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Exact quantum states of a general time-dependent quadratic system from classical action

Dae-Yup Sony
Department of Physics, Sunchon National University, Sunchon 540-742, Korea
(Received 21 September 1998

A generalization of a driven harmonic oscillator with time-dependent mass and frequency, by adding total
time-derivative terms to the Lagrangian, is considered. The generalization, which gives a general quadratic
Hamiltonian system, does not change the classical equation of motion. Based on the observation by Feynman
and Hibbs, the propagatofg&ernels of the systems are calculated from the classical action, in terms of
solutions of the classical equation of motion: two homogeneous solutions and one particular solution. The
kernels are then used to find wave functions that satisfy the 8iclyer equation. One of the wave functions
is shown to be that of a Gaussian pure state. In every case considered, we prove that the kernel does not depend
on the way of choosing the classical solutions, while the wave functions depend on the choice. The generali-
zation, which gives a rather complicated quadratic Hamiltonian, is simply interpreted as applying unitary
transformation to the driven harmonic oscillator system in the Hamiltonian formulation.
[S1050-294®9)01704-7

PACS numbsg(s): 03.65.Ca, 03.65.Bz, 03.65.Db, 03.65.Ge

I. INTRODUCTION wherew?(t), F(t), a(t), b(t), andf(t) are arbitrary real

Time-dependent quantum-mechanical systems continue fgnctions oft and M(t) is also arbitrary real but always
be of great interest. In particular, the system described by apositive. The last three terms in the right hand side of(p.
explicit time-dependent quadratic Hamiltonian has attractedi@ave no effect in classical dynamics and the classical trajec-
considerable attention. One of the typical examples is the¢ory x of the coordinatex will satisfy the equation
harmonic oscillator with time-dependent mass and/or fre-
guencies. Those studies have many applications such as in
guantum opticg1], Paul trap[2], and the analyses of quan- — —
tum fields in curved space-timg8], and they are closely ﬁ(MXHM(t)WZ(t)X:F(t)' )
related to the theory of quantum dissipatiah.

In the Hamiltonian formulation of a time-dependent har-
monic oscillator, Lewis and RiesenfeldR) [5,6] have The most general solution of this differential equation may
shown that a quantum-mechanically invariant operator existse composed of a particular solution and two linearly inde-

whose exact form is determined by an aUXiIiary fUnCtion.pendent homogeneous solutions. The Correspond'u’@_
The invariant operator can then be used to find exact wavgm Hamiltonian may be written as

functions of quantum states. During the past several years,
this LR method has been widely used for the study of general
guadratic Hamiltonian systemig—11]. For the harmonic os- n2 1 o b(t) .
cillator with time-dependent mass and frequency, the wave H= —a(t)[px+xp]+ = M(t)c(t)x>— ——p
functions and the kernelpropagator have been found 2M(t) 2 M(t)
[7,8,11]. Through the Heisenberg-picture approachetlal.
[9] have refined the derivation, and the wave functions are +d(t)§<+
given. The Heisenberg-picture approach has then been used
[10], with successive unitary transformatidrd, to find ex-
act wave functions of the general quadratic Hamiltonian sys-
tem. The auxiliary functions in the LR method were de-WNere
fined through differential equations related to the equation of
motion. We also note that the LR method can be applied to
more general systenj&2].

In this article, we will study the quadratic system in the
Lagrangian formulation of Feynman and Hibpk3]. The
Lagrangian we will consider is (4)

b2(t)

2M (1) — O

: ()

.M
c(t)=w?+4a’—2a— 25a,

1 1 d
L==M(t)x?>— = M(t)W?(t)x?+ F(t)x+ —[M(t)a(t)x?] ,
2 2 dt d(t)=2ab—b—F.

d
+ = [b(t)x]+ (1), 1
dt[ O]+ @ In the sense of the differentiation of the operator in R&4],

the quantum equation of motion for the operatois again
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d y s To find a simple expression for the classical action that is the
gt (MX)+MOWIOX=F(1). integral along the classical trajectory, we can rewrite the ac-
tion as

Feynman and Hibbs have shown that the coordinate- 1 1t [d

dependent part of the kernel is determined from the classical SS:_ka|tb— —f x(—(M)k)+ szx) . (8)
action (Chaps. 3-5 of Ref[13]). In this article, it will be 2 fa 2 dt

shown that the remaining part of the kernel for the system

will be completely determined from the Schinger equa- The classical action is then simply given as

tion and the initial condition which the kernel should satisfy.
In this way the kernel for the system of E¢l) will be
evaluated. By the method of Rdfl5], the wave functions
will then be evaluated from the kernel. This Lagrangian for-
mL_IIatipn has a clear advantage over the Hgmiltoni_an formughere Xy (xp) and ;a (';b) denote fixed end point and
lation in showing how the last three terms in the right handd?/dt att=t, (t=t,), respectively

side of Eq.(1) which have no effect on classical dynamics S étlhau tb ’ do(t t. i v ind dent
affect the wave functions. The classical action will be evalu- uppo§e (t) ando(t) are two meary n epep en
ated in terms of the two linearly independent homogeneout€al solutions of Eq(7), so thatx can be written by a linear
solutions and one particular solution, and so are the kernélombination of them. From the two linearly independent so-
and the wave functions. We will prove that the kernels dolutions, one can always findy(t), a linear combination of
not depend on the way of choosing the classical solutionghe two solutions which satisfies(t,) =0, so thatu(t) and
while the wave functions areot unique and depend on the Us(t) are again two linearly independent solutions. One can
choice of the classical solutions. By comparing with the re-then easily find that the quantitiés; and() defined as

sults on the Gaussian pure states of R&@], it is suggested

1 — 1 —
Sai(a,b) = S M(tp) XpXp— 5 M (ta)XaXa, 9

that choosing different classical solutions might amount to Qs=M(D)[v(t)u(t) —u(t)vg(t)],
applying unitary transformations to the annihilation operator.
In the next section, we will consider the harmonic oscil- Q=M)[v(t)u(t)—u(t)v(t)] (10)

lator with time-dependent mass and frequency, mainly to ex-

pose our method. It will also be shown that the kernel doegjo not depend on time.
not depend on the choice of two homogeneous solutions
while the wave functions depend on the choice. In Sec. llI
the driven harmonic oscillator will be considered. In Sec. 1V,

' The?(t) with two fixed end point,, X, can be written
as

the system of a general quadratic Lagrangian in @&gwill o u(t) u(ty)) va(t)
be considered and some previous errors will be corrected. X(t)=Xa—+( b— a—b)s—. (11
The general system will be shown to be equivalent to the u(ta) U(ta) /vs(to)

driven harmonic oscillator through a unitary transformation. _
Section V will be devoted to a summary and discussions. Wélaking use of this expression a&f one can rewrite the clas-
add an appendix to explain how to determine the time desical action in Eq(9) as
pendent part of the kernel from the Sctiimger equation and , . _
the initial condition. SS(ab) - éM(ta)( _u(ta) | u(ty) Us(ta))
2 u(ta)  u(ty) vg(ty)

1. THE HARMONIC OSCILLATOR

) . )
- X vt XX u(t
WITH TIME-DEPENDENT MASS AND FREQUENCY N ?bM(tb) sEtb; N az b[ M(tb)( Uitb;
In this section, we will apply our method to the harmonic Ustl a
i(;SnCIiléa\t/\?rrit\tlg:]hggt driving force. For this model the Lagrang- B U(tb)bs(tb) e )l}s(ta) 1
u(ta)vs(tb) a Us(tb) -
1 01 . . o
LszzM(t)xz—EM(t)wz(t)xz. (5) The fact that classical dynamics are deterministic implies

that S is unique, as can be explicitly proved, first, one finds
that Sf| does not depend on the scalingudft) or vg(t) by
multiplying constant factors. Second, the classical action in
. Eq. (12) is invariant under the substitution of{t) by u(t)

S= f det, (6) + Cug(t) with an arbitrary constant. These two observa-

ta tions lead us to the conclusion th&} does not depend on
the particular choice ofi(t) or vg(t) as long aw¢(t,)=0.

which gives the equation of motion for the classical trajec- Then from the formuld3-51) of Ref.[13], the kernel can
tory of the model considered, be written as

The action(integra) from timet, to timet, is written as

d == 2+ \v - s i S S
a(Mx)%—M(t)w (t)x=0. (7) K>(b,a)= exr<g[sc,(a,b)+D (ta, tp) ]/, (13
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where, as shown in the Appendi®(t,,t,) can be com- 4 q /u(t)—iv(t) n+1/2
pletely determined from the initial condition and the Sehro 1//S(X,t)=—(— )
dinger equation. Making use of the formulas in the Appen- " 2\ 7] ool p()

dix, one can find the expression§f(b,a) in terms ofu and

v as Xe(lezm[n/p%t)ﬂM(t)b(t)/p(t)]Hn( \F X )

Q

i p(t)
M(t,) vt i (19
KS(b,a) = /o a) vslta) exr{—[M(ta) |
2mifi vg(ty) 2h which satisfies the Schdinger equation:
U(ta) | U(ty)vs(t) s n2 PYS M(HwA(t
(_ ta 4 t Sta Xg iﬁﬂ:— lﬁszr () ()szS. (20)
u(ta) u(tavs(ty) at 2M(t) ox 2 n
vs(ty) 2 ‘-’s(ta)} The ¢ doesdepend on the choice of two homogeneous so-
+ — —_— n
M (tb)vs(tb) Xp~ 2XaXoM (ta)vs(tb) lutions, and any set of two linearly independent solutions can

(14) be u"se_d to construct the wave functions which satisfy the
Schralinger equation of Eq20).
To have a physical interpretation of the fact that different
oices of{u,v} may give different sets of wave functions
?}pﬁ,n=0,1,2 ...}, we consider the simplest case: the
simple harmonic oscillator whereM (t)=m, and w(t)
=wj. In this case, if we takéu,v} as{C coswgt,C sinwgt}
with arbitrary nonzero constaf, then they; reduces to the

Since the kernel is uniquely determined from the classicakh
action, our argument on the uniqueness of the classical a
tion implies thatkS(b,a) does not depend on the way of
choosingu(t) or vg(t).

To find the wave functions from the kernel following the
method of Ref[15], we define two functiong(t) andz(t)

as usual stationary wave functions whose ground=Q) state
is given asiy= (MW, /7 m) Ve MWo<*/2t  The choice of
:\/ﬁ {u,v} as{cpswot,Csmwot} Wlth__Caﬁl_, h_owe_ver, gives the
p(H=VUT(O) +u5(0), (15 wave functions of the probability distribution pulsating as
_ time passes.
_u®—ivg() In the general case, by definingas y;+ivy,, where

(0 (16)

After a little algebra, one can find that the kernel can be

written as . s
we can rewrite the)y as

KS(b,a)= 1 Qs l/,sz(ﬁ>1/4e><|g[i5(t)]exy{1 xz) (21)
Tk Y oe(ta)p(ty) o\ 0 27 )

a
x2 O p(ty) with a real functions, of t. Therefore 43 is one of the wave
X OB T oA )_'M (ta)p(t ) functions of the Gaussian pure states extensively studied in
2 2 Ref.[16]. There, it has been shown that any Gaussian pure
X2 Qs . p(tp) state is the eigenstate of a certain linear combination of cre-
+ ETARE thb)JrlM (tb)m ation and annihilation operators. If we choose different clas-
sical solutions, then we could have different The studies
SPLLETETN \/(TS X, qf Ref. _[16] suggest that cho_osing _different classicql solu-
2 " on n m () tions might amount to applying unitary transformations to
n=0  2'n! Pila the annihilation operator of the representation system.
Qs Xp
XH, pr(tb))’ a7 Il. DRIVEN HARMONIC OSCILLATOR

In this section we will consider the system described by
whereH, is thenth-order Hermite polynomial. From now on the Lagrangian:

the definition of p(t) is modified asp(t) = Ju?(t)+ov2(t).

From the well-known fact that LF=%M(t)$<2— %M(t)wz(t)x2+ F(t)x. (22)
K(Xp o i Xa ta) = 2 thn(Xp o) % (Xa,ta) fOr ty>ty, Let us denote the particular solution of B@) asx(t), so
n thatx,(t) satisfies the equation

(18

d
2 oms 2011 —
one can find theath-order wave function: gt (MXp) T MOWA(D)X,=F (V).
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Then one can rewrite the Lagrangian as SE,(a,b)=§E|(a,b;xp)+ASl(x (t),Y (t))|:b
1d d : ~
LF= 2 dt[M(t) (X— Xp)(x Xp)]+ t[M(t)Xp(X_Xp)] = E|(a,b;X"))+ASl(X';(t),YXl')(t))|:2- (27)
1 d . ) Through the methods of the preceding section, one can find
— 5 (x=Xp)| G IM(X=Xp) ]+ MW (X=Xy) the end-point-dependent part of the classical action:
L 1d d . M(ta)[Xa=Xp(ta) 12 U(ta)  U(ty)o(ta)
Sy(a,b;x,)= - +
+ 2 @Ml g Va0, @9 Sa(@bp) 2 | T Ut " Utusty)
is defi M (tp)[ Xp—Xp(tp) 12 vs(t
whereY(t) is defined as N (tp)[Xp—Xp(tp) = vs(ty) e xg(te)]
t1 2 vs(tp)
Ytzf—xt’Ft’dt’, 24 -
Xp( ) '[0 2 p( ) ( ) ( ) M(ta)vs(ta) .
X[Xb_xp(tb)]T+M(tb)xp(tb)xb
with arbitrary constant,. The classical actioSE,(a,b) from stb
time t, to t, can be written as - M(ta)kp(ta)xa. (28
’é(';(ayb;xp):S(';(ayb)_Asl(xp(t),Yxp(t))Hb The kernel can be written 44 3]
i
1 _ o o th KF(a,b)= ex;{g[sg(a,b)JrDF(ta,tb)])
= (EM(t)(x—xp)(x—xp)Jr M (1) Xp(X—Xp) t
a i -
(25) = ex;{#sg(a,b) +DF(t, Jb)]) . (29

By adding a homogeneous solutidu(t) +Duv(t) to the  Since theS; does not depend on the choice of the classical
particularxp(t) with arbitrary constant& and D, one can  solutions within the given restriction aid’ is uniquely de-
have a new particular solutiaxj,(t). By rewriting the clas-  termined from theSf;, the kernel is again unique. For the

sical action as w1 d 1d explicit evaluation, we require the particular solution to sat-
S(ab)- b( 9 M- (Mxxp) isfy x,(ta) =0. In the notations of the AppendiB and3 are
t, | 2 dt 2 dt then given as

L _ M(ty) v(ty)
—(MxpX)+ = xF)dt (26) 2 vg(tp)’

B=—M(t)xp(ty) 5 os{ls) ~M(tp)Xp(tp), (3

1 (30
2 dt

one can easily find that the classical action doesdepend s(tp)
on the choice of particular solution. That is, and the kernel is written as
|
IM(ta) v(ta) i Ut | U(ty)o(ta) v(tn)
F — 2
DTN vilty) exp{ 25| * M(ta)( Gt " Utog(ty)) Do M), G =2l
s( a) s( b) 2
Xplt) IM (ta) =5+ 2M (t5) X t5) X0 = 2M () Xp(ta)Xa ™ M (to) =5 X3 to) — f . Sm os(t)
—xp(t)vs(t)]ZdtH. (32

From the expression of the kernel in E§2), as in the preceding section, one can find rile-order wave function as

SN (g)l"‘ 1 /u(t)—iv(t))”“’z p[[x—xpmz/_ 0 p()”
N s = BTy Y 2 |2 ™MV
Qx—xy(t) i . M(t) v(t) v(2) . 2
XH, \/; s )exp{% M(B)%p(t)x= 5= X S()——fOM<z)(xp<z>@—xp<Z>) dZ]- (33
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In Eq. (33), {u,v} is the set of arbitrary linear-independent
homogeneous solutions, arg is an arbitrary particular so-

M(ta)[xa_xp(ta)]z/ _ l.'I(ta) u(tb)i}s(ta)

S5(a,bixy) =

lution. The wave functions, again, depend on the way of 2 | u(ta) © u(ta)og(ty)

choosing classical solutions and one can explicitly find that _ 2

these wave functions indeed satisfy the Sdimger equa- L Mt)DXp=Xp(tp)]” vs(tp) e xo(t)]

tion: 2 vs(lp) P
L B P MwA i (o Mvsta)
ih—t == TR 5 —F(t)xyf, [Xp=Xp(tp)] o(ty) (tp)Xp(tp)Xp

—Heyf (34) —M(t2)Xp(ta)Xa+ M(tp)a(ty)xp
—M(ta)a(ta)x5+b(ty)Xp—b(ta)Xs.  (35)

IV. THE GENERAL QUADRATIC SYSTEM

In this section we will consider the general quadratic sys-The only wayS; is different fromS} is the last four terms

tem described by the Lagrangian of Ed). As in the previ-
ous sections, one can find the end-point-dependent part
the classical action:

on the right-hand side of Eq35). Again, by requiring
of(t;) =0, one can evaluate the kernel in terms of classical
solutions;

[M(ta) ve(ta) | o U(ta)  u(tp)vs(ts) vs(tp)
KEb.2)= N i vs<tb>exp{ M“a)( 0t | Utoalty) | DX M) G

—2Xa[Xp = Xp(tp) IM (1) E f";+2M< ) Xp(t6) X~ 2M (t2)Xp(ta)Xa

+ 2M (tp)a(ty) X~ 2M (ta)a(ta) X5 + 2b(th)Xp— 2b(ta) Xa = M(tp) === Sﬁtb; X(to)

—ftb(—Zf t)+M(t) t)v(t) —Xp(t)v(t Z)dt
t ( m[xp( Jus( Xp( vs(t)] )

whose difference fromKF(b,a) is just from the above-
mentioned four terms and an integralfofAs in the previous

(36)

geneous solutions, ang, is an arbitrary particular solution.
One can explicitly apply the Schdnger equation to these

sections, one can prove that this kernel does not depend amave functions, to find that they indeed satisfy the equation.

the method of choosing classical solutions.
The nth-order wave functiony,, can be found from the
kernel as

0= 1 (9)1’4 1 /u(t)—iu(t))”“’2
(% 2\ mh) ool p(b)

x exp(%{M<t>a<t>x2+[M<t>'xp<t>+bﬂﬂx})

X0 0 p(t)
& p[ 2h | A (’pa)”
Qx—Xy(t) i M@)ot
e N ] M e
B M (z) z}(z) - T )
fto f(2) (xp(z)v(—z) xp(z)> dz] .
(37

Again,{u,v} is the set of arbitrary linear-independent homo-

In the Lagrangian of Eq.l), the conjugate momentum

of the coordinatex is written asp= Mx+2Max+b. One
may interpretx, as the classical coordinate, and the conju-
gate momentum is then written as

pp=Mx,+2Max,+b. (38)

As in Sec. Il, we definey’ asy;+ivy; where

2a+ d
p

y1=71 and y;=— o
Then, the wave functiord/,? can be simply written as

1

G = —
() 2“n!(
+ ;—xpp) Ha(V71(x=Xp))

v

(39
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where§(t) is a real function ot. The wave functions agree

with those in Ref[11] except for the fact thab(t) is real,

which is necessary for the conservation of total probability

JyS* ySdx. The expression af¢ in Eq.(39) shows thais§
is a wave function of a Gaussian pure sthi®], so the
discussions of Sec. Il are still valid in the general case.

With the wave functions, one can calculate the expecta-
tion values of operators, and the uncertainty relations read

m{ (A% o (AP)P)
:(m<X2>m_ m<X>ﬁ1)( m<p2>m_ m<p>§1)
2 1 .
=|m+3 72 1+Q—2(2Map2+ Mpp)z), (40)

m+1{(A%)) m me 21((AP)%)m

1[{(m+1)A\32 2\20x,
Y (e T .,
NARERY J(m+1)A(u+iv)

X

Q 1 [(meDh
{pp—z T(U-HU)

2Ma+M£+i—2
p p

p O
X|2Ma+M—=+i—
PP

} , (41)

m+2<(AX)2>m m+2<(Ap)2>m

2 2

(u+iv)?

p Q
2Ma+M=+i—
p P

=(m+2)(m+1)(%

(42

with the notation ,(O)m=J" . S* (x,1)0yS(x,1). If we
takeu= p cosd andv = p sin 6, thenQ =M p?6 and the func-
tions p(t), 6(t) should satisfy

é+2b'a+M'a—o
PAARTR

M
pt Mp—p@ +wp=0.

With these notations, the uncertainty relations in E¢6)—
(42) are written as

2 2

#? 2a+?
p

i1 14 =
m E E

m<(AX)2>m m<(Ap)2>m:

(43
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m+1{(2) ) i me 1) (AP) )

) .
(M1 o e[, 2V2Me xe‘“’)
4 62 Jm+1D)n "
x| 2a+ 2 +id
o . 226
x| 2a+ 2 +ip- pee '’
(m+1)M#A
(44)
m+2<(AX)2>mm+2<(Ap)2>m
. 2
m+1)(m+2 1 .
=¢ﬁ2e4'9.— 2a+2+id]
4 6? p
(45

respectively. The uncertainty relations of E¢83) and (45)
exactly agree with those of Ref.11], but the uncertainty
relation of Eq.(44) differs from the corresponding one there.

The terms which do not affect the classical dynamics of
the model in Eq(1) can be written a —L". The effects of
those terms on the wave functions could simply be repre-
sented by writingy$ as

Yr(x,b).
(46)

wﬁ'(x,t)= exp{;i—ft(L—LF)(x,gl;,z)dz

This relation suggests thatS can be obtained frony| by
acting unitary operatod;

U= exp{;i— M(t)a(t)x?+b(t)x+ ftf(z)dz> . (47
By defining operato©Og,O¢ as
OF=—ih£+HF, OG=—ihi+H, (48)
at ot
one may find the relation
UOrUT=0g, (49

which proves that the Schdimger equation of the general
quadratic system is equivalent to that of the driven harmonic
oscillator through the unitary transformation.

V. SUMMARY

The Feynman and Hibbs formulatigor an observation
on the quadratic Lagragian system gives a good explanation
of the fact that the quantum wave function can be written in
terms of solutions of the classical equation of motion. By
developing the observation, we find the kernel and wave
functions of the general quadratic system in terms of classi-
cal solutions. Furthermore, the kernel is shown to be
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be independent of the choice of classical solutions. These
results are then used to show that the general quadratic sys- ki
tem is equivalent to the driven harmonic oscillator through a

unitary transformation. This facfl7] shows that unitary
transformation (or, canonical transformation,

Egs. (40)—(42).

APPENDIX

In this appendix, it will be shown that, if

[
K(a,b)= ex% %(Ax§+ BX2+ hXaXp+ aXa+ BX,+ s)) ,
(A1)

whereA, B, h, «, andp are already known functions of
t.,tp, then the functions(t,,t,) is uniquely determined
from the initial condition and Schdinger equation. For the
system of the Hamiltonian given in E(), the kernel should
satisfy the Schidinger equation:

g [ 1 a\? ) hod
G K oM\ T axg) 22T X050
M(tp)c(ty) , b(tp) A 4
+ 5 Xp— M (ty) I_ (9_)(b+ d(ty)Xp
b*(ty) f(ty)+i% A2
Mty (tp) +ifa(t,) (A2)
which gives the following differential equations:
A h? A3
My 2M(t)’ (A3)
iB 2B2 M (t,)c(tp)
Ib__m—i_‘la(tb)B_T, (A4)
&h— 2Bh ——+2a(ty)h, A5
Wb_ M(tb) a( b) ( )
Ja hﬂ b(tb)
—=- + A6
Mo Mty ' M(t) (A9)

DAE-YUP SONG

its classical
correspondentcould make the problem simpler or more
complicated, and could change the uncertainty relations as in
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B 2B b(ty)
o ML) +2a(tb),8+2M(t )B d(ty), (A7)
gs h B B? b(ty)
aty i M(ty) 2M(ty)  M(ty)
b?(tp) i
- ZM(tb) +f(tb)_|ﬁa(tb). (A8)

With the explicit expressions oA, B, h, «, and g, one
may check that Eq$A3)—(A7) are satisfied. For example, in
the general quadratic system considered in Sec.B\s
given asB(t,,tp) =[ M (ty)/2][vs(th)/vs(ts) ]+ M(tp)a(ty),
which satisfies Eq(A4).

s(t,,tp) can be determined from EGA8) up to a function

g(tavtO);

B (i B [ B b(t)
S(taltb)_g(tavto) i jto M(t) dt ﬁa (ZM(t) M(t)
b(t) :
+2M(t)—f(t)+|ﬁa(t) dt (A9)

A wave functiony satisfies the integral equation

W00t = | KOty e )06 ) (ALO

In the limit of t,—t,, the classical action approaches

M(ta)
Z(tb_ta) (Xb_xa)z-

In order that the relation of E/A10) be satisfied in the
limit, the kernel should satisfy the relation

M(ta)
Kb.a) =\ ot =t ¢ p(Zh(tb )

2
X (Xa_ Xb)

as tp,—t,. (A11)

This initial condition determines thg uniquely.
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