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Macroscopically distinct quantum-superposition states as a bosonic code for amplitude damping

P. T. Cochrane, G. J. Milburn, and W. J. Munro
Department of Physics, The University of Queensland, Queensland 4072, Australia

~Received 14 September 1998!

We show how macroscopically distinct quantum superposition states~Schrödinger cat states! may be used as
logical qubit encodings for the correction of spontaneous emission errors. Spontaneous emission causes a bit
flip error, which is easily corrected by a standard error correction circuit. The method works arbitrarily well as
the distance between the amplitudes of the superposed coherent states increases.@S1050-2947~99!06503-8#

PACS number~s!: 03.67.Hk
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I. INTRODUCTION

In quantum information theory logical states are encod
as two orthogonal pure states@1#. The simplest example is
provided by a single two-level system. The ground stateug&
and excited stateue& can then encode logical 0 and logical
respectively. The ability to form a coherent superposition
logical states is why we refer to logical states as qubits ra
than simply as bits@2#.

Quantum computation gains its power through the pot
tial ability to unitarily manipulate a coherent superposition
large collections of physical systems each encoding a si
qubit @3#. There is no fundamental reason to restrict ones
to physical systems with two-dimensional Hilbert spaces
the encoding. It may be more natural in some contexts
encode logical states as a superposition over a large num
of basis states. When the system supporting the qubit en
ing is coupled to a perturbing environment an extra u
wanted, and possibly uncontrollable, unitary interaction
introduced, which can appear as an error in the encoded
formation. The coupling to the logical basis determines
type of logical error. While the coupling to the environme
is fixed, we are free to choose how we encode the qub
hence the choice of basis for the logical encoding m
change the kind of error introduced. For example, with
single qubit, a bit flip in one logical encoding basis can a
pear as a phase flip in another@4#. This is relevant, as som
kinds of errors are easier to fix than others. Chuang, Leu
and Yamamoto@5# recently introduced a qubit coding fo
two bosonic modes.

These modes could be two optical modes or two vib
tional modes of a single trapped ion. A particularly difficu
source of error for bosonic modes arises from exponen
decay of the energy. In a single mode, for example, o
could use the ground state and first excited state as the
cal basis. While the ground state is invariant under decay,
first excited state will ‘‘reset’’ to the ground state in a sing
decay event. Such an error can in general be corrected
five-qubit code@6#. However, the code of Chuang, Leun
and Yamamoto enables a more efficient error correction

In this paper we give an example of how a careful cho
of the coding scheme can make a difficult error-correct
task simpler. Our example is based on a quantum code f
single bosonic mode that enables amplitude damping or
plification to be corrected as a bit flip error. The code
based on quantum superpositions of bosonic coherent st
PRA 591050-2947/99/59~4!/2631~4!/$15.00
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the so called ‘‘cat states’’@7#. Our coding scheme is no
exact for very small amplitude coherent states, but impro
exponentially when amplitudes are greater than unity.
demonstrate a completely unitary, adiabatic method to g
erate the cat states of our coding scheme.

II. CAT-STATE ENCODING FOR AMPLITUDE DAMPING

Let ua& be a coherent state for a single bosonic degree
freedom. We then define two orthogonal states as symme
and antisymmetric superposition of coherent states by

uS&5N1~ ua&1u2a&), ~1a!

uA&5N2~ ua&2u2a&), ~1b!

wherea is an arbitrary complex number. The normalizatio
constants are given by

N65~262e22uau2!21/2. ~2!

It is easy to verify that the symmetric cat state,uS& contains
only the even energy eigenstates, while the antisymmetric
stateuA& contains only the odd energy eigenstates. This f
ture is independent ofa. The two states are orthogonal an
we are led to the following logical encoding for a sing
qubit,

u0&L5uS&, ~3a!

u1&L5uA&. ~3b!

Under free dynamics, the coherent state evolves
ua(0)e2 ivt&, however the two cat states remain orthogon
and thus the logical encoding of the qubit is invariant und
free dynamics. Therefore, we can transform to the interac
picture rotating at frequencyv.

The amplitude damping model is the standard one fo
bosonic mode, of frequencyv, weakly coupled to a zero
temperature heat bath@5,8# in the Born and Markov approxi-
mation. The system obeys the following master equation
the interaction picture:

dr

dt
5

g

2
~2ara†2a†ar2ra†a!. ~4!

The solution to this equation may be written as@9#
2631 ©1999 The American Physical Society
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r~ t !5 (
k50

`

Yk~ t !r~0!Yk
†~ t !, ~5!

with

Yk~ t !5 (
n5k

` AS n
kD @h~ t !#~n2k!/2@12h~ t !#k/2un2k&^nu

~6!

andh(t)5e2gt is the probability that the state is undecay
up to timet.

Our objective is to correct for at most one decay ev
over some characteristic time. In which case we only nee
consider the two terms corresponding toY0 andY1 . Coher-
ent states remain coherent under amplitude damping, an
particular we have that

Y0ua&5e2~12h!uau2/2uAha&, ~7a!

Y1ua&5aAhe2~12h!uau2/2uAha&. ~7b!

It is then easy to see that a single decay event will caus
even cat state to flip to an odd cat state and vice versa.
this feature that we are attempting to exploit through o
code states, so that a single decay event will correspond
bit flip. A no-decay event essentially leaves the state
changed. These statements are strictly only true for cat s
with an infinitely large coherent amplitude; however, w
now show that only small amplitudes are sufficient for pra
tical purposes.

An error-correction code must satisfy the following co
ditions @10#:

L^puYk
†Y l uq&L50 for pÞq or kÞ l , ~8a!

L^puYk
†Ykup&L5Pk for p50,1, ~8b!

wherep,q are 0 or 1, andPk is a constant that depends on
on k. The first equation requires that all erroneous states
orthogonal and the second requires the probability for e
event~no decay or one decay! to occur to be independent o
the logical state. It is easy to see that the cat-state enco
satisfies the first condition. The second condition howe
requires more careful consideration. Using the conditio
states given above we find that

L^0uY0
†Y0u0&L

L^1uY0
†Y0u1&L

5
11e22ha2

12e22ha2 , ~9a!

L^0uY1
†Y1u0&L

L^1uY1
†Y1u1&L

5
12e22ha2

11e22ha2 . ~9b!

Each of these ratios should ideally be unity, but the depar
from ideality is insignificant even for such a small value
a53. For example, withh50.9 we find Eq.~9a! gives
1.001 49 for a52 but for a53 it gives 1.000 000 184
While Eq.~9b! gives 0.998 507 9 fora52 and 0.999 999 815
for a53. If we increase the amplitude toa55 the departure
from ideality is undetectable. Therefore, the logical qub
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are encoded in a manner that enables amplitude decay t
corrected to any desired degree of precision.

We can see that after many spontaneous-emission ev
the amplitude will eventually decay away to zero. If the c
herent amplitude is too small then the ratios~9a! and ~9b!
will deviate significantly from unity. It is therefore necessa
to have a sufficient initial amplitude to allow computation f
a reasonable amount of time and to know when it is prud
to reset the states.

It is possible to determine the time scale over which
states will be useful by considering the ratio~9a!. This ratio
should not be significantly different from 1 for the encodin
to work, so we allow the difference to be no greater tha
small tolerance. The term responsible for any deviation
the ratio is exp(22ha2), which we desire to be small enoug
such that the ratio is within tolerance. This implies thatha2

has to be greater than some limiting value determined by
tolerance, below which the state must be reset. Theref
given a certain error rate, initial coherent amplitude and
sired tolerance we have sufficient information to calcul
the time available for computation before reset.

III. LOGICAL OPERATIONS ON CAT STATES

A logical encoding is useless if we cannot implement o
and two qubit operations on the encoded states. We n
show how this can be done for the cat-state encoding defi
above. The particular form of qubit operations depends u
the particular physical realization of the bosonic mode. F
the purposes of illustration we simply postulate particu
bosonic interactions to achieve the required gate operati
We will show that the Hadamard transform may be imp
mented by simple displacement of a single bosonic mo
while the two qubit operation may be realized by a mutu
phase shift interaction term which commutes with the nu
ber operator of each bosonic mode.

If the bosonic mode is subject to a classical driving for
the Hamiltonian describing this process in the interact
picture is

HD5\~ba†1b* a!, ~10!

whereb is the complex amplitude of the driving force. Le
us now chooseb as real~in general we chooseb to bep/2
out of phase witha).

For a given cat-state amplitude we can choose the driv
amplitude such that

u5abt, ~11!

wheret is the length of time the driving force is applied.
If the even cat state~encodingu0&L) is driven we find that

e2 iH Dt/\u0&L5cos uu0&L2 i sin uu1&L , ~12!

A displacement of this kind shifts the ‘‘cat’’ very slightly
by an amountb in a direction orthogonal to the orientatio
of the cat state in phase space. The transformation is app
mately equivalent to a Hadamard transform of the sin
logical qubit whenu5p/4 ~in the limit of largea and small
b) and will suffice as a universal one-qubit gate. We w
refer to this as anH gate.
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The simplest way to realize a two-qubit universal gate
via the two mode interaction Hamiltonian

HP5\xa†ab†b, ~13!

where a,b represent the mode amplitude operators for
two bosonic modes of interest. We choose the interac
time t such thatxt5p. As the u0&L only has even bosonic
number while u1&L only has odd bosonic number, w
find that the interaction leaves the state
u0&Lau0&Lb , u0&Lau1&Lb , u1&Lau0&Lb unchanged, but the
state in which both modes encode au1&L transforms as

e2 ipa†ab†bu1&Lau1&Lb52u1&Lau1&Lb . ~14!

This kind of conditional phase shift operation suffices fo
universal two-qubit gate. We will refer to this as aP gate.

Using the one- and two-qubit gates described above,
can construct a controlled-not~CN! gate. Let modea code
the control bit and modeb code the target bit. A CN gate i
then made by applying anH gate to the target, then couplin
the target and the control by aP gate, and finally applying
anotherH gate to the target.

We have shown that simple one-mode and two-mo
transformations may be used to construct universal com
tational gates for a cat-state logical encoding of bosonic s
tems. Amplitude damping appears as a simple bit-flip er
in this encoding, and thus a three-qubit code can be use
correct it. This leads to relatively simple fault tolerant impl
mentations of the gate operations described above u
three coupled bosonic modes.

IV. UNITARY CONSTRUCTION OF CAT-STATE
ENCODING

The cat-state encoding described in this paper will be
little use if we cannot encode our logical bits by unita
transformations. Unfortunately, all previous schemes to g
erate cat states are based on an entanglement betwe
bosonic mode and a two-level atom and require a meas
ment readout@12#. The cat state produced is conditional o
the two, mutually exclusive, results of this measurement,
we are equally likely to get an even cat state as an odd
state. This method of encoding would randomly assign lo
cal bits and is of little practical use. We now describe
unitary, although adiabatic, method to generate the two ki
of cat state used to encode the qubits.

Consider the Hamiltonian,

HNL5\x~a†!2a2, ~15!

which could describe a Kerr nonlinearity for an optic
bosonic mode or the self-interaction of a single trapped
driven at the carrier frequency@13#, in which casex is pro-
portional to the fourth power of the Lamb-Dicke paramet
The Hamiltonian in Eq.~15! has two degenerate groun
states which are the ground stateu0& and first excited state
u1& of a single bosonic mode. In both cases the eigenvalu
zero; however, each of these ground states is distinguis
by the parity operator, whereu0& is even andu1& is odd. We
now consider the Hamiltonian

HC5HNL2\k@a21~a†!2#, ~16!
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with k>0. Noting that the cat statesu0&L , u1&L are eigen-
states ofa2, it is easy to see that these same states are
generate eigenstates ofHC when a5Ak/x and the eigen-
value is 2\k2/x. While the cat states are degenera
eigenstates ofHC they are distinguished by their parity. Th
adiabatic theorem now enables us to predict that the eve
odd initial eigenstates ofHNL ,u0&, u1&, will evolve respec-
tively into the even or odd eigenstates,u0&L , u1&L of HC as
we slowly turn onk from zero to a final target value. Thus
we have a unitary method to code either a logical zero
logical one as a cat state by choosing to start from a bos
ground state or a bosonic first excited state.

The adiabatic theorem is exact only in the case of infin
slowness, which is of little use for logical encoding in qua
tum computation, so what matters is how well we can do
practice. To test this we consider two different ways to va
k in time: linear and nonlinear.

The linear variation considered here consists of sim
increasing k according to k5t. The function k
5k0tanh2(lt) was used in the nonlinear case due to the
vantageous shape of the tanh2 function.

Figure 1 illustrates the fidelity versus time variation of t
stateuc& starting from theu1& Fock state with respect to th
equivalent cat state of mean photon numbera5Ak/x. The
fidelity is measured as the modulus squared of the dot p
uct of the evolving state with the cat state. The notable f
tures of Fig. 1 are the fidelity oscillations, the ‘‘steady-stat
fidelity, and the relative characteristics of the linear and n
linear methods of varyingk.

The fidelity oscillations result from carrying out the adi
batic evolution faster than as required for exactness by
adiabatic theorem. As the system evolves fromt50 the fi-
delity will tend away from unity as the stateuc& evolves
away from the relevant cat state. Continued evolution ev
tually causesuc& to more closely resemble the equivalent c
state with the fidelity increasing accordingly. The retreat a
approach of the evolving state with respect to the cat s
causes the oscillations seen in Fig. 1.

The oscillations are damped byk until a ‘‘steady state’’ is
reached with constant fidelity. The ‘‘steady state’’ fidelity
determined by how quicklyk is increased fromt50; a
slower initial increase implies a greater final fidelity. Henc
there are two effects occurring withk: ask increases, oscil-
lations in fidelity are suppressed, and the fasterk is increased

FIG. 1. Fidelity-time evolution,c starting fromu1&.
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initially, the lower the steady-state fidelity ofuc&.
For this adiabatic process to be useful we have two ai

a steady state in a reasonable amount of time, and a statuc&
as close as possible to the desired final state. For lineak
these are complementary, although for nonlineark we can
choose a function that can achieve both aims, hence the
of the tanh2 function (s curve!. The s curve has the proper
ties that it starts slowly, thus giving a high final fidelity, an
later damps the system very quickly to give a useful fi
state in a reasonable amount of time. If the variablesk0 and
l are chosen carefully, then it is possible to obtain a fide
of almost unity in a usefully short time.

We thus conclude that the unitary logical encoding
terms of cat states may be performed with almost arbitr
accuracy using this adiabatic method.

V. DISCUSSION AND CONCLUSION

We have shown that the even and odd cats states ma
used as a robust qubit encoding for a single bosonic m
subject to amplitude damping. A single decay event will th
appear as a simple bit flip error. We have also shown h
the states may be prepared unitarily and how one-qubit
two-qubit universal quantum gates may be realized. We n
turn to an assessment of how practical the scheme is
present technology. To be specific we will consider the c
in which the bosonic mode is the center-of-mass vibratio
state of a single trapped ion. Cat states have been prod
in these systems using a conditional measurement sch
@11#.

Given a cat state it is straightforward to protect it agai
decay using two additional qubits. These could be the e
tronic states of two ions in the trap. The error-correcti
circuit for a bit flip is well known and is given in Fig. 2. To
implement the gate we need to implement a CN gate
tween the vibrational state and the electronic states of
two ions. Following de Matos Filho and Vogel@13# we con-
sider an ion trapped at an antinode of an optical stand
wave tuned to the atomic frequency; the carrier frequency
.
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an interaction picture at frequencyn the interaction Hamil-
tonian is

HI52\Vh2a†asx1\
Vh4

4
~a†!2a2sx , ~17!

where V is the Rabi frequency andh is the Lamb-Dicke
parameter. The first term in this expression suffices to bui
CN gate between the cat state and the electronic state. I
choose the interaction time appropriately we can apply
transformation

U5exp~2 ipa†asx!. ~18!

When this acts on an even cat state it corresponds to
identity on the electronic system. When it acts on an odd
state it corresponds to ap pulse in the electronic system. I
we code our electronic qubits asug&1→u0& i and ue&1
→u1& i . The unitary interaction in Eq.~18! will effect a CN
gate with the bosonic mode acting as the control and
electronic mode acting as the target. Thus, joint excitation
the carrier frequency of the two ion system will produce t
double CN gate in the first part of Fig. 2. The final doub
CN gate in which the vibrational mode becomes the tar
can easily be produced with the same Hamiltonian withH
gates either side. This procedure would enable a cat s
once produced, to be protected from single decay events
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FIG. 2. Three-qubit circuit to correct bit-flip errors.
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