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Exact quantum states of a general time-dependent quadratic system from classical action

Dae-Yup Song*
Department of Physics, Sunchon National University, Sunchon 540-742, Korea

~Received 21 September 1998!

A generalization of a driven harmonic oscillator with time-dependent mass and frequency, by adding total
time-derivative terms to the Lagrangian, is considered. The generalization, which gives a general quadratic
Hamiltonian system, does not change the classical equation of motion. Based on the observation by Feynman
and Hibbs, the propagators~kernels! of the systems are calculated from the classical action, in terms of
solutions of the classical equation of motion: two homogeneous solutions and one particular solution. The
kernels are then used to find wave functions that satisfy the Schro¨dinger equation. One of the wave functions
is shown to be that of a Gaussian pure state. In every case considered, we prove that the kernel does not depend
on the way of choosing the classical solutions, while the wave functions depend on the choice. The generali-
zation, which gives a rather complicated quadratic Hamiltonian, is simply interpreted as applying unitary
transformation to the driven harmonic oscillator system in the Hamiltonian formulation.
@S1050-2947~99!01704-7#

PACS number~s!: 03.65.Ca, 03.65.Bz, 03.65.Db, 03.65.Ge
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I. INTRODUCTION

Time-dependent quantum-mechanical systems continu
be of great interest. In particular, the system described b
explicit time-dependent quadratic Hamiltonian has attrac
considerable attention. One of the typical examples is
harmonic oscillator with time-dependent mass and/or
quencies. Those studies have many applications such a
quantum optics@1#, Paul trap@2#, and the analyses of quan
tum fields in curved space-time@3#, and they are closely
related to the theory of quantum dissipation@4#.

In the Hamiltonian formulation of a time-dependent ha
monic oscillator, Lewis and Riesenfeld~LR! @5,6# have
shown that a quantum-mechanically invariant operator ex
whose exact form is determined by an auxiliary functio
The invariant operator can then be used to find exact w
functions of quantum states. During the past several ye
this LR method has been widely used for the study of gen
quadratic Hamiltonian systems@7–11#. For the harmonic os-
cillator with time-dependent mass and frequency, the w
functions and the kernel~propagator! have been found
@7,8,11#. Through the Heisenberg-picture approach, Jiet al.
@9# have refined the derivation, and the wave functions
given. The Heisenberg-picture approach has then been
@10#, with successive unitary transformations@2#, to find ex-
act wave functions of the general quadratic Hamiltonian s
tem. The auxiliary functions in the LR method were d
fined through differential equations related to the equation
motion. We also note that the LR method can be applied
more general systems@12#.

In this article, we will study the quadratic system in th
Lagrangian formulation of Feynman and Hibbs@13#. The
Lagrangian we will consider is

L5
1

2
M ~ t !ẋ22

1

2
M ~ t !w2~ t !x21F~ t !x1

d

dt
@M ~ t !a~ t !x2#

1
d

dt
@b~ t !x#1 f ~ t !, ~1!

*Electronic address: dsong@sunchon.sunchon.ac.kr
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wherew2(t), F(t), a(t), b(t), and f (t) are arbitrary real
functions of t and M (t) is also arbitrary real but alway
positive. The last three terms in the right hand side of Eq.~1!
have no effect in classical dynamics and the classical tra
tory x̄ of the coordinatex will satisfy the equation

d

dt
~Mẋ̄!1M ~ t !w2~ t !x̄5F~ t !. ~2!

The most general solution of this differential equation m
be composed of a particular solution and two linearly ind
pendent homogeneous solutions. The correspondingquan-
tum Hamiltonian may be written as

H5
p̂2

2M ~ t !
2a~ t !@ p̂x̂1 x̂p̂#1

1

2
M ~ t !c~ t !x̂22

b~ t !

M ~ t !
p̂

1d~ t !x̂1S b2~ t !

2M ~ t !
2 f ~ t ! D , ~3!

where

c~ t !5w214a222ȧ22
Ṁ

M
a,

~4!

d~ t !52ab2ḃ2F.

In the sense of the differentiation of the operator in Ref.@14#,
the quantum equation of motion for the operatorx̂ is again
given as
2616 ©1999 The American Physical Society
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PRA 59 2617EXACT QUANTUM STATES OF A GENERAL TIME- . . .
d

dt
~Mẋ̂!1M ~ t !w2~ t !x̂5F~ t !.

Feynman and Hibbs have shown that the coordina
dependent part of the kernel is determined from the class
action ~Chaps. 3–5 of Ref.@13#!. In this article, it will be
shown that the remaining part of the kernel for the syst
will be completely determined from the Schro¨dinger equa-
tion and the initial condition which the kernel should satis
In this way the kernel for the system of Eq.~1! will be
evaluated. By the method of Ref.@15#, the wave functions
will then be evaluated from the kernel. This Lagrangian f
mulation has a clear advantage over the Hamiltonian form
lation in showing how the last three terms in the right ha
side of Eq.~1! which have no effect on classical dynami
affect the wave functions. The classical action will be eva
ated in terms of the two linearly independent homogene
solutions and one particular solution, and so are the ke
and the wave functions. We will prove that the kernels
not depend on the way of choosing the classical solutio
while the wave functions arenot unique and depend on th
choice of the classical solutions. By comparing with the
sults on the Gaussian pure states of Ref.@16#, it is suggested
that choosing different classical solutions might amount
applying unitary transformations to the annihilation operat

In the next section, we will consider the harmonic osc
lator with time-dependent mass and frequency, mainly to
pose our method. It will also be shown that the kernel d
not depend on the choice of two homogeneous solutio
while the wave functions depend on the choice. In Sec.
the driven harmonic oscillator will be considered. In Sec. I
the system of a general quadratic Lagrangian in Eq.~1! will
be considered and some previous errors will be correc
The general system will be shown to be equivalent to
driven harmonic oscillator through a unitary transformatio
Section V will be devoted to a summary and discussions.
add an appendix to explain how to determine the time
pendent part of the kernel from the Schro¨dinger equation and
the initial condition.

II. THE HARMONIC OSCILLATOR
WITH TIME-DEPENDENT MASS AND FREQUENCY

In this section, we will apply our method to the harmon
oscillator without driving force. For this model the Lagran
ian is written as

LS5
1

2
M ~ t !ẋ22

1

2
M ~ t !w2~ t !x2. ~5!

The action~integral! from time ta to time tb is written as

S5E
ta

tb
Ldt, ~6!

which gives the equation of motion for the classical traje
tory of the model considered,

d

dt
~Mẋ̄!1M ~ t !w2~ t !x̄50. ~7!
-
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To find a simple expression for the classical action that is
integral along the classical trajectory, we can rewrite the
tion as

SS5
1

2
Mẋxu ta

tb2
1

2Eta

tb
xS d

dt
~Mẋ!1Mw2xD . ~8!

The classical action is then simply given as

Scl
S~a,b!5

1

2
M ~ tb!xbẋ̄b2

1

2
M ~ ta!xaẋ̄a , ~9!

where xa (xb) and ẋ̄a ( ẋ̄b) denote fixed end point and
dx̄/dt at t5ta (t5tb), respectively.

Suppose thatu(t) andv(t) are two linearly independen
real solutions of Eq.~7!, so thatx̄ can be written by a linear
combination of them. From the two linearly independent s
lutions, one can always findvs(t), a linear combination of
the two solutions which satisfiesvs(ta)50, so thatu(t) and
vs(t) are again two linearly independent solutions. One c
then easily find that the quantitiesVs andV defined as

Vs5M ~ t !@ v̇s~ t !u~ t !2u̇~ t !vs~ t !#,

V5M ~ t !@ v̇~ t !u~ t !2u̇~ t !v~ t !# ~10!

do not depend on time.
The x̄(t) with two fixed end pointsxa , xb can be written

as

x̄~ t !5xa

u~ t !

u~ ta!
1S xb2xa

u~ tb!

u~ ta! D vs~ t !

vs~ tb!
. ~11!

Making use of this expression ofx̄, one can rewrite the clas
sical action in Eq.~9! as

Scl
S~a,b!5

xa
2

2
M ~ ta!S 2

u̇~ ta!

u~ ta!
1

u~ tb!

u~ ta!

v̇s~ ta!

vs~ tb!
D

1
xb

2

2
M ~ tb!

v̇s~ tb!

vs~ tb!
1

xaxb

2
FM ~ tb!S u̇~ tb!

u~ ta!

2
u~ tb!v̇s~ tb!

u~ ta!vs~ tb!
D 2M ~ ta!

v̇s~ ta!

vs~ tb!
G . ~12!

The fact that classical dynamics are deterministic impl
thatScl is unique, as can be explicitly proved, first, one fin
that Scl

S does not depend on the scaling ofu(t) or vs(t) by
multiplying constant factors. Second, the classical action
Eq. ~12! is invariant under the substitution ofu(t) by u(t)
1Cvs(t) with an arbitrary constantC. These two observa
tions lead us to the conclusion thatScl

S does not depend on
the particular choice ofu(t) or vs(t) as long asvs(ta)50.

Then from the formula~3-51! of Ref. @13#, the kernel can
be written as

KS~b,a!5 expS i

\
@Scl

S~a,b!1DS~ ta ,tb!# D , ~13!
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where, as shown in the Appendix,D(ta ,tb) can be com-
pletely determined from the initial condition and the Sch¨-
dinger equation. Making use of the formulas in the Appe
dix, one can find the expression ofKS(b,a) in terms ofu and
vs as

KS~b,a!5AM ~ ta!

2p i\

v̇s~ ta!

vs~ tb!
expH i

2\
FM ~ ta!

3S 2
u̇~ ta!

u~ ta!
1

u~ tb!v̇s~ ta!

u~ ta!vs~ tb!
D xa

2

1M ~ tb!
v̇s~ tb!

vs~ tb!
xb

222xaxbM ~ ta!
v̇s~ ta!

vs~ tb!
G J .

~14!

Since the kernel is uniquely determined from the class
action, our argument on the uniqueness of the classical
tion implies thatKS(b,a) does not depend on the way o
choosingu(t) or vs(t).

To find the wave functions from the kernel following th
method of Ref.@15#, we define two functionsr(t) andz(t)
as

r~ t !5Au2~ t !1vs
2~ t !, ~15!

z~ t !5
u~ t !2 ivs~ t !

r~ t !
. ~16!

After a little algebra, one can find that the kernel can
written as

KS~b,a!5
1

Ap\
A Vs

r~ ta!r~ tb!

3 expF xa
2

2\
S 2

Vs

r2~ ta!
2 iM ~ ta!

ṙ~ ta!

r~ ta!
D

1
xb

2

2\
S 2

Vs

r2~ tb!
1 iM ~ tb!

ṙ~ tb!

r~ tb!
D G

3 (
n50

`
zn11/2~ tb!

2nn!
HnSAVs

\

xa

r~ ta!
D

3HnSAVs

\

xb

r~ tb!
D , ~17!

whereHn is thenth-order Hermite polynomial. From now o
the definition ofr(t) is modified asr(t)5Au2(t)1v2(t).
From the well-known fact that

K~xb ,tb ;xa ,ta!5(
n

cn~xb ,tb!cn* ~xa ,ta! for tb.ta ,

~18!

one can find thenth-order wave function:
-

l
c-

e

cn
S~x,t !5

1

A2nn!
S V

p\ D 1/4 1

Ar~ t !
S u~ t !2 iv~ t !

r~ t ! D n11/2

3e~x2/2\![ 2V/r2~ t !1 iM ~ t !ṙ~ t !/r~ t !]HnSAV

\

x

r~ t ! D ,

~19!

which satisfies the Schro¨dinger equation:

i\
]cn

S

]t
52

\2

2M ~ t !

]2cn
S

]x2 1
M ~ t !w2~ t !

2
x2cn

S . ~20!

The cn
S doesdepend on the choice of two homogeneous

lutions, and any set of two linearly independent solutions c
be used to construct the wave functions which satisfy
Schrödinger equation of Eq.~20!.

To have a physical interpretation of the fact that differe
choices of$u,v% may give different sets of wave function
$cn

S ,n50,1,2, . . . %, we consider the simplest case: th
simple harmonic oscillator whereM (t)5m0 and w(t)
5w0 . In this case, if we take$u,v% as $C cosw0t,Csinw0t%
with arbitrary nonzero constantC, then thecn

S reduces to the
usual stationary wave functions whose ground (n50) state
is given asc̃05(m0w0 /\p)1/4e2m0w0x2/2\. The choice of
$u,v% as $cosw0t,Csinw0t% with CÞ1, however, gives the
wave functions of the probability distribution pulsating
time passes.

In the general case, by definingg asg11 ig2, where

g15
V

\r2 and g252
M ṙ

\r
,

we can rewrite thec0
S as

c0
S5S g1

p D 1/4

exp@ id0~ t !#expS 1

2
gx2D , ~21!

with a real functiond0 of t. Therefore,c0
S is one of the wave

functions of the Gaussian pure states extensively studie
Ref. @16#. There, it has been shown that any Gaussian p
state is the eigenstate of a certain linear combination of
ation and annihilation operators. If we choose different cl
sical solutions, then we could have differentg. The studies
of Ref. @16# suggest that choosing different classical so
tions might amount to applying unitary transformations
the annihilation operator of the representation system.

III. DRIVEN HARMONIC OSCILLATOR

In this section we will consider the system described
the Lagrangian:

LF5
1

2
M ~ t !ẋ22

1

2
M ~ t !w2~ t !x21F~ t !x. ~22!

Let us denote the particular solution of Eq.~2! asxp(t), so
that xp(t) satisfies the equation

d

dt
~Mẋp!1M ~ t !w2~ t !xp5F~ t !.
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Then one can rewrite the Lagrangian as

LF5
1

2

d

dt
@M ~ t !~x2xp!~ ẋ2 ẋp!#1

d

dt
@M ~ t !ẋp~x2xp!#

2
1

2
~x2xp!S d

dt
@M ~ ẋ2 ẋp!#1Mw2~x2xp! D

1
1

2

d

dt
@Mẋpxp#1

d

dt
Yxp

~ t !, ~23!

whereY(t) is defined as

Yxp
~ t !5E

t0

t 1

2
xp~ t8!F~ t8!dt8, ~24!

with arbitrary constantt0 . The classical actionScl
F(a,b) from

time ta to tb can be written as

S̃cl
F~a,b;xp!5Scl

F~a,b!2DS1„xp~ t !,Yxp
~ t !…u ta

tb

5S 1

2
M ~ t !~ x̄2xp!~ ẋ̄2 ẋp!1M ~ t !ẋp~ x̄2xp! D U

ta

tb

.

~25!

By adding a homogeneous solutionCu(t)1Dv(t) to the
particular xp(t) with arbitrary constantsC and D, one can
have a new particular solutionxp8(t). By rewriting the clas-
sical action as

Scl
F~a,b!5E

ta

tbS 1

2

d

dt
~Mx̄ẋ̄!2

1

2

d

dt
~Mẋ̄xp!

1
1

2

d

dt
~Mẋpx̄!1

1

2
xpF Ddt, ~26!

one can easily find that the classical action doesnot depend
on the choice of particular solution. That is,
Scl
F~a,b!5S̃cl

F~a,b;xp!1DS1„xp~ t !,Yxp
~ t !…u ta

tb

5S̃cl
F~a,b;xp8!1DS1„xp8~ t !,Yx

p8
~ t !…u ta

tb . ~27!

Through the methods of the preceding section, one can
the end-point-dependent part of the classical action:

S̃cl
F~a,b;xp!5

M ~ ta!@xa2xp~ ta!#2

2
S 2

u̇~ ta!

u~ ta!
1

u~ tb!v̇s~ ta!

u~ ta!vs~ tb!
D

1
M ~ tb!@xb2xp~ tb!#2

2

v̇s~ tb!

vs~ tb!
2@xa2xp~ ta!#

3@xb2xp~ tb!#
M ~ ta!v̇s~ ta!

vs~ tb!
1M ~ tb!ẋp~ tb!xb

2M ~ ta!ẋp~ ta!xa . ~28!

The kernel can be written as@13#

KF~a,b!5 expS i

\
@Scl

F~a,b!1DF~ ta ,tb!# D
5 expS i

\
@S̃cl

F~a,b!1D̃F~ ta ,tb!# D . ~29!

Since theScl
F does not depend on the choice of the classi

solutions within the given restriction andDF is uniquely de-
termined from theScl

F , the kernel is again unique. For th
explicit evaluation, we require the particular solution to s
isfy xp(ta)50. In the notations of the Appendix,B andb are
then given as

B5
M ~ tb!

2

v̇s~ tb!

vs~ tb!
, ~30!

b52M ~ tb!xp~ tb!
v̇s~ tb!

vs~ tb!
2M ~ tb!ẋp~ tb!, ~31!

and the kernel is written as
KF~b,a!5AM ~ ta!

2p i\

v̇s~ ta!

vs~ tb!
expH i

2\Fxa
2M ~ ta!S 2

u̇~ ta!

u~ ta!
1

u~ tb!v̇s~ ta!

u~ ta!vs~ tb!
D 1@xb2xp~ tb!#2M ~ tb!

v̇s~ tb!

vs~ tb!
22xa@xb

2xp~ tb!#M ~ ta!
v̇s~ ta!

vs~ tb!
12M ~ tb!ẋp~ tb!xb22M ~ ta!ẋp~ ta!xa2M ~ tb!

v̇s~ tb!

vs~ tb!
xp

2~ tb!2E
ta

tbM ~ t !

vs
2~ t !

@xp~ t !v̇s~ t !

2 ẋp~ t !vs~ t !#2dtG J . ~32!

From the expression of the kernel in Eq.~32!, as in the preceding section, one can find thenth-order wave function as

cn
F~x,t !5

1

A2nn!
S V

p\ D 1/4 1

Ar~ t !
S u~ t !2 iv~ t !

r~ t ! D n11/2

expF @x2xp~ t !#2

2\
S 2

V

r2~ t !
1 iM ~ t !

ṙ~ t !

r~ t !
D G

3HnSAV

\

x2xp~ t !

r~ t ! D expH i

\FM ~ t !ẋp~ t !x2
M ~ t !

2

v̇~ t !

v~ t !
xp

2~ t !2
1

2Et0

t

M ~z!S xp~z!
v̇~z!

v~z!
2 ẋp~z! D 2

dzG J . ~33!
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In Eq. ~33!, $u,v% is the set of arbitrary linear-independe
homogeneous solutions, andxp is an arbitrary particular so
lution. The wave functions, again, depend on the way
choosing classical solutions and one can explicitly find t
these wave functions indeed satisfy the Schro¨dinger equa-
tion:

i\
]cn

F

]t
52

\2

2M ~ t !

]2cn
F

]x2 1
M ~ t !w2~ t !

2
x2cn

F2F~ t !xcn
F

5HFcn
F . ~34!

IV. THE GENERAL QUADRATIC SYSTEM

In this section we will consider the general quadratic s
tem described by the Lagrangian of Eq.~1!. As in the previ-
ous sections, one can find the end-point-dependent pa
the classical action:
d

o

f
t

-

of

S̃cl
G~a,b;xp!5

M ~ ta!@xa2xp~ ta!#2

2
S 2

u̇~ ta!

u~ ta!
1

u~ tb!v̇s~ ta!

u~ ta!vs~ tb!
D

1
M ~ tb!@xb2xp~ tb!#2

2

v̇s~ tb!

vs~ tb!
2@xa2xp~ ta!#

3@xb2xp~ tb!#
M ~ ta!v̇s~ ta!

vs~ tb!
1M ~ tb!ẋp~ tb!xb

2M ~ ta!ẋp~ ta!xa1M ~ tb!a~ tb!xb
2

2M ~ ta!a~ ta!xa
21b~ tb!xb2b~ ta!xa . ~35!

The only wayS̃cl
G is different fromS̃cl

F is the last four terms
on the right-hand side of Eq.~35!. Again, by requiring
xp(ta)50, one can evaluate the kernel in terms of classi
solutions;
KG~b,a!5AM ~ ta!

2p i\

v̇s~ ta!

vs~ tb!
expH i

2\Fxa
2M ~ ta!S 2

u̇~ ta!

u~ ta!
1

u~ tb!v̇s~ ta!

u~ ta!vs~ tb!
D 1@xb2xp~ tb!#2M ~ tb!

v̇s~ tb!

vs~ tb!

22xa@xb2xp~ tb!#M ~ ta!
v̇s~ ta!

vs~ tb!
12M ~ tb!ẋp~ tb!xb22M ~ ta!ẋp~ ta!xa

12M ~ tb!a~ tb!xb
222M ~ ta!a~ ta!xa

212b~ tb!xb22b~ ta!xa2M ~ tb!
v̇s~ tb!

vs~ tb!
xp

2~ tb!

2E
ta

tbS 22 f ~ t !1
M ~ t !

vs
2~ t !

@xp~ t !v̇s~ t !2 ẋp~ t !vs~ t !#2DdtG J , ~36!
.

on.

ju-
whose difference fromKF(b,a) is just from the above-
mentioned four terms and an integral off. As in the previous
sections, one can prove that this kernel does not depen
the method of choosing classical solutions.

The nth-order wave functioncn can be found from the
kernel as

cn
G~x,t !5

1

A2nn!
S V

p\ D 1/4 1

Ar~ t !
S u~ t !2 iv~ t !

r~ t ! D n11/2

3 expS i

\
$M ~ t !a~ t !x21@M ~ t !ẋp~ t !1b~ t !#x% D

3expF @x2xp~ t !#2

2\
S 2

V

r2~ t !
1 iM ~ t !

ṙ~ t !

r~ t !
D G

3HnSAV

\

x2xp~ t !

r~ t ! D expS i

\H 2
M ~ t !

2

v̇~ t !

v~ t !
xp

2~ t !

1E
t0

t F f ~z!2
M ~z!

2
S xp~z!

v̇~z!

v~z!
2 ẋp~z! D 2GdzJ D .

~37!

Again, $u,v% is the set of arbitrary linear-independent hom
on

-

geneous solutions, andxp is an arbitrary particular solution
One can explicitly apply the Schro¨dinger equation to these
wave functions, to find that they indeed satisfy the equati

In the Lagrangian of Eq.~1!, the conjugate momentump
of the coordinatex is written asp5Mẋ12Max1b. One
may interpretxp as the classical coordinate, and the con
gate momentum is then written as

pp5Mẋp12Maxp1b. ~38!

As in Sec. II, we defineg8 asg181 ig28 where

g185g1 and g2852
M

\
S 2a1

ṙ

r
D .

Then, the wave functioncn
G can be simply written as

cn
G~x,t !5

1

A2nn!
S g1

p D 1/4

eid~ t ! expS 2
g8

2
~x2xp!2

1
i

\
xppDHn„Ag1~x2xp!…, ~39!
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whered(t) is a real function oft. The wave functions agre
with those in Ref.@11# except for the fact thatd(t) is real,
which is necessary for the conservation of total probabi
*cn

G* cn
Gdx. The expression ofcn

G in Eq. ~39! shows thatc0
G

is a wave function of a Gaussian pure state@16#, so the
discussions of Sec. II are still valid in the general case.

With the wave functions, one can calculate the expec
tion values of operators, and the uncertainty relations re

m^~Dx!2&m m̂ ~Dp!2&m

5~m^x2&m2 m^x&m
2 !~ m^p2&m2 m^p&m

2 !

5S m1
1

2D 2

\2S 11
1

V2~2Mar21Mrṙ!2D , ~40!

m11^~Dx!2&m m11^~Dp!2&m

5
1

A2
S ~m11!\

V D 3/2

~u1 iv !3S 2A2Vxp

A~m11!\~u1 iv !
21D

3S 2Ma1M
ṙ

r
1 i

V

r2D Fpp2
1

2
A~m11!\

2V
~u1 iv !

3S 2Ma1M
ṙ

r
1 i

V

r2D G , ~41!

m12^~Dx!2&m m12^~Dp!2&m

5~m12!~m11!S \

2V D 2

~u1 iv !4S2Ma1M
ṙ

r
1 i

V

r2D 2

,

~42!

with the notation n^O&m5*2`
` cn

G* (x,t)Ocm
G(x,t). If we

takeu5r cosu andv5r sinu, thenV5Mr2u̇ and the func-
tions r(t), u(t) should satisfy

ü12
ṙ

r
u̇1

Ṁ

M
u̇50,

r̈1
Ṁ

M
ṙ2ru̇21w2r50.

With these notations, the uncertainty relations in Eqs.~40!–
~42! are written as

m^~Dx!2&m m̂ ~Dp!2&m5S m1
1

2D 2

\2F11
1

u̇2S 2a1
ṙ

r
D 2G ,

~43!
y

-

m11^~Dx!2&m m11&~Dp!2&m

5
~m11!2

4
\2e4iu

1

u̇2S 12
2A2M u̇

A~m11!\
xpe2 iuD

3S 2a1
ṙ

r
1 i u̇ D

3S 2a1
ṙ

r
1 i u̇2

2A2u̇

A~m11!M\
ppe2 iuD ,

~44!

m12^~Dx!2&m m12^~Dp!2&m

5
~m11!~m12!

4
\2e4iu

1

u̇2S 2a1
ṙ

r
1 i u̇ D 2

,

~45!

respectively. The uncertainty relations of Eqs.~43! and ~45!
exactly agree with those of Ref.@11#, but the uncertainty
relation of Eq.~44! differs from the corresponding one ther

The terms which do not affect the classical dynamics
the model in Eq.~1! can be written asL2LF. The effects of
those terms on the wave functions could simply be rep
sented by writingcn

G as

cn
G~x,t !5 expF i

\E
t

~L2LF!S x,
dx

dz
,zDdzGcn

F~x,t !.

~46!

This relation suggests thatcn
G can be obtained fromcn

F by
acting unitary operatorU;

U5 expF i

\
S M ~ t !a~ t !x21b~ t !x1E t

f ~z!dzD G . ~47!

By defining operatorOF ,OG as

OF52 ih
]

]t
1HF , OG52 ih

]

]t
1H, ~48!

one may find the relation

UOFU†5OG , ~49!

which proves that the Schro¨dinger equation of the genera
quadratic system is equivalent to that of the driven harmo
oscillator through the unitary transformation.

V. SUMMARY

The Feynman and Hibbs formulation~or an observation!
on the quadratic Lagragian system gives a good explana
of the fact that the quantum wave function can be written
terms of solutions of the classical equation of motion.
developing the observation, we find the kernel and wa
functions of the general quadratic system in terms of cla
cal solutions. Furthermore, the kernel is shown to
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be independent of the choice of classical solutions. Th
results are then used to show that the general quadratic
tem is equivalent to the driven harmonic oscillator throug
unitary transformation. This fact@17# shows that unitary
transformation~or, canonical transformation, its classic
correspondent! could make the problem simpler or mo
complicated, and could change the uncertainty relations a
Eqs.~40!–~42!.

APPENDIX

In this appendix, it will be shown that, if

K~a,b!5 expS i

\
~Axa

21Bxb
21hxaxb1axa1bxb1s! D ,

~A1!

whereA, B, h, a, andb are already known functions o
ta ,tb , then the functions(ta ,tb) is uniquely determined
from the initial condition and Schro¨dinger equation. For the
system of the Hamiltonian given in Eq.~3!, the kernel should
satisfy the Schro¨dinger equation:

i\
]

]tb
K5F 1

2M ~ tb!S \

i

]

]xb
D 2

22a~ tb!
\

i
xb

]

]xb

1
M ~ tb!c~ tb!

2
xb

22
b~ tb!

M ~ tb!

\

i

]

]xb
1d~ tb!xb

1S b2~ tb!

2M ~ tb!
2 f ~ tb!1 i\a~ tb! D GK, ~A2!

which gives the following differential equations:

]A

]tb
52

h2

2M ~ tb!
, ~A3!

]B

]tb
52

2B2

M ~ tb!
14a~ tb!B2

M ~ tb!c~ tb!

2
, ~A4!

]h

]tb
52

2Bh

M ~ tb!
12a~ tb!h, ~A5!

]a

]tb
52

hb

M ~ tb!
1

b~ tb!

M ~ tb!
h, ~A6!
ev

ce
se
ys-
a

in

]b

]tb
52

2Bb

M ~ tb!
12a~ tb!b12

b~ tb!

M ~ tb!
B2d~ tb!, ~A7!

]s

]tb
52

\

i

B

M ~ tb!
2

b2

2M ~ tb!
1

b~ tb!

M ~ tb!
b

2
b2~ tb!

2M ~ tb!
1 f ~ tb!2 i\a~ tb!. ~A8!

With the explicit expressions ofA, B, h, a, and b, one
may check that Eqs.~A3!–~A7! are satisfied. For example, i
the general quadratic system considered in Sec. IV,B is
given asB(ta ,tb)5@M (tb)/2#@ v̇s(tb)/vs(tb)#1M (tb)a(tb),
which satisfies Eq.~A4!.

s(ta ,tb) can be determined from Eq.~A8! up to a function
g(ta ,t0);

s~ ta ,tb!5g~ ta ,t0!2
\

i Et0

tb B

M ~ t !
dt2E

ta

tbS b2

2M ~ t !
2

b~ t !

M ~ t !
b

1
b2~ t !

2M ~ t !
2 f ~ t !1 i\a~ t ! Ddt. ~A9!

A wave functionc satisfies the integral equation

c~xb ,tb!5E
2`

`

K~xb ,tb ;xa ,ta!c~xa ,ta!dxa . ~A10!

In the limit of tb→ta , the classical action approaches

M ~ ta!

2~ tb2ta!
~xb2xa!2.

In order that the relation of Eq.~A10! be satisfied in the
limit, the kernel should satisfy the relation

K~b,a!→A M ~ ta!

2p i\~ tb2ta!
expS iM ~ ta!

2\~ tb2ta!

3~xa2xb!2D as tb→ta . ~A11!

This initial condition determines theg uniquely.
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