint, we can substitute i
this last equation its spectral decomposition

Q~r!2Q̃~r!5(
f

uf&^fu^fuQ~r!2Q̃~r!uf& ~22!

obtaining

d~P+Q,P+Q̃!5 max
rPC~H !

(
f

z^fuQ~r!2Q̃~r!uf& z

3uuP~ uf&^fu!uu

< max
rPC~H !

(
f

z^fuQ~r!2Q̃~r!uf& z ~23!

5 max
rPC~H !

uuQ~r!2Q̃~r!uu5d~Q,Q̃!,

~24!

which completes the proof.
~4! Finally, we show that the distanced stems from a

norm, which may be useful to derive some other propert
First, let us enlarge the setC(H) so that it becomes a Banac
space. The simplest way is to defineS(H)5 linR$C(H)%,
that is, the set of operators that can be written as a~finite!
linear combination of positive operators with real coef
cients. The real Banach spaceS(H),L(H) is simply the
space of self-adjoint operators acting onH. In the same way,
we can enlarge the setP(H,H8). First, given a mapP
PP(H,H8) we defineP̂:S(H)→S(H) by using the linearity
of P @that is, ifS(H){A5( il ir i with r iPC(H), we define
P(A)5( il iP(r i)]. Then, we define Q(H,H8)
5 linR$P(H,H8)%, which is a real vector space. Using th
operator norm

uuPuuop5 max
APS~H !uuAuu<1

uuP~A!uu, ~25!

it becomes a real Banach space. With this definition we h

d~P,P̃!5uuP2P̃uuop. ~26!

Proof: We show that the distance given in Eq.~26! is
smaller than or equal to the one defined in Eq.~13!, since the
converse is obviously true sinceC(H),S(H). For anyA
PS(H) with uuAuu<1 we can writeA5( il i uf&^fu, where
( i ul i u<1. Now, arguing as in the proof of the property~1!,
we obtain that uuP(A)2P̃(A)uu<maxfuuP(uf&^fu)
2P̃(uf&^fu)uu. Taking the maximum over all possibleA
PS(H) we complete the proof.

The distanced is not unrelated to other quantities used
the literature to characterize erroneous operations. Typica
given one of the other quantities, one can boundd ~and vice
versa within the respective domains of applicability!. Spe-
cifically this is true for the minimum fidelity, the error am
plitude @12#, and the generic error model@16#. The diamond
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norm introduced in@19# is a generalization of the distanc
used here and particularly useful to discuss operations
systems that are strongly entangled with other systems.

IV. NONLINEAR MAP FOR ENTANGLEMENT
PURIFICATION

In this section we derive the nonlinear map~10! for the
bounds of the diagonal matrix elements in the Bell basis
the density operator after each step of the purification p
cess. As above, letÃn

i 5^f i ur̃nuf i&, i 50 . . . 3. Analogous
to Eq. ~4!, we have

Ãn11
i 5

^f i uP̃0~ r̃n^ r̃n!1P̃1~ r̃n^ r̃n!uf i&

tr@P̃0~ r̃n^ r̃n!1P̃1~ r̃n^ r̃n!#
. ~27!

Using Eq.~10! we have that

f i~Ãn!22d

g~Ãn!12d
<Ãn11

i <
f i~Ãn!12d

g~Ãn!22d
, ~28!

where f i andg are defined in Eq.~5!. In the following sub-
sections we will discuss the two purification schemes se
rately in detail.

A. Scheme I

As stated above for scheme I we can use Eq.~6! instead
of f 0 and forget about the other three diagonal elements. T
gives

Ãn11
0 >

~Ãn
0!21@~12Ãn

0!/3#222d

@Ãn
01~12Ãn

0/3#21@12Ãn
01~12Ãn

0!/3#212d
.

~29!

Now we observe that the right hand side of Eq.~29! is mono-
tonically increasing withÃn

0 for all Ãn
0>1/8. Therefore re-

placing Ãn
0 by 1

8 <an<Ãn
0 in Eq. ~29! yields a lower bound

for Ãn11
0 . Since the interval@1/8,1# is mapped into itself by

the left hand side of Eq.~29! we arrive at the dynamica
system defined bya05A0

0 and

an115
an

21@~12an!/3#222d

@an1~12an!/3#21@12an2~12an!/3#212d
.

~30!

For everyn the value ofan is a lower bound of the fidelity
after n purification steps.

In the cased50 the original map of Bennettet al. is
recovered. The three fixed points of that map atal(d)
'0.25,ai(d)'0.5, andau(d)'1 survive even for nonzero
d and are given by the roots of the cubic polynomial

x32
7

4
x21F7

8
1

9

4
dGx2F1

8
2

9

4
dG .

They are plotted as a function ofd in Fig. 1 ~broken line!.
For d>0.008 only the lower fixpoint survives.
n

f
-

a-

is

The upper and lower fixpoints are attractive, while t
intermediate is repulsive. Consequently even an imperfe
implemented scheme I allows us to purify ensembles w
initial fidelity F in.ai(d) up to a fidelityFout>au(d), pro-
vided thatd<0.008.

B. Scheme II

Scheme II converges faster than scheme I and can tole
somewhat larger errors, but the analysis becomes sig
cantly more complicated, since all four diagonal elements
the density matrix come into play. Using Eq.~28! we have

Ãn11
0 >

~Ãn
0!21~Ãn

1!222d

~Ãn
01Ãn

1!21~Ãn
21Ãn

3!212d
, ~31a!

Ãn11
1 <

2Ãn
2An

312d

~Ãn
01Ãn

1!21~Ãn
21Ãn

3!222d
. ~31b!

To proceed the same way as in the preceding subsec
we need again a monotonicity property of the right ha
sides of Eqs.~31! so that we can replace the valuesÃn

i

~which are typically not known, since their exact value d
pends on the unkown errors inP̃) by lower or upper bounds
respectively.

Using ( i Ãn
i 51 we can express the right hand side of E

~31a! in terms ofÃn
0 ,Ãn

1 only. It is straightforward to check
that the resulting expression is monotonically increasing
Ãn

0 and monotonically decreasing inÃn
1 for all (Ãn

0 ,Ãn
1) ful-

filling

Ãn
0>

1

2
1

3d

122d
and Ãn

1<0.5. ~32!

Thus, provided thatÃn
0>an , Ãn

1<bn , and (an ,bn) fulfill the
condition ~32!, then an11 as given in Eq.~10a! is a lower
bound forÃn11

0 .
It remains to justify Eq.~10b!. Starting from Eq.~31b! we

can this time express the right hand side only in terms
an5Ãn

21Ãn
3 and bn5Ãn

22Ãn
3 using the normalization con

dition

Ãn11
1 <

1
2 ~an

22bn
2!12d

an
21~12an!222d

.

Now it is easy to check that the right hand side of this
equality is monotonically increasing inan ~for fixed bn) and
takes~for fixed an) its maximum atbn50, where we use the
fact that an<12Ãn

0 and Ãn
0>0.5. Sincean5Ãn

21Ãn
3<1

2Ãn
0<12an we arrive at Eq.~10b! by replacingbn→0 and

an→12an .
The discrete dynamical system defined by the map~10!

has for 0<d&0.01 three fixpoints witha coordinate around
al'0.5,ai'0.6,au'1. Figure 1~solid line! shows them as
a function of d. For d.0.01 only the lower fixpoint sur-
vives. The exacta values are given by the real roots of
polynomial of seventh degree or equivalently by the inters
tions of the curvesbn11(a) and
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bfix~a!52a1Aa2S 11
3

2a21D d, ~33!

the latter of which is defined byan11 „an ,bfix(an)…5an .
The correspondingb coordinates arebn11(ax), where x
5 l ,i ,u.

As in the previous case the upper and lower fixpoints
attractive, while the intermediate one is now a saddle po
attractive in one direction and repulsive in the others. N
essentially the same argument as in the preceding subse
applies: points between intermediate and upper fixed po
are purified to a final fidelityFout>au . There are, however
two complications: first, the eventual fate of a point (a,b)
depends on botha andb. Second, we need to make sure th
the conditions~32! are fulfilled in every step of the iteration
otherwise it is no longer valid to interpret (an ,bn) as bounds
of the actual values (Ãn

0 ,Ãn
1). For both of these complica

tions we have been unable to find complete analytical
swers. Therefore we first give the numerical results bef
mentioning partial analytical solutions.

Numerical calculations show that the physically meanin
ful set $(a,b):0<a<1,0<b<12a% is divided in two parts
by a curve passing through the intermediate fixed point,
separatrix~see Fig. 2!. Points to the right of that curve con
verge to the upper fixed point, points to the left towards
lower one. Moreover, all points to the right satisfy the co
ditions ~32! and so do the orbits of all these points. For
ensembles described by density matrices with diagonal
mentsA0

0 ,A0
1 in that region,an ,bn as defined in Eq.~10!

provide lower and upper bounds for the respective fideli
after n purification steps. For initial values to the left of th
separatrix our approach allows no statement. The casd
50 in Fig. 2 indicates how many ‘‘good’’ points our wors
case consideration misses: as shown in@17# the exact border
of the set of purifiable points in the (a,b) plane is given by
the straight linea50.5.

For a subset of the points to the right of the separatrix i
easy toproveconvergence: All the points (a,b) fulfilling a
>ai , b<bi , anda1b<1 converge to the upper fixed poin
Pu ~except forPi , of course!.

Proof: The proof proceeds in four steps. The main too
the monotonic dependence ofan11 , bn11 on a andb. @It is
easily checked by calculation that the coordinates of the
termediate fixed point satisfy the conditions~32! for all d so
that monotonicity holds.#

~i! Consider (a,b) in the set enclosed by the two curve
bn11(a) andbfix(a) @Eq. ~33!, cf. Fig. 3#. For these points
we have for alln

an11>an and bn11<bn .

Sincean andbn are bounded by the coordinates of the upp
and intermediate fixpoints, they form monotonical, bound
sequences and therefore converge. Sincean increases andbn
decreases, they converge towards (au ,bu).

~ii ! Similarly it is seen that all points (a>au ,b<bu) do
converge to the fixed point ‘‘from above.’’

~iii ! Now, consider a pointX5(a,b<bu) below the curve
bn11(a).

Let us call a point (a,b) betterthan (a8,b8), if a>a8 and
b<b8. Monotonicity implies that if (a,b) better than
e
t,

ion
ts

t

n-
e

-

e

e
-
l
e-

s

s

-

r
d

(a8,b8) then this will also be true for the images of the
points after one iteration of the dynamical system.

Now compareX with X85(a85a,b8) between the curves
but with the samea as X, and with X95(a9>au ,b95b).
Clearly,X is better thanX8 but worse thanX9. Since bothX8
andX9 converge towards the upper fixpoint, so doesX.

~iv! A similar argument applies, if we compare a poi
Y5„a,b.bfix(a)… with Y85(a8,a,b85b) between the
curves andY95(a95a,b9<b) below the curves: the primed
points converge to the upper fixpoint, and thus (a,b)—being
better thanY8 and worse thanY9—does so, too. This com
pletes the proof.

V. SUMMARY

The entanglement purification protocols@1,7# in the pres-
ence of errors in gate operations and measurements
been investigated. The errors are quantified by a single
rameter derived from the trace norm. We have shown t
these protocols allow us to increase the fidelity of the
tanglement even if implemented with imperfect quantu
gates and measurements, as long as the errors are be
threshold of the order 1%. We derived a nonlinear map
calculate a lower bound for the fidelity aftern purification
steps. Polynomials are given, a root of which gives a low
bound for the asymptotically attainable fidelity.

The methods and definitions introduced in this work c
be applied to other interesting problems in quantum inform
tion, like teleportation or quantum cryptography. Furthe
more, they can be used to analyze other purification pro
cols which, under certain circumstances, are more effic
than the ones studied here~see, for example, Refs.@1,2#!.
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