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Validity of Feynman’s prescription of disregarding the Pauli principle in intermediate states
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Regarding the Pauli principle in quantum field theory and in many-body quantum mechanics, Feynman
advocated that Pauli’s exclusion principle can be completely ignored in intermediate states of perturbation
theory. He observed that all virtual processes~of the same order! that violate the Pauli principle cancel out.
Feynman accordingly introduced a prescription, which is to disregard the Pauli principle in all intermediate
processes. This ingenious trick is of crucial importance in the Feynman diagram technique. We show, however,
an example in which Feynman’s prescription fails. This casts doubts on the general validity of Feynman’s
prescription.@S1050-2947~99!04604-1#

PACS number~s!: 03.65.2w, 11.10.2z, 11.15.Bt, 12.39.Ba
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I. INTRODUCTION

In his space-time approach to quantum electrodynam
Feynman advocated: ‘‘It is obviously simpler to disrega
the exclusion principle completely in the intermedia
states’’ @1#. He examined processes involving several p
ticles and observed that all virtual processes that violate P
li’s exclusion principle~formally! cancel out. It is understood
that all virtual processes of the same orders are taken
account. On the basis of this observation Feynman in
duced a prescription that is to disregard the Pauli principle
all intermediate states. This ingenious trick was crucial
accomplishing the enormous simplification and transpare
of perturbation theory. For example, the vacuum polarizat
can be related to Feynman diagrams with an electron loo
loops. Although the process represented by a loop diag
may ~at least partially! violate Pauli’s exclusion principle, no
restriction needs to be imposed on integrations with resp
to associated momentum variables. Feynman’s prescrip
is also often used in perturbation calculations for many-bo
systems in quantum mechanics.

Various aspects of Feynman’s prescription have been
cussed by several authors@2#. There are some intriguing im
plications regarding the meson effects in nuclei or nucl
matter. Feynman’s prescription is instrumental in provi
Goldstone’s theorem for many-body systems. We are
going to review these topics in this paper but we empha
that no suspicion seems to have ever been raised in the
erature against the validity of Feynman’s prescription.

The purpose of this paper is to present an example
casts doubt about the general validity of Feynman’s presc
tion. The example is concerned with the second order ene
shift of a relativistic bound system. We consider a model t
consists of a particle bound in a given potential. The wa
function of the particle is subject to the Dirac equation w
the given binding potential. In addition to the bound partic
there is a vacuum background. It is understood that
vacuum background is an integral part of the bound syst
When an external perturbation is applied, the energy of
system is shifted. We calculate the energy shift in sec
order perturbation theory. We are particularly interested
PRA 591050-2947/99/59~4!/2624~7!/$15.00
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the vacuum effect to which the Pauli principle is relevant
We consider two methods, I and II, for calculating th

energy shift. In method I we take account of the Pauli pr
ciple whenever it is applicable. In method II we disregard t
Pauli principle altogether. We confirm that these two me
ods formally agree. This illustrates Feynman’s prescripti
When methods I and II are explicitly worked out for th
example, however, the results of the two methods turn ou
disagree with each other. We analyze the intriguing mec
nism of this discrepancy.

In Sec. II we set up the model and illustrate Feynma
prescription. In Sec. III we make the model more explic
We consider a charged particle that is bound in an infin
square-well potential of the Lorentz scalar type. This is
one-dimensional version of the ‘‘bag model.’’ For the exte
nal perturbation we assume a homogeneous electric fi
Then the second order energy shift is related to the elec
polarizability of the system. We carry out the calculations
methods I and II. The two methods result in different ener
shifts ~and hence different values of the electric polarizab
ity!. We analyze the source of the discrepancy. In Sec. IV
confirm the result of method II by repeating the calculati
by using the Dalgarno-Lewis~DL! method@3–5#. A sum-
mary and discussions are given in Sec. V. Some details c
cerning the series that appear in method II are relegate
the Appendix.

II. FEYNMAN’S PRESCRIPTION

As a way of setting up notation, let us start with a pro
lem of single-particle quantum mechanics. Let the Ham
tonian of the model be

H5H01V, ~1!

whereH0 is the Dirac Hamiltonian with a binding potentia
andV is the external perturbation.~Imagine something like a
hydrogen atom, with HamiltonianH0 , placed in a weak ex-
ternal electric fieldV. Assume that the proton is merely
source of the Coulomb potential that binds the electron of
atom.! We takeH0 as the unperturbed Hamiltonian and tre
2624 ©1999 The American Physical Society
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V by perturbation theory. It is understood that the solutio
of the Dirac equation withH0 are known for all stationary
states,

H0u i &5e i u i &, H0u2 j &5e2 j u2 j &, ~2!

where i 51,2, . . . and 2 j 521,22, . . . . The u i & ’s are
positive-energy states withe i.0 and u2 j & ’s are negative-
energy states withe2 j,0. In particular,u1& is the lowest
positive-energy state~like the 1S state of the hydrogen
atom!. We are assuming that the eigenvalues are all discr
~It is not difficult to include continuum states; see Sec. V!
The u i & ’s andu2 j & ’s form a complete orthonormal basis se
Figure 1 schematically shows the unperturbed energy s
trum.

For the unperturbed state let us takeu1&, the state of the
lowest positive energy@6#. In single-particle quantum me
chanics we do not consider the vacuum background. In o
words, we assume that the negative-energy states ar
empty. In this sense let us momentarily ignore the dots of
states of theu2 j & ’s in Fig. 1. Then the energy shiftWQM of
stateu1& caused by perturbationV is given by

WQM5(
iÞ1

uVi ,1u2

e12e i
1(

j

uV2 j ,1u2

e12e2 j
, ~3!

whereVi ,1[^ i uVu1& andV2 j ,1[^2 j uVu1&. Suffix QM refers
to single-particle quantum mechanics. The summation fi
( j ) is for the positive-~negative-! energy intermediate state

Let us now take account of the vacuum background t
accompanies the particle bound inu1&. Let us examine the
vacuum from the point of view of Dirac’s hole theory. Th
vacuum consists of an infinite number of particles that
cupy all of the negative-energy states as indicated with d
in Fig. 1. Before the external perturbationV is applied, the
negative-energy states are eigenstates ofH0 . The energy of
the unperturbed system, including the vacuum backgrou
is

E5e11(
j

e2 j . ~4!

The sum over the negative-energy states is the energy o
vacuum. This vacuum is different from the ‘‘free vacuum
The e j ’s are eigenvalues ofH0 that contain the binding in-
teraction. The summation of Eq.~4! diverges but this is not a
serious problem. If we subtract the energy of the fr
vacuum, the summation will converge but let us not de

FIG. 1. Unperturbed energy levels defined by Eq.~2!. The dots
indicate occupied states.
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into this aspect. We are only interested in the energy s
rather than the energy itself. Alle’s and hence the total en
ergyE are shifted by external perturbationV. Let us examine
two methods, I and II, for calculating the energy shift.

Method I. In this method we take account of the Pau
principle in intermediate states. Energye1 is shifted by

W15(
iÞ1

uVi ,1u2

e12e i
, ~5!

where the Pauli principle excludes the negative-energy st
as intermediate states. The difference betweenW1 andWQM
is due to the presence of the vacuum background in
former. On the other hand, the vacuum energy itself a
shifts by

Wvac5(
j

W2 j , W2 j5(
iÞ1

uVi ,2 j u2

e2 j2e i
. ~6!

Again the summation overi ~j! is for positive- ~negative-!
energy states. The intermediate state ofi 51 is excluded be-
cause it is already occupied. Then the total energy shif
the system, including the vacuum background, is given b

W5W11Wvac. ~7!

TheW1 andWvac are both negative and henceW is negative.
Note thatWQM can be positive because of the contributio
from the negative-energy intermediate states.

Method II. In this method we disregard the Pauli princip
in all intermediate states. We can rewrite the aboveW by
adding and subtracting the same terms as

W85W181Wvac8 , W185WQM , ~8!

Wvac8 5(
j

W2 j8 , W2 j8 5(
i

uVi ,2 j u2

e2 j2e i
1(

kÞ j

uV2k,2 j u2

e2 j2e2k
,

~9!

where u2k& ’s are also negative-energy unperturbed sta
@7,8#. The restrictioniÞ1 has been removed in thei summa-
tion for W2 j8 . Each ofW18 andW2 j8 is the energy shift in the
context of single-particle quantum mechanics. TheWvac8 is
the vacuum energyin the absence of the particle inu1&. The
W18 andWvac8 both contain terms that violate the Pauli pri
ciple but such terms all cancel out when they are added
obtainW8. Note also that the effects of transitions betwe
negative-energy states cancel out,

(
j

(
kÞ j

uV2k,2 j u2

e2 j2e2k
50. ~10!

The formal equality betweenW of Eq. ~7! andW8 of Eq. ~8!
illustrates Feynman’s prescription@1#. Let us warn, however,
that this equivalence relies on the convergence of the se
involved, in particular, thej summation ofWvac8 of Eq. ~9!
that involves Eq.~10!.

In quantum field theory no negative-energy particles
pear but antiparticles of positive energies appear instead.
unperturbed state that we consider isc1

†uvac&. Here uvac& is
the state that contains neither particles nor antiparticles a
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The energy of this unperturbed vacuum is set to zero. Thc1
†

is an operator that creates a particle with energye1 and wave
function associated withu1&. The uvac& andc1

†uvac& are the
ground states of the unperturbed system within the ze
particle and one-particle sectors, respectively. Note that
particle number is a conserved quantity of the model un
consideration. The external electric field leads to creation
a particle-antiparticle pair, and so on. In this way the wh
language of hole theory can be transcribed into that of qu
tum field theory.

III. ONE-DIMENSIONAL BAG MODEL

We explicitly illustrate what we have shown in Sec. II b
means of model calculations. Let us consider the o
dimensional bag model@9,10#, which is a relativistic version
of the infinite square-well potential model of nonrelativis
quantum mechanics. We define the model by the Dirac eq
tion in one dimension,

H0c~x!5@ap1bm1bS~x!#c~x!5ec~x!, ~11!

wherem is the mass of the particle,S(x) is a Lorentz scalar
potential, andp52 id/dx. We use units such thatc5\
51. For the 232 Dirac matrices, we usea5sy and b
5sz , where sy and sz are the usual Pauli matrices. Fo
S(x), we assume that

S~x!5H S0 for uxu.a

0 for uxu,a,
~12!

whereS0 is a positive constant. It is understood that we
S0→`. For the bag model in three dimensions as a mode
hadrons, see Refs.@9,10#.

With the specific choice ofa, no complex numbers appea
in the Dirac equation. We write the wave functionc(x) as

c~x!5S u~x!

v~x!
D . ~13!

The u(x) and v(x) vanish outside the bag, i.e., foruxu.a,
and are discontinuous atuxu5a. They are subject to the
boundary condition

u~6a!57v~6a!. ~14!

The scalar densityc†bc5u22v2 vanishes atuxu5a, but
the vector densityc†c5u21v2 does not have to vanish a
uxu5a.

The solutions of Eq.~11! can be classified in terms o
parity. For even parity, we obtain

u~x!5N coskx, v~x!52N
k sinkx

e1m
, ~15!

where k5Ae22m2 and N is a normalization factor. Fo
negative parity, we similarly obtain

u~x!5N sinkx, v~x!5N
k coskx

e1m
. ~16!

Equation~14! leads to
o-
e
r
f

e
n-

-

a-

t
f

tanka5
6e1m

k
, ~17!

where the double sign is1(2) for positive~negative! parity.
Equation~17! determineskn anden ~with n50,1,2, . . . ) for
each parity. Theen can be positive or negative. The norma
ization factorN is given by

N25
e~e1m!

m12ae2
, ~18!

which applies to both of Eqs.~15! and ~16!. When the po-
tential for the Dirac equation is a pure Lorentz scalar, ther
symmetry between positive and negative energies. This s
metry is manifest in our model. For a positive parity sta
with energye, there exists a negative parity state of ener
2e. This can be seen through Eq.~17!.

The special case ofm50 is very simple and instructive
In this case the solutionskn ~with n50,1,2, . . . ) of Eq.~17!
are given by

kn5S n1
1

4Dp

a
for H even parity, e.0

odd parity, e,0
~19!

kn5S n1
3

4Dp

a
for H even parity, e,0

odd parity, e.0.

In Sec. II we designated the energy levels withi , 2 j , and
2k. For the bag model, however, we denote the levels w
nps wherep stands for parity,s is the sign of the energy, an
n50,1,2, . . . . For example, 011 and 021 are the lowest
and the second lowest positive-energy states, respectiv
They areu1& andu2&, respectively, in the notation of Sec. I
If we denote the energy of statenps with e(nps) we obtain

e~n11!5S n1
1

4Dp

a
, e~n21!5S n1

3

4Dp

a
,

~20!

e~n12!52S n1
3

4Dp

a
, e~n22!52S n1

1

4Dp

a
.

Figure 2 shows the energy spectrum of this case ofm50.

FIG. 2. Energy levels of the bag model withm50. The pair of
numbers in brackets are, respectively, quantum numbernps ande in
units of p/a. The dots indicate occupied levels.
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The energy levels are all equally spaced. If massm is in-
creased from 0, the energy levels are pushed away fromE
50, the levels nearer toE50 being more affected than thos
further away fromE50.

Let us now assume the external perturbation

V~x!5lx, ~21!

and work out the second order energy shiftsW andW8 ex-
plicitly for the bag model. If the charge of the particle isq
and the external perturbation is due to a constant elec
field E along thex axis, thenl52qE. Then the second orde
energy shiftW takes the form

W52
1

2
PE 2. ~22!

The coefficientP defines the electric polarizability of th
system. TheW8 can be written similarly withP8.

InteractionV(x) connects states of opposite parity. T
matrix element between statesn1s andn82s8 is given by

^n82s8uVun1s&[Vn82s8,n1s

5lNN8E
2a

a Fcoskx sink8x

2
kk8 sinkx cosk8x

~e1m!~e81m!
Gxdx, ~23!

wherek and k8 are associated with the states ofn and n8,
respectively, and similarly forN, N8, e, ande8. Let us first
examine the simple case ofm50, which gives us much in-
sight into the problem. Then the matrix element become

z^n82s8uVun1s& z5
l

a~e2e8!2
. ~24!

For the quantities of Eqs.~5!–~7! of method I we obtain

W5W0111Wvac, ~25!

W0115 (
n850

`

f ~n81 1
2 !, ~26!

Wvac5 (
n50

`

~Wn121Wn22!, ~27!

Wn125 (
n850

`

f ~n1n81 3
2 !, ~28!

Wn225 (
n851

`

f ~n1n81 1
2 !5Wn12, ~29!

where

f ~x!52
l2a3

p5

1

x5
. ~30!
ic

In Eq. ~26! the term with the argumentn81 1
2 is due to the

transition 011→n821. In Eq. ~28! the term with n1n8
1 3

2 is due ton12→n821. Note thatn850 is excluded in
the summation forWn22. The above series all converge ve
rapidly. In Eq.~26! the first term withn850 constitutes 99%
of the sum.

Next, let us turn to theW8 of method II, Eq.~8!. Let us
again consider them50 case. Curiously enough, it turns o
that the energy shifts of the individual levels all vanish a
consequently the total energy shift is zero in this case, i.e
the notation of Sec. II,

W185W2 j8 50, W850. ~31!

For example, we find thatW0118 (5W18) is of the structure

W0118 5 (
n850

`

@ f ~n81 1
2 !1 f ~2n82 1

2 !#50. ~32!

Recall that f (x) is an odd function. The two terms in th
square brackets, respectively, correspond to the two term
the right hand side ofWQM (5W18) of Eq. ~3!. The first~sec-
ond! term is due to the intermediate states of positive~nega-
tive! energies. Exactly the same situation is found for t
energy shift of each of the other states, that is,

Wn128 5 (
n850

`

@ f ~n1n81 3
2 !1 f ~n2n81 1

2 !#50, ~33!

Wn228 5 (
n850

`

@ f ~n1n81 1
2 !1 f ~n2n82 1

2 !#50. ~34!

The vanishing ofWn128 andWn228 given above may not be
immediately obvious. In the Appendix we show that the s
ries of Eqs.~33! and~34! can be rewritten exactly in the form
of Eq. ~32!. The result ofW850 is in clear contradiction
with W of Eq. ~25! that is nonzero and negative. This is ve
puzzling. The vanishing ofW8 means that the system is rigi
against the external perturbation, which we find intuitive
strange.

In Sec. II we warned that the equivalence betweenW and
W8 relies on the assumption that the summations involv
converge. What happens in the above puzzle is the follo
ing. Let us first explain it by using the notation of Sec.
There is no problem in convergence of the summations
cept for thej summation of Eq.~9!. Each ofW2 j8 is well
defined, but when it is summed with respect toj , we obtain
the double sum of the left hand side of Eq.~10!. As can be
seen from Eq.~24!, uV2k,2 j u2 depends onj and k only
through the differencej 2k. Coming back to the notation o
this section, the left hand side of Eq.~10! becomes

(
n50

`

(
n850

`

@ f ~n2n81 1
2 !1 f ~n2n82 1

2 !#. ~35!

The summations with respect ton and n8 individually con-
verge. When the two summations are combined, howe
we realize that Eq.~35! involves something like the alterna
ing series 121112111 . . . . Weshow this explicitly in
the Appendix. This series can converge only conditionally
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best. Its sum depends on how the series is arranged. Equ
~35! was set to zero in rewritingW into W8; see Eq.~10!. In
the same way asW8 is explicitly worked out as shown abov
in method II, that is, then8 summation is donebeforethe n
summation, the series of Eq.~35! is actually arranged suc
that its sum assumes a nonzero value. This is where
discrepancy between methods I and II stems from. Let
emphasize that the conspiracy of the above alternating s
is well hidden in the sense that all the~single! series that
appear in the steps of method II are absolutely converge

We have also examined the case with nonzero value
massm. The calculation is lengthy but straightforward. S
we do not describe it. We have confirmed that essentially
same situation persists, that is, the results of the two meth
disagree. For the states of very large values ofj and/ork,
effects of the finite massm become negligible. Therefore th
nonconvergence aspect of the series involved is not es
tially affected bym. Figure 3 showsW ~solid line! andW8
~dashed line! as functions ofma. Note that the difference
between the two is larger for smallerma. Figure 3 also
shows the nonrelativistic limit~dotted line! that we derive in
Sec. IV.

IV. THE DALGARNO-LEWIS METHOD

The calculation of method II that was presented in Secs
and III is somewhat involved. So it would be good to co
firm it by repeating the calculation in a different manner. W
do so by using the DL method. The DL method is an alt

FIG. 3. Relativistic energy shiftsW of method I~solid line!, W8
of method II~dashed line!, and their nonrelativistic counterpartenr

(2)

of Eq. ~43! ~dotted line! are shown in units ofl2a3 as functions of
ma. The enr

(2) is not meaningful unlessma@1.
ion

he
s

ies

t.
of

e
ds

n-

II
-

-

native form of perturbation theory in which summations ov
intermediate states are avoided@3–5#. As a price for it, one
has to solve an inhomogeneous differential equation. The
method is often used in calculating the electric polarizabi
of nonrelativistic bound systems. There is another simi
powerful method called logarithmic perturbation expans
@11,12#, which we do not use here. Consider any one of
energy levels. Let its unperturbed wave functions
c (0)(x) and its first order perturbation bec (1)(x). The
c (1)(x) can be determined by the DL equation

~H02e~0!!c~1!~x!52V~x!c~0!~x!, ~36!

wheree (0) is the unperturbed energy, i.e.,e of Sec. III. We
write c (1) as

c~1!~x!5S u~1!~x!

v ~1!~x!
D . ~37!

Its components are again subject to boundary condition~14!,

v ~1!~a!52u~1!~a!. ~38!

Whenc (1) is found, the second order energy shifte (2) can be
calculated by

e~2!5E
2`

`

V~x!c†~1!~x!c~0!~x!dx. ~39!

The summation over intermediate states is done implicitly
is understood that there is no restriction on intermedi
states due to the Pauli principle. Since it includes all int
mediate states of negative as well as positive energies,e (2) is
nothing butW18 or W2 j8 of Sec. II. If we take the unperturbe
wave function foru1& for uc (0)(x), for example, we obtain
W18 . Obviously the DL method is not useful for method I.

By solving Eq.~36! we obtain

u~1!~x!5
lN

2k2 Fmxcoskx1hek~x22a2!sinkx

2
hmk

2e S 1

e1m
12aD sinkxG , ~40!

v ~1!~x!5
lmN

2ek2 H he

e1m
kx sinkx

1F1

2
2~e2m!a1

e2~e2m!

m
~x22a2!GcoskxJ ,

~41!

whereh51(21) for even~odd! parity. Thee andk aree (0)

and k(0), respectively. With theseu(1) and v (1) in Eq. ~39!
we arrive at
e~2!5
l2m

24k4ea

$2~ka!2~ma13!@4~ea!226ma23#215~ma!2~2ma11!%

@2~ea!21ma#
. ~42!
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This applies to any of the energy levels with an appropri
choice ofk that is subject to Eq.~17!. We have explicitly
confirmed thate (2) agrees withW18 or W2 j8 of method II for
each of the energy levels and hence is the sameW8 as that of
Sec. III. Thee (2) vanishes ifm50. This is consistent with
what we found in Sec. III.

In the nonrelativistic limit ofm→`, Eq. ~38! is reduced
to

enr
~2!5

l2m

24k4
@4~ka!2215#, ka5

p

2
. ~43!

The nonrelativistic value ofka follows from Eq. ~17! with
the plus sign andm→`. Equation~39! agrees with the resul
for an infinite square-well potential of nonrelativistic qua
tum mechanics@13#. Theenr

(2) is compared with its relativistic
counterpartsW andW8 in Fig. 3. Note that even whenm is
as large asm53/a ~or m'600 MeV if a51 fm!, the rela-
tivistic energy shifts are about twice as large as their non
ativistic counterpart.

V. SUMMARY AND DISCUSSIONS

For a system consisting of a particle bound in a giv
potential together with its vacuum background, we examin
the second order energy shift caused by external perturba
V. We examined two formally equivalent methods of calc
lation, I and II. Method I takes account of the Pauli princip
in intermediate states whenever it is applicable. In metho
the Pauli principle is completely ignored. We showed that
the energy shifts of all occupied levels are summed up
method II, the terms violating the Pauli principle formal
cancel out. Thus the two methods appear equivalent. T
illustrates Feynman’s prescription.

This equivalence, however, is not free from ambigui
We calculated the energy shift explicitly for the on
dimensional bag model with external perturbationV(x)
5lx. As shown in Fig. 3, the two methods lead to differe
energy shifts. Thus Feynman’s prescription fails in this e
ample. For method II, we did the calculation in two differe
ways, one by summing up over the intermediate states
the other by using the DL method. The same results w
obtained by two calculations. In method II the energy sh
of the individual occupied levels are unambiguously o
tained. When they are summed over all negative-ene
states, however, an alternating series emerges. The su
the series depends on how the summation is done. Th
essentially the source of the discrepancy between the
apparently equivalent methods. The alternating series is
den such that, if one simply follows method II, one wou
not notice it.

Feynman’s prescription fails in the specific example t
we have described. A question naturally arises here. D
similar difficulty arise in more general situations? We su
pect that it may well. Let us first point out that, although w
assumed a specific form of external perturbationV(x)
5lx, Feynman’s prescription fails in the one-dimension
bag model irrespectively of the form ofV(x). Again for
simplicity let us assumem50. Then the matrix elements o
V(x) are of the form of
e

l-

n
d
on
-

II
f
n

is

.

t
-

nd
re
s
-
y
of
is
o

d-

t
es
-

l

E
2a

a

V~x!sin@~k2k8!x#dx or

E
2a

a

V~x!cos@~k2k8!x#dx. ~44!

No matter how largek andk8 become, the matrix element i
of the same form as that of Eq.~24!. This feature remains
essentially the same whenm becomes nonzero. In this con
nection, recall what we said in the last paragraph of Sec.

Next let us consider the three-dimensional bag mod
subject to a constant external electric field. The perturba
interaction can be taken aslz5lr cosu. For states with
large quantum numbers, the radial part of the wave funct
is similar to the one-dimensional wave function. This is so
the sense that at large distances the spherical Bessel
tions involved are like the sine and cosine functions. For
angular part, the matrix element of cosu between two adja-
cent angular momentum states has a part that remains fi
no matter how large the angular momenta become. Th
fore, the alternating series involved in method II will rema
We are aware of a few calculations of the electric and m
netic polarizabilities of the nucleon by using the bag mo
@14–16#. Method I was used in these calculations and he
the problem with method II was not encountered.

We have assumed that the energy spectrum of the un
turbed system is discrete. The case of the continuum s
trum can be handled by enclosing the system in a very la
cavity. The unperturbed HamiltonianH0 in this case can be
that of the bag model~with a large radius! plus some other
interaction that produces states localized, say, around the
gin. Let us consider such a model in one dimension. T
perturbation of the form ofV(x)5lx, if taken literally,
would not make much sense because it becomes very l
asx approaches the cavity radius. If one choosesV(x) such
that it remains reasonably small within the entire cavity, o
can treat it by perturbation theory. Then the calculation w
go in essentially the same way we have done it. Feynma
prescription will probably fail again.

As far as we know, the example that we have presente
the first counterexample against Feynman’s prescript
which seems to have been taken for granted for many ye
If we have to choose between methods I and II, we are
clined to take method I and abandon method II that is ba
on Feynman’s prescription. We think that, if we encoun
ambiguity by disregarding the Pauli principle, we should
main faithful to the Pauli principle in every step of calcul
tion. In view of the fact that Feynman’s prescription has be
used extensively, its possible failure may have serious im
cations.
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Let us first examine howWn128 of Eq. ~33! andWn228 of
Eq. ~34! vanish. First note that

Wn128 5W~n11!228 . ~A1!

Therefore it is sufficient to show thatWn228 50. This can be
seen as follows:

Wn228 5 (
n850

`

f ~n1n81 1
2 !1 (

n850

n21

f ~n2n82 1
2 !

1 (
n85n

`

f ~n2n82 1
2 !. ~A2!

If we definen5n82n, the last sum can be reduced to

(
n50

`

f ~2n2 1
2 !. ~A3!

It is not difficult to see that the first two sums can be co
bined into

(
n50

`

f ~n1 1
2 !. ~A4!
.

e
ef
-

Note that f (x)52 f (2x), hence Wn228 50 follows. Al-
thoughWn228 can be regarded as an alternating series, i
absolutely convergent. It is not like the alternating series t
we mention following Eq.~35!.

Next let us examine the structure of the double series
Eq. ~35!. Consider a set of (n,n8) such thatn5n811, i.e.,

~n,n8!5~1,0!,~2,1!,~3,2!, . . . . ~A5!

For this set we find that the term in the square brackets

Eq. ~35! takes the same valuef ( 3
2 )1 f ( 1

2 ). This is so no
matter how largen andn8 individually are. Similarly, for a
set of (n,n8) such thatn5n821, i.e.,

~n,n8!5~0,1!,~1,2!,~2,3!, . . . , ~A6!

we find f (2 1
2 )1 f (2 3

2 )52@ f ( 3
2 )1 f ( 1

2 )#. Therefore, the
terms corresponding to the sets of (n,n85n61) can be seen
as an alternating series like 121112111 . . . . If we pair
the above like (1,0) and (0,1), (2,1) and (1,2),. . . , then we
find that the double sum vanishes, like Eq.~10!. If we pair
the above like (1,0) and (1,2), (2,1) and (2,3),. . . , then the
sum does not vanish. We find similar series for (n,n85n
62), (n,n85n63), and so on. This shows that the sum
the double series has an ambiguity that is related to how
n2n8 summation is done.
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