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Macroscopically distinct quantum-superposition states as a bosonic code for amplitude damping
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We show how macroscopically distinct quantum superposition statsalinger cat statesnay be used as
logical qubit encodings for the correction of spontaneous emission errors. Spontaneous emission causes a bit
flip error, which is easily corrected by a standard error correction circuit. The method works arbitrarily well as
the distance between the amplitudes of the superposed coherent states infBd@E294799)06503-9

PACS numbd(s): 03.67.Hk

I. INTRODUCTION the so called “cat states|7]. Our coding scheme is not
exact for very small amplitude coherent states, but improves

In quantum information theory logical states are encodedgxponentially when amplitudes are greater than unity. We
as two orthogonal pure statgf]. The simplest example is demonstrate a completely unitary, adiabatic method to gen-
provided by a single two-level system. The ground stgje  €rate the cat states of our coding scheme.
and excited statge) can then encode logical 0 and logical 1,
respectively. The ability to form a coherent superposition ofll. CAT-STATE ENCODING FOR AMPLITUDE DAMPING
logical states is why we refer to logical states as qubits rather
than simply as bit$2].

Quantum computation gains its power through the poten
tial ability to unitarily manipulate a coherent superposition of

Let |a) be a coherent state for a single bosonic degree of
freedom. We then define two orthogonal states as symmetric
and antisymmetric superposition of coherent states by

large collections of physical systems each encoding a single _ -
qubit [3]. There is no fundamental reason to restrict oneself S =N (la)+]|=a)). (13
to physical systems with two-dimensional Hilbert spaces for IAYV=N_(|a)— |- a)) (1b)

the encoding. It may be more natural in some contexts to

encode logical states as a superposition over a large nUmbghere 4 is an arbitrary complex number. The normalization
of basis states. When the system supporting the qubit encogynstants are given by

ing is coupled to a perturbing environment an extra un-

wanted, and possibly uncontrollable, unitary interaction is N+=(2i2e72\a|2)71/2. )
introduced, which can appear as an error in the encoded in- -

formation. The coupling to the logical basis determines that js easy to verify that the symmetric cat stat8} contains
type of logical error. While the coupling to the environment gnjy the even energy eigenstates, while the antisymmetric cat
is fixed, we are free to choose how we encode the qubitsstate|A) contains only the odd energy eigenstates. This fea-
hence the choice of basis for the logical encoding mayyre is independent of. The two states are orthogonal and

change the kind of error introduced. For example, with aye are led to the following logical encoding for a single
single qubit, a bit flip in one logical encoding basis can ap-qubit,
pear as a phase flip in anotHdi. This is relevant, as some

kinds of errors are easier to fix than others. Chuang, Leung, [0} =19), (38
and Yamamotd5] recently introduced a qubit coding for
two bosonic modes. 1) =|A). (3b)

These modes could be two optical modes or two vibra-
tional modes of a single trapped ion. A particularly difficult Under free dynamics, the coherent state evolves as
source of error for bosonic modes arises from exponentidla(0)e™'“!), however the two cat states remain orthogonal
decay of the energy. In a single mode, for example, onend thus the logical encoding of the qubit is invariant under
could use the ground state and first excited state as the logiree dynamics. Therefore, we can transform to the interaction
cal basis. While the ground state is invariant under decay, thpicture rotating at frequency.
first excited state will “reset” to the ground state in a single  The amplitude damping model is the standard one for a
decay event. Such an error can in general be corrected bykosonic mode, of frequencyw, weakly coupled to a zero
five-qubit code[6]. However, the code of Chuang, Leung, temperature heat bafb,8] in the Born and Markov approxi-
and Yamamoto enables a more efficient error correction. mation. The system obeys the following master equation in
In this paper we give an example of how a careful choicethe interaction picture:
of the coding scheme can make a difficult error-correction
task simpler. Our example is based on a quantum code for a dp v
single bosonic mode that enables amplitude damping or am- dt 2
plification to be corrected as a bit flip error. The code is
based on quantum superpositions of bosonic coherent statéfhe solution to this equation may be written[&$

(2apa’a'ap—pa'a). (4
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o are encoded in a manner that enables amplitude decay to be
p(t)= E Yk(t)p(O)Yl(t), (5) corrected to any desired degree of precision.
k=0 We can see that after many spontaneous-emission events
the amplitude will eventually decay away to zero. If the co-
herent amplitude is too small then the rati®s) and (9b)
o will deviate significantly from unity. It is therefore necessary
Y (1) = 2 A /( E) [(0)] "2 1— (1)]¥qn— K)(n| to have a sufficient initial :_slmplitude to allow comp_ut_ation for
n=k a reasonable amount of time and to know when it is prudent
(6)  to reset the states.
It is possible to determine the time scale over which the
and (t)=e " is the probability that the state is undecayedstates will be useful by considering the rat@s). This ratio
up to imet. should not be significantly different from 1 for the encoding
Our objective is to correct for at most one decay eventg work, so we allow the difference to be no greater than a
over some characteristic time. In which case we only need tg@mal| tolerance. The term responsible for any deviation of
consider the two terms correspondingXg andY ;. Coher-  the ratio is exp{-2770?), which we desire to be small enough
ent states remain coherent under amplitude damping, and ¥ch that the ratio is within tolerance. This implies that?

with

particular we have that has to be greater than some limiting value determined by the
) tolerance, below which the state must be reset. Therefore,
Yolay=e 4 7le2 5q), (7a)  given a certain error rate, initial coherent amplitude and de-
sired tolerance we have sufficient information to calculate
Yi|a)=ape a2 14y, (7b)  the time available for computation before reset.
It is then easy to see that a single decay event will cause an |||, LoGICAL OPERATIONS ON CAT STATES

even cat state to flip to an odd cat state and vice versa. It is

this feature that we are attempting to exploit through our A logical encoding is useless if we cannot implement one

code states, so that a single decay event will correspond to&0d two qubit operations on the encoded states. We now
bit flip. A no-decay event essentially leaves the state unshow how this can be done for the cat-state encoding defined
changed. These statements are strictly only true for cat stat@ove. The particular form of qubit operations depends upon
with an inﬁnite|y |arge coherent amp”tude; however, Wethe particular physical realization of the bosonic mode. For

now show that only small amplitudes are sufficient for prac-the purposes of illustration we simply postulate particular

tical purposes. bosonic interactions to achieve the required gate operations.
An error-correction code must satisfy the following con- We will show that the Hadamard transform may be imple-
ditions[10]: mented by simple displacement of a single bosonic mode,
while the two qubit operation may be realized by a mutual
(p|YIY |g) =0 forp#q ork#l, (8a)  phase shift interaction term which commutes with the num-
ber operator of each bosonic mode.
L<p|YlYk|p>L: P, forp=0,1, (8b) If the bosonic mode is subject to a classical driving force

the Hamiltonian describing this process in the interaction

wherep,q are 0 or 1, and®, is a constant that depends only PICture is
on k. The first equation requires that all erroneous states are
orthogonal and the second requires the probability for each
event(no decay or one decajo occur to be independent of
the logical state. It is easy to see that the cat-state encodi
satisfies the first condition. The second condition howeve
requires more careful consideration. Using the conditionaP!
states given above we find that

Hp=7%(Ba'+p*a), (10)

here 8 is the complex amplitude of the driving force. Let
now choosgd as real(in general we choosg to be 7/2

t of phase withy).

For a given cat-state amplitude we can choose the driving
amplitude such that

L(0]Y§Yo|0), 1+ e 2ne’

— 0= apt, (11
L<1|Y(§YO|1>L 1—e 270" (©a . , L : .
wheret is the length of time the driving force is applied.
L<O|YTY1|0>L 1— e 270° If the even cat statéencoding|0), ) is driven we find that
1
= ) (9b) .
LYY 1) 14 2me e Mo%|0) =cos 6|0), —i sin 6]1),, (12)

Each of these ratios should ideally be unity, but the departure A displacement of this kind shifts the “cat” very slightly
from ideality is insignificant even for such a small value asby an amountB in a direction orthogonal to the orientation
a=3. For example, withp=0.9 we find Eq.(9a) gives of the cat state in phase space. The transformation is approxi-
1.00149 fora=2 but for a=3 it gives 1.000000184. mately equivalent to a Hadamard transform of the single
While Eqg.(9b) gives 0.998 507 9 forr=2 and 0.999 999 815 logical qubit whend= 7/4 (in the limit of largea and small

for «=3. If we increase the amplitude to=5 the departure B) and will suffice as a universal one-qubit gate. We will
from ideality is undetectable. Therefore, the logical qubitsrefer to this as am gate.
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The simplest way to realize a two-qubit universal gate is 1.005
via the two mode interaction Hamiltonian

g atapt 1
Hp=%ya'ab'b, 13 x = k, tanh?(At)

where a,b represent the mode amplitude operators for the

. . . : 0.995¢
two bosonic modes of interest. We choose the interaction £
time t such thatyt= . As the|0), only has even bosonic 3
number while |1), only has odd bosonic number, we 0.99r
find that the interaction leaves the  states,
10)LalO)b, [0)iall)ip, [1)1al0)p unchanged, but the 0.985}
state in which both modes encodéla, transforms as
e 1| 1) 1) p= ~ | L)al) (14 0.98 - - - -
Lal-/Lb™ Lal-/Lb- 0 2 4 6 8 10
xt

This kind of conditional phase shift operation suffices for a
universal two-qubit gate. We will refer to this asPagate. FIG. 1. Fidelity-time evolutiony starting from|1).
Using the one- and two-qubit gates described above, we ) _
can construct a controlled-n¢EN) gate. Let modea code ~ With «=0. Noting that the cat statd®), , |1), are eigen-
the control bit and mode code the target bit. A CN gate is States ofa, it is easy to see that these same states are de-
then made by applying a gate to the target, then coupling generate eigenstates bfc when a=x/x and the eigen-

the target and the control by R gate, and finally applying value is —%x?/x. While the cat states are degenerate
anotherH gate to the target. eigenstates ofi- they are distinguished by their parity. The

We have shown that simple one-mode and two-modediabatic theorem now enables us to predict that the even or
transformations may be used to construct universal compudd initial eigenstates dfly, ,|0), 1), will evolve respec-
tational gates for a cat-state logical encoding of bosonic sydively into the even or odd eigenstat¢8), , |1), of Hc as
tems. Amplitude damping appears as a simple bit-flip errowve slowly turn onx from zero to a final target value. Thus,
in this encoding, and thus a three-qubit code can be used e have a unitary method to code either a logical zero or
correct it. This leads to relatively simple fault tolerant imple- logical one as a cat state by choosing to start from a bosonic
mentations of the gate operations described above usingfound state or a bosonic first excited state.

three coupled bosonic modes. The adiabatic theorem is exact only in the case of infinite
slowness, which is of little use for logical encoding in quan-

IV. UNITARY CONSTRUCTION OF CAT-STATE tum computation, so what matters is how well we can do in
ENCODING practice. To test this we consider two different ways to vary

. . . . . k in time: linear and nonlinear.
The cat-state encoding described in this paper will be of The linear variation considered here consists of simply
little use if we cannot encode our logical bits by unitary increasing « according to x=t. The function «

transformations. Unfortunately, all previous schemes to gen=kjtantf(\t) was used in the nonlinear case due to the ad-
erate cat states are based on an entanglement betweeRahtageous shape of the tarflinction.

bosonic mode and a two-level atom and require a measure- Figure 1 illustrates the fidelity versus time variation of the
ment readouf12]. The cat state produced is conditional on state|y) starting from the1) Fock state with respect to the
the two, mutually exclusive, results of this measurement, andquivalent cat state of mean photon numhber \x/y. The

we are equally likely to get an even cat state as an odd Cgjgelity is measured as the modulus squared of the dot prod-
state. This method of encoding would randomly assign logiy,ct of the evolving state with the cat state. The notable fea-
cal bits and is of little practical use. We now describe ayres of Fig. 1 are the fidelity oscillations, the “steady-state”
unitary, although adiabatic, method to generate the two kindggelity, and the relative characteristics of the linear and non-

of cat state used to encode the qubits. linear methods of varying.
Consider the Hamiltonian, The fidelity oscillations result from carrying out the adia-
Hy =%ix(ah)2a?, (15) batic evolution faster than as required for exactness by the

adiabatic theorem. As the system evolves fronD the fi-

which could describe a Kerr nonlinearity for an optical delity will tend away from unity as the stafey) evolves
bosonic mode or the self-interaction of a single trapped iorfway from the relevant cat state. Continued evolution even-
driven at the carrier frequendit3], in which casey is pro-  tually causesy) to more closely resemble the equivalent cat
portional to the fourth power of the Lamb-Dicke parameter.state with the fidelity increasing accordingly. The retreat and
The Hamiltonian in Eq.(15) has two degenerate ground approach of the evolving state with respect to the cat state
states which are the ground st4@ and first excited state, causes the oscillations seen in Fig. 1. _

|1) of a single bosonic mode. In both cases the eigenvalue is The oscillations are damped lyuntil a “steady state™ is
zero; however, each of these ground states is distinguishégached with constant fidelity. The “steady state™ fidelity is

by the parity operator, whet@) is even and1) is odd. We determined by how quickly< is increased from=0; a
now consider the Hamiltonian slower initial increase implies a greater final fidelity. Hence,

there are two effects occurring wittt as x increases, oscil-
Hc=Hy —fik[a%+(a")?], (16 lations in fidelity are suppressed, and the fagtés increased
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initially, the lower the steady-state fidelity pf). [ ] ~
For this adiabatic process to be useful we have two aims: lv> YV

a steady state in a reasonable amount of time, and a| giate |0> D &

as close as possible to the desired final state. For lirear 0> —¢ &

these are complementary, although for nonlineawve can | ]

choose a function that can achieve both aims, hence the use

of the tanR function (s curve. The's curve has the proper- FIG. 2. Three-qubit circuit to correct bit-flip errors.

ties that it starts slowly, thus giving a high final fidelity, and

later damps the system very quickly to give a useful final

state in a reasonable amount of time. If the variallgand

\ are chosen carefully, then it is possible to obtain a fidelity ot 7 f22

of almost unity in a usefully short time. Hi=-fQn"a‘aot+h— —(@)a%oy, (17)

We thus conclude that the unitary logical encoding in

terms of cat states may be performed with almost arbitraryhere () is the Rabi frequency ang is the Lamb-Dicke

accuracy using this adiabatic method. parameter. The first term in this expression suffices to build a
CN gate between the cat state and the electronic state. If we
choose the interaction time appropriately we can apply the

V. DISCUSSION AND CONCLUSION transformation

an interaction picture at frequenaythe interaction Hamil-
tonian is

We have shown that the even and odd cats states may be U=exp —ima'ac,). (18
used as a robust qubit encoding for a single bosonic mod . .
subject to amplitude damping. A single decay event will thenlﬁlgftﬂ ﬂ:)'rsl tﬁzts’elggtrizi:\éegtecﬁt \S/\t/?wt(a?nI}t Z%;rsegﬁogndi(;g ;2?
appear as a simple bit flip error. We have also shown hoWciate i)t/ corresponds toa }lljlse iﬁ the electronic system. If
the states may be prepared unitarily and how one-qubit and P P y '

two-qubit universal quantum gates may be realized. We noW'€ Code our electronic qubits a@>1ﬂ|.0>‘ and |e)
qubtt univ guantum g y \Z WT>|1)i. The unitary interaction in Eq18) will effect a CN

turn to an assessment of how practical the scheme is fo te with the b : i " th ol and th
present technology. To be specific we will consider the cas@d!e With e bosonic mode acting as the control an €
lectronic mode acting as the target. Thus, joint excitation on

in which the bosonic mode is the center-of-mass vibrationaf carrier frequency of the two ion System will produce the
tate of ingle t ion. Cat states h . . : -
state of a single trapped ion. Cat states have been produc ble CN gate in the first part of Fig. 2. The final double

in these systems using a conditional measurement sche %u . : Lok
gate in which the vibrational mode becomes the target

(21 can easily be produced with the same Hamiltonian with

Given a cat state it is straightforward to protect it agains : . .
decay using two additional qubits. These could be the clecdates either side. This procedure would enable a cat state,

tronic states of two ions in the trap. The error-correction®"¢€ produced, to be protected from single decay events.
circuit for a bit flip is well known and is given in Fig. 2. To
implement the gate we need to implement a CN gate be-
tween the vibrational state and the electronic states of the G.J.M. would like to thank the Benasque Center for Phys-
two ions. Following de Matos Filho and Vogil3] we con- ics for support of the visit during which this paper was writ-
sider an ion trapped at an antinode of an optical standingen. P.T.C. acknowledges the financial support of the Center
wave tuned to the atomic frequency; the carrier frequency. Ifior Laser Science and the University of Queensland.
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