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Validity of Feynman’s prescription of disregarding the Pauli principle in intermediate states
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Regarding the Pauli principle in quantum field theory and in many-body quantum mechanics, Feynman
advocated that Pauli’'s exclusion principle can be completely ignored in intermediate states of perturbation
theory. He observed that all virtual procesgetthe same orderthat violate the Pauli principle cancel out.
Feynman accordingly introduced a prescription, which is to disregard the Pauli principle in all intermediate
processes. This ingenious trick is of crucial importance in the Feynman diagram technique. We show, however,
an example in which Feynman'’s prescription fails. This casts doubts on the general validity of Feynman’s
prescription[S1050-29479)04604-1

PACS numbgs): 03.65-w, 11.10-2z, 11.15.Bt, 12.39.Ba

[. INTRODUCTION the vacuum effect to which the Pauli principle is relevant.
We consider two methods, | and I, for calculating the

In his space-time approach to quantum electrodynamicgnergy shift. In method | we take account of the Pauli prin-
Feynman advocated: “It is obviously simpler to disregardcCiple whenever it is applicable. In method Il we disregard the
the exclusion principle completely in the intermediate Pauli principle altogether. We confirm that these two meth-
states” [1]. He examined processes involving several par0ds formally agree. This illustrates Feynman’s prescription.
ticles and observed that all virtual processes that violate Pal’hen methods | and Il are explicitly worked out for the
li's exclusion principle(formally) cancel out. It is understood €xample, however, the results of the two methods turn out to
that all virtual processes of the same orders are taken intdisagree with each other. We analyze the intriguing mecha-
account. On the basis of this observation Feynman intronism of this discrepancy.
duced a prescription that is to disregard the Pauli principle in In Sec. Il we set up the model and illustrate Feynman's
all intermediate states. This ingenious trick was crucial inPrescription. In Sec. Ill we make the model more explicit.
accomplishing the enormous simplification and transparencyVe consider a charged particle that is bound in an infinite
of perturbation theory. For example, the vacuum polarizatiorsgquare-well potential of the Lorentz scalar type. This is a
can be related to Feynman diagrams with an electron loop dne-dimensional version of the “bag model.” For the exter-
loops. Although the process represented by a loop diagraﬂha| perturbation we assume a h(_)m.ogeneous electric fielq.
may (at least partially violate Pauli’s exclusion principle, no Then the second order energy shift is related to the electric
restriction needs to be imposed on integrations with respedtolarizability of the system. We carry out the calculations of
to associated momentum variables. Feynman’s prescriptiof€thods I and II. The two methods result in different energy
is also often used in perturbation calculations for many_bod)ﬁhiﬂs (and hence different values of the electric pOIarizabiI-
systems in guantum mechanics. ity). We analyze the source of the discrepancy. In Sec. IV we

Various aspects of Feynman’s prescription have been digzonfirm the result of method Il by repeating the calculation
cussed by several authdi]. There are some intriguing im- DY using the Dalgarno-Lewi¢DL) method[3-5]. A sum-
plications regarding the meson effects in nuclei or nucleafnary and discussions are given in Sec. V. Some details con-
matter. Feynman’s prescription is instrumental in provingcerning the series that appear in method Il are relegated to
Goldstone’s theorem for many-body systems. We are nothe Appendix.
going to review these topics in this paper but we emphasize
that no suspicion seems to have ever been raised in the lit- Il. FEYNMAN'S PRESCRIPTION
erature against the validity of Feynman’s prescription. ] ) )

The purpose of this paper is to present an example that As a way of setting up notation, let us start with a prop-
casts doubt about the general validity of Feynman’s prescripm of single-particle quantum mechanics. Let the Hamil-
tion. The example is concerned with the second order energighian of the model be
shift of a relativistic bound system. We consider a model that
consists of a particle bound in a given potential. The wave H=Ho+V, (1)
function of the particle is subject to the Dirac equation with
the given binding potential. In addition to the bound particle,whereH, is the Dirac Hamiltonian with a binding potential
there is a vacuum background. It is understood that th@ndV is the external perturbatiollmagine something like a
vacuum background is an integral part of the bound systenhydrogen atom, with HamiltoniaH o, placed in a weak ex-
When an external perturbation is applied, the energy of théernal electric fieldv. Assume that the proton is merely a
system is shifted. We calculate the energy shift in secondource of the Coulomb potential that binds the electron of the
order perturbation theory. We are particularly interested irmtom) We takeH, as the unperturbed Hamiltonian and treat
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3 into this aspect. We are only interested in the energy shift
rather than the energy itself. AHs and hence the total en-
2 ergyE are shifted by external perturbatidh Let us examine
two methods, | and Il, for calculating the energy shift.
* ! Method | In this method we take account of the Pauli
E=0 —————-————-= L . ; :
R 1 principle in intermediate states. Energy is shifted by
Vi 42
. -2 = :
Vi e« ®
* -3

_ where the Pauli principle excludes the negative-energy states
_ FIG. 1. Unperturbed energy levels defined by E2). The dots a5 jntermediate states. The difference betwégrand Wiy,
indicate occupied states. is due to the presence of the vacuum background in the

. . . former. On the other hand, the vacuum energy itself also
V by perturbation theory. It is understood that the SOI“t'O”Sshifts by 9y

of the Dirac equation wittH, are known for all stationary

states, Vi 2
L . . Wa= 2 Woj, W= 3, —— ©)

Holi)=eili),  Hol—1)=ej|-]), (2) : e
where i=1.2,... and—j=-1,-2,.... The|i)’s are Again the summation over (j) is for positive- (negative}

positive-energy states with>0 and|—j)’s are negative- energy.st'ates. The intermediate staté-ofl is excluded be-
energy states witke_;<0. In particular,|1) is the lowest Cause it is a_Iready occupied. Then the total energy shift of
positive-energy statdlike the 1S state of the hydrogen the system, including the vacuum background, is given by
atom). We are assuming that the eigenvalues are all discrete. W=W: + W @)

(It is not difficult to include continuum states; see Sec) V. - vac:
Theli)'s and|—j)’s form a complete orthonormal basis set.
Figure 1 schematically shows the unperturbed energy spe
trum.

For the unperturbed state let us tgke, the state of the
lowest positive energy6]. In single-particle quantum me-
chanics we do not consider the vacuum background. In oth
words, we assume that the negative-energy states are

TheW,; andW,,. are both negative and henééis negative.
Kote thatWgy can be positive because of the contributions
from the negative-energy intermediate states.

Method IL In this method we disregard the Pauli principle
in all intermediate states. We can rewrite the abdveyy
%ﬂﬁjding and subtracting the same terms as

empty. In this sense let us momentarily ignore the dots of the W =W, + W W, =W @)
states of thé—j)’s in Fig. 1. Then the energy shiqy of vac Q
state|1) caused by perturbatiou is given by VAT VAPRRL:
W\,/aCZE WL]! Wij=2 | - J| +2 |—k' ]| )
Vi 42 IV_jal? i T €T € k7] €-jT €k
Wom= > + 3 (9)

iFlei—€ T e—ey’
where | —k)’s are also negative-energy unperturbed states

whereV; ;=(i|V|1) andV_; ;=(—j|V|1). Suffix QM refers [7,8]. The restrictiori # 1 has been removed in theumma-

to elngle-partlcle_ quantum .mechanlcs..The summation for tion for W_; . Each ofW; andW'; is the energy shift in the
(j) is for the positive{negative} energy intermediate states. I |

Let us now take account of the vacuum background tha?r?nteXt of smgle-par’;cle Suantumf n;]echan!c;s. -gd%_lc_r']s
accompanies the particle bound|it). Let us examine the the vacuum energin the absence of the particle |d). The

vacuum from the point of view of Dirac's hole theory. The Wi @nd Wy, both contain terms that violate the Pauli prin-
vacuum consists of an infinite number of particles that ociPle but such terms all cancel out when they are added to
cupy all of the negative-energy states as indicated with dotgbtainW’. Note also that the effects of transitions between
in Fig. 1. Before the external perturbatiohis applied, the ~N€gative-energy states cancel out,
negative-energy states are eigenstated gf The energy of V., j|2

the unperturbed system, including the vacuum background, 0. (10)
is ] kF] €-jT €k
The formal equality betweew of Eq. (7) andW' of Eq. (8)
E=et 2 €-j- (4) illustrates Feynman'’s prescripti¢f]. Let us warn, however,
that this equivalence relies on the convergence of the series

The sum over the negative-energy states is the energy of tHevolved, in particular, thg summation ofW,,. of Eq. (9)
vacuum. This vacuum is different from the “free vacuum.” that involves Eq(10).

The ¢;'s are eigenvalues dfl, that contain the binding in- In quantum field theory no negative-energy particles ap-
teraction. The summation of E¢4) diverges but this is not a pear but antiparticles of positive energies appear instead. The
serious problem. If we subtract the energy of the freeunperturbed state that we consideci$vac. Here|vag is
vacuum, the summation will converge but let us not delvethe state that contains neither particles nor antiparticles at all.
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The energy of this unperturbed vacuum is set to zero.ckhe Even Parity Oda Parity
is an operator that creates a particle with energgnd wave — @ty
function associated withl). The|vac) andcl|vac are the — @)
ground states of the unperturbed system within the zero- — )
particle and one-particle sectors, respectively. Note that the —_— a3
particle number is a conserved quantity of the model under —_— %)
consideration. The external electric field leads to creation of ——— ()]
a particle-antiparticle pair, and so on. In this way the whole =% — — — — — _—g— )
language of hole theory can be transcribed into that of quan- S
tum field theory. — e (Y
[ — (1+—7_%)
11l. ONE-DIMENSIONAL BAG MODEL ———— @2, -9

We explicitly illustrate what we have shown in Sec. Il by * =)

means of model calculations. Let us consider the one- 5 5 Energy levels of the bag model with=0. The pair of
dimensional bag mod¢®,10], which is a relativistic version ,;mpers in brackets are, respectively, quantum numbeande in
of the infinite square-well potential model of nonrelativistic ynits of #/a. The dots indicate occupied levels.

guantum mechanics. We define the model by the Dirac equa-
tion in one dimension,

Ho(x)=[ap+Bm+ BS(X) ¢ (X)=€p(x), (1)

wherem is the mass of the particl§(x) is a Lorentz scalar Where the double sign is (—) for positive(negative parity.
potential, andp=—id/dx. We use units such that=#  Equation(17) determinex, ande, (with n=0,1,2 .. .) for
=1. For the 2<2 Dirac matrices, we use=o, and each parity. The, can be positive or negative. The normal-
=a,, whereo, and o, are the usual Pauli matrices. For ization factorN is given by

S(x), we assume that

*et+tm
tanka= o (17)

N2 e(e+m)

(12) m+ 2a€2, (18)

S for |x|>a
0 for |x|<a,

S(x)= [
which applies to both of Eq€15) and (16). When the po-
whereS; is a positive constant. It is understood that we lettential for the Dirac equation is a pure Lorentz scalar, there is

Sy— . For the bag model in three dimensions as a model ofymmetry between positive and negative energies. This sym-

hadrons, see Reff9,10!. metry is manifest in our model. For a positive parity state
With the specific choice af, no complex numbers appear with energye, there exists a negative parity state of energy
in the Dirac equation. We write the wave functighx) as — €. This can be seen through Ed.7).

The special case ah=0 is very simple and instructive.

(U 13 In this case the solutiorls, (with n=0,1,2 . ..) of Eq.(17)
Px)= v(x)] (13 are given by
The u(x) andv(x) vanish outside the bag, i.e., fix|>a, K= 1\m even parity, €>0
and are discontinuous ak|=a. They are subject to the U] Py odd parity, €<O

boundary condition (19

_ 3 even parity, e<0
u(+a)=Fv(*a). (14) k=(n+>|” r[ panty

4)a

odd parity, €>0.
The scalar densitys'By=u?—v? vanishes af{x|=a, but _ o
the vector density)'yy=u?+v?2 does not have to vanish at In Sec. Il we designated the energy levels with-j, and

|x|=a. —k. For the bag model, however, we denote the levels with
The solutions of Eq(11) can be classified in terms of N"°wherep stands for paritysis the sign of the energy, and
parity_ For even parity, we obtain n:0,1,2 .... For eXample, OLJr and (T+ are the lowest
and the second lowest positive-energy states, respectively.
k sinkx They are|1) and|2), respectively, in the notation of Sec. II.
u(x)=Ncoskx, v(x)=-N etm (19 If we denote the energy of statés with e(nPS) we obtain
where k=\/e_2—m2 and N is a normalization factor. For e(n++):(n+} Z, e(n )= n+§ -
negative parity, we similarly obtain 4)a 4/a
(20)
_ Nsink _Nkcoskx 16 e 3\ L 1\=w
u(x)=Nsinkx, v(x)= Tm (16) e(n™7)= n+Z T e(n™7)= n+Z—

Equation(14) leads to Figure 2 shows the energy spectrum of this casenefO.
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The energy levels are all equally spaced. If masss in-  In Eq. (26) the term with the argument’ + 3 is due to the
creased from 0, the energy levels are pushed away ffom transition 0" "—n’~*. In Eq. (28) the term withn+n’
=0, the levels nearer tB=0 being more affected than those + 3 is due ton”*~—n’~*. Note thatn’=0 is excluded in

further away fromgE=0. the summation fo¥V,--. The above series all converge very
Let us now assume the external perturbation rapidly. In Eq.(26) the first term withn’ =0 constitutes 99%
of the sum.
V(X) =X, (21) Next, let us turn to th&V’ of method II, Eq.(8). Let us

! , again consider thsm=0 case. Curiously enough, it turns out
and work out the second order energy shiftsandW’ ex- ¢ the energy shifts of the individual levels all vanish and
plicitly for the bag model. If the charge of the particleds  .,nsequently the total energy shift is zero in this case, i.e., in
and the external perturbation is due to a constant electrig o notation of Sec. I

field £ along thex axis, them. = —g&. Then the second order

energy shiftw takes the form W1=W’_j =0, W'=0. (32
1 i L (=W]) i

W= — Epgz' 22) For example, we find that/,. . (=Wj) is of the structure

The coefficientP defines the electric polarizability of the W+ = E [f(n"+ 3)+f(—=n"=3)]=0. (32

system. TheN'’ can be written similarly withP’.
InteractionV(x) connects states of opposne parity. The Recall thatf(x) is an odd function. The two terms in the

matrix element between states® andn’ ~%' is given by square brackets, respectively, correspond to the two terms of
-, . the right hand side oV (=W;) of Eq. (3). The first(sec-
(NS IVINTS=Voios pos ond term is due to the intermediate states of positivega-

tive) energies. Exactly the same situation is found for the

coskx sink’x energy shift of each of the other states, that is,

a
=7\NN’J
-a

KK’ sinkx cosk’x W= 2 [f(n+n'+ 3)+f(n—n'+ 1)]=0, (33
— xdx, (23
(e+m)(e'+m)
wherek andk’ are associated with the statesrofindn’, W/ __= > [f(n+n'+ })+f(n—n'—$)]=0. (34
respectively, and similarly foN, N’, €, ande’. Let us first n’=0

examine the simple case of=0, which gives us much in-

sight into the problem. Then the matrix element becomes The vanishing ofW,.- andW,_- given above may not be

immediately obvious. In the Appendix we show that the se-
ries of Eqs(33) and(34) can be rewritten exactly in the form

[(n" =5 |V|n*s)|= ; (24)  of Eqg. (32. The result ofW'=0 is in clear contradiction
a(e—e')? with W of Eq. (25) that is nonzero and negative. This is very
puzzling. The vanishing o' means that the system is rigid
For the quantities of Eq$5)—(7) of method | we obtain against the external perturbation, which we find intuitively
strange.
W=Wo+++Waac, (29 In Sec. Il we warned that the equivalence betwééand

W’ relies on the assumption that the summations involved

converge. What happens in the above puzzle is the follow-

ing. Let us first explain it by using the notation of Sec. Il.

There is no problem in convergence of the summations ex-

* cept for thej summation of Eq(9). Each ofW’_j is well

W, 0= 2 W, +-+W,--), (27 defined, but when it is summed with respect tove obtain

n=0 the double sum of the left hand side of E0). As can be
seen from Eq.(24), |V_y _;|* depends onj and k only

28) through the differencg¢—k. Coming back to the notation of
this section, the left hand side of EG.0) becomes

©

Woi+= >, f(n'+ 1), (26)
n'=0

W, +-= 2 f(n+n’ +2)
=0

HM8

W, - é f(nn'+ H=Wo. . 29 2 ="+ H+f(n-n"-=H1. (39

The summations with respect toandn’ individually con-
verge. When the two summations are combined, however,
253 1 we realize that Eq(35) involves something like the alternat-
— (30) ing series =1+1—-1+1.... Weshow this explicitly in
m> X the Appendix. This series can converge only conditionally at

where




2628 F. A. B. COUTINHO, Y. NOGAMI, AND LAURO TOMIO PRA 59

0.00 -

native form of perturbation theory in which summations over
intermediate states are avoidgg+5]. As a price for it, one
has to solve an inhomogeneous differential equation. The DL
method is often used in calculating the electric polarizability
of nonrelativistic bound systems. There is another similar,
powerful method called logarithmic perturbation expansion
[11,12], which we do not use here. Consider any one of the
energy levels. Let its unperturbed wave functions be
#O(x) and its first order perturbation be)(x). The
#(x) can be determined by the DL equation

-0.05

-0.10

Energy Shift (in units of )\2a3 )

015 (Ho— €y V(x)= = V(x) 'V (x), (36)
where €(® is the unperturbed energy, i.e of Sec. Ill. We
write 1) as

-0.20 u(l)(x)

D(x)=
. | . | . P (X) (U(l)(x))' (37)
0 1 2 3
ma Its components are again subject to boundary conditidi
FIG. 3. Relativistic energy shifté/ of method I(solid line), W’ vP(a)=—-uV(a). (39)

of method Il(dashed ling and their nonrelativistic counterpaaﬁzr)
of Eq. (43) (dotted ling are shown in units ok2a® as functions of ~ When () is found, the second order energy skift) can be

ma. The €{?) is not meaningful unlessa> 1. calculated by
best. Its sum depends on how the series is arranged. Equation (2)_ fw VOO 6T (0 O (x)dx 39
(35) was set to zero in rewritingV into W’; see Eq(10). In € —o COPT )¢ 00dx 39

the same way a@/’ is explicitly worked out as shown above
in method I, that is, then’ summation is doneeforethen  The summation over intermediate states is done implicitly. It
summation, the series of E85) is actually arranged such IS understood that there is no restriction on intermediate
that its sum assumes a nonzero value. This is where thgiates due to the Pauli principle. Since it includes all inter-
discrepancy between methods | and Il stems from. Let ugediate states of negative as well as positive energfiesis
emphasize that the conspiracy of the above alternating seri@thing butW; or W_; of Sec. II. If we take the unperturbed
is well hidden in the sense that all tfisingle series that wave function for|1) for |(®(x), for example, we obtain
appear in the steps of method Il are absolutely convergentW; . Obviously the DL method is not useful for method I.
We have also examined the case with nonzero values of By solving Eq.(36) we obtain
massm. The calculation is lengthy but straightforward. So
we do not describe it. We have confirmed that essentially the
same situation persists, that is, the results of the two methods
disagree. For the states of very large valueg ahd/ork,

mxcoskx+ nek(x?—a?)sinkx

AN
D(x)= —
u X)=

(x) i

effects of the finite mass become negligible. Therefore the nmk ]
nonconvergence aspect of the series involved is not essen- oo | ey T2a)sinkx], (40
tially affected bym. Figure 3 showsV (solid line) and W'
(dashed ling as functions ofma. Note that the difference AmN €
. . 1) _ 7] .
between the two is larger for smallena. Figure 3 also v (x)= 21 o1 kx sinkx
shows the nonrelativistic limigdotted ling that we derive in 2ek” [ €TM
Sec. IV. 1 Ez(f_m) , )
+ E—(e—m)a+ T(X —a“)|coskx;,
IV. THE DALGARNO-LEWIS METHOD
(41

The calculation of method Il that was presented in Secs. Il
and 11l is somewhat involved. So it would be good to con-wheren=1(—1) for even(odd) parity. Thee andk are e©)
firm it by repeating the calculation in a different manner. Weand k(®), respectively. With thesa® andv® in Eq. (39)
do so by using the DL method. The DL method is an alter-we arrive at

2 A2m  {2(ka)’(ma+3)[4(ea)’—6ma—3]—15ma)%(2ma+1)}
¢ 2&kea [2(€a)2+ma] '

(42
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This applies to any of the energy levels with an appropriate a

choice ofk that is subject to Eq(17). We have explicitly f V(x)sin (k—k")x]dx or

confirmed thate(®) agrees withw; or W’ ; of method I for @

each of the energy levels and hence is the s@fhas that of a ,

Sec. lll. Thee® vanishes ifm=0. This is consistent with J’iaV(x)cos{(k—k )x]dx. (44)
what we found in Sec. Il

In the nonrelativistic limit ofm—oo, Eq.(38) is reduced  No matter how largd andk’ become, the matrix element is
to of the same form as that of EqR4). This feature remains
essentially the same when becomes nonzero. In this con-
2)_ A%m ) oo nection, recall what we said in the last paragraph of Sec. Ill.
en = [4(ka)°—15], ka=-. (43 Next let us consider the three-dimensional bag model,
24k 2 ) - .
subject to a constant external electric field. The perturbation
interaction can be taken asz=\r cos6. For states with
. . 1 large quantum numbers, the radial part of the wave function
the plu_s sIgn andh— . Equat|on(_39) agrees W'th t_he_ result is similar to the one-dimensional wave function. This is so in
for an infinite square-wel2| potential of nonrelativistic quan- o sense that at large distances the spherical Bessel func-
tum mechanic$13]. Th‘?fgr). is compared with its relativistic  {jons involved are like the sine and cosine functions. For the
counterpartdV andW" in Fig. 3. Note that even whemis  angular part, the matrix element of c@between two adja-
as large asn=3/a (or m~600 MeV ifa=1 fm), the rela-  cent angular momentum states has a part that remains finite
tivistic energy shifts are about twice as large as their nonrelng matter how large the angular momenta become. There-

The nonrelativistic value oka follows from Eq.(17) with

ativistic counterpart. fore, the alternating series involved in method Il will remain.
We are aware of a few calculations of the electric and mag-
V. SUMMARY AND DISCUSSIONS netic polarizabilities of the nucleon by using the bag model

[14-16. Method | was used in these calculations and hence

For a system consisting of a particle bound in a giventhe problem with method Il was not encountered.
potential together with its vacuum background, we examined \We have assumed that the energy spectrum of the unper-
the second order energy shift caused by external perturbatiagirbed system is discrete. The case of the continuum spec-
V. We examined two formally equivalent methods of calcu-trum can be handled by enclosing the system in a very large
lation, | and II. Method | takes account of the Pauli principle cavity. The unperturbed Hamiltonia, in this case can be
in intermediate states whenever it is applicable. In method Hhat of the bag modeiwith a large radiusplus some other
the Pauli principle is completely ignored. We showed that, ifinteraction that produces states localized, say, around the ori-
the energy shifts of all occupied levels are summed up iyin. Let us consider such a model in one dimension. The
method I, the terms violating the Pauli principle formally perturbation of the form ofV(x)=\x, if taken literally,
cancel out. Thus the two methods appear equivalent. Thigould not make much sense because it becomes very large
illustrates Feynman’s prescription. asx approaches the cavity radius. If one choo¥és) such

This equivalence, however, is not free from ambiguity.that it remains reasonably small within the entire cavity, one
We calculated the energy shift explicitly for the one- can treat it by perturbation theory. Then the calculation will
dimensional bag model with external perturbati{x)  go in essentially the same way we have done it. Feynman’s
=A\X. As shown in Fig. 3, the two methods lead to different prescription will probably fail again.
energy shifts. Thus Feynman’s prescription fails in this ex-  As far as we know, the example that we have presented is
ample. For method Il, we did the calculation in two different the first counterexample against Feynman’s prescription,
ways, one by summing up over the intermediate states anghich seems to have been taken for granted for many years.
the other by using the DL method. The same results wergf we have to choose between methods | and Il, we are in-
obtained by two calculations. In method Il the energy shiftsclined to take method | and abandon method I that is based
of the individual occupied levels are unambiguously ob-on Feynman’s prescription. We think that, if we encounter
tained. When they are summed over all negative-energgmbiguity by disregarding the Pauli principle, we should re-
states, however, an alternating series emerges. The sum gfain faithful to the Pauli principle in every step of calcula-
the series depends on how the summation is done. This ifon. In view of the fact that Feynman'’s prescription has been
essentially the source of the discrepancy between the twgsed extensively, its possible failure may have serious impli-
apparently equivalent methods. The alternating series is hid:ations.
den such that, if one simply follows method Il, one would
not notice it.

Feynman’s prescription fails in the specific example that
we have described. A question naturally arises here. Does This work was supported by the Fundacde Amparo a
similar difficulty arise in more general situations? We sus-Pesquisa do Estado de ®SRaulo(FAPESRH, Conselho Na-
pect that it may well. Let us first point out that, although wecional de Desenvolvimento Ciefito e Tecnolgico
assumed a specific form of external perturbatigfx) (CNPg, and the Natural Sciences and Engineering Research
=\x, Feynman'’s prescription fails in the one-dimensionalCouncil of Canada. Y.N. is grateful to the Universidade de
bag model irrespectively of the form d&f(x). Again for  Sao Paulo and the Instituto dedica Tewica of Universidade
simplicity let us assumen=0. Then the matrix elements of Estadual Paulista for the warm hospitality extended to him
V(x) are of the form of during his visits.
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APPENDIX

Let us first examine howvr’ﬁ, of Eq. (33 andWr’],, of
Eq. (34) vanish. First note that

Wi =W,y (A1)

Therefore it is sufficient to show thav' - =0. This can be
seen as follows:

[o’] n—-1
W __=> f(n+tn'+ %)+ > f(n—n'—13)
n'=0 n'=0
+ > f(n—n'—3}). (A2)

n'=n

If we definev=n’—n, the last sum can be reduced to

2, f(=v=3). (A3)

It is not difficult to see that the first two sums can be com-

bined into

;O f(v+ 1). (Ad)

Note that f(x)=—f(—x), henceW,._=0 follows. Al-

thoughWr’r, can be regarded as an alternating series, it is
absolutely convergent. It is not like the alternating series that
we mention following Eq(35).

Next let us examine the structure of the double series of
Eq. (35). Consider a set ofr(,n’) such than=n"+1, i.e.,

(n,n")=(1,0,(2,2,(3,2, . ... (AB)

For this set we find that the term in the square brackets of

Eq. (35 takes the same valug(3)+f(2). This is so no
matter how largen andn’ individually are. Similarly, for a
set of (,n’) such than=n'—-1, i.e,,

(n,n")=(0,1,(1,2,(2,3, ..., (AB)

we find f(—3)+f(—2)=—[f(2)+f(3)]. Therefore, the
terms corresponding to the sets afit’ =n=1) can be seen

as an alternating series like-11+1—-1+1 .... If we pair

the above like (1,0) and (0,1), (2,1) and (1,2), ,then we

find that the double sum vanishes, like Ef0). If we pair

the above like (1,0) and (1,2), (2,1) and (2,3), , then the
sum does not vanish. We find similar series forr(' =n
*2), (n,n"=n=3), and so on. This shows that the sum of
the double series has an ambiguity that is related to how the
n—n’ summation is done.
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