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Universal geometric approach to uncertainty, entropy, and information

Michael J. W. Hall
Theoretical Physics, IAS, Australian National University, Canberra, Australian Capital Territory 0200, Australia

~Received 14 August 1998!

It is shown that a unique measure ofvolume is associated with any statistical ensemble, which directly
quantifies the inherent spread or localization of the ensemble. It is applicable whether the ensemble is classical
or quantum, continuous or discrete, and may be derived from a small number of theory-independent geometric
postulates. Remarkably, this uniqueensemble volumeis proportional to the exponential of the ensemble
entropy, and hence provides an interesting geometric characterization of the latter quantity. Applications
include unified volume-based derivations of results in quantum and classical information theory, a precise
geometric interpretation of thermodynamic entropy for equilibrium ensembles, a geometric derivation of semi-
classical uncertainty relations, a means for defining classical and quantum localization for arbitrary evolution
processes, and a proposed definition for the spot size of an optical beam. Advantages of ensemble volume over
other measures of localization~root-mean-square deviation, Renyi entropies, and inverse participation ratio!
are discussed.@S1050-2947~99!08203-7#

PACS number~s!: 03.65.Bz, 03.67.2a, 05.45.2a, 42.60.Jf
ra
re

le

i
y,

to
en
sa
et
o
n

es

to
n
t

a
a
b
e

ea
rm
m

er

v
no
ic
,
na
er
l

the
ume
for
ely
and
on

een
ple,
tic
i-

ss

-
por-

e

A
y
ill

si-
ol-
inty
en-

of

nifi-
inty
ates

h
r

tial
ea-

ume
the
I. INTRODUCTION

This paper has two main goals. The first is to demonst
that, for any ensemble, whether classical, quantum, disc
or continuous, there is essentially onlyone measure of the
‘‘volume’’ occupied by the ensemble which is compatib
with basic geometric notions. Thisensemble volumeis thus a
preferred and universal choice for characterizing what
variously referred to as the spread, dispersion, uncertaint
localization of an ensemble.

Remarkably, the derived ‘‘ensemble volume’’ turns out
be proportional to the exponential of the entropy of the
semble. A by-product of the first goal is thus a univer
characterization of ensemble entropy, based on geom
notions. Indeed, a number of properties of ensemble entr
turn out to have simple geometric interpretations. The u
versal nature of the characterization is of particular inter
the only previouscontext-independentinterpretation of en-
semble entropy to date~and hence applicable in particular
ensembles described by continuous probability distributio!
appears to be as a somewhat vague measure of uncertain
randomness.

The second goal is to apply ‘‘ensemble volume’’ to
wide range of contexts in which ensembles appear. The
plications demonstrate not only the advantages of ensem
volume over other measures of spread, but also to some
tent why it is that ensemble entropy makes a natural app
ance in contexts as diverse as statistical mechanics, info
tion theory, chaos, and quantum uncertainty relations. So
results have been briefly reported elsewhere@1#. Here impor-
tant details and extensions are given, as well as a numb
additional results.

The work reported here was originally motivated by se
eral connections between volume and information. Shan
proved an upper bound on information transfer, via class
signals subject to quadratic energy and noise constraints
considering ratios of spherical volumes in high-dimensio
spaces@2#. One can similarly obtain approximate upp
bounds on information forquantumsignals, via semiclassica
PRA 591050-2947/99/59~4!/2602~14!/$15.00
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arguments involving ratios of phase space volumes@3,4#,
which in some cases turn out to be exact. This raises
question of whether there is some general measure of vol
which can be used to derive rigorous information bounds
the general case. This question is answered affirmativ
here, and a unified derivation of the classical Shannon
the quantum Holevo information bounds is given, based
simple volume properties.

There are also a number of connections which have b
made previously between volume and entropy. For exam
derivations in statistical mechanics typically obtain heuris
expressions for thermodynamic entropy by counting ‘‘m
crostates’’ in a phase-space volume of ‘‘small’’ thickne
containing a constant-energy surface@5#. Ma, in an interest-
ing approach, attempted todefine the thermodynamic en
tropy of a system in classical statistical mechanics as pro
tional to the logarithm of a phase-space volum
corresponding to the ‘‘region of motion’’ of the system@6#,
although he could not rigorously define the latter region.
precise geometricinterpretation of thermodynamic entrop
for both classical and quantum equilibrium ensembles w
be given here.

Further, Leipnik introduced the exponential of the po
tion entropy of a quantum system as a measure of its ‘‘v
ume,’’ and favorably compared the associated uncerta
relations for position and momentum with the usual Heis
berg uncertainty relations@7# ~see also the review in Ref.@8#,
and Sec. II C below!. Generalizations to other measures
‘‘volume’’ were given by Zakai@8,9#. It is demonstrated here
that the former measure has a unique geometrical sig
cance, and a geometrical derivation of quantum uncerta
relations is given based on the property that quantum st
have a minimum ensemble volume.

Zyckowski @10# and more recently Mirbach and Korsc
@11,12#, used entropy as a measure of ‘‘localization’’ fo
chaotic quantum and classical systems for various ini
states. The results of the present paper show that this m
sure can be simply related to the spread of ensemble vol
for arbitrary evolution processes, and provide support for
2602 ©1999 The American Physical Society
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use of this measure over all other localization measures
Rather than going immediately to general postulates

volume, and formal proofs of uniqueness, Sec. II first e
plores ensemble volume for a familiar class of ensemb
those described by one-dimensional probability distributio
In this case the ensemble volume reduces to a ‘‘lengt
which is calculated for a number of concrete examples
compared with other measures of uncertainty such as r
mean-square deviation. Geometric properties of t
‘‘length’’ and an associated quantum uncertainty relation
discussed. Two-dimensional joint probability distributio
are also briefly discussed, where the ensemble volume
comes an ‘‘area’’ that is geometrically related to t
‘‘lengths’’ of the marginal distributions. This ‘‘area’’ moti-
vates a definition for the spot size of an optical beam.

In Sec. III and the accompanying Appendix, the deriv
tion of the ensemble volume from universal geometric p
tulates is given. These postulates depend on the
independent notions of invariance, projection on
orthogonal axes, and additivity, and in particular are in
pendent of whether the ensemble is classical or quant
The bonus of a geometrical characteriztion of ensemble
tropy is discussed, and a geometrical interpretation of r
tive entropy is given.

Applications to statistical mechanics, semiclassical qu
tum mechanics, information theory, chaos and other type
dynamical evolution are given in Sec. IV. Conclusions a
presented in Sec. V.

II. ONE- AND TWO-DIMENSIONAL EXAMPLES

Before deriving the unique form of ensemble volume
Sec. III, it is useful first to consider some of its properti
and connections to other measures of uncertainty in two
miliar settings: continuous distributions on the line and
the plane, for which ‘‘volume’’ reduces to the special cas
of ‘‘length’’ and ‘‘area,’’ respectively. These special cas
are already sufficient to exemplify a number of general f
tures of ensemble volume, and its advantages as a measu
spread.

A. Length

Consider a one-dimensional probability distributionp(x),
corresponding to some random variableX ~e.g., position,
momentum, or phase!. There are then a number of candidat
for a direct measure of the ‘‘uncertainty’’ or ‘‘spread’’ ofX,
the most well known being the root-mean-square~rms! de-
viation

DX5F E dx x2p~x!2S E dx xp~x! D 2G1/2

. ~1!

This quantity is a ‘‘direct’’ measure in the sense of havi
the same units asX, and has the virtues of being invaria
under translations and reflections, scaling linearly withX
(DY5lDX for Y5lX), and vanishing in the limit thatX
has some definite valuex8.

A second candidate is the inverse participation ra
@10,12,13#
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jX5F E dx p~x!2G21

, ~2!

~which may also be recognized as a monotonic function
the so-called ‘‘linear entropy’’2*dx p(x)2 @14#!. This
quantity shares all of the above-noted virtues ofDX. How-
ever, it is in fact only a special case of what may be cal
the ‘‘Renyi length’’

LX,a5F E dx p~x!11aG21/a

~a>21! ~3!

~named for its logarithm—a generalized entropy defined
Renyi@15#!. Renyi lengths are directly related to measures
uncertainty considered by Dodonov and Man’ko and Za
for quantum systems@8,9#, and use of their reciprocals a
~indirect! measures of uncertainty was extensively inves
gated in Ref.@16# ~see also Ref.@17#!. The inverse participa-
tion ratio corresponds toa51 in Eq. ~3!.

The Renyi lengthLX,a in Eq. ~3! satisfies all of the above
noted properties ofDX @same units asX, translation and
reflection invariance, scaling linearly withX, and vanishing
as p(x) approaches ad function#. Equation~3! thus intro-
duces an uncountable infinity of possible candidates fo
direct measure of uncertainty. Fortunately, as will be see
Sec. III, just one of these Renyi lengths may be singled
uniquely over all other possible measures on geome
grounds.

In particular, in this paper special attention will be paid
the casea→0 in Eq. ~3!. The corresponding length wil
simply be denoted byLX , and is just the exponential of th
usual ensemble entropy@18#:

LX5LX,05expF2E dx p~x!ln p~x!G . ~4!

This is a special case of the ‘‘ensemble volume,’’ to be d
rived in Sec. III, and will therefore be referred to as t
ensemble length.

B. Comparisons

In Table I the rms deviation and ensemble length are c
culated for several types of one-dimensional distributio
As noted following Eqs.~1! and ~3!, both quantities are in-
variant under translations and scale linearly withX. Hence
they can be trivially calculated for distributions of the for
p(x/a2x8)/a once they have been found forp(x) ~by sim-
ply multiplying the result for the latter case bya). Table I
will be used to highlight a number of differences betwe
DX andLX .

First, it is seen from Table I that the ensemble leng
exists in cases when the rms deviation does not~for Cauchy-
Lorentz and sink-squared distributions in particular!. It may
further be shown thatLX is finite wheneverDX is: the well
known variational property that ensemble entropy is ma
mized for a fixed value ofDX by a Gaussian distribution
@19# immediately implies from the scaling property an
Table I that

LX<~2pe!1/2DX. ~5!
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TABLE I. Examples of ensemble length and rms deviation.

Distribution p(x) LX DX

Uniform pU(x)51,0<x<1 1 1/(2A3)
Circular pC(x)52(12x2)1/2/p,uxu<1 p/Ae 1/2
Gaussian pG(x)5(2p)21/2exp(2x2/2) (2pe)1/2 1
Exponential pE(x)5exp(2x),x>0 e 1
Sink squared pSS(x)5p21@sin(x)/x#2 pe2(12C) a

Cauchy-Lorentz pCL(x)5p21/(11x2) 4p
Double uniform pDU(x)5

1
2 ,0<uxu2a<1 2 @1/31a(a11)#1/2

aC'0.577 215 66 denotes Euler’s constant.
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Thus the use of ensemble length as a measure of uncert
allows a wider quantitative range of applicability than do
the rms deviation. This permits, for example, a quantitat
discussion of quantum uncertainty relations, expressed
terms of ensemble length, for cases in which the us
Heisenberg uncertainty relations have nothing to say~see
Sec. II C!.

Second, the calculations for the uniform and circular d
tributions, pU and pC in Table I, respectively, exemplify a
maximality property of ensemble length: it is maximized
a given interval by a uniform distribution on the interva
with a maximum value equal to the length of the interv
Thus one may write

LX<L ~6!

for a distribution confined to an interval of lengthL @20#.
This property reflects the intuitive notion thatp(x) is most
spread out or least localized when it isflat, having no peaks
where probability is concentrated. The rms deviation d
not conform to this notion, achieving its maximum possib
value in the limit of two maximally separated peaks~a dis-
tribution equally concentrated on the endpoints of the in
val!.

Third, the calculation in Table I for the uniform an
double-uniform distributionspU andpDU illustrates an addi-
vity property of ensemble length: the ensemble length ofpDU
is twice that of the two nonoverlapping uniform distributio
pU(x2a) andpU(2x2a), which it comprises in equal mix
ture. More generally, ifp(x) andq(x) denote two nonover-
lapping distributions of equal ensemble lengthL, then any
mixture lp(x)1(12l)q(x) of these distributions satisfies

LX<2L, ~7!

with the upper bound achieved forl5 1
2 @21#. This property

reflects the intuitive notions that such a mixture is least
calized~most spread out! when it is not more concentrated i
one of the nonoverlapping regions than in the other, and
for this equally weighted case the nonoverlapping leng
simply add. In contrast, the rms deviation ofpDU depends
strongly on the separation of the peaks, and indeed beco
infinite as this separation increases. This example and
one above emphasize what can be directly seen from Eq.~1!:
the rms deviation is a measure ofseparationof the region~s!
of concentration from a particular point of the distributio
~the mean value!, rather than a measure of the extent
which the distribution is in fact concentrated.
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Fourth, except in cases where the second moment ofp(x)
has some particular physical meaning, it is difficult to ass
the significance of a given value ofDX without some further
information about the distribution. For example, even
single-peaked distributions, the probability thatX lies within
6DX of the mean is highly dependent upon the nature
p(x) @22#. In contrast, as will be seen in Sec. III, the e
semble lengthLX has a unique geometrical significance.

Finally, it is of interest to make a quantitative comparis
between the degrees to which a given distributionp(x) is
concentrated in a region of lengthLX on the one hand, and o
length 2DX on the other hand. To do so, it is natural
define themaximum confidencecorresponding to a given
lengthL as

C~L !5 sup
$A:uAu5L%

H E
A
dx p~x!J , ~8!

where the supremum is over all measurable setsA of total
length L. In the case of a distribution symmetric about
single peak this is achieved by choosingA to be the interval
of lengthL centered on the mean value of the distribution

From Table I one can calculate the values ofC(LX) to be
approximately 100%, 99%, 96%, 93%, 91%, and 90%
the uniform, circular, Gaussian, exponential, sink-squar
and Cauchy-Lorentz distributions, respectively. The cor
sponding values ofC(2DX) are 58%, 61%, 68%, and 86%
for the first four of the above distributions, with the valu
being undefined for the last two. It is seen that for the
examplesC(LX) varies over a much narrower range th
C(2DX), and thatLX typically corresponds to a larger con
fidence value than 2DX.

C. Uncertainty relations

The relationship between ensemble length and ensem
entropy in Eq.~4! allows the usual entropic uncertainty rel
tion for the position and momentum of a quantum parti
@23# to be equivalently written in the geometric form

LXLP>pe\, ~9!

relating the product of the ensemble lengths to a minim
area in phase space. BoundingLX andLP from above via Eq.
~5! then immediately yields the well-known Heisenberg u
certainty relation

DXDP>\/2. ~10!
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The above two inequalities are similar in form, and ha
the same broad physical significance: the particle canno
prepared in a state for which both the position and mom
tum distributions have arbitrarily small spreads. However
is seen that the latter inequality is mathematically weaker
it follows from the former. For example, it follows from Eq
~9! that LP @and hence, via Eq.~5!, DP] becomes infinite as
p(x) approaches a weighted sum ofd functions. This cannot
be concluded from Eq.~10!.

Inequality ~9! may used to make quantitative evaluatio
regarding the relative spreads of position and momentum
cases where the Heisenberg inequality~10! yields no infor-
mation. For example, consider a quantum particle confi
to an interval of lengthL, such that the position amplitude
constant over the interval. It follows that the momentum s
tistics are described by the sink-squared distribution

p21~2\/L !„sin@pL/~2\!#/p…2. ~11!

As noted in Table I, the rms deviationDP is not defined in
this case, and hence the Heisenberg inequality canno
used to assess the degree to which position and mome
are jointly localized. In contrast, using Eq.~11!, Table I, and
the scaling property of ensemble length, one finds

LXLP52pexp@2~12C!#\'15\, ~12!

whereC'0.577 215 66 denotes Euler’s constant. Hence
particle has an associated phase space area close to the
bound ofpe\'9\ in Eq. ~9!, i.e., the particle is in fact in an
approximate minimum uncertainty state of position and m
mentum.

A similar example is the case of a particle confined to
positivex axis, with a position amplitude that decays exp
nentially with x. The position and momentum distribution
are then given by exponential and Cauchy-Lorentz distri
tions of the formspE(x/a)/a and 2apCL(2ap/\)/\, respec-
tively, implying via Table I and the scaling property that

LXLP52pe\. ~13!

Hence the state is relatively well localized in position a
momentum, with an associated phase-space area only t
that of the minimum in@Eq. ~9!#. Again, the Heisenberg
uncertainty relation Eq.~10! gives no information about the
joint localization in this case.

Finally, it may be mentioned that there is an uncertai
relation relating the Renyi lengths of position and mome
tum for generala: it follows from Eq. ~131! of Ref. @8# that

LX,aLP,b>p\@112a#111/~2a!/~11a! ~14!

for a>2 1
2 , where b52a/(112a). For a5b50 the

lower bound is maximum, and the inequality reduces to
~9! above.

D. Area and spot size

This section will be concluded by briefly looking at me
sures of spread fortwo-dimensional distributions, to high
light a further geometric property of ensemble length of i
portance in later sections. This property also holds for r
e
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deviation, but not for Renyi lengths in general. A relat
measure of spot size for optical beams is defined and bri
discussed.

Each of the ‘‘length’’ measures in Eqs.~1!, ~3!, and ~4!
has a natural generalization to a measure of ‘‘area,’’ cor
sponding to the spread or uncertainty of a two-dimensio
probability distributionp(x,y) of two random variablesX
andY:

DA5@det~^xxT&2^x&^xT&!#1/2, ~15!

AXY,a5^pa&21/a, ~16!

AXY5exp@^2 ln p&# ~17!

respectively, wherex denotes the column vector (x,y), xT its
transpose, and̂& the average with respect top. These areas
satisfy properties analogous to to their one-dimensio
counterparts, and will be referred to as the rms area, Re
area, and ensemble area, respectively.

The rms area in Eq.~15! may be recognized as the prod
uct of the rms deviations along the principal axes of t
distribution in thexy plane, and in general satisfies the i
equality @Eq. ~2.13.7! of Ref. @24##

DA<DXDY, ~18!

with equality for the case thatp(x,y) factorizes into two
uncorrelated distributions forX andY.

This inequality for ‘‘area’’ and ‘‘length’’ has a simple
geometric interpretation, to be generalized in Sec. III. In p
ticular, the marginal distributionsp1(x) andp2(y) for X and
Y are obtained by ‘‘projecting’’ the joint distributionp(x,y)
onto the two orthogonalx and y axes. The associated rm
lengthsDX andDY may be similarly thought of as obtaine
by ‘‘projecting’’ the rms areaDA onto these axes. Howeve
this is only consistent with Euclidean geometry if inequal
~18! holds: the product of the two lengths obtained by p
jection of an area onto two orthogonal axes can never be
than the original area.

Ensemble area and ensemble length are also consi
with this ‘‘projection’’ interpretation: the well-known subad
ditivity of entropy @19# can be equivalently written via Eqs
~4! and ~17!, as

AXY<LXLY , ~19!

in analogy to Eq.~18!. The subadditivity of entropy is thus
seen to correspond to a projection property of Euclidean
ometry. One has the further related property that ifp(x,y) is
uniform on a rectangular region oriented parallel to thex and
y axes, and vanishes outside this region, then equality h
in Eq. ~19!, with LX andLY corresponding to the lengths o
the sides of the rectangle. Thus Eq.~19! reduces in this case
to the Euclidean propertyarea 5 length3 breadth. In gen-
eral, the Renyi areas in Eq.~16! are not consistent with the
projection property, as will be seen in Sec. III.

Finally, it may be noted that Eq.~17! may be applied to
physical distributions other than probability distribution
with corresponding geometrical advantages. For example
P(x,y) denote the time-averaged power distribution in so
plane orthogonal to the direction of propagation of an opti



th
is
r

f
e
m

-
’
r-
u
-
efi

re
is
an
e-
it
l-

on
u
xt
ca

ac
-

th
o

st
o
pt
b

p

er
o

cr
-
b

iv
fe

ed

s
he

f

cal

g if
ith-

, it

n
xes
of

sure
n.

sid-
en-
en-

me,

d

l

2606 PRA 59MICHAEL J. W. HALL
beam. One may then define the ‘‘geometric’’ spot size of
beam as the ensemble area of the normalized power d
bution P(x,y)/PT , wherePT is the integrated power ove
the plane:

Ageom5PTexpF2~PT!21E dx dy P~x,y!ln P~x,y!G .
~20!

This satisfies desirable properties such as being additive
nonoverlapping identical beams, being invariant with resp
to scaling the power up or down, scaling linearly with bea
magnification, having a maximum value ofA for a beam
confined to an areaA ~attained for a uniform power distribu
tion over that area!, and satisfying a ‘‘projection property’
analogous to Eq.~19!. It is also invariant under any transfo
mation of coordinates which preserves area in the us
sense~i.e., with unit Jacobian!, and so to this extent is inde
pendent of the coordinatization of the plane. Alternative d
nitions based on, for example, Eqs.~15! or ~16!, are geo-
metrically less satisfying.

III. ENSEMBLE VOLUME

Section II indicates the wide range of possible measu
for the spread of one- and two-dimensional probability d
tributions, and draws attention to a number of geometric
other advantages enjoyed by the ‘‘length’’ and ‘‘area’’ d
fined in Eqs.~4! and~17!, respectively. As noted in Sec. I,
has often proved useful to employ various notions of ‘‘vo
ume’’ for statistical ensembles across a wide variety of c
texts, such as information theory, statistical mechanics,
certainty relations, and chaotic evolution. Other conte
include Ornstein-Uhlenbeck diffusion and semiclassi
quantum mechanics~see Ref.@1#, and Secs. IV B and IV D
below!. This raises the question of whether there is in f
someuniversalmeasure of ‘‘volume’’ for classical and quan
tum ensembles, which may be usefully employed in all of
above contexts and which is not restricted in application
interpretation to various special cases.

Here it will be shown that indeed such a measure exi
which may be uniquely derived from a small number
theory-independent postulates fundamental to the conce
‘‘volume.’’ It generalizes the ensemble length and ensem
area of Sec. II, and will be referred to as theensemble vol-
ume. It also leads to geometric characterizations of entro
and relative entropy.

A. Notation

Three generic types of ensemble will be considered h
The first is a classical ensemble described by a continu
probability distributionp(x) on somen-dimensional space
X; the second is a classical ensemble described by a dis
probability distribution$pi%, wherei ranges over some dis
crete setI; and the third is a quantum ensemble described
a density operatorW on some Hilbert spaceH.

Each of the above types of ensemble shares some un
sal features. It is essential to abstract a number of these
tures via a common notation if ‘‘volume’’ is to be discuss
in a theory-independent manner.

For example, consider the three identities
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dnx p~x!51, (

i PI
pi51, trH@W#51. ~21!

Defining G to correspond to the spaces and setsX, I, andH,
TrG@ # to correspond to integration overX, summation overI,
and the trace overH, andr to correspond to the ensemble
p(x), $pi%, andW, these identities can be subsumed into t
generic identity

TrG@r#51. ~22!

Another universal feature is the notion ofcompositeor
joint ensembles: for a given pair of spaces or setsG1 andG2
of a given type, one can define a composite set or spaceG12,
where for classical and quantum ensemblesG12 corresponds
to the set product and the tensor product, respectively, oG1
andG2 . Further, ifr describes a composite ensemble onG12,
one may define twoprojectedensemblesr1 and r2 on G1
andG2 , respectively, via

r15TrG2
@r#, r25TrG1

@r#. ~23!

These projected ensembles correspond tomarginal distribu-
tions andreduceddensity operators for the cases of classi
and quantum ensembles, respectively.

Finally, one may define any two ensemblesr and r8 of
the same type to be nonoverlapping if and only if

TrG@rr8#50. ~24!

Note that in general two ensembles are nonoverlappin
and only if they can be distinguished by measurement w
out error.

B. Postulates for volume

For the three types of ensemble discussed in Sec. III A
is useful to think of ‘‘volume’’ in the following ways. First,
for a continuous distributionp(x) on a spaceX, the volume
corresponds to a direct measure of the region~s! of ‘‘spread’’
of p(x) in X. Second, for a classical discrete distributio
$pi%, one may imagine the indices as labeling a set of bo
or bins. In this case ‘‘volume’’ corresponds to the spread
the distribution over these bins, i.e., as a continuous mea
of the effective number of bins occupied by the distributio
Third, for a quantum ensemble, the volume may be con
ered as a continous generalization of Hilbert space dim
sion, corresponding to a measure of the spread of the
semble in Hilbert space. Consider now a measure of volu
V(r), which satisfies the following properties.

~i! Invariance property: V(r) is invariant under all trans-
formations onG which preserve TrG@ # ~these are represente
by measure-preserving transformations onX for continuous
classical ensembles, permutations onI for discrete classica
ensembles, and unitary transformations onH for quantum
ensembles!.

~ii ! Cartesian property:If r describes twouncorrelated
ensemblesr1 andr2 on G1 andG2, respectively, then

V~r!5V~r1!V~r2! ~25!
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~note thatr is the productr1r2 for classical ensembles, an
the tensor productr1^ r2 for quantum ensembles!.

~iii ! Projection property:If r describes an ensemble o
composite systems onG12, then

V~r!<V~r1!V~r2!, ~26!

wherer1 ,r2 are the projections ofr defined in Eq.~23!.
~iv! Additivity property:An equally weighted mixture of

m nonoverlappingensemblesra ,rb , . . . , each of equal vol-
umeV, has a total volume ofmV, i.e.,

V~m21@ra1rb1•••# !5mV. ~27!

~v! Uniformity property: If r is any mixture ofm non-
overlapping ensembles of equal volumesV, then

V~r!<mV. ~28!

The above properties are essentially the same as t
defined in Ref.@1#, where the additivity and uniformity prop
erties were combined in the latter. Their geometrical sign
cance is as follows.

First, the invariance property~i! ensures that the volum
V(r) is a function of the ensemble alone, independently o
particular coordination, labeling, or measurement basis
G. Indeed, the transformations which preserve TrG@ # are ex-
actly those which preserve volume, or measure, onG in the
usual sense. For example, for a classical distributionp(x) on
X the measure of a subsetS#X is given by

uSu5E
S
dnx5TrS@1#. ~29!

The invariance property then requires that the ensemble
ume is invariant under all transformations which preserve
measure of all subsets, i.e., those transformations with a
Jacobian. For the case of a classical phase space, such
formations include all canonical transformations, and he
V(r) will be invariant under Hamiltonian evolution. On
may similarly consider the measureuSu5TrS@1# of subsets
S#I and subspacesS#H; in these cases the invarianc
property again requires thatV(r) is invariant under measure
preserving transformations, corresponding to permutati
and unitary transformations, respectively.

Second, the Cartesian property~ii ! is exactly analogous to
the geometric property that area equals length times brea
and more generally that the volume of the Cartesian prod
of two sets is equal to the product of the volume of the s
This is illustrated in Fig. 1.

Third, the projection property~iii ! is exactly analogous to
the geometric property that a volume is less than or equa
the product of the lengths obtained by its projection o
orthogonal axes, and is illustrated in Fig. 2. It is a gener
zation of the projection property discussed for rms area
ensemble area in Sec. II D.

Fourth, the additivity property~iv! requires the ensembl
volume to be additive for a uniform mixture of nonoverla
ping ensembles of equal volume. The geometric interpr
tion of this is self-evident: the total volume ofm equal non-
overlapping volumes is the sum of the individual volume
se
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Finally, the uniformity property~v! states that the maxi
mum volume, of a mixture of nonoverlapping ensembles
equal volume, is bounded by the sum of the component v
umes. Thus, noting the additivity property, this maximum
achieved for auniform mixture, i.e., one which is not more
concentrated on one of the component ensembles tha
any other.

C. Derivation

Here the unique, universal measure of volume for e
sembles is obtained. It may more generally be applied a
measure of spread for any positive classical or quantum d
sity, such as beam intensity or mass density, by calcula
the ‘‘volume’’ of the corresponding normalized density.
such cases, where no ensemble is involved, one could a
natively label this quantity as the ‘‘geometric dispersion.’’
particular, one has the following result, first stated in@1#, and
proved in the Appendix.

FIG. 1. Two uncorrelated ensemblesr1 and r2 on spacesG1

and G2 , respectively~shown here compressed to one-dimensio
axes!, have respective volumesV(r1) and V(r2), as indicated by
the darkened axis regions. TheCartesian property@Eq. ~25!# states
that the corresponding joint ensembler has a ‘‘rectangular’’ vol-
ume V(r)5V(r1)V(r2), i.e., V(r) corresponds to the Cartesia
product of volumesV(r1) andV(r2).

FIG. 2. An ensembler on the product space ofG1 andG2 has a
volumeV(r) indicated by the solid closed curve. The correspon
ing projected ensemblesr1 and r2 on G1 and G2 , respectively,
have projected volumesV(r1) and V(r2), indicated by the dark-
ened axis regions. Theprojection property@Eq. ~26!# states that
V(r) can be no greater than the volume of the rectangular reg
formed by the dashed lines, i.e., than the product of the proje
volumes.
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Theorem:Any ~continuous! measure of volume satisfyin
properties~i!–~v! above has the form

V~r!5K~G!eS~r!, ~30!

whereS(r) denotes the ensemble entropy

S~r!52TrG@r ln r#, ~31!

andK(G) is a constant which may depend onG, and satisfies

K~G12!5K~G1!K~G2!. ~32!

The proof in the Appendix primarily relies on applyin
properties~i!–~v! to an arbitrarily large number of indepen
dent copies of a given ensembler. I believe it may be pos-
sible to prove the theorem without the uniformity prope
~v!, but have not been able to do so.

The constantK(G) in Eq. ~30! is a normalization con-
stant, reflecting the notion that only relative volumes are
real interest in comparing different ensembles. For conti
ous classical ensembles a natural choice isK(G)51, so that
a distribution which is uniform over a setS of measureV,
and vanishes outsideS, has ensemble volume equal toV.

For discrete classical ensembles the choiceK(G)51 cor-
responds to measuring the ensemble volume in terms o
number of ‘‘bins’’ occupied by the ensemble, with the min
mum volume of one bin corresponding to a distribution w
pi51 for some indexi. However, if the distribution arise
from the discretization of a continuous observable such
position~due to measurement limitations, for example!, then
it would be natural to chooseK(G) to correspond to the
discretization volume. If the index set is finite, withM labels,
another possible choice forK(G) is 1/M . The ensemble vol-
ume then measures the fraction of the total volume occup
by the ensemble.

For quantum ensembles the choiceK(G)51 corresponds
to measuring the ensemble volume in terms of the numbe
Hilbert space dimensions occupied by the ensemble, w
pure states occupying the minimum possible of one dim
sion. However, if the Hilbert spaceH has a finite dimension
M, then one could alternatively takeK(G)51/M , corre-
sponding to a fractional measure of volume in analogy to
classical case. Finally, for quantum systems with class
counterparts, such as spin-zero particles, one may ch
K(G) so that in the classical limit the quantum ensem
volume reduces to the classical ensemble volume. Thi
explored further in Sec. IV B, and used to obtain semicla
cal uncertainty relations.

It should be noted that the assumption of continuity in
statement of the theorem is necessary. For example, one
for a discrete classical ensemble$pi% define the ‘‘support
volume’’ as the number of nonzeropi values. This satisfies
all of properties~i!–~v!, but is not continuous. The simple
counterexample is the discrete probability distribution$1
2e,e% for e.0. As e→0 this distribution continuously ap
proaches the distribution$1,0%, with a support volume of 1;
however for alle.0 the support volume is 2.

If one defines the rms volume for ann-dimensional ob-
servablex by generalizing Eq.~15! to arbitrary dimensions
@25#, it is not difficult to show that the invariance proper
~restricted tolinear transformations!, the Cartesian property
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and the projection property are satisfied. However it does
satisfy the additivity and uniformity properties. Further, t
‘‘Renyi’’ volumes

Va~r!5~TrG@r11a#!21/a, ~33!

defined in analogy with the Renyi length and Renyi area
Eqs.~3! and~16!, respectively, satisfy properties~i!, ~ii !, ~iv!,
and~v! for all a>21. However, a counterexample given b
Renyi ~Theorem 4 of Sec. IX.6 in Ref.@15#! shows that the
projection property isnot satisfied, except for the casesa
50 @corresponding to Eq.~30!, with K(G)51], and a5
21 ~corresponding to the discontinuous case of ‘‘supp
volume’’ discussed above!.

D. Geometric characterization of entropy

The appearance of the ensemble entropy in Eq.~30! as a
result of geometric postulates~i!–~v! provides an approach
to this quantity, which is moreover independent of wheth
the ensemble is classical or quantum, discrete, or continu
In particular, ensemble entropy may be defined~up to an
additive constant! as the logarithm of the ensemble volum,
where the latter is taken to be the primary quantity. T
properties of ensemble entropy may thus be regarded as
ing geometric in origin. Indeed, it will be seen that its natu
appearance in a number of physical contexts can be in
preted as following from its relationship to a ‘‘volume.’’

The geometric interpretation of ensemble entropy c
trasts markedly with its only other context-independent int
pretation as an~indirect! measure of ‘‘uncertainty’’ or ‘‘ran-
domness’’ @15–17,19,26,27#. Indeed, ensemble volum
provides adirect measure of uncertainty, which is advant
geous when one wishes to compare the spreads of two
sembles of a given type~i.e., with the sameG). For example,
if two ensembles have entropies of 0.5 bits and 1.5 b
respectively@28#, should one compare their ratio or the
difference in assessing the degree to which the uncertaint
the second exceeds that of the first? Since entropies are
cally only defined up to a multiplicative constant~see be-
low!, one might consider the ratio to be the more significa
means of comparison. However, the ensemble volume g
an unequivocal answer: the volume of the second ensem
is twice that of the first in this case, and hence has twice
spread.

It is interesting to briefly compare the derivation of e
semble volume from properties~i!–~v! with existing axiom-
atic derivations of ensemble entropy. Such axiomatic deri
tions are reviewed in Ref.@29#, and are all related to the
original derivation given by Shannon@26#. Unlike the theo-
rem of Sec. II C they are limited todiscreteclassical en-
sembles. Moreover, they lead to an arbitrary multiplicat
constant for entropy, whereas the geometric approach le
to an arbitraryadditiveconstant for entropy.

To see that the axioms used by Shannon and others
markedly different from properties~i!–~v! used to derive en-
semble volume, consider the ‘‘grouping axiom’’ of Shann
@26# ~see also Sec. 1.2 of Ref.@19#!, which may be written in
the notation of this paper as

S„lr1~12l!r8…5S~$l,12l%!1lS~r!1~12l!S~r8!
~34!
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for any two nonoverlapping discrete classical ensembler
andr8. Thus it is assumed that the ‘‘randomness’’S( ) of a
mixture of nonoverlapping distributions is equal to that
the mixing distribution plus the average randomness of
individual ensembles. This axiom, together with a continu
assumption and a symmetry assumption equivalent to
invariance property~i!, is sufficient to derive the formS(r)
52C( i pi ln pi for the entropy of discrete classical e
sembles, whereC is an arbitrary constant@29#.

Equation~34! doesnot translate into a natural axiom fo
ensemble volume: replacingS by lnV gives the equivalen
constraint

V„lr1~12l!r8…5V~$l,12l%!@V~r!#l@V~r8!#12l,
~35!

which has no simple geometric interpretation. Convers
the additivity property Eq.~27!, that nonoverlapping equa
volumes add, translates underV→expS into the ‘‘random-
ness’’ constraint

S~r/21r8/2!5 ln 21S, ~36!

which is not a natural property to postulate for a measure
‘‘randomness.’’ The geometric approach to ensemble
tropy given here thus differs significantly from former a
proaches~as is also apparent from comparing the proof in
Appendix with those in Refs.@19,26,29#!.

Finally, it is of interest to note that the concavity proper
of ensemble entropy,S(( il ir i)>( il iS(r i) @19,26#, is
equivalent to an inequality relating the volume of a mixtu
to the weighted geometric mean of the volumes of its co
ponents:

VS (
i

l ir i D>)
i

@V~r i !#
l i. ~37!

This may be regarded as a generalization of the uniform
property@Eq. ~28!#, as it implies that uniform mixtures hav
the greatest volumes. Note that the ensemble volume
itself be regarded as a weighted geometric mean@e.g., of the
function p(x)21 with respect top(x) for continous classica
ensembles; see Secs. 2.2 and 6.7 of Ref.@24##.

E. Relative entropy

The relative entropy of two ensemblesr and s may be
defined in a context independent manner by@30#

S~rus!5TrG@r~ ln r2 ln s!#. ~38!

It is asymptotically related to the probability of mistakin
ensembler for ensembles, as was reviewed in Ref.@31#.
Here it will briefly be indicated how a geometric interpret
tion of this quantity can be given.

Consider a compactn-dimensional spaceX which is di-
vided up into into a set of nonoverlapping bins$Bi% ~e.g., for
measurement purposes!. A discrete probability distribution
$pi% over the bins~e.g., corresponding to measurement
sults!, may then also be modeled by thecontinuousdistribu-
tion p(x) on X defined by

p~x!5pi /Vi , xPBi , ~39!
f
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e
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whereVi5*Bi
dnx denotes the measure of binBi . Thusp(x)

is uniform over each bin, and its integral over binBi is equal
to pi . Let rD and rC denote the discrete and continuo
ensembles corresponding to$pi% andp(x), respectively.

Now, as discussed earlier, the ensemble volumeV(rD) is
proportional to the effective number of bins occupied byrD .
However, this does not indicate the effective volume
spread of the ensemble relative toX, particularly in the case
of varying bin sizesVi . The latter is given byV(rC), which,
making the choiceK(G)51, follows from Eq.~39! as

V~rC!5expF2(
i

pi ln~pi /Vi !G . ~40!

Note that in the case ofequalbin sizesVi[V this reduces to
the bin sizeV multiplied by the effective number of bin
occupied, expS(rD).

Finally, if X has total measure( iVi5VX , one may define
the ‘‘weighting’’ ensemblesD as corresponding to the dis
crete probability distribution$Vi /VX%. Thus sD describes
the relative sizes or weightings of the bins. It then follow
via Eqs.~38! and ~40! that

V~rC!/VX5e2S~rDusD!. ~41!

Hencethe relative entropy S(rus) is directly related to
the volume of a discrete ensembler embedded in a continu
ous space, wheres characterizes the distribution of bin size
of the embedding. Note that this geometric interpretation o
relative entropy allows its properties to be understood as
responding to ratios of volumes. For example, the volume
an ensemble onX can never be greater thanVX ~correspond-
ing to a uniform distribution onX). Hence the left-hand side
of Eq. ~41! is never greater than unity, implying that

S~rus!>0. ~42!

IV. APPLICATIONS

The results of Sec. II for ensemble length and ensem
area indicate the usefulness of ensemble volume as a d
measure of the spread of an ensemble~and of other positive
densities such as optical beam power!. Here other applica-
tions will be examined, in the contexts of statistical mecha
ics, semiclassical quantum mechanics, information theo
and quantum chaos. A particular result of note is a unifi
proof of the classical Shannon information bound and
quantum Holevo information bound based on ratios of
semble volumes. For the quantum case this proof is conc
tually and technically far simpler than previous proofs.

A. Statistical mechanics

First, in the statistical mechanics context, the Gibbs re
tion Sth5kS(r) between thermodynamic entropy and e
semble entropy for equilibrium ensembles can be rewritt
via Eq. ~30!, as

Sth5k ln@V~r!/K~G!#. ~43!

Thus the thermodyamic entropy is~up to an additive con-
stant! proportional to the logarithm of the ensemble volum
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From Eq.~43! and the third law of thermodynamics~that
thermodynamic entropy vanishes at absolute zero!, it follows
that one should chooseK(G) to correspond to a minimum
‘‘zero-temperature’’ ensemble volume. For quantum e
sembles one has from Eqs.~30! and ~31! that V(r)5K(G)
for pure states, i.e., thequantumzero-temperature volume i
just that of apurestate onG. Similarly, for discrete classica
ensembles,K(G) is the volume of the ‘‘pure’’ ensemble de
scribed by$1,0,0, . . . %. However, continuous classical en
sembles violate the third law@5#, andK(G) remains arbitrary
in this case~but see Sec. IV B below!.

The geometric expression~43! is very similar to the origi-
nal Boltzmann relation

Sth5k ln W, ~44!

whereW is the number of distinct microstates or ‘‘eleme
tary complexions’’ consistent with the thermodynamic d
scription. Indeed, from the above discussion it follows th
Eq. ~43! provides aprecise geometricinterpretation of the
Boltzmann relation for discrete classical and quantum eq
librium ensembles:thermodynamic entropy is proportiona
to the logarithm of the number of nonoverlapping ze
temperature volumes contained within the total volume of
ensemble. Thus the Boltzmann relation and the Gibbs fo
mula for thermodynamic entropy become directly unified
the ensemble volume approach.

Properties of thermodynamic entropy can be reinterpre
in terms of geometric volume. For example, the additivity
thermodynamic entropy for uncorrelated ensembles in th
mal equilibrium follows from Eq.~43! and the Cartesian
property@Eq. ~25!# for uncorrelated ensemble volumes. No
also that irreversible processes correspond geometrical
those which increase the volume of the ensemble.

B. Semiclassical quantum mechanics

Consider now a classical ensemblerC which is the ‘‘clas-
sical limit’’ of some quantum ensemblerQ , i.e., the physical
properties ofrC approximate those ofrQ . Such ensembles
exist, for example, for equilibrium ensembles in the hig
temperature limit and for the coherent states of a harmo
oscillator.

For the case of a spinless particle associated wit
2n-dimensional phase space one can obtain a relation
between the constantsK(GC) and K(GQ) in Eq. ~30! by
requiring that the ensemble volumesV(rC) and V(rQ) are
approximately equal for such ensembles. Since these
stants are independent of the dynamics of the ensemb
suffices to choose an equilibrium ensemble of isotropic
cillators. Equating the calculated values ofV(rC) andV(rQ)
in the high-temperature limit then yields

K~GQ!5hnK~GC! ~45!

for the volume of a pure state, whereh is Planck’s constant
Thus the Bohr-Sommerfeld quantization rule that a p
quantum state occupies a classical phase-space volumehn

is recovered@32#.
Equation~45! can be used to derive semiclassical unc

tainty relations from geometric considerations. For two c
responding ensemblesrQ andrC as above the position an
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momentum entropiesSX and SP , respectively, must be ap
proximately equivalent for either ensemble. Further,

exp~SX!exp~SP!>exp„S~rC!… ~46!

holds for the classical ensemble from the projection prope
@Eq. ~26!# applied to projections onto the position and m
mentum axes. Equations~30!, ~45!, and ~46! then yield the
approximate inequality

SX1SP2S~rQ!*n ln h ~47!

for quantum ensembles which have classical limits. I conj
ture thatexact inequality in fact holds forall quantum en-
sembles.

Since the entropy of a quantum ensemble has a minim
value of 0 ~corresponding to the existence of a minimu
volume for quantum ensembles!, it follows from Eq. ~47!
that one has the semiclassical entropic uncertainty relati

SX1SP*n ln h, ~48!

for quantum ensembles with classical limits. As per the de
vation of Eq.~10! from Eq. ~9!, the corresponding semiclas
sical Heisenberg uncertainty relation

DXDP*\/e ~49!

then follows for then51 case. Equations~48! and ~49! are
close to the exact results for general quantum ensem
@8,23# @see Eqs.~9! and ~10!#. It is seen that geometrically
they correspond to application of the projection property@Eq.
~26!# to the projections of a pure state of volumehn onto the
position and momentum axes~i.e., replacingG1 andG2 by X
andP in Fig. 2!.

C. Information bounds

Consider a communication channel where signals rep
sented by ensemblesr1 ,r2 , . . . aretransmitted with prior
probabilitiesp1 ,p2 , . . . , respectively@33#. The ensemble of
signal states itself corresponds to the mixture

r5(
i

pir i . ~50!

For classical ensembles, it was shown by Shannon@26# that
the average amount of error-free dataI which can be ob-
tained per transmitted signal, measured in terms of the n
ber of binary digits required to represent the data, is boun
above by

I<FS~r!2(
i

piS~r i !G Y ln 2. ~51!

The formally equivalent bound for quantum ensembles w
proved by Holevo@34#, and hence Eq.~51! may be referred
to as the Shannon-Holevo information bound.

Proofs given in the literature of Eq.~51! for the quantum
case are mathematically rather technical in nature, and q
different in character to proofs for the classical case@34,35#.
However, the formal equivalence of the quantum and cla
cal bounds suggests that a unified proof exploiting unive
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features of statistical ensembles may be possible. Indeed
construction of such a proof, based on simple volume ar
ments, was recently outlined in Ref.@1#, and will be elabo-
rated on here. A second such proof, which reduces the
eral quantum-classical case to that of discrete class
noiseless channels, will also be pointed out.

First, consider a message consisting ofL signals chosen
from the set$r i%. Such a message may be denoted byra ,
where a5( i 1 ,i 2 , . . . ,i L) denotes the labels of the signa
comprising the message. In the limit thatL→` the strong
law of large numbers implies that the relative frequency
signalr i appearing in the message approachespi with prob-
ability 1. It follows from the Cartesian property Eq.~25! that
the volume of the message satisfies

V~ra!→Vmess5)
i

@V~r i !#
piL, ~52!

asL→`. Moreover, as will be shown below in Eq.~56!, the
volume of any ensemble of such messages is bounded a
by @V(r)#L. Hence, using the additivity property Eq.~27!,
the maximum possible number of nonoverlapping messa
of lengthL, NL , satisfies

NL<@V~r!#L/Vmess ~53!

as L→`. Noting thaterror-free data can only be obtaine
from distinguishing among a set ofnonoverlapping
messages, and thatNL such messages require at mo
11 log2NL binary digits to record, it follows in the limit of
infinitely long messages that the average information gai
per signal,I, is bounded by

I< lim
L→`

L21~11 log2NL!< log2V~r!/)
i

@V~r i !#
pi.

~54!

Finally, since communication based on finite messa
lengths cannot transmit more data per signal than comm
cation based on infinite lengths, the bound holds for all s
naling schemes, and Eq.~51! follows from Eqs. ~30! and
~54!.

The above proof of the Shannon-Holevo bound is g
metrically simple, being based on the ratio of the maxim
available volume for an ensemble of messages to the m
sage volume@Eq. ~53!#. Note that the argument cannot b
used to derive similar bounds based on other invariant
ume measures, as all of the defining properties of ensem
volume are required. However, heuristic arguments of
same type for other volume measures can sometimes
excellent results@3,4#. Note that the Shannon-Holevo boun
is in fact tight for both classical and quantum ensemb
@19,26,36#, corresponding geometrically to being able
choose a numberNL of messages arbitrarily close to th
upper bound in Eq.~53! which can be distinguished with
vanishingly small average error probability asL→`.

To conclude this subsection, it will be shown that t
Shannon-Holevo bound may also be proved by conside
only messages of finite length, and applying the class
noiseless coding theorem@19,26#. With notation as above
suppose that one chooses a set of codewordsC from the set
the
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of messages of lengthL, and that codewordraPC is trans-
mitted with probabilityq(a). DefiningNi(a) as the number
of times signal r i appears in codewordra , and r̄ l
5(aPCq(a)r i l

as the averagel th component of the trans
mitted codewords, consistency requires that

pi5L21 (
aPC

q~a!Ni~a!,

~55!

r5L21(
l 51

L

r̄ l .

Using the projection property@Eqs.~26! and ~37!#, one then
has the inequality chain

VS (
a

q~a!raD<V~ r̄1!•••V~ r̄L!<FVS (
l

L21r l̄ D GL

5@V~r!#L. ~56!

To obtain a bound for error-free data, it must be assum
that the codewords are nonoverlapping, so that they can
distinguished without error by measurement. From Eq.~30!
and the Cartesian property@Eq. ~25!# one may then calculate

VS (
a

q~a!raD 5eS[q] )
aPC

@V~ra!#q~a!

5eS[q] )
aPC

)
l

@V~r i l
!#q~a!, ~57!

whereS@q# denotes the entropy of the discrete distributi
$q(a)%. Combining this with Eqs.~55! and ~56! then gives

S@q#<LS~r!2 (
aPC

(
l

q~a!S~r i l
!

5LS~r!2 (
aPC

(
i

q~a!Ni~a!S~r i !

5LFS~r!2(
i

piS~r i !G . ~58!

Finally, from Shannon’s classical noiseless coding theor
@19,26# S@q#/ ln 2 is the maximum information~measured in
binary digits! which can be transmitted on average per co
word, and hence Eq.~51! follows for the average information
transmitted per signal.

D. Chaotic and other diffusion processes

Zyckowski @10# and Mirbach and Korsch@11,12# studied
connections between quantum and classical chaos via e
pies associated with the evolution of coherent states. He
will be shown that this approach may be simply interpre
in terms of ensemble volume, and considerably generaliz

Consider an ensembler0 , classical or quantum, which
evolves in time under some dynamical processD ~not nec-
essarily reversible!. The ensemble will explore some regio
of G, which may be large for standard diffusion processes
relatively small for integrable and dissipative systems. T
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localization of the ensemble inG over time is characterized
by the time-averaged mixture

r̄5 lim
T→`

T21E
0

T

dt r t . ~59!

This mixture gives greatest weight to regions ofG where the
ensemble spends the most time. Hence its ensemble vo
V( r̄) is a measure of the spread of the region explored by
ensemble as it evolves.

The localization ratio for a given initial state and evolu
tion process may now be defined as the ratio of the volum
of r̄ andr0 , i.e.,

r 5V~ r̄ !/V~r0!5exp@S~ r̄ !2S~r0!#. ~60!

It thus measures the localization of the ensemble under
evolution process, relative to its initial spread. This ratio w
be less than or equal to 1 if the ensemble evolves to a fi
point, and greater than or equal to 1 if it diffuses over t
whole of G. For chaotic systems with integrable regions
will depend strongly on the initial ensemble. The above d
nition is clearly natural on geometric grounds, and the
semble entropy appears as a consequence of the uniqu
theorem in Eq.~30!.

For classical and quantum systems corresponding to
same evolution process, it is of interest to compare local
tion properties. This is easily done for the case of init
quantum ensemblesrQ which have corresponding classic
counterpartsrC ~such as coherent states!. In this case the
quantum and classical localization ratiosr Q and r C can be
calculated and compared. Zyckowksi partially carri
through this procedure in Ref.@10#, where he plottedS( r̄)
for the quantum counterpart of a classically chaotic proce
whererQ was chosen to range over a set of coherent st
indexed by their corresponding phase-space points. In
caseS( r̄) is just the entropy of the energy distribution
rQ . Noting S(rQ)50 for pure states, it follows from Eq
~60! that this is equivalent to plotting the logarithm of th
localization ratio, lnr. However, Zyckowski compared quan
tum localization features qualitatively with the classic
phase space portrait, rather than quantitatively with an
gously calculated classical localization ratios.

Mirbach and Korsch extended the approach of Zyckow
by also calculatingS( r̄) for the classical ensemblesrC cor-
responding to the coherent statesrQ . For a complete family
of such states they then compared the corresponding cl
cal and quantum values ofS( r̄) ~Figs. 1 and 3 of Ref.@12#!.
Since for this caseS(rQ) and S(rC) are constants, this
amounts to comparing the logarithms of the classical
quantum localization ratios~up to an additive constant!.

However, Mirbach and Korsch argued that one should
fact comparemeasuremententropies rather than the dire
ensemble entropies, to smear out quantum fluctuations in
latter case@11,12#. This is also easily interpreted in terms
localization ratios. In particular, for a measurement obse
able A on a classical or quantum ensembler, let VA(r)
denote the volume of the measurement distribution ofA. The
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localization ratio of an evolution process with respect toA,
for an initial ensembler0 , is then defined in analogy to Eq
~60! as

r A5VA~ r̄ !/VA~r0!. ~61!

Again one may compare localization ratios for classical a
quantum ensembles, where one chooses corresponding
servablesAQ andAC . The logarithm of this quantity~up to
an additive constant! is plotted in Figs. 2 and 3 of Ref.@11#
for quantum and classical systems, respectively, for a c
plete set of coherent states, whereAC is chosen to be a
phase-space measurement~so thatr AC

5r C), andAQ to be a
‘‘Husimi’’ phase-space measurement corresponding to
complete set of coherent states@37#.

V. CONCLUSIONS

In conclusion, an essentially unique measure of volu
for classical and quantum ensembles has been found, re
to ensemble entropy, which provides a geometric tool
any context in which ensembles appear. This measure is
versal in the sense that it may be defined by theo
independent concepts of invariance, uncorrelated ensem
projection, and nonoverlapping ensembles@properties~i!–
~v!#.

Its properties as a direct measure of ‘‘spread’’ have be
investigated in Sec. II for continuous distributions, and
vorably compared with measures based on root-mean-sq
deviation. Geometric characterizations of ensemble entr
and relative entropy have been discussed in Secs. III D
III E.

Applications include a definition of spot size for optic
beams, a precise geometric interpretation of the Boltzm
relation in statistical mechanics, a derivation of semiclass
uncertainty relations based on the existence of a minim
volume for quantum states and a projection property of v
umes, a unified derivation of results in classical and quan
information theory based on simple volume ratios, and a u
versal definition of a localization ratio which measures t
time-averaged spreading of an ensemble and underlies
tropic measures previously investigated in the context
quantum chaos.

Work is in progress on further applications, particularly
quantum information theory@36#, measures of quantum en
tanglement@31#, and information exclusion relations@4,38#.
The conjecture suggested following Eq.~47! is also under
active investigation, and the~mostly weaker! bound

SX1SP2S~r!> ln 2pe\2 ln@11DXDP/~\/2!# ~62!

has thus far been found for then51 case.

ACKNOWLEDGMENTS

I am grateful to Professor Wolfgang Schleich for drawi
my attention to the inverse participation ratio~thus stimulat-
ing the search for the ‘‘best’’ measure of volume!, and to
Professor Hajo Leschke, Dr. Gernot Alber, and Dr. Bru
Mirbach for useful discussions. This work was carried out
the University of Ulm, and was supported by the Alexand
von Humboldt Foundation.



i
en
f

eo
t

si
n
th

p

b
-

s

s

s

-

d

e

the

not

e

PRA 59 2613UNIVERSAL GEOMETRIC APPROACH TO . . .
APPENDIX

Here the fundamental theorem stated in Sec. III C
proved, showing essentially that the exponential of the
semble entropy is the unique measure of the volume o
statistical ensemble. It is convenient to first prove the th
rem for discrete classical ensembles, and then extend
arguments to quantum ensembles and to continuous clas
ensembles. The notation will be as defined in Sec. III A, a
reference will be made to the five assumed properties of
volume measureV(r) stated in Sec. III B.

Let r denote a classical discrete ensemble$pi%, with finite
index setI 5$1,2,. . . ,M %. Defining the ‘‘pure’’ ensemble
r j ( j PI ) as corresponding to the distribution$pi

( j )% with
pi

( j )5d i j , one can writer as the mixture

r5(
i PI

pir i . ~A1!

Note that one has the two basic properties

TrG@r jrk#50 ~ j 5” k!, V~r j !5const5VI . ~A2!

The first states that these pure ensembles are nonoverlap
and the second that they have equal ensemble volumes~this
follows from the invariance property, noting thatr j map to
each other under permutations!.

Now consider the ensemblerLPGL corresponding toL
uncorrelated copies ofr. For eacha5( i 1 ,i 2 , . . . ,i L) in I L,
define

ra5r i 1
r i 2

, . . . ,r i L
, p~a!5pi 1

pi 2
, . . . ,pi L

. ~A3!

Thusra corresponds to the uncorrelated composite ensem
formed byr i 1

,r i 2
, . . . ,r i L

~in that order!. One can then de

composerL into the mixture

rL5 (
aPI L

p~a!ra . ~A4!

The proof of the theorem proceeds by finding a suitable
of so-called ‘‘typical sequences’’T#I L @19,26#, which al-
lows rL in Eq. ~A4! to be approximated by certain mixture
of the ensembles$ra% wherea is restricted to range overT.

For a givenaPI L let Ni(a) denote the number of time
the indexi appears as a component ofa, and letP(a)PI L

correspond to a permutation of the components ofa. If S(r)
denotes the entropy ofr defined in Eq.~31! of the text, then
for anye.0 andL sufficiently large one may choose a setT,
with uTu elements, which satisfies

~T1! CT5 (
aPT

p~a!.12e,

~T2! uTu5eL[S~r!1dL] ,

~T3! (
i PI

uL21Ni~a!2pi u,dL8 for all aPT,

~T4! aPT implies P~a!PT for all P,
s
-
a
-

he
cal
d
e

ing,

le

et

where bothdL anddL8→0 asL→`. A particular example of
such a set is

T5$a:uL21Ni~a!2pi u,@Mpi~12pi !/~Le!#1/2%.
~A5!

Properties~T1! and ~T2! for this set are proved in Theorem
1.3.1 of Ref. @19#; property ~T3! follows noting that
( i@pi(12pi)#1/2 is bounded by (M21)1/2, and hence that
one can choosedL85M (Le)21/2; and property~T4! is an
immediate consequence ofNi(a) being invariant under per
mutations.

To obtain an upper bound for the volumeV(r) of r,
consider now the ensembles defined by the mixtures

rL~T!5CT
21 (

aPT
p~a!ra , rL* ~T!5uTu21 (

aPT
ra ,

~A6!

where CT5(aPTp(a). From the Cartesian property an
Eqs.~A2! and~A3! it follows thatV(ra)5@VI #

L is constant,
and further that thera are nonoverlapping. Hence, from th
uniformity and additivity properties,V„rL(T)…<V„rL* (T)…
5uTu@VI #

L. Property~T2! then gives

V„rL~T!…<@VI #
LeL[S~r!1dL] . ~A7!

Further, from property~T1! and Eqs.~A4! and ~A6!,

TrGL@ urL2rL~T!u#5 (
aPT

up~a!2p~a!/CTu1 (
a¹T

p~a!

5~1/CT21!CT1~12CT!<2e.

HencerL can be made arbitrarily close torL(T) for L suf-
ficiently large, and so from the assumed continuity ofV( ),
and noting from the Cartesian property thatV(rL)
5@V(r)#L, one has from Eq.~A7! that

V~r!5 lim
L→`

@V„rL~T!…#1/L<VI eS~r!. ~A8!

Thus the exponential of the entropy is an upper bound for
ratio of the volume ofr to the volume of a ‘‘pure’’ state.
Note that only properties~T1! and~T2! of T were needed to
obtain this result, and that the projection property has
been used.

To obtain the converse of inequality~A8!, note from the
projection property that

V„rL* ~T!…<)
l 51

L

V„r̄ l~T!…, ~A9!

where r̄ l(T) is the projection ofrL(T) onto its l th compo-
nent, i.e.,

r̄ l~T!5 (
a5~ i 1 , . . . ,i L!PT

p~a!r i l
. ~A10!

From property~T4! of T, r̄ l(T) is independent ofl and hence
may be denoted byr̄. Equation ~A9! then becomes
V„rL* (T)…<@V( r̄)#L. But, as noted earlier, the volum
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V„rL* (T)… follows from the additivity property asuTu@VI #
L,

and hence via property~T2! of T Eq. ~A9! reduces to

VIe
S~r!1dL<V~ r̄ !. ~A11!

Further, from Eqs.~A6! and ~A10!,

r̄5L21(
l

r̄ l~T!5uTu21 (
aPT

(
i PI

L21Ni~a!r i ,

~A12!

and hence, from Eq.~A1! and property~T3! of T,

TrG@ ur2 r̄u#5uTu21TrGFU (
aPT

(
i PI

„pi2L21Ni~a!…r iUG
<uTu21 (

aPT
(
i PI

upi2L21Ni~a!u<dL8 .

Hencer̄ can be made arbitrarily close tor for L sufficiently
large, and so, taking the limitL→` in Eq. ~A11!, the as-
sumed continuity ofV( ) gives

VIe
S~r!<V~r!. ~A13!

Equations~A8! and~A13! yield the theorem of Sec. III B
for classical discrete ensembles with finite index sets@where
K(G) in Eq. ~30! is identified with the volumeVI of a pure
ensemble$pi5d i j % on I, and Eq.~32! for K(G) follows im-
mediately from the Cartesian property#. The extension to en
sembles with infinite index sets is trivial by continuity. Th
distribution $pi% of such an ensembler can be arbitrarily
closely approximated by its~renormalized! first M terms,
corresponding to a discrete ensemblerM with a finite index
set. Hence, from the assumed continuity of ensemble volu
and Eqs. ~A8! and ~A13!, V(r)5VI limM→`exp@S(rM)#,
whereVI is the volume of a ‘‘pure’’ ensemble with respe
to the infinite index setI. ThusV(r) is as per the theorem
@but becomes infinite in the case that the limit ofS(rM) as
M→` does not exist#.

The extension to quantum ensembles is straightforw
Indeed, for quantum ensembles the above analysis g
through formally unchanged, where the expansion in
~A1! is now identified with an orthogonal decomposition in
pure states, and the first product in Eq.~A3! is a tensor prod-
uct. Thusr i and pi represent~nonoverlapping! eigenstates
and eigenvalues ofr. The only additional consideration i
thatVI , the volume of an eigenstate ofr, might conceivably
depend on the eigenstate basis. However this is ruled ou
the invariance property~i!: all pure states on a given Hilbe
space can be connected by unitary transformations,
hence have the same volume.

Finally, the theorem may be extended to continuous c
sical ensembles as follows. Consider a classical ensembr
described by a probability distributionp(x) on an
n-dimensional spaceX. This space may be partitioned into
set $Si% of nonoverlapping sets of equal volumeV ~i.e.,
*Si

dnx5V for all i ). Define the corresponding ‘‘pure’’ en

sembles r i by the associated probability distribution
p( i )(x)51/V for xPSi and 50 for x¹Si . These pure en-
e

d.
es
.

by

nd

s-

sembles can be mapped to each other by measure-prese
transformations, and hence from the invariance prope
have equal ensemble volumes, sayV0(V). The formal ana-
logs of the properties in Eq.~A2! then hold, and again the
above analysis for classical discrete ensembles goes thr
formally unchanged for mixtures of these pure ensemb
i.e.,

VS (
i

pir i D 5V0~V!expS 2(
i

pi ln pi D . ~A14!

Now consider the particular mixture defined by

rV5(
i

pi~V!r i , pi~V!5E
Si

dnp~x!. ~A15!

ThusrV is a discrete approximation tor, and hence, noting
that *Xdnx[( i*Si

dnx, one has from the Mean Value Theo
rem that

TrG@ ur2rVu#5(
i
E

Si

dnxup~x!2pi~V!/Vu→0

~A16!

in the continuum limitV→0. Hence, from Eq.~A14! and the
assumed continuity of ensemble volume,

V~r!5 lim
V→0

V0~V!exp~SV!, ~A17!

whereSV denotes the entropy of$pi(V)%. But again approxi-
mating an integral by a summation,

S~r!5 lim
V→0

2V(
i

@pi~V!/V# ln@pi~V!/V#5 lim
V→0

~SV1 ln V!.

~A18!

Hence Eq.~A17! can be rewritten as

V~r!5eS~r! lim
V→0

V0~V!/V. ~A19!

Finally, to show that the limit exists in Eq.~A19!, note that
any setSPX of measure*Sdnx5V can be partitioned intom
nonoverlapping sets of equal measureV/m for any integerm.
Moreover, a ‘‘pure’’ ensemble onS, corresponding to a dis
tribution which is uniform overS and vanishing outsideS,
can trivially be written as an equally weighted mixture
analogously defined ensembles for the members of the
tition. Hence from the additivity property one has the re
tion V0(V)5mV0(V/m) for the ensemble volumes o
‘‘pure’’ ensembles. Further, replacingV by nV in this rela-
tion for any integern implies thatV0(rV)5rV0(V) for any
rational numberr 5n/m. This can be extended to all realr
from the assumed continuity of ensemble volume, so t
V0(V)/V5const5K(G), say, and the theorem follows vi
Eq. ~A19!.
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