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It is shown that a unique measure wflumeis associated with any statistical ensemble, which directly
guantifies the inherent spread or localization of the ensemble. It is applicable whether the ensemble is classical
or quantum, continuous or discrete, and may be derived from a small number of theory-independent geometric
postulates. Remarkably, this uniqemsemble volumé proportional to the exponential of the ensemble
entropy, and hence provides an interesting geometric characterization of the latter quantity. Applications
include unified volume-based derivations of results in quantum and classical information theory, a precise
geometric interpretation of thermodynamic entropy for equilibrium ensembles, a geometric derivation of semi-
classical uncertainty relations, a means for defining classical and quantum localization for arbitrary evolution
processes, and a proposed definition for the spot size of an optical beam. Advantages of ensemble volume over
other measures of localizatidnoot-mean-square deviation, Renyi entropies, and inverse participatioh ratio
are discussedS1050-294{09)08203-7

PACS numbe(s): 03.65.Bz, 03.67a, 05.45-a, 42.60.Jf

I. INTRODUCTION arguments involving ratios of phase space volurfigd],
which in some cases turn out to be exact. This raises the

This paper has two main goals. The first is to demonstratguestion of whether there is some general measure of volume
that, for any ensemble, whether classical, quantum, discretghich can be used to derive rigorous information bounds for
or continuous, there is essentially ordype measure of the the general case. This question is answered affirmatively
“volume” occupied by the ensemble which is compatible here, and a unified derivation of the classical Shannon and
with basic geometric notions. Thesemble volumis thus a  the quantum Holevo information bounds is given, based on
preferred and universal choice for characterizing what issimple volume properties.
variously referred to as the spread, dispersion, uncertainty, or There are also a number of connections which have been
localization of an ensemble. made previously between volume and entropy. For example,

Remarkably, the derived “ensemble volume” turns out to derivations in statistical mechanics typically obtain heuristic
be proportional to the exponential of the entropy of the enexpressions for thermodynamic entropy by counting “mi-
semble. A by-product of the first goal is thus a universalcrostates” in a phase-space volume of “small” thickness
characterization of ensemble entropy, based on geometritontaining a constant-energy surfdé&. Ma, in an interest-
notions. Indeed, a number of properties of ensemble entropywg approach, attempted tdefine the thermodynamic en-
turn out to have simple geometric interpretations. The unitropy of a system in classical statistical mechanics as propor-
versal nature of the characterization is of particular interesttional to the logarithm of a phase-space volume
the only previouscontext-independerinterpretation of en- corresponding to the “region of motion” of the systdif,
semble entropy to dat@nd hence applicable in particular to although he could not rigorously define the latter region. A
ensembles described by continuous probability distribulionsprecise geometriénterpretation of thermodynamic entropy
appears to be as a somewhat vague measure of uncertaintyfor both classical and quantum equilibrium ensembles will
randomness. be given here.

The second goal is to apply “ensemble volume” to a  Further, Leipnik introduced the exponential of the posi-
wide range of contexts in which ensembles appear. The agion entropy of a quantum system as a measure of its “vol-
plications demonstrate not only the advantages of ensembleme,” and favorably compared the associated uncertainty
volume over other measures of spread, but also to some erelations for position and momentum with the usual Heisen-
tent why it is that ensemble entropy makes a natural appeaberg uncertainty relation§] (see also the review in Re#],
ance in contexts as diverse as statistical mechanics, informand Sec. 11 C beloyv Generalizations to other measures of
tion theory, chaos, and quantum uncertainty relations. Somévolume” were given by Zaka(8,9]. It is demonstrated here
results have been briefly reported elsewHéieHere impor-  that the former measure has a unique geometrical signifi-
tant details and extensions are given, as well as a number eance, and a geometrical derivation of quantum uncertainty
additional results. relations is given based on the property that quantum states

The work reported here was originally motivated by sev-have a minimum ensemble volume.
eral connections between volume and information. Shannon Zyckowski[10] and more recently Mirbach and Korsch
proved an upper bound on information transfer, via classicdl11,12), used entropy as a measure of “localization” for
signals subject to quadratic energy and noise constraints, lghaotic quantum and classical systems for various initial
considering ratios of spherical volumes in high-dimensionaktates. The results of the present paper show that this mea-
spaces[2]. One can similarly obtain approximate upper sure can be simply related to the spread of ensemble volume
bounds on information foguantumsignals, via semiclassical for arbitrary evolution processes, and provide support for the
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use of this measure over all other localization measures.

Rather than going immediately to general postulates for Ex=
volume, and formal proofs of uniqueness, Sec. Il first ex-
plores ensemble volume for a familiar class of ensembles(which may also be recognized as a monotonic function of
those described by one-dimensional probability distributionsy,e go-called “linear entropy” — [dx p(x)2 [14]). This
In this case the ensemble volume reduces to a Hle”gth’”quantity shares all of the above-noted virtuesAdt. How-

which is calc_ulated for a number of concrgte examples a”‘éver, it is in fact only a special case of what may be called
compared with other measures of uncertainty such as roofpq “Renyi length”

mean-square deviation. Geometric properties of this
“length” and an associated quantum uncertainty relation are
discussed. Two-dimensional joint probability distributions Ly o=
are also briefly discussed, where the ensemble volume be-
comes an “area” that is geometrically related to the

de p(x)?

—1la
(a=—-1) 3)

fdx D)1

“lengths” of the marginal distributions. This “area” moti- (nam_ed for its Iogarithm—a ge_neralized entropy defined by
vates a definition for the spot size of an optical beam. Reny|[1_5]). Renyi lengths are directly related t(,) measures Of
In Sec. Il and the accompanying Appendix, the Oleriv‘,;l_uncertalnty considered by Dodonov and Man kp and Zakai

' for quantum system§8,9], and use of their reciprocals as

tion of the ensemble volume from universal geometric IOOS'indireclj measures of uncertainty was extensively investi-
tulates is given. These postulates depend on theory- y y

independent notions of invariance, projection ontogated ".1 Ref| 16] (see also Rgtl?]). The inverse participa-
orthogonal axes, and additivity, and in particular are inde-tIon ratio cor.responds tq=1 n Eq.('3)..

pendent of whether the ensemble is classical or quantum. The Renyi I_ength_x‘a in Eq. (3) s_atlsﬂes all of th? above-
The bonus of a geometrical characteriztion of ensemble erP-Oted properties ORAX [sgme_ units ag.(' translanqn a}nd
tropy is discussed, and a geometrical interpretation of relar_eflectlon Invariance, scalmg_ linearly W!m’ and van!shmg
tive entropy is given. as p(x) approaches & function]. Equation(3) thus intro-

Applications to statistical mechanics, semiclassical quan(—juces an uncountable infinity of possible candidates for a

tum mechanics, information theory, chaos and other types Oiirect measure of uncertainty. F.ortunately, as will be seenin
dynamical evolution are given in Sec. IV. Conclusions are ec. lll, just one of these Reny| lengths may be singled ogt
presented in Sec. V uniguely over all other possible measures on geometric

grounds.
In particular, in this paper special attention will be paid to
Il. ONE- AND TWO-DIMENSIONAL EXAMPLES the casea—0 in Eq. (3). The corresponding length will

simply be denoted by, and is just the exponential of the
Before deriving the unique form of ensemble volume inusual ensemble entrogy8]:
Sec. lll, it is useful first to consider some of its properties
and connections to other measures of uncertainty in two fa-
miliar settings: continuous distributions on the line and on Lx=Lx,0= eXF{‘J dx p(x)In p(x)
the plane, for which “volume” reduces to the special cases

of “length” and “area,” respectively. These special cases Tpjs js a special case of the “ensemble volume,” to be de-

are already sufficient to exemplify a number of general feayjyeq in Sec. 11, and will therefore be referred to as the
tures of ensemble volume, and its advantages as a measuregfsemble length

spread.

. 4

B. Comparisons

A. Length In Table | the rms deviation and ensemble length are cal-

Consider a one-dimensional probability distributjofx), culated for several types of one-dimensional distributions.
corresponding to some random variabde(e.g., position, As noted following Eqgs(1) and(3), both quantities are in-
momentum, or phageThere are then a number of candidatesvariant under translations and scale linearly withHence
for a direct measure of the “uncertainty” or “spread” o, they can be trivially calculated for distributions of the form
the most well known being the root-mean-squéaras) de-  p(x/a—x")/a once they have been found fpfx) (by sim-
viation ply multiplying the result for the latter case l&). Table |
will be used to highlight a number of differences between
AX andLy.

First, it is seen from Table | that the ensemble length
exists in cases when the rms deviation does(fustCauchy-
) o ) ) ~Lorentz and sink-squared distributions in particuldir may
This quantity is a “direct” measure in the sense of havingfyrther be shown that y is finite wheneverA X is: the well
the same units aX, and has the virtues of being invariant ynown variational property that ensemble entropy is maxi-
under translations and reflections, scaling linearly Wth  1i-ed for a fixed value of\X by a Gaussian distribution

(AY=A\AX for Y=AX), and vanishing in the limit thaX  [19] immediately implies from the scaling property and
has some definite value' . Table | that

A second candidate is the inverse participation ratio
[10,12,13 Ly<(2me)Y?AX. (5)

21172
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TABLE I. Examples of ensemble length and rms deviation.

Distribution p(x) Ly AX
Uniform pu(x)=1,0<sx<1 1 1/(2\/3)
Circular pc(X)=2(1-x3) Y37 |x|<1 e 1/2
Gaussian pa(X) = (27) ~Y%exp(—x4/2) (2me)*? 1
Exponential pe(x) =exp(=x),x=0 e 1

Sink squared pss(X) = 7~ sinx)/x]? me21-C)a

Cauchy-Lorentz pe(X)=7"Y(1+x3) 4

Double uniform ppu(X)=3,0<|x|—a<1 2 [1/3+a(a+1)]Y?

8C~0.577 215 66 denotes Euler’s constant.

Thus the use of ensemble length as a measure of uncertainty Fourth, except in cases where the second momep{>Jf
allows a wider quantitative range of applicability than doeshas some particular physical meaning, it is difficult to assess
the rms deviation. This permits, for example, a quantitativethe significance of a given value AfX without some further
discussion of quantum uncertainty relations, expressed iimformation about the distribution. For example, even for
terms of ensemble length, for cases in which the usuasingle-peaked distributions, the probability thalies within
Heisenberg uncertainty relations have nothing to &8e  +AX of the mean is highly dependent upon the nature of
Sec. 11 Q. p(x) [22]. In contrast, as will be seen in Sec. lll, the en-
Second, the calculations for the uniform and circular dis-semble length_, has a unique geometrical significance.
tributions, py and pc in Table I, respectively, exemplify a Finally, it is of interest to make a quantitative comparison
maximality property of ensemble length: it is maximized onbetween the degrees to which a given distributp(x) is
a given interval by a uniform distribution on the interval, concentrated in a region of lengtly on the one hand, and of
with a maximum value equal to the length of the interval.length 2AX on the other hand. To do so, it is natural to

Thus one may write define themaximum confidenceorresponding to a given
lengthL as
Ly<L
for a distribution confined to an interval of length[20]. C(L)= sup [ dx p(X)+, (8)
This property reflects the intuitive notion thpfx) is most {Alal=L} LA

spread out or least localized when itfiat, having no peaks
where probability is concentrated. The rms deviation doe%

not conform to this notion, achieving its maximum pOSSiblesingIe peak this is achieved by choosifido be the interval
value in the limit of two maximally separated pedesdis- of lengthL centered on the mean value of the distribution.

tribution equally concentrated on the endpoints of the inter-
quaty P From Table | one can calculate the value<Cqt i) to be

Val%:hird the calculation in Table | for the uniform and approximately 100%, 99%, 96%, 93%, 91%, and 90% for
' the uniform, circular, Gaussian, exponential, sink-squared,

double-uniform distributiong, and pp, illustrates an addi- : o . i

vity property of ensemble length: the ensemble lengthff 2ngndciiucc;|Llj‘gsregéz(Ziiglb:rgogggyregf;c“ggg' ;:(? ggor/re

is twice that of the two nonoverlapping uniform distributions >P 9 070, D179, DOV, 0
for the first four of the above distributions, with the value

Pu(x—a) andpy(~x=a), which it comprises in equal mix- being undefined for the last two. It is seen that for these

ture. More generally, ip(x) andq(x) denote two nonover- examplesC(Ly) varies over a much narrower range than

lapping distributions of equal ensemble lendththen any :
mixture A\p(x) + (1—\)q(x) of these distributions satisfies C(2AX), and thatl  typically corresponds to a larger con-
fidence value than &X.

here the supremum is over all measurable getsf total
ngth L. In the case of a distribution symmetric about a

Ly=<2L, %
C. Uncertainty relations

with the upper bound achieved far=; [21]. This property The relationship between ensemble length and ensemble
reflects the intuitive notions that such a mixture is least lo-entropy in Eq.(4) allows the usual entropic uncertainty rela-

for this equally weighted case the nonoverlapping lengths

simply add. In contrast, the rms deviation jpf, depends LyLp=metfi, 9
strongly on the separation of the peaks, and indeed becomes

infinite as this separation increases. This example and theelating the product of the ensemble lengths to a minimum
one above emphasize what can be directly seen fronflEq. area in phase space. BoundingandL, from above via Eq.
the rms deviation is a measure se#parationof the regiorts) (5) then immediately yields the well-known Heisenberg un-
of concentration from a particular point of the distribution certainty relation

(the mean value rather than a measure of the extent to

which the distribution is in fact concentrated. AXAP=#/2. (10



PRA 59 UNIVERSAL GEOMETRIC APPROACH ©.. .. 2605

The above two inequalities are similar in form, and havedeviation, but not for Renyi lengths in general. A related
the same broad physical significance: the particle cannot bemeasure of spot size for optical beams is defined and briefly
prepared in a state for which both the position and momendiscussed.
tum distributions have arbitrarily small spreads. However, it Each of the “length” measures in Egél), (3), and(4)
is seen that the latter inequality is mathematically weaker, abas a natural generalization to a measure of “area,” corre-
it follows from the former. For example, it follows from Eq. sponding to the spread or uncertainty of a two-dimensional
(9) thatLp [and hence, via Eq5), AP] becomes infinite as probability distributionp(x,y) of two random variables<
p(x) approaches a weighted sum®functions. This cannot andY:
be concluded from Eq10).

Inequality (9) may used to make quantitative evaluations AA=[de((xxT) = (x)(x") ]2 (15
regarding the relative spreads of position and momentum in Y
cases where the Heisenberg inequalitg) yields no infor- Axy,a=(P*) ", (16)
mation. For example, consider a quantum particle confined
to an interval of length., such that the position amplitude is Axy=exfd(—Inp)] 17)

constant over the interval. It follows that the momentum sta- . T
tistics are described by the sink-squared distribution respectively, whera denotes the column vectoxf/), x" its
transpose, andl) the average with respect o These areas

7 Y 2/IL) (i pL/(2%)]/p) (11)  satisfy properties analogous to to their one-dimensional
counterparts, and will be referred to as the rms area, Renyi

As noted in Table I, the rms deviatiokP is not defined in ~ area, and ensemble area, respectively.

this case, and hence the Heisenberg inequality cannot be The rms area in E((15) may be recognized as the prod-

used to assess the degree to which position and momentu#§t of the rms deviations along the principal axes of the
are jointly localized. In contrast, using E@.1), Table I, and  distribution in thexy plane, and in general satisfies the in-

the scaling property of ensemble length, one finds equality[Eq. (2.13.7 of Ref. [24]]

LyLp=2mwexd2(1—C)]h~15k, (12 AA<AXAY, (18

whereC~0.577 215 66 denotes Euler's constant. Hence thdith equality for the case thap(x,y) factorizes into two
particle has an associated phase space area close to the loW8forrelated distributions fox and Y. _
bound ofmres~ 9% in Eq.(9), i.e., the particle is in fact in an This inequality for “area” and “length” has a simple
approximate minimum uncertainty state of position and mo-9€0metric interpretation, to pe generalized in Sec. lll. In par-
mentum. ticular, the marginal distributiong,(x) andp,(y) for X and

A similar example is the case of a particle confined to theY are obtained by “projecting” the joint distributiop(x,y)
positive x axis, with a position amplitude that decays expo-Onte the two orthogonak andy axes. The associated rms
nentially with x. The position and momentum distributions lengthsAX andAY may be similarly thought of as obtained
are then given by exponential and Cauchy-Lorentz distribuby “projecting” the rms area\A onto these axes. However,
tions of the formsg(x/a)/a and 2apc, (2ap/4)/%, respec- this is only consistent with Euclidean geometry if inequality

tively, implying via Table | and the scaling property that (18 holds: the product of the two lengths obtained by pro-
jection of an area onto two orthogonal axes can never be less

LyLp=2meh. (13)  than the original area.
Ensemble area and ensemble length are also consistent
Hence the state is relatively well localized in position andwith this “projection” interpretation: the well-known subad-
momentum, with an associated phase-space area only twi€ktivity of entropy[19] can be equivalently written via Egs.
that of the minimum in[Eq. (9)]. Again, the Heisenberg (4) and(17), as
uncertainty relation Eq(10) gives no information about the
joint localization in this case. Axys<LxLy, (19
Finally, it may be mentioned that there is an uncertainty.

relation relating the Renyi lengths of position and momen-n @nalogy to Eq(18). The subadditivity of entropy is thus

tum for generake: it follows from Eq. (131) of Ref.[8] that ~ S€€N to correspond to a projection property of Euclidean ge-
ometry. One has the further related property that(it,y) is

Ly.alp g=mh[1+ 20 V20 (14 @) (14) uniform on a rec'tangular rggion _orient_ed parallel toxmmd
A y axes, and vanishes outside this region, then equality holds

for a=—1, where =—al/(1+2a). For a=B=0 the in Eq. (19), with Ly andLy corresponding to the lengths of

lower bound is maximum, and the inequality reduces to Eqthe sides of the rectangle. Thus E#9) reduces in this case
(9) above. to the Euclidean propertgrea = length X breadth In gen-

eral, the Renyi areas in E(L6) are not consistent with the
projection property, as will be seen in Sec. lll.

Finally, it may be noted that Eq17) may be applied to
This section will be concluded by briefly looking at mea- physical distributions other than probability distributions,
sures of spread fotwo-dimensional distributions, to high- with corresponding geometrical advantages. For example, let
light a further geometric property of ensemble length of im-P(x,y) denote the time-averaged power distribution in some
portance in later sections. This property also holds for rmglane orthogonal to the direction of propagation of an optical

D. Area and spot size
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beam. One may then define the “geometric” spot size of the .
beam as the ensemble area of the normalized power distri- de Xp(x)=1, IZI pi=1, ty[W]=1. (21
bution P(x,y)/P+, whereP+ is the integrated power over °

the plane: DefiningI" to correspond to the spaces and séts, andH,

Trr[ ] to correspond to integration ov¥r summation ovet,
Ageoni= PTeXF{ _(PT)ilf dxdy Rx,y)In P(x,y)} and the trace oveld, andp to correspond to the ensembles
(20) p(x), {p;}, andW, these identities can be subsumed into the

generic identity

This satisfies desirable properties such as being additive for

nonoverlapping identical beams, being invariant with respect Trr[p]=1. (22)
to scaling the power up or down, scaling linearly with beam
magnification, having a maximum value &f for a beam Another universal feature is the notion obmpositeor

confined to an areA (attained for a uniform power distribu- joint ensembles: for a given pair of spaces or $atandI’",
tion over that arela and satisfying a “projection property” of a given type, one can define a composite set or spage
analogous to Eq.19). It is also invariant under any transfor- where for classical and quantum ensemlilgscorresponds
mation of coordinates which preserves area in the usuab the set product and the tensor product, respectively/,; of
sensg(i.e., with unit Jacobian and so to this extent is inde- andI',. Further, ifp describes a composite ensemblelgg,
pendent of the coordinatization of the plane. Alternative defione may define twgrojectedensemblesp,; and p, on I';
nitions based on, for example, Eq45) or (16), are geo- andI,, respectively, via
metrically less satisfying.

p1=Trr[p]l,  p2=Trr [p]. (23

lll. ENSEMBLE VOLUME

Section Il indicates the wide range of possible measuredn€se projected ensembles corresponthéuginal distribu-
for the spread of one- and two-dimensional probability dis-tions andreduceddensity operators for the cases of classical

tributions, and draws attention to a number of geometric an@"d quantum ensembles, respectively. ,

other advantages enjoyed by the “length” and “area” de-  Finally, one may define any two ensembjesndp’ of

fined in Egs.(4) and(17), respectively. As noted in Sec. I, it the same type to be nonoverlapping if and only if

has often proved useful to employ various notions of “vol-

ume” for statistical ensembles across a wide variety of con- Trr[pp']=0. (24)

texts, such as information theory, statistical mechanics, un-

certainty relations, and chaotic evolution. Other contextdNote that in general two ensembles are nonoverlapping if

include Ornstein-Uhlenbeck diffusion and semiclassicaland only if they can be distinguished by measurement with-

guantum mechanic&ee Ref[1], and Secs. IVB and IVD out error.

below). This raises the question of whether there is in fact

someuniversalmeasure of “volume” for classical and quan- B. Postulates for volume

tum ensembles, which may be usefully employed in all of the _ ) )

above contexts and which is not restricted in application or For the three typ?s of ens”e_mble discussed in Sec. Il A, it

interpretation to various special cases. is useful tp think qf \(olume in the following ways. First,
Here it will be shown that indeed such a measure existd0r @ continuous distributiop(x) on a space, the volume

which may be uniquely derived from a small number of corresponds to a direct measure of the regipaf “spread”

theory-independent postulates fundamental to the concept & P(X) in X. Second, for a classical discrete distribution

“volume.” It generalizes the ensemble length and ensembldPi}. one may imagine the indices as labeling a set of boxes

area of Sec. I, and will be referred to as tesemble vol- ©Of bins. In this case “volume” corresponds to the spread of

ume It also leads to geometric characterizations of entropyhe distribution over these bins, i.e., as a continuous measure
and relative entropy. of the effective number of bins occupied by the distribution.

Third, for a quantum ensemble, the volume may be consid-
ered as a continous generalization of Hilbert space dimen-
sion, corresponding to a measure of the spread of the en-
Three generic types of ensemble will be considered heresemble in Hilbert space. Consider now a measure of volume,
The first is a classical ensemble described by a continuoug(p), which satisfies the following properties.
probability distributionp(x) on somen-dimensional space () Invariance property: \{p) is invariant under all trans-
X; the second is a classical ensemble described by a discrefi@rmations onl” which preserve Ti ] (these are represented
probability distribution{p;}, wherei ranges over some dis- by measure-preserving transformationsXfior continuous
crete sel; and the third is a quantum ensemble described bylassical ensembles, permutations|dior discrete classical
a density operatowV on some Hilbert spacH. ensembles, and unitary transformations lérfor quantum
Each of the above types of ensemble shares some univeghsembles
sal features. It is essential to abstract a number of these fea- (ii) Cartesian property:f p describes twaincorrelated
tures via a common notation if “volume” is to be discussed ensembleg, andp, onI'; andl',, respectively, then
in a theory-independent manner.
For example, consider the three identities V(p)=V(p1)V(p2) (25)

A. Notation
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(note thatp is the producip,p, for classical ensembles, and I
the tensor produgh; ® p, for quantum ensemblgs

(iii) Projection property:If p describes an ensemble of
composite systems dn;,, then

V(p)=<V(p1)V(p,), (26) Vipy Vi)

wherepq,p, are the projections g defined in Eq.(23).
(iv) Additivity property:An equally weighted mixture of

m nonoverlappingnsemble$,,py, - - . , €ach of equal vol-
umeV, has a total volume ofmV, i.e., ]
V(m patppt - )=mV. (27) Vipp

FIG. 1. Two uncorrelated ensemblps and p, on spaced’;
andT',, respectively(shown here compressed to one-dimensional
axes, have respective volumeé(p,) andV(p,), as indicated by
V(p)=mV. (29) the darkened axis regio_nsf. Thartesian prope‘r‘t)[Eq. (29)] s’,,tates

that the corresponding joint ensemblehas a “rectangular” vol-
éjme V(p)=V(p1)V(p,), i.e., V(p) corresponds to the Cartesian
p(?oduct of volumed/(p,) andV(p,).

(v) Uniformity property:If p is any mixture ofm non-
overlapping ensembles of equal volumésthen

The above properties are essentially the same as tho
defined in Ref[1], where the additivity and uniformity prop-
erties were combined in the latter. Their geometrical signifi-  Finally, the uniformity property(v) states that the maxi-
cance is as follows. mum volume, of a mixture of nonoverlapping ensembles of

First, the invariance property) ensures that the volume equal volume, is bounded by the sum of the component vol-
V(p) is a function of the ensemble alone, independently of aimes. Thus, noting the additivity property, this maximum is
particular coordination, labeling, or measurement basis forchieved for auniform mixture, i.e., one which is not more
I'. Indeed, the transformations which preservg[Trare ex-  concentrated on one of the component ensembles than on
actly those which preserve volume, or measurel’an the  any other.
usual sense. For example, for a classical distribupipr) on
X the measure of a subs8C X is given by C. Derivation

Here the unique, universal measure of volume for en-
|5|:f d"x="Trg 1]. (299  sembles is obtained. It may more generally be applied as a
S measure of spread for any positive classical or quantum den-
sity, such as beam intensity or mass density, by calculating
The invariance property then requires that the ensemble vothe “volume” of the corresponding normalized density. In
ume is invariant under all transformations which preserve theuch cases, where no ensemble is involved, one could alter-
measure of all subsets, i.e., those transformations with a unitatively label this quantity as the “geometric dispersion.” In
Jacobian. For the case of a classical phase space, such traparticular, one has the following result, first statedlih and
formations include all canonical transformations, and henc@roved in the Appendix.
V(p) will be invariant under Hamiltonian evolution. One
may similarly consider the measufg|=Trg 1] of subsets
SCI and subspaceSCH; in these cases the invariance
property again requires th¥i(p) is invariant under measure-
preserving transformations, corresponding to permutations
and unitary transformations, respectively. Vip
Second, the Cartesian propef(idy is exactly analogous to
the geometric property that area equals length times breadth,
and more generally that the volume of the Cartesian product
of two sets is equal to the product of the volume of the sets.
This is illustrated in Fig. 1.

Third, the projection properttiii ) is exactly analogous to : : 0
the geometric property that a volume is less than or equal to v
the product of the lengths obtained by its projection onto Py

orthogonal axes, and is illustrated in Fig. 2. It is a generali- 15 5 An ensemblg on the product space &, andT', has a
zation of the projection property discussed for rms area angojume v(p) indicated by the solid closed curve. The correspond-
ensemble area in Sec. I D. _ _ ing projected ensemblegs, and p, on T’y and T, respectively,

Fourth, the additivity propertyiv) requires the ensemble have projected volume¥(p;) andV(p,), indicated by the dark-
volume to be additive for a uniform mixture of nonoverlap- ened axis regions. Thprojection property[Eq. (26)] states that
ping ensembles of equal volume. The geometric interpretav(p) can be no greater than the volume of the rectangular region
tion of this is self-evident: the total volume af equal non-  formed by the dashed lines, i.e., than the product of the projected
overlapping volumes is the sum of the individual volumes. volumes.
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Theorem:Any (continuoug measure of volume satisfying and the projection property are satisfied. However it does not

properties(i)—(v) above has the form satisfy the additivity and uniformity properties. Further, the
“Renyi” volumes
V(p)=K(I)eS"), (30)
Val(p)=(Tre[p*"e]) ", (33

whereS(p) denotes the ensemble entropy

defined in analogy with the Renyi length and Renyi area in
S(p)==TrrlpInpl, (32) Egs.(3) and(16), £?()a/spectively, sat)i/sfy p?opertiés, (ii)%l(iv),
and(v) for all @=—1. However, a counterexample given by
Renyi (Theorem 4 of Sec. IX.6 in Ref15]) shows that the
K(T 1) =K(T1)K(T5). (32) projection property imot satisfied, except for the cases
=0 [corresponding to Eq(30), with K(I')=1], and a=
The proof in the Appendix primarily relies on applying —1 (corresponding to the discontinuous case of “support
properties(i)—(v) to an arbitrarily large number of indepen- volume™ discussed aboye
dent copies of a given ensembige | believe it may be pos-
sible to prove the theorem without the uniformity property D. Geometric characterization of entropy
(v), but have not been able to do so.

andK(T") is a constant which may depend Bnand satisfies

The constanK(I') in Eq. (30) is a normalization con- The appearance of the ensemble entropy in(BQ as a
: Tresult of geometric postulatds)—(v) provides an approach

e o oo s s Guantty, which s moreover independent of whether
; paring ) ' the ensembile is classical or quantum, discrete, or continuous.
ous classical ensembles a natural choick(F) =1, so that

AR L . In particular, ensemble entropy may be defineg to an
gn(é's\}ggiust;g; Vggt'gir&éshl;g'fg;r:e?nﬁg ?/oslﬁin?; Z;li:‘lld;:v’ additive constantas the logarithm of the ensemble volyme
For discrete classical ensembles the chéi¢E) =1 cor- where the latter is taken to be the primary quantity. The

responds to measuring the ensemble volume in terms of tt‘properties of ensemble entropy may thus be regarded as be-
P R 9] . - ﬁg geometric in origin. Indeed, it will be seen that its natural
number of “bins” occupied by the ensemble, with the mini-

mum volume of one bin corresponding to a distribution with appearance in a number of physical contexts can be inter-
) . ponaing to a distri : preted as following from its relationship to a “volume.”
pi=1 for some index. However, if the distribution arises

f the di tizati f i b bl h The geometric interpretation of ensemble entropy con-
rom the discretization of a continuous observabie SUCh ag, g markedly with its only other context-independent inter-
position(due to measurement limitations, for exampléen pretation as afindirech measure of “uncertainty” or “ran-
it would be natural to choos&(I') to correspond to the domness” [15-17,19.26,2F Indeed, ensemble volume
discretization volume. If the index set is finite, withlabels ; : e ! C

. ; ) ’ ’ rovides adirect measure of uncertainty, which is advanta-
another possible choice f&t(I") is 1M . The ensemble vol- b y

i the fracti f the total vol ._geous when one wishes to compare the spreads of two en-
ume then measures the fraction ot the total volume 0CCUPIely 1y a5 of a given typé.e., with the samé’). For example,
by the ensemble.

E ¢ bles the chokeel) = 1 q if two ensembles have entropies of 0.5 bits and 1.5 bits,
¢ or guan utr;: ensem bels ?C Of (Etr)— cfotrt:esponbs respectively[28], should one compare their ratio or their
0 measuring the ensemble Volume In terms ot (€ NUMDET Qg anyce in assessing the degree to which the uncertainty of

Hilbert space d|me_n5|ons oqc_up|ed by the ensemblez W'ttﬁne second exceeds that of the first? Since entropies are typi-
pure states occupying .the minimum posm_blg of_one d.'men(':ally only defined up to a multiplicative constafgee be-
.:;Iont.hHowever, i tlze I-Iltllbertt§p:i1d€lt hlf‘g‘ ? fTT/aN(Ijlmensmn low), one might consider the ratio to be the more significant

, then one could atternallvely ta ( )__ » COME~ " means of comparison. However, the ensemble volume gives
sponding to a fractional measure of volume in analogy to the,, \nequivocal answer: the volume of the second ensemble

classical case. Finally, for quantum systems with classical yyice that of the first in this case, and hence has twice the
counterparts, such as spin-zero particles, one may choogg o,

K(I') so that in the classical limit the quantum ensem_ble_z It is interesting to briefly compare the derivation of en-

. . . 'Semble volume from propertig®—(v) with existing axiom-
explored further in Sec. IVB, and used to obtain semiclassizyic gerivations of ensemble entropy. Such axiomatic deriva-

callunr(]:ertlgir;ty relatéorr:s. h . f inuitv in th tions are reviewed in Ref.29], and are all related to the
t should be noted that the assumption of continuity In they,jgina| derivation given by Shannd@é]. Unlike the theo-
statement of the theorem is necessary. For example, one m

f di lassical defi he #m of Sec. Il C they are limited tdiscrete classical en-
or a discrete classical ensemblp;} define the “support = gempies. Moreover, they lead to an arbitrary multiplicative
volume” as the number of nonzem values. This satisfies

L . . . constant for entropy, whereas the geometric approach leads
all of properties(i)—(v), but is not continuous. The simplest to an arbitraryadditive constant for entropy.

counterexample is the discrete probability distributigh To see that the axioms used by Shannon and others are
—¢€,¢} for €>0. As e—0 this distribution continuously ap-  markedly different from propertie)—(v) used to derive en-
proaches the distributioft.,0}, with a support volume of 1, semple volume, consider the “grouping axiom” of Shannon

however for alle>0 the support volume is 2. [26] (see also Sec. 1.2 of R¢fL9]), which may be written in
If one defines the rms volume for andimensional ob- e notation of this paper as

servablex by generalizing Eq(15) to arbitrary dimensions
[25], it is not difficult to show that the invariance property S(Ap+(1—X)p’)=S({\,1-A})+AS(p)+(1—-N)S(p’)
(restricted tdinear transformationy the Cartesian property, (34
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for any two nonoverlapping discrete classical ensemples
andp’. Thus it is assumed that the “randomnesy(’) of a
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whereV; =fBid”x denotes the measure of . Thusp(x)
is uniform over each bin, and its integral over lpis equal

mixtur_e_of n(_)no_ver_lapping distributions is equal to that of g p;. Let pp and pc denote the discrete and continuous
fche. mixing distribution plgs the average ranQomness _of Fh%nsembles corresponding {p;} andp(x), respectively.
individual ensembles. This axiom, together with a continuity  Now, as discussed earlier, the ensemble volMtye) is
assumption and a symmetry assumption equivalent to thgroportional to the effective number of bins occupiedoy.

invariance propertyi), is sufficient to derive the forn$(p)
=—CZ;piInp for the entropy of discrete classical en-
sembles, wher€ is an arbitrary constari29].

Equation(34) doesnot translate into a natural axiom for
ensemble volume: replacing by InV gives the equivalent
constraint

VA p+(1=N)p)=V{N1-ADIV() I V(pH ],
(35

However, this does not indicate the effective volume or
spread of the ensemble relativeXpparticularly in the case
of varying bin sized/;. The latter is given by/(pc), which,
making the choic& (I") =1, follows from Eq.(39) as

V(Pc):exl{—Ei pi In(p; /Vi)}- (40)

Note that in the case afqualbin sizesV,=V this reduces to

which has no simple geometric interpretation. Converselythe bin sizeV multiplied by the effective number of bins
the additivity property Eq(27), that nonoverlapping equal occupied, ex{¥(pp).

volumes add, translates undér—expS into the “random-
ness” constraint

S(pl2+p'12)=In2+S, (36)

Finally, if X has total measurg;V;=Vy, one may define
the “weighting” ensembles as corresponding to the dis-
crete probability distributioV;/Vy}. Thus op describes
the relative sizes or weightings of the bins. It then follows
via Egs.(38) and (40) that

which is not a natural property to postulate for a measure of

“randomness.” The geometric approach to ensemble en-

tropy given here thus differs significantly from former ap-

V(pc)/Vy=e"Sroloo), (42)

proachegas is also apparent from comparing the proof in the Hencethe relative entropy &|o) is directly related to

Appendix with those in Refd19,26,29).

the volume of a discrete ensemblembedded in a continu-

Finally, it is of interest to note that the concavity property ous space, where characterizes the distribution of bin sizes

of ensemble entropyS(Z;\ip;)=2\iS(p;) [19,26, is

of the embeddingNote that this geometric interpretation of

equivalent to an inequality relating the volume of a mixturerelative entropy allows its properties to be understood as cor-
to the weighted geometric mean of the volumes of its comyesponding to ratios of volumes. For example, the volume of

ponents:

V(Ei m)zﬂ [V(pi) M. (37

an ensemble oKX can never be greater thafy (correspond-
ing to a uniform distribution orX). Hence the left-hand side
of Eq. (41) is never greater than unity, implying that

S(p|o)=0. (42

This may be regarded as a generalization of the uniformity

property[Eq. (28)], as it implies that uniform mixtures have

IV. APPLICATIONS

the greatest volumes. Note that the ensemble volume may

itself be regarded as a weighted geometric nieag., of the
function p(x) ~* with respect tagp(x) for continous classical
ensembles; see Secs. 2.2 and 6.7 of R&f]].

E. Relative entropy

The relative entropy of two ensemblgsand o may be
defined in a context independent manner 89]

S(pla)=Trr[p(Inp—Ina)].

It is asymptotically related to the probability of mistaking
ensemblep for ensembles, as was reviewed in Ref31].
Here it will briefly be indicated how a geometric interpreta-
tion of this quantity can be given.

Consider a compagat-dimensional spac& which is di-
vided up into into a set of nonoverlapping b} (e.g., for
measurement purpogedA discrete probability distribution

(39

The results of Sec. Il for ensemble length and ensemble
area indicate the usefulness of ensemble volume as a direct
measure of the spread of an ensenibled of other positive
densities such as optical beam powdtere other applica-
tions will be examined, in the contexts of statistical mechan-
ics, semiclassical quantum mechanics, information theory,
and quantum chaos. A particular result of note is a unified
proof of the classical Shannon information bound and the
quantum Holevo information bound based on ratios of en-
semble volumes. For the quantum case this proof is concep-
tually and technically far simpler than previous proofs.

A. Statistical mechanics

First, in the statistical mechanics context, the Gibbs rela-
tion S=kS(p) between thermodynamic entropy and en-
semble entropy for equilibrium ensembles can be rewritten,
via Eq. (30), as

{pi} over the bins(e.g., corresponding to measurement re-

sultg, may then also be modeled by tbentinuousdistribu-
tion p(x) on X defined by
P(X)=p;/Vi,

Xe Bi y (39)

Sin=kIn[V(p)/K(T")]. (43

Thus the thermodyamic entropy {gp to an additive con-
stan} proportional to the logarithm of the ensemble volume.
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From Eg.(43) and the third law of thermodynami¢that
thermodynamic entropy vanishes at absolute zérfollows
that one should choodé(I") to correspond to a minimum

“zero-temperature” ensemble volume. For quantum en-

sembles one has from Eg®0) and (31) that V(p)=K(I")
for pure states, i.e., thguantumzero-temperature volume is
just that of apure state onl". Similarly, for discrete classical
ensemblesK(I") is the volume of the “pure” ensemble de-
scribed by{1,0,0 ...}. However, continuous classical en-
sembles violate the third laj®], andK(I") remains arbitrary
in this casgbut see Sec. IV B below

The geometric expressidA3) is very similar to the origi-
nal Boltzmann relation

Si=kInW, (44)

whereW is the number of distinct microstates or “elemen-
tary complexions” consistent with the thermodynamic de-

scription. Indeed, from the above discussion it follows that

Eq. (43) provides aprecise geometriénterpretation of the
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momentum entropieSy and Sy, respectively, must be ap-
proximately equivalent for either ensemble. Further,

exp(Sx)exp(Sp)=exp(S(pc))

holds for the classical ensemble from the projection property
[Eq. (26)] applied to projections onto the position and mo-
mentum axes. Equation(80), (45), and (46) then yield the
approximate inequality

(46)

Sx+Sp—S(pg)=ninh 47

for quantum ensembles which have classical limits. | conjec-
ture thatexactinequality in fact holds forll quantum en-
sembles.

Since the entropy of a quantum ensemble has a minimum
value of 0 (corresponding to the existence of a minimum
volume for quantum ensemb)est follows from Eq. (47)
that one has the semiclassical entropic uncertainty relation

S¢+Sp=ninh, (48

Boltzmann relation for discrete classical and quantum equi-

librium ensemblesthermodynamic entropy is proportional
to the logarithm of the number of nonoverlapping zero-

for quantum ensembles with classical limits. As per the deri-
vation of Eq.(10) from Eq.(9), the corresponding semiclas-

temperature volumes contained within the total volume of thgical Heisenberg uncertainty relation

ensembleThus the Boltzmann relation and the Gibbs for-
mula for thermodynamic entropy become directly unified in
the ensemble volume approach.

AXAP=#/e (49)

Properties of thermodynamic entropy can be reinterpreteéhen follows for then=1 case. Equation§t8) and (49) are
in terms of geometric volume. For example, the additivity ofclose to the exact results for general quantum ensembles
thermodynamic entropy for uncorrelated ensembles in thet8,23 [see Eqgs(9) and (10)]. It is seen that geometrically

mal equilibrium follows from Eq.(43) and the Cartesian
property[Eg. (25)] for uncorrelated ensemble volumes. Note

they correspond to application of the projection propégy.
(26)] to the projections of a pure state of volum®&onto the

also that irreversible processes correspond geometrically #0sition and momentum axése., replacind’y andI’, by X

those which increase the volume of the ensemble.

B. Semiclassical quantum mechanics

Consider now a classical ensemplewhich is the “clas-
sical limit” of some quantum ensembjs,, i.e., the physical
properties ofpc approximate those gb,. Such ensembles
exist, for example, for equilibrium ensembles in the high-

andP in Fig. 2.

C. Information bounds

Consider a communication channel where signals repre-
sented by ensemblgs;,p,, ... aretransmitted with prior
probabilitiesp; ,p,, . . ., respectivelyf33]. The ensemble of
signal states itself corresponds to the mixture

temperature limit and for the coherent states of a harmonic

oscillator.

For the case of a spinless particle associated with a

2n-dimensional phase space one can obtain a relationsh
between the constants(I'c) and K(I'g) in Eqg. (30) by
requiring that the ensemble volum&¢pc) andV(pg) are

(50

P:Z Pip; -

i
II—')or classical ensembles, it was shown by Shar{26h that
the average amount of error-free datavhich can be ob-

approximately equal for such ensembles. Since these cofdined per transmitted signal, measured in terms of the num-

stants are independent of the dynamics of the ensembile,
suffices to choose an equilibrium ensemble of isotropic os
cillators. Equating the calculated values\fpc) andV(pq)

in the high-temperature limit then yields

K(I'g)=h"K(T'¢c) (45)

for the volume of a pure state, whenas Planck’s constant.

ber of binary digits required to represent the data, is bounded
above by

<

(5

S(P)—Z piS(pi)}/an.

The formally equivalent bound for quantum ensembles was

proved by Holevd 34], and hence Eq51) may be referred

Thus the Bohr-Sommerfeld quantization rule that a pureo as the Shannon-Holevo information bound.

guantum state occupies a classical phase-space voluhie of
is recovered32].

Proofs given in the literature of E¢51) for the quantum

case are mathematically rather technical in nature, and quite

Equation(45) can be used to derive semiclassical uncer-different in character to proofs for the classical cg3&35.

tainty relations from geometric considerations. For two cor-

However, the formal equivalence of the quantum and classi-

responding ensemblgs, andpc as above the position and cal bounds suggests that a unified proof exploiting universal
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features of statistical ensembles may be possible. Indeed tlod messages of length, and that codeworg,, e C is trans-
construction of such a proof, based on simple volume argumitted with probabilityq(«). DefiningN;(«) as the number
ments, was I’ecent|y outlined in Réﬂ.], and will be elabo- of times Signa' pi appears in Codewor(ba, and E
rated on here. A second such proof, which reduces the gen=s _ q(a)p; as the averagéth component of the trans-
eral gquantum-classical case to that of discrete classiceH1 !
noiseless channels, will also be pointed out.

First, consider a message consistingLo$ignals chosen

itted codewords, consistency requires that

from the set{p;}. Such a message may be denotedphy pi=L" 1> a(a)Nj(a),

where a=(iq,i,, ..., i) denotes the labels of the signals acC

comprising the message. In the limit tHat> the strong L (59
law of large numbers implies that the relative frequency of p= Lflz E-

signalp; appearing in the message approaghewith prob- =1

ability 1. It follows from the Cartesian property E@5) that _ o
the volume of the message satisfies Using the projection propertyEgs. (26) and(37)], one then
has the inequality chain

V(pa)—Vmess= L1 [V(p) ", (52 _ _ N
! V(; Q(a)pa)$V(p1)~~-V(pL)S[V<EI L ?ﬂ

asL—oo. Moreover, as will be shown below in E6), the L

volume of any ensemble of such messages is bounded above =[V(p)T- (56)

by [V(p)]-. Hence, using the additivity property E(R7),

the maximum possible number of nonoverlapping messag

of lengthL, N, , satisfies

To obtain a bound for error-free data, it must be assumed
&Rat the codewords are nonoverlapping, so that they can be
distinguished without error by measurement. From &6)

and the Cartesian propeiftig. (25)] one may then calculate

NLg[V(P)]L/Vmess (53
asL—o. Noting thaterror-free data can only be obtained V(Z q(a)pa> =[] [V(p,)19®
from distinguishing among a set ohonoverlapping @ @eC

messages, and thallf such messages require at most
1+ log,N, binary digits to record, it follows in the limit of =S I [v(pi )19, (57)
infinitely long messages that the average information gained aeC |

per signal, is bounded by where § q] denotes the entropy of the discrete distribution

{q(@)}. Combining this with Eqs(55) and (56) then gives
I< lim L~ %1+ logoN, ) <log,V(p)/T T [V(pi)1™.
I

L—oo

(54) SLal<LS(p) - 2 2 a(@)S(p)

Finally, since communication based on finite message

lengths cannot transmit more data per signal than communi- =LS(p)— EC > q(a)Ni(a)S(p)

cation based on infinite lengths, the bound holds for all sig- act t

naling schemes, and E@51) follows from Eqgs.(30) and

(54). =L
The above proof of the Shannon-Holevo bound is geo-

metrically simple, being based on the ratio of the maximumginayy from Shannon’s classical noiseless coding theorem
available volume for an ensemble of messages to the Mef19 26 §q]/In 2 is the maximum informatiofmeasured in
sage volumgEq. (53)]. Note that the argument cannot be pinary gigity which can be transmitted on average per code-
used to derive similar bounds bgs_ed on othe_r invariant VOI\'/vord, and hence Eq51) follows for the average information
ume measures, as all of the defining properties of ensembie, < ittad per signal.
volume are required. However, heuristic arguments of the
same type for other volume measures can sometimes give
excellent result$3,4]. Note that the Shannon-Holevo bound
is in fact tight for both classical and quantum ensembles Zyckowski[10] and Mirbach and Korschl1,12 studied
[19,26,38, corresponding geometrically to being able toconnections between quantum and classical chaos via entro-
choose a numbeN, of messages arbitrarily close to the pies associated with the evolution of coherent states. Here it
upper bound in Eq(53) which can be distinguished with a will be shown that this approach may be simply interpreted
vanishingly small average error probability las»oo. in terms of ensemble volume, and considerably generalized.
To conclude this subsection, it will be shown that the Consider an ensemblg,, classical or quantum, which
Shannon-Holevo bound may also be proved by consideringvolves in time under some dynamical procBsgnot nec-
only messages of finite length, and applying the classicabssarily reversible The ensemble will explore some region
noiseless coding theorefil9,26. With notation as above, ofI', which may be large for standard diffusion processes, or
suppose that one chooses a set of codew@rttem the set relatively small for integrable and dissipative systems. The

. (58

S(p)—Z PiS(pi)

D. Chaotic and other diffusion processes
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localization of the ensemble K over time is characterized localization ratio of an evolution process with respecito
by the time-averaged mixture for an initial ensemblg,, is then defined in analogy to Eq.
(60) as

_ T
p=lim T’lfo dtp,. (59

T—oo

ra=Va(p)/Va(po).- (61)

Again one may compare localization ratios for classical and
This mixture gives greatest weight to regionsloivhere the quantum ensembles, where one chooses corresponding ob-
ensemble spends the most time. Hence its ensemble volunservablesA, andAc . The logarithm of this quantityup to
V(p) is a measure of the spread of the region explored by th@n additive constapis plotted in Figs. 2 and 3 of Ref11]
ensemble as it evolves. for quantum and classical systems, respectively, for a com-

The localization ratiofor a given initial state and evolu- plete set of coherent states, whekg is chosen to be a

tion process may now be defined as the ratio of the volumeBhase-space measuremést thatr, _=r¢), andAq to be a
of;andpo, ie., “Husimi” phase-space measurement corresponding to the

complete set of coherent staf&¥].

r=V(p)/V(po)=exg S(p) — S(po)]- (60) V. CONCLUSIONS

In conclusion, an essentially unique measure of volume

It thus measures the localization of the ensemble under thf?)r classical and quantum ensembles has been found, related

evolution process, relative Fo its initial spread. This ratio vylllt ensemble entropy, which provides a geometric tool for
be less than or equal to 1 if the ensemble evolves to a fixe

. s ny context in which ensembles appear. This measure is uni-
point, and greater than or equal to 1 if it diffuses over the y bp

hole of . F haoti i i bl . versal in the sense that it may be defined by theory-
whole of ' For chaotic systems with integrable regions It,yohendent concepts of invariance, uncorrelated ensembles,

vv.|I.I de_pend strongly on the initial en;emble. The above def"projection, and nonoverlapping ensemblgsoperties (i)—
nition is clearly natural on geometric grounds, and the en

; v)].
semble entropy appears as a consequence of the unlquenégs}ts properties as a direct measure of “spread” have been

thelgreml n Eq(|30)'d di investigated in Sec. Il for continuous distributions, and fa-
or classical and quantum systems corresponding to the, -, compared with measures based on root-mean-square
same evolution process, it is of interest to compare Iocallzaa

' . A i - ““deviation. Geometric characterizations of ensemble entropy
tion properties. This is easily done for the case of initial

! : . ““and relative entropy have been discussed in Secs. Il D and
quantum ensemblesg which have corresponding classical ||, g

counterpartspc (such as coherent stajedn this case the

quantum and classical localization ratiog andrc can be  paams 4 precise geometric interpretation of the Boltzmann
calculated and compared. Zyckowksi partially carriedg|ation in statistical mechanics, a derivation of semiclassical
through this procedure in Reff10], where he plotted(p)  uncertainty relations based on the existence of a minimum
for the quantum counterpart of a classically chaotic processyolume for quantum states and a projection property of vol-
wherepg was chosen to range over a set of coherent statesmes, a unified derivation of results in classical and quantum
indexed by their corresponding phase-space points. In thigiformation theory based on simple volume ratios, and a uni-
caseS(p) is just the entropy of the energy distribution of versal definition of a localization ratio which measures the
pqo- Noting S(pg)=0 for pure states, it follows from Eq. time-averaged spreading of an ensemble and underlies en-
(60) that this is equivalent to plotting the logarithm of the tropic measures previously investigated in the context of
localization ratio, Irr. However, Zyckowski compared quan- quantum chaos.
tum localization features qualitatively with the classical Work is in progress on further applications, particularly to
phase space portrait, rather than quantitatively with analoquantum information theor§36], measures of quantum en-
gously calculated classical localization ratios. tanglemen{31], and information exclusion relatiorig,38].
Mirbach and Korsch extended the approach of ZyckowskiThe conjecture suggested following E@7) is also under

by also calculatingS(p) for the classical ensemblgg. cor-  active investigation, and thenostly weaker bound

responding to the coherent stajgs. For a complete family _ _
of such states they then compared the corresponding classi- Sx*Sp=S(p)=In2meh —In[1+AXAP/(%/2)] (62)

cal and quantum values &(p) (Figs. 1 and 3 of Ref12)).  has thus far been found for te=1 case.
Since for this caseS(pg) and S(pc) are constants, this

amounts to comparing the logarithms of the classical and ACKNOWLEDGMENTS
guantum localization ratioQp to an additive constant

However, Mirbach and Korsch argued that one should in | am grateful to Professor Wolfgang Schleich for drawing
fact comparemeasuremeneéntropies rather than the direct my attention to the inverse participation rattbus stimulat-
ensemble entropies, to smear out quantum fluctuations in thag the search for the “best” measure of volumand to
latter casd11,12. This is also easily interpreted in terms of Professor Hajo Leschke, Dr. Gernot Alber, and Dr. Bruno
localization ratios. In particular, for a measurement observMirbach for useful discussions. This work was carried out at
able A on a classical or quantum ensembie let VA(p) the University of Ulm, and was supported by the Alexander
denote the volume of the measurement distributioA.ofhe ~ von Humboldt Foundation.

Applications include a definition of spot size for optical
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APPENDIX where boths, and §{ —0 asL—o. A particular example of

Here the fundamental theorem stated in Sec. IlIC isSUCh asetis

proved, showing essentially that the exponential of the en-
semble entropy is the unique measure of the volume of a
statistical ensemble. It is convenient to first prove the theo-
rem for discrete classical ensembles, and then extend tHeropertiesT1) and(T2) for this set are proved in Theorem

T={a:[L7'Ni(a) = pi|<[Mpi(1—p))/(Le)]*?}.
(A5)

arguments to quantum ensembles and to continuous classiceB.1 of Ref. [19]; property (T3) follows noting that
ensembles. The notation will be as defined in Sec. Il A, ands;[p;(1—p;)]¥? is bounded by 1 —1)¥? and hence that
reference will be made to the five assumed properties of thene can chooses| =M (Le) V2% and property(T4) is an

volume measur®/(p) stated in Sec. Il B.

Let p denote a classical discrete enserlpg, with finite
index setl={1,2,... M}. Defining the “pure” ensemble
pi(jel) as corresponding to the distributiopp”’} with
p=5,;, one can writep as the mixture

p=2 Pip; . (A1)
Note that one has the two basic properties
Trelpip]=0 (j#K), V(p))=constV,. (A2)

immediate consequence Nf(«) being invariant under per-
mutations.

To obtain an upper bound for the volum&p) of p,
consider now the ensembles defined by the mixtures

pUT=Cr' 2 pl@)pa, pEM=ITIT* 2 pa,
(A6)
where C;=2,.7p(«). From the Cartesian property and
Egs.(A2) and(A3) it follows thatV(p,)=[V,]" is constant,

and further that the, are nonoverlapping. Hence, from the
uniformity and additivity propertiesY(p, (T))<V(p; (T))

The first states that these pure ensembles are nonoverlappirig] T|[Vi1-. Property(T2) then gives

and the second that they have equal ensemble vol(thiss
follows from the invariance property, noting that map to
each other under permutatigons
Now consider the ensembje e I'" corresponding td.
uncorrelated copies gf. For eacha=(iy,i,,....i ) inl",
define
pa:pilpizi s ipiL! (AS)

p(a)=pi,Pi, - - - Pi -

V(pu(T)<[V,]"-e- sl (A7)

Further, from propertyT1) and Eqs.(A4) and (A6),

TrrL[lpL—pL<T>|]=gT |p<a>—p<a>/cT|+aZﬂ p(a)

=(1/C;—1)Cy+(1—Cyp)<2e.

Thusp,, corresponds to the uncorrelated composite ensembldencep' can be made arbitrarily close g (T) for L suf-

formed byp; ,pi,. ... p; (in that orde). One can then de-
composept into the mixture

pt= EL P(@)py- (A4)

ael

ficiently large, and so from the assumed continuityVgf),
and noting from the Cartesian property that(pl)
=[V(p)]‘, one has from Eq(A7) that

V(p)= lim [V(p (T)]*" <V, &5

L—o

(A8)

The proof of the theorem proceeds by finding a suitable seThus the exponential of the entropy is an upper bound for the

of so-called “typical sequencesTCI" [19,26, which al-
lows pt in Eq. (A4) to be approximated by certain mixtures
of the ensembleép,} wherea is restricted to range ovér.

For a givena e " let N;(«) denote the number of times
the indexi appears as a component @f and letP(«) e 1"
correspond to a permutation of the componenta .off S(p)
denotes the entropy @f defined in Eq(31) of the text, then
for any e>0 andL sufficiently large one may choose a et
with |T| elements, which satisfies

(T1) Cr=2, pla)>1—¢,
aeT
(T2) |T|:eL[S(p)+5L]'
(T3) 2 IL™INi(a)—pi|<s; for all aeT,

(T4) aeT implies P(a)eT forall P,

ratio of the volume ofp to the volume of a “pure” state.
Note that only propertie€T1) and(T2) of T were needed to
obtain this result, and that the projection property has not
been used.

To obtain the converse of inequalitf8), note from the
projection property that

L

V(p*c<T>)<l[[1 V(p(T)), (A9)

whereE(T) is the projection ofp, (T) onto itslth compo-
nent, i.e.,

p(T)= (A10)
From property(T4) of T,_E(T) is independent dfand hence
may be denoted byp. Equation (A9) then becomes
V(pf (T))<[V(p)]*. But, as noted earlier, the volume
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V(p§ (T)) follows from the additivity property agT|[V,]",
and hence via propert§T2) of T Eq. (A9) reduces to

Ve3P o<y (p). (A11)
Further, from Eqs(A6) and (A10),
p=LTIX p(M=[TITE X X LN,
(A12)

and hence, from EqA1) and property(T3) of T,

Trellp—pl1=|T|2Trp

ET % (Pi—L " 'Ni(a))p;

<|T|7*2,

z lpi—L™Ni(a)|< 4] .

aeT iel

Hencep can be made arbitrarily close tofor L sufficiently
large, and so, taking the limit—« in Eq. (Al1l), the as-
sumed continuity oi/() gives

Ve3P <V(p). (A13)
Equations(A8) and(A13) yield the theorem of Sec. IlI B
for classical discrete ensembles with finite index $etsere
K(T') in Eqg. (30) is identified with the volumé/, of a pure
ensemblgp;=&;} onl, and Eq.(32) for K(I") follows im-

mediately from the Cartesian propeltifhe extension to en-
sembles with infinite index sets is trivial by continuity. The

distribution {p;} of such an ensemblp can be arbitrarily
closely approximated by itérenormalized first M terms,
corresponding to a discrete ensemp|g with a finite index
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sembles can be mapped to each other by measure-preserving
transformations, and hence from the invariance property
have equal ensemble volumes, 38y(V). The formal ana-

logs of the properties in EqA2) then hold, and again the
above analysis for classical discrete ensembles goes through
formally unchanged for mixtures of these pure ensembles,
ie.,

V(Z piPi) =V0(V)ex;{ —Ei piIn pi)- (A14)

Now consider the particular mixture defined by

=3 PV, V)= [ a0, (a1

Thuspy, is a discrete approximation o, and hence, noting
that [xd"x=Z;[sd"x, one has from the Mean Value Theo-

rem that

Tllp—pd1=3 | _a"Ip00-p(V)IV|—~0
| (A16)

in the continuum limitv— 0. Hence, from Eq(A14) and the
assumed continuity of ensemble volume,

V(p)= limVo(V)exp(Sy),
V—0

(A17)

whereS,, denotes the entropy ¢p;(V)}. But again approxi-
mating an integral by a summation,

set. Hence, from the assumed continuity of ensemble volume

and Egs. (A8) and (Al13), V(p)=V,limy_.exdXom)l

whereV, is the volume of a “pure” ensemble with respect S(p)= lim =V [p;(V)/VIIn[p;(V)/V]= lim (Sy+InV).

to the infinite index set. ThusV(p) is as per the theorem

[but becomes infinite in the case that the limitStfp,,) as
M —o does not exigt

The extension to quantum ensembles is straightforwar

V—0 ! V—0

(A18)

J—|ence Eq.A17) can be rewritten as

Indeed, for quantum ensembles the above analysis goes

through formally unchanged, where the expansion in Eg.
(A1) is now identified with an orthogonal decomposition into

pure states, and the first product in E43) is a tensor prod-
uct. Thusp; and p; representnonoverlappinyg eigenstates

V(p)=e5P) [imVy(V)/V.
V—0

(A19)

Finally, to show that the limit exists in E§A19), note that

and eigenvalues op. The only additional consideration is any setSe X of measurd sd"x=V can be partitioned intm

thatV,, the volume of an eigenstate pf might conceivably

depend on the eigenstate basis. However this is ruled out by

nonoverlapping sets of equal measu¥en for any integem.
oreover, a “pure” ensemble 08, corresponding to a dis-

the invariance propertfi): all pure states on a given Hilbert trihytion which is uniform overS and vanishing outsids,
space can be connected by unitary transformations, anghn trivially be written as an equally weighted mixture of

hence have the same volume.

analogously defined ensembles for the members of the par-

_ Finally, the theorem may be extended to continuous clasgtion. Hence from the additivity property one has the rela-
sical ensembles as follows. Consider a classical ensembletion v (V)=mV,(V/m) for the ensemble volumes of

described by a probability distributionp(x) on an

“pure” ensembles. Further, replacing by nV in this rela-

n-dimensional spacl. This space may be partitioned into a tjon for any integem implies thatVy(rV)=rV,(V) for any

set {S;} of nonoverlapping sets of equal volumé (i.e.,

rational number =n/m. This can be extended to all real

Jsd"™x=V for all i). Define the corresponding “pure” en- from the assumed continuity of ensemble volume, so that

sembles p;

by the associated probability distributions Vy(V)/V=const=K(I"), say, and the theorem follows via

pW(x)=1N for xe S; and =0 for x¢ S,. These pure en- Eq. (A19).
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