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Critique of protective measurements
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The recently proposed idea of ‘‘protective’’ measurement of a quantum state is critically examined, and
generalized. Earlier criticisms of the idea are discussed, and their relevance to the proposal assessed. Several
constraints on measuring apparatus required by ‘‘protective’’ measurements are discussed, with emphasis on
how they may restrict their experimental feasibility. Though ‘‘protective’’ measurements result in an un-
changed system state and a shift of the pointer proportional to the expectation value of the measured observable
in the system state, the actual reading of the pointer position gives rise to several subtleties. We propose several
schemes for reading the pointer position, both when the apparatus is treated as a classical system as well as
when its quantum aspects are taken into account, that address these issues. The tiny entanglement which is
always present due to deviation from extreme adiabaticity in realistic situations is argued to be the weakest
aspect of the proposal. Because of this, one can never perform a protective measurement on a single quantum
system with absolute certainty. This clearly precludes an ontological status for the wave function. Several other
conceptual issues are also discussed.@S1050-2947~99!08702-8#
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I. INTRODUCTION

Quantum mechanics is a theory which has been trem
dously successful in explaining how the physical wo
works, but its measurement aspects have been plagued
interpretational problems since its inception. The gene
credo is that the value of a real physical observable,
scribed by a Hermitian operator, has meaning only when
system is in its eigenstate, i.e.,

Auai&5ai uai&, ~1!

whereai is the eigenvalue ofA corresponding to the eigen
stateuai&. Furthermore, if the system is in a stateun& which
is not an eigenstate ofA, a measurement ofA can, as a result
yield any of the eigenvalues ofA while ‘‘collapsing’’ un& to
uai& at the same time. Thus the outcome of a single meas
ment on a single quantum system cannot be assigned
significance. As a corollary, the state of a single quant
system cannot also be attributed any objective significan
The statistical interpretation, originating in the early wor
of Einstein@1#, can be considered the ‘‘optimal way out’’ fo
this strange aspect of quantum phenomena. According
this, if un& has the~unique! expansion

un&5(
i

ci uai&, ~2!
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the outcome of a large number of measurements ofA on an
ensemble of identically prepared states areai , with probabil-
ity uci u2 and the ‘‘expectation value’’ ofA in un&, is con-
strued as the ensemble average( i uci u2ai . The eigenvalue
condition~1! can be interpreted as a sort of consistency c
dition for this interpretation. Clearly any other stateuñ&
5( c̃i uai& with c̃i5eif ici will also yield an identical distri-
bution of ai as un& in an ensemble measurement ofA. To
determineun&, therefore, many ensemble measurements h
to be carried out with different observables. The number
such independent ensemble measurements needed to
mine the original state is dictated by the ‘‘size’’ of the de
sity matrix which is the number of independent paramet
needed to specify the density matrix.

Apart from granting only an ‘‘epistemological’’ meanin
to the quantum state~wave function!, this interpretation leads
to a notion of reality fundamentally different from that i
classical mechanics. It also puts observation or meas
ments on a totally different footing than in classical mecha
ics ~as Wheeler succinctly put it, ‘‘no phenomenon is a ph
nomenon until it is an observed phenomenon’’!. At the same
time, the notion of ‘‘collapse’’ or the ‘‘projection postulate,’
as enunciated by von Neumann@2#, leads to its own set of
conceptual difficulties. As the density matrix of a pure sta
(tr r515tr r2) turns into that of a mixed state (trr
51,trr2,1) after the ensemble measurement, someth
that can never be achieved through an unitary evolution
appears as if new elements have to be introduced into
theoretical framework to accommodate the measurem
process. This in a nutshell is the ‘‘measurement problem’’
quantum theory. Proposals to ‘‘solve’’ this fantastic situati
are even more fantastic like the Everett many worlds int
pretation@3# or the so-called GRW proposal@4#. As there are
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PRA 59 2591CRITIQUE OF PROTECTIVE . . .
no feasible means of experimentally testing these at the
ment, they remain as merely matters of individual taste.

For a single quantum state, the situation is even m
complex. When the state isa priori unknown, measuremen
of any observable is generically not going to be an eigens
measurement. Consequently, after the measurement, the
of the system will change in an uncontrollable manner. A
number of subsequent measurements are not going to
information about the original state; i.e., the average val
of the outcome of repeated measurements have no bearin
the expectation value of the observable in the original s
~for an interesting twist to this, see Sec. IV D!. Of course, the
expectation value of any observableA in an a priori known
stateun& can always be calculated. In such a situation o
can also come up with schemes to perform a ‘‘measu
ment’’ of the expectation value as well as the associa
variance by either using so-called reversible measurem
@5#, or by avoiding entanglement. But one does not gain
new information about the system. Even thea priori known
wave function is verified only in a statistical sense. In fa
one is only performing an ensemble measurement in
guise. Thus neither the generic~ as opposed to a priori un
known! state of a single quantum system nor the expecta
values of observables in it can be given any meaning.
standard lore, therefore, denies any ‘‘reality’’ or ‘‘ontolog
cal’’ meaning to the wave function.

Therefore, the recent proposal by Aharonov, Anand
and Vaidman~AAV ! @6–9# of a scheme involving adiabati
measurements, which they have called ‘‘protective’’ me
surements, wherein they have claimed the possibility of m
surement of̂ A& in the stateun& of a single quantum system
for any observableA, without disturbing un&, has indeed
raised surprise and skepticism among many@10–17#. This
proposal is remarkable from many points of view, all of
fundamental nature, and therefore deserves the most ca
scrutiny. AAV claimed to be able to measure^A&n for any
A,un&, whereas we saw that the standard lore does not a
it even if one is willing to disturbun& uncontrollably. Even
more remarkably, they claimed to be able to do so with
disturbing the system at all. This allows for these protect
measurements to be repeated with sufficiently many obs
ables to determine completely the state modulo an ove
phase. Here again, the number of different observables t
protectively measured in order to determine the state of
system is governed by the number of independent param
in the density matrix. Thus, their proposal, as stressed
them, allows for an ‘‘ontological’’ meaning to the wav
function of a single system.

AAV made many proposals to realize such protect
measurements which can be broadly split into two cate
ries: ~i! a quantum Zeno-type measurement made on aa
priori known state of the single system; and~ii ! an adiabatic
measurement made onan a priori unknownstate of the sys-
tem which, however, isknownto be a non-degenerate eige
state ofan a priori unknown Hamiltonian. Here we restrict
our attention to only the second category which we feel is
more interesting one. A number of criticisms of this propo
have appeared subsequently@10–17#. In this paper we criti-
cally review and assess the original proposal as well as
criticisms. We also extend the scope and generality of b
o-
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The paper is organized as follows: in Sec. II, we pres
the idea of protective measurements in a rigorous way,
then go on to generalize it. We also discuss a few exam
which highlight some subtle points regarding the origin
AAV proposal. In Sec. III, we critically analyze various crit
cisms of the original AAV proposal and assess their r
evance to the issue. In Sec. IV we discuss the very impor
issue of spreading of the pointer position and suggest s
ways to circumvent the problem. In Sec. V we make detai
remarks on the restrictions imposed on the measuring a
ratus by protective measurements, and the feasibility of p
tical implementation of the idea. We also discuss the r
evance of protective measurement to the issue of
‘‘reality’’ of the wave function. Finally, in Sec. VI, we sum
marize the main results of the present investigation.

A more rigorous derivation as well as a generalization
the original AAV proposal~Sec. II!, a discussion of the rel-
evance of the degeneracy of the total~system and apparatus!
Hamiltonian with examples~Sec. II B!, a careful treatment of
the effects of switching on/off of the apparatus-system int
action ~Sec. II C!, an unambiguous rephrasing of the AA
spin-12 example~Sec. II E! are features of this paper designe
to bring greater clarity to the discussion. Sections III–V a
totally new contributions, to our knowledge.

II. PROTECTIVE MEASUREMENT

Let us first consider a conventional measurement. LetQS
be an operator, corresponding to the observable of the
tem we wish to measure, and let it interact with an approp
ate apparatus~in what follows, we shall use the notion of a
apparatus to indicate a quantum system to which full inf
mation about the system can be transferred! through an in-
teraction

HI5g~ t !QAQS , ~3!

whereQA is an observable of the apparatus, andg(t) is the
strength of the interaction normalized such that*dt g(t)
51. The interaction is nonzero only in the short interv
@0,t#. Let the system be in an initial stateun& which is not
necessarily an eigenstate ofQS , and the apparatus be in
stateuf(r 0)&, which is a wave packet of eigenstates of t
operatorRA conjugate toQA , centered at the eigenvaluer 0 .
The interactionHI is of short duration, and assumed to be
strong that the effect of the free Hamiltonians of the appa
tus and the system can be neglected. Then the comb
wave function of the system and the apparatus at the en
the interaction can be written as

uc~t!&5e2~ i /\!QAQSun&uf~r 0!&. ~4!

If we expandun& in the eigenstates ofQS andusi&, we obtain

uc~t!&5(
i

e2~ i /\!QAsici usi&uf~r 0!&, ~5!

wheresi are the eigenvalues ofQS , andci are the expansion
coefficients. The exponential term shifts the center of
wave packet bysi :

uc~t!&5(
i

ci usi&uf~r 01si !&. ~6!
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This is an entangled state, where the position of the w
packet becomes correlated with the eigenstatesusi&. Detect-
ing the center of the wave packet atr 01si will throw the
system into the eigenstateusi&.

Protective measurements, on the other hand, make us
the opposite limit where the interaction of the system w
the apparatus isweakandadiabatic. Here the system is as
sumed to be in a nondegenerate eigenstate of its Ha
tonian, and the interaction being weak and adiabatic, we c
not neglect the free Hamiltonians. Let the Hamiltonian of t
combined system be

H~ t !5HA1HS1g~ t !QAQS , ~7!

whereHA andHS are the Hamiltonians of the apparatus a
the system, respectively. The couplingg(t) acts for a long
time T, and goes to zero smoothly before and after the in
action. It is also normalized as*0

Tdt g(t)51. Therefore,
g(t)'1/T is small and constant for the most part. Ifut50& is
the state vector of the combined apparatus system just be
the measurement process begins, the state vector afterT is
given by

ut5T&5Te2 i /\*0
TH~t!dtut50&, ~8!

whereT is the time-ordering operator. We divide the interv
@0,T# into N equal intervalsDT, so thatDT5T/N, and be-
cause the full Hamiltonian commutes with itself at differe
times during@0,T#, we can write Eq.~8! as

ut5T&5H expF2
iDT

\ S HA1HS1
1

T
QAQSD G J N

ut50&.

~9!

Let us now examine the case whenQA commutes with the
free Hamiltonian of the apparatus, i.e.,@QA ,HA#50, so that
we can have eigenstatesuai& such thatQAuai&5ai uai& and
HAuai&5Ei

auai&. Choudhury, Dasgupta, and Datta@14# con-
sidered only two cases: one where@QA ,HA#50 and
@QS ,HS#50, and another where @QA ,HA#Þ0 and
@QS ,HS#Þ0. Thus they put an additional restriction thatQA
andQS either commute or do not commute with the unp
turbed Hamiltonian, together, and miss the important c
where@QA ,HA#50 and@QS ,HS#Þ0. Now uai& are also ex-
act eigenstates of the instantaneous HamiltonianH(t) in the
apparatus subspace. So the exact instantaneous eigen
can be written in a factorized formuai&um&, whereum& are
system states which depend on the eigenvalue ofQA , i.e.,
they are the eigenstates of (1/T)aiQS1HS . Let us assume
the initial state to be a direct product of a nondegene
eigenstate ofHS ,un&, anduf(r 0)&:

ut50&5un&uf~r 0!&. ~10!

Introducing a complete set of exact eigenstates in the ab
equation, the wave function at a timeT can now be written as

ut5T&5(
i ,m

e~ i /\!E~ai ,m!NDTuai&um& ^muun&^ai uuf~r 0!&,

~11!

where the exact instantaneous eigenvaluesE(ai ,m) can be
written as
e
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E~ai ,m!5Ei
a1

1

T
^muQSum&ai1^muHSum&. ~12!

Till here the treatment is exact, except for ignoring t
switching on and switching off times to begin with. We ju
tify ignoring these in Sec. II C. It should be kept in mind th
the expectation valuêQS&m̄ depends on the eigenvalueai of
QA . The sum overm in Eq. ~11! makes it appear as if the
state is entangled. But the important point to notice is t
the basisum& can be made to bearbitrarily close to the
original basis, as the interaction is assumed to be weak
that um&5um&1O(1/T)1••• . In the large-T limit, one can
assume the states to be unperturbed, and retain only term
O(1/T) in the energy@this is necessary asE(ai ,m) is mul-
tiplied by T in Eq. ~11!#, which amounts to using first-orde
perturbation theory. This yields eigenvalues of the form

E~ai ,m!5Ei
a1

1

T
^muQSum&ai1^muHSum&1O~1/T2!.

~13!

In addition to this, the sum overm disappears, and only th
term wherem5n survives. Thus we can write the apparat
part of the exponent again in the operator form

ut5T&'e2~ i /\!HAT2~ i /\!QA^QS&n2~ i /\!^HS&nTun&uf~r 0!&.
~14!

Now, it is easy to see that the second term in the expon
will shift the center of the wave packetuf(r 0)& by an
amount^nuQSun&:

uc~T!&5e2~ i /\!HAT2~ i /\!nTun&uf~r 01^QS&n!&. ~15!

This shows that at the end of the interaction, the center of
wave packetuf(r 0)& shifts by ^nuQSun&.

The idea behind this approximation is that in^m̄un& only
one term is large and close to unity, and rest of the terms
very small, of the order 1/T. Making T very large, one can
make the smaller terms arbitrarily close to zero. Thus
state is effectively not entangled, and so the original wa
function is not destroyed during the measurement. Look
at the position of the wave packet, one can determine
expectation valuêQS&n . This, basically, is the essence o
the argument for protective measurements, although it
not shown with this much rigor in the original proposal. Fu
ther, it has been asserted that oneneeds the condition
@QA ,HA#50 to obtain a clean protective measurement@9#.
In the following we will show that this condition is not reall
necessary for a protective measurement, and the idea ca
made quite general.

A. General case

We consider again the Hamiltonian in Eq.~7!. As we are
interested in examining the possibility of protective measu
ments in the most general context,

@HA ,QA#Þ0, @HS ,QS#Þ0. ~16!

T denotes the duration of the adiabatic measurement
ut50& is the state vector just before the measurement pro
begins, the state vector afterT is again given by Eq.~8!. Here
again, withg(t)51/T, the Hamiltonian is time independen
and no time ordering is needed. In that case,

ut5T&5eiTHut50&, ~17!
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where

H5HA1HS1
QAQS

T
. ~18!

We start with an initial state satisfying the conditions la
down by @6–8#

ut50&5un&uf&, ~19!

whereun& is a nondegenerate eigenstate ofHS , anduf& is a
general state of the apparatus, not necessarily an eigen
of HA ~which we shall denote generically byua&). Then

ut5T&5eiHTun&uf&. ~20!

We further expanduf& in the basisua&, and write

ut5T&5eiHT(
b

dbun&ub&. ~21!

Denoting the exact eigenstates ofH by uCm,a& and the cor-
responding eigenvalues byE(m,a), we have

ut5T&5(
b

db(
m,a

eiE~m,a!T^Cm,aun,b&uCm,a&. ~22!

So far no approximations have been made, except
course, for ignoring the switching on and switching off tim
in the beginning~see, however, Sec. II C!. The Hamiltonian
H of Eq. ~18! can be thought of asH05HA1HS perturbed
by QAQS /T. Using the fact thatQAQS /T is a small pertur-
bation and that the eigenstates ofH0 are of the formun&ua&,
perturbation theory gives

uCm,a&5um&ua&1O~1/T!1••• ,
~23!

E~m,a!5m1EA~a!1
1

T
^QS&m^QA&a1••• .

An important qualification needs to be made here. It
important for Eq.~23! to hold thatum&ua& be anondegener-
ateeigenstate ofH05HA1HS , except when the degenerac
arises solely due to the degeneracy of the eigenstates ofHA .
Otherwise, even in the limitT→`, the exact eigenstates o
H do not approachum&ua&. We discuss this aspect in mor
detail in Sec. II B, with the help of two illustrative example

Substituting Eq.~23! into Eq.~22!, and taking the large-T
limit, yields

ut5T&5(
b

ei [nT1EA~b!T1^QA&b^QS&n]dbub&un&. ~24!

We now introduce the operator

Y5(
b

^QA&bub&^bu. ~25!

It is important to note that the operatorY is a property of the
apparatus alone and does not depend on the system. In terms
of Y, the above equation can be recast as

ut5T&5einTeiH ATeiY^QS&nuf&un&. ~26!
tate

of

s

If uf& of the apparatus is so chosen that it is peaked aro
a valuex0 of the operatorX ~the pointer variable! conjugate
to Y, i.e., @Y,X#5 i\,

eiX^QS&nuf~x0!&5uf~x01^QS&n!&. ~27!

Thus, modulo the issue of the ‘‘spreading of the pointer p
sition’’ by HA , which is present in any case even in th
special case discussed earlier, the protective measureme
^QS&n without disturbing un& is a generic possibility. It
should of course be pointed out that, on the one hand, it m
not always be possible to physically realize the operatorY,
and, on the other hand, an operator canonically conjugat
Y need not always exist. For example, there is no oper
canonically conjugate toX2. These and the restrictions du
to degeneracy ofH0 may severely restrict the choice of re
alistic possibilities.

B. Degeneracy ofH 0 eigenstates

As we discussed earlier, in order that Eq.~23! holds, we
require thatum&ua& be a nondegenerateeigenstate ofH0
5HA1HS . However, the case where such degeneracy is
to the degeneracy of eigenstates ofHA alone, is not really a
problem as a suitable basis in the degenerate subspace c
chosen in terms of which Eq.~23! still holds good. We give
two examples to clarify this aspect.

1. Two harmonic oscillators

Let us consider the situation where both the apparatus
the system are harmonic oscillators with frequencyv. Thus

HA5P2/2M1 1
2 Mv2X2,

~28!
HS5p2/2m1 1

2 mv2x2.

The energy eigenvalues for the eigenstates of this comb
system labeled byuN,n&5uN&un& are

E~N,n!5\v~N1n11!. ~29!

For example, the stateu0,0& is nondegenerate, but the stat
u1,0&,u0,1& are degenerate. Now consider the adiabatic in
action

HI5g~ t !X•x. ~30!

Let us concentrate on a degenerate subspace in the sum
(m,a) in Eq. ~22!. For illustration, let us choose the subspa
with energy E(0,1)5E(1,0). The unperturbed states a
u1&u0& and u0&u1&, respectively. The interactionHI lifts the
degeneracy, and the eigenstates ofH5H01HI are

u6&5
u1,0&6u0,1&

A2
, ~31!

with energy eigenvalues E652\v6gl, where l
5^0uXu1&^1uxu0&. Thus if the initial state were of the typ
(NdNuN&u0&, the contribution in Eq.~22!, proportional to
d1 , would be

eiE1T^1u1,0&u1&1eiE2T^2u1,0&u2&. ~32!
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After some simplifications this reduces to

ei2\vT$cosglTu1,0&1 i singlTu0,1&%, ~33!

which in theT→` limit reduces to

ei2\vT$coslu1,0&1 i sinlu0,1&%. ~34!

This introduces strong entanglement between the appa
and system even in the adiabatic limit and consequently
protective measurement is possible.

2. Harmonic oscillator coupled to spin-12 particle system

Let us consider a spin-1
2 particle ~system! coupled to a

harmonic oscillator~apparatus!. The total Hamiltonian is

H5P2/2M1 1
2 Mv2X21mB0sz1gXsW •nW . ~35!

With the choicemB05 1
2 \v, we see that the statesu0&u1&

andu1&u2& are degenerate. Also, the interaction Hamilton
HI5gXsW •nW is not diagonal in this degenerate subspa
Again, there will be strong entanglement between the ap
ratus and system even in the adiabatic limit.

What one learns from these examples is that wheneve
eigenstates ofH0 are degenerate in the sense mention
above, and when the interaction HamiltonianHI is not diag-
onal in that degenerate subspace, entanglement betwee
apparatus and system cannot be avoided even in the adia
limit. These two examples are cases of what could be ca
‘‘accidental’’ degeneracy ofH0 .

It is also clear that whenever eitherHA or HS has a con-
tinuous spectrum,H0 generically has degenerate eigenstat
As an example, consider the situation whereHA has continu-
ous spectruma2, and HS the discrete spectrum6mB0 .
Clearly the statesua& and ua8& are degenerate whenev
a825a212mB0 . It is obvious thata82>2mB0 . This is an
example of what we call ‘‘generic’’ degeneracy ofH0 . Pro-
tective measurement in such cases is possible only ifHI is
diagonal in the degenerate subspace. In the case w
@HA ,QA#50, HI is indeed diagonal in the respective dege
erate subspace and protective measurement is possible,
saw in Sec. II. When@HA ,QA#Þ0, the situation is more
complex. ForHI to be diagonal in the degenerate subsp
requires ^auQAua8&50 whenevera825a212mB0 for the
example considered (^auQAua8&50 for all a,a8 would have
meant@HA ,QA#50). This already precludes the prototyp
cal Hamiltonian for Stern-Gerlach experiments:

H5P2/2M1mB0sz1mBiXsW •nW . ~36!

The only reason the AAV spin-1
2 example works is becaus

of the assumptionP2/2M.0. We shall see this more clearl
in Sec. II E.

C. Switching on/off of the interaction

In our treatment so far, we have ignored the possible
fects of the switching on and off of the apparatus-syst
interaction. This may appear at first to question the use of
adiabatic treatment. However, it should be borne in mind t
the change in the total Hamiltonian during these periods
ing QAQS /T is very small, and the switching on and off
tus
o

.
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really a gentle process. Therefore, it is intuitively clear th
no violence has been committed against the adiabaticity
interactions. Nevertheless, it is desirable to put this intuit
feeling on a firmer mathematical ground to make sure no
ing subtle has been missed out.

For this purpose let us assume that the interaction
smoothly switched on during the period 0<t<DT. During
this period let the functiong(t) be smooth and bounded b
1/T, i.e., ug(t)u<1/T. We can also arrange forg(t) to be
monotonically increasing, but this is not crucial.

Now let us divide the interval@0,DT# into M equal parts
of t each. The initial Hamiltonian is thenH0 and the final
Hamiltonian isH01QAQS /T. During the interval labeled by
m, the Hamiltonian is

H ~m!5H01gmQAQS . ~37!

Let the exact eigenstates and eigenvalues of this Hamilto
be uCm,a

(m)& andEm,a
(m) . As the Hamiltonian is nowtime depen-

dent, it is necessary to use time-ordered products. The s
at t5DT is given by

uDT&5)
m

eiH mtut50&. ~38!

In a manner analogous to how we obtained Eq.~22!, we now
obtain

uDT&5(
b

db (
m1 ,m2 , . . . ,mM ;a1 ,a2 , . . . ,aM

3ei t~Em1 ,a1

~1!
1Em2 ,a2

~2!
1 . . . 1EmM ,aM

~M !
!uCmM ,aM

~M ! &

3^CmM ,aM

~M ! uCmM21 ,aM21

~M21! &•••

3^Cm1 ,a1

~1! uCm0 ,a0

~0! &••• . ~39!

Because the Hamiltonians at adjacent time intervalsi ,i
11) differ by (gi2gi 11)QAQS , which is again small and
bounded byQAQS /T, we have

^Cm i 11 ,ai 11

~ i 11! uCm i ,ai

~ i ! &5dm i 11 ,m i
dai 11 ,ai

1~gi 112gi !„A1O~1/T!…1••• .

~40!

HereA5^n,buQAQSun,b&, and dots refer to terms highe
order in 1/T. Likewise, the energy eigenvalues satisfy

Em i ,ai

~ i ! 5En,b1giA. ~41!

Combining these equations and taking the limitM large, one
obtains

uDT&5expS i ~n1Eb
A!DT1E

0

DT

dt g~ t !AD dbub&un&.

~42!

On comparing with Eq.~24!, it can be seen that the effect o
smoothly switching on the interaction in the interval (0,DT)
can be completely ignored. The same also applies for
interval when the interaction is smoothly switched off.
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D. An example with †H A ,QA‡50

Let us now consider a specific example embodied by
Hamiltonian

H5
P2

2M
1mB0sz1g~ t !mBi PsW •nW , ~43!

whereM is the mass of the particle with spin whose positi
acts as an apparatus,m the magnetic moment of the particle
B0 the homogeneous magnetic field that breaks the de
eracy of HS , and Bi PnW a momentum-dependentmagnetic
field that couples the apparatus and system degrees of
dom (sW ). Thus in this example@HA ,QA#50, while
@HS ,QS#Þ0. Further, n56mB0 , while EA(a)5a2/2M .
We take the initial state to be

ut50&5uf~e,0!&u1&, ~44!

where uf(e,0)& is a wave packet of widthe centered atx
50. It is clear from the general discussion that in this ca
Y5P, and that the pointer is the center of the wave pac
In position representation

^xuf~e,0!&5e21/2p21/4e2x2/2e2
. ~45!

We can decompose this wave packet in terms of the p
wave states~eigenstates ofHA)

d~a!5
1

A2p
E dx e2 iax^xuf~e,0!&. ~46!

One obtains

d~a!5p21/4e1/2e2a2e2/2. ~47!

Combining these details with Eq.~13!, one finds that in the
case of this example

ut5T&5eimB0Tei ~P2/2M !TeiPmBi ^s
W
•nW &1u1&uf~e,0!&.

~48!

The operatoreiPmBi ^s
W
•nW &1 only shifts the center of the wav

packet without changing its width andei (P2/2M )T only
spreads the wave packet without shifting the center. Thus
find

ut5T&5eiB0Tu1&uf„e~T!,mBi^sW •nW &…&, ~49!

where

e~T!25
1

2S e21
T2

M2e2D ~50!

is the standard formula for the spreading of the wave pac
One may note that the spread in the pointer position in
example is independent of the system state.

E. AAV spin- 1
2 example

The AAV example of protective measurement on a spin1
2

state by an inhomogeneous magnetic field attracted a lo
criticism @10–17#. Here we present what we think is a bett
e

n-

ee-

e
t.

e

e

t.
is

of

way to look at this example in order to avoid any confusio
We take the inhomogeneous field to beBixnW . We takeHA
50, or equivalently ignoreP2/2M . The relevant Hamil-
tonian is

H52mB0sW •ñW 2mg~ t !BixsW •nW . ~51!

As before,g(t) is taken to be 1/T. It should be noted that

B0nW is an a priori unknown magnetic field. Consequently, we
shall not assume anything about the size ofB0 . The initial
state is chosen to be

ut50&5eip0xu1̃&, sW •ñW u6̃&56u6̃&. ~52!

It should be emphasized that this initial state isa priori un-
known. The Hamiltonian of Eq.~37! is the Hamiltonian of
the spin-12 particle in the effective magnetic field

BW 5B0ñW 1Bi

x

T
nW , ~53!

whose eigenstates are given by

Hu6&56mBu6&. ~54!

Consequently, the state att5T is given by

ut5T&5cos
u

2
eimBTu1&1sin

u

2
e2 imBTu2&, ~55!

whereu is the angle betweenBW and ñW . As T→`,u→0, and
u1&→u1̃&. Also

B→B01Bi

x

T
nW •ñW . ~56!

Thus

ut5T&→eimB0Tei ~p01mBin
W
•ñW x!u1̃&. ~57!

Hence the momentum of the apparatus shifts bymBinW •ñW

5^mBisW •nW &1̃ , while the system remains in the same sta
to begin with.

The language used inadvertently by AAV in describi
this example has, in our view, been partly responsible
some of the misunderstandings about the AAV proposal
gendering a class of criticisms in Refs.@10–17#. For example
AAV stated that ‘‘B0 is very large compared to the Stern
Gerlach field.’’ This unnecessarily gives the impression t
B0 is a priori known, and consequentlyu1̃& is alsoa priori
known. A less confusing way to state this would have be
to say that because of adiabaticity the Stern-Gerlach fi
Bi(x/T) can be made much smaller than anyB0 . Likewise,
AAV stated that ‘‘to see the transition from the usual Ste
Gerlach case, we may gradually increaseB0 from 0.’’ This
too gives the same false impression ofB0 being known~and
hence controllable! a priori. In fact, while the usual Stern
Gerlach setup involves an impulsive transition, the modifi
Stern-Gerlach setup involves an adiabatic transition. T
can be understood as arising out of tuningB0 only in a for-
mal way.
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III. ASSESSING THE CRITICISMS

The proposal of protective measurements drew a lo
criticism on various counts@10–17#. Although there has bee
an attempt to clarify some of these misunderstandings by
original authors themselves@8#, many points remain to be
clarified. In this section we review the various criticisms a
assess their relevance to the issue of protective meas
ments.

A. Are we measuring at all?

Schwinger @10# raised the following objections to th
AAV proposal: ~i! Even in the conventional Stern-Gerlac
~SG! setup, as the SG field is weakened, the two beams b
to overlap and no SG measurement is performed.~ii ! Re-
peated SG measurements have already demonstrated
probability amplitude~epistemological! interpretation of the
wave function.

Unlike the response of Aharonov and Anandan to t
@18#, we do agree with Schwinger that the effective SG fie
is weak, because of the 1/T factor. But the circumstances ar
otherwise quite different from an usual SG measurem
Since the interaction time in protective measurements is v
large, even a weak SG field is able to produce a measur
shift in the apparatus pointer position.

Regarding the second point made by Schwinger, it sho
be emphasized that AAV did not claim to associate rea
with all wave functions. For example, the wave function f
unstable systems can only be interpreted statistically. A
repeated modified SG~protective! measurements are indee
consistent with treating the wave function as ‘‘real.’’

B. Are we measuring a known state?

Rovelli @12# and, Samuel and Nityananda@17# objected to
this proposal on the grounds that the fact that the wave fu
tion does not collapse is a trivial consequence of it being
eigenstate of the dominant Hamiltonian to start with. Thou
what they said about entanglement is correct, they ov
looked the crucial fact that the shift in the pointer is prop
tional to the expectation value of an operator whichdoes not
commutewith this dominant Hamiltonian. Thus onemea-
sures the expectation value of an arbitrary operator of t
system, while the wave function does not collapse for ob
ous reasons.

Another objection of these authors is that the wave fu
tion has to be knowna priori in order to make a protective
measurement. This claim is not completely correct, beca
all that is required in the analysis of protective measureme
is that the system is in a nondegenerate eigenstate o
Hamiltonian, allowing for the possibility of the situatio
where the Hamiltonian and the state may be unknown.
deed, one can find situations where one may know tha
system is in an eigenstate without knowing the Hamiltoni
An example is a trapped atom, where the potential may
be known beforehand, but one does know that after a s
ciently long time the atom is to be found in the ground sta
Protective measurement, in principle, allows the meas
ment of any operator of the trapped particle, without destr
ing the state.

Alter and Yamamoto@15# constructed an interesting ex
ample of a type of measurement whereby the system~called
f
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‘‘the signal’’ by them! and the apparatus~called ‘‘the
probe’’! maintain anexact disentanglement after the mea
surement. This is achieved by using the following interest
property of coherent states of a harmonic oscillator: Fo
HamiltonianĤ5\k( ŝ†p̂1 ŝp̂†),

Û~ t !ub&sug&p5uab2 ibg&suag2 ibb&p , ~58!

whereÛ5eiĤ t, and ŝ,ŝ†,p̂,p̂† are the annihilation and cre
ation operators of the system and probe respectively; furt
a5coskt andb5sinkt. Now they take the squeezed cohe
ent stateua,r &s as the system state and the squeezed vac
stateu0,q&p as the probe state. The above-mentioned prop
of coherent states then implies that the disentangled s
ua,r &su0,q&p remains disentangled under the unitary evo
tion Û, provided q52r 1 if for any arbitrary phasef.
Their idea is then to make a measurement on the prob
infer an observable in the signal state, undo the ‘‘determ
istic change’’ of the system by driving it back to its origin
state through a classical field, and repeat this proces
many times as one needs. They called this a ‘‘protect
measurement’’ because measurements are being carrie
on the system while maintaining the ability to restore t
system to its original state. The price they had to pay for t
was the fulla priori knowledge of the system state. Hen
they concluded that fulla priori knowledge of the state is
needed for protective measurements.

Aharonov and Vaidman@19# criticized this work on the
basis that the squeezed state they used is not a nondegen
eigenstate of the harmonic-oscillator Hamiltonian, and he
does not satisfy the criterion for protective measureme
Also, the authors of Ref.@19# claimed that the scheme o
Alter and Yamamoto allowed for disentanglement to
maintained only when certain observables are measu
much the same way as in eigenstate measurement o
‘‘ideal von Neumann’’ measurements. In their rebuttal
this, Alter and Yamamoto@16# emphasized that one ca
measureall the observables associated with the signal. Th
further asserted that in their scheme entanglement isexactly
avoided, while the protective measurement scheme of A
avoids this only approximately. We fully agree with this la
ter remark, and shall analyze its true import a little later.

As we see it, the scheme of Ref.@15# is quite different
from that of AAV, and suffers from the requirement of fulla
priori knowledge of the state which is not a restriction on t
AAV proposal. On the other hand, this scheme is attract
because it avoids entanglement exactly, and is yet ano
candidate scheme to measure expectation values of ob
ables in the single quantum state without irretrievably d
stroying it. To this extent it appears reasonable also to
the scheme of Ref.@15# a protective measurement, even
the single quantum state does not satisfy the criterion laid
by AAV.

One of the objections raised by Ghose and Home@13# ~in
addition to stating that protective measurements require
specification of the state! is that AAV did not solve the prob-
lem of wave function collapse. Protective measurement d
not solve the problem of wave function collapse, and AA
did not claim otherwise, as they stated quite explicitly in R
@8#. The crucial point here is that there is no entanglem
between the system and the apparatus after the adiabat
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teraction. So, if an actual measurement, by whatever me
nism, is made on the apparatus, whichirreversibly registers
the outcome, the wave function of thesystemwill not col-
lapse. This is similar to an eigenstate measurement using
conventional method, where the wave function of the sys
does not change during the process of measurement, s
question of collapse, as far as the wave function of the s
tem is concerned, does not arise. The wave function of
apparatus, on the other hand, does ‘‘collapse’’ in the sen
that the outcome has to be registered in an irreversible w
This aspect of the measurement problem is certainly
solved by protective measurements.

C. Is the final state entangled?

The most serious attack on the idea of protective meas
ments can be made on the grounds that, in realistic si
tions, the wave function of the system apparatus combin
still entangled, though the degree of entanglement can
made arbitrarily small, the probability of finding the syste
in a state orthogonal to the initial state being of order 1/T2.
This is so because, in first-order perturbation theory, the
rection to the energy eigenstate is orthogonal to it. For
semble measurement, this small ‘‘corruption’’ is incons
quential as it will affect the distribution of the outcome ve
little. By working with suitably large ensembles one can is
late and control this admixture. This is the reason why
adiabatic theorem works in the conventional interpretation
quantum mechanics. For a single system, however, eve
extremely tiny entanglement can have disastrous co
quences as a single measurement can yield any outc
whose probability is nonzero, resulting in a collapse to
small admixture.

The issue of entanglement was also raised by Choudh
Dasgupta, and Datta@14# as well as Alter and Yamamot
@16#. However, we have some objections to the techn
treatment of Ref.@14#. They used small time evolution equa
tions repeatedly in their paper, made unwarranted restrict
like simultaneous commutativity~or lack of it! of QA ,QS
with HA ,HS respectively, etc. They also argued, fallacious
that entanglement persists even in the adiabatic limit. Thi
a consequence of their ignoring the fact that the support
the wave function where this happens is exponentially sm

However, these authors stressed the point that there
subtleties regarding the reading of the pointer position.
fact they correctly emphasized the point that the spread
the wave packet of the apparatus must be handled, and
the burden of protective measurements is passed on to a
surement of the pointer position. We have fully analyzed t
problem in Secs. IV and V.

We fully concur with Alter and Yamamoto@16# regarding
the serious consequences of entanglement, however s
for measurements on single systems. As a practical rem
one could use a small number of systems prepared in id
tical states, so that the small entanglement would not s
each of the protective measurements performed on this s
number. That, however, precludes attaching any ontolog
meaning to the wave function.

IV. ‘‘READING OUT’’ THE POINTER POSITION

A. ‘‘Spreading’’ of the pointer

Having established the fact that an adiabatic interac
makes it possible that the center of the wave packet of
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pointer shifts by an amount proportional to the expectat
value of the measured observable, we now move over to
issue of retrieving the information about the center of t
wave packet. One can see that in any setup for protec
measurements the pointer wave packet will spread sim
because the detected pointer variable does not commute
the free Hamiltonian of the apparatus. The condition
adiabaticity requires that the interaction of the system w
the apparatus be for as long a duration as possible. Howe
the increased spreading of the wave packet of the poi
would interfere with resolving the shift of the center. Th
aspect of protective measurements was completely o
looked in the original AAV proposal and, as we shall see
this section, it is crucial for protective measurements
work.

In order to obtain a detectable shift in the pointer positio
it seems reasonable that the increase in the width of the w
packet should be at least smaller than the shift. In the
ample discussed in Sec. II D, we compared the square of
width of the wave packet@e21(T2/M2e2)# with the square
of the shift in the position of the wave packet, which
^QS&n . Thus, to have a good measurement,T,^QS&nPM .
From this expression one can see that in order to increasT,
as one would desire for an adiabatic interaction, one can o
increase the massM of the particle. On the other hand, if th
measured expectation value^QS&n is very small,T also has
to be small in order to resolve the shift in the pointer fro
the spread. So, even in the case@QA ,HA#50, the spreading
of the wave packet is unavoidable, and hence puts a limi
the time of the interaction, which in turn would interfere wi
making the interaction adiabatic.

From the analysis of the case@QA ,HA#50, one would
recall that the initial apparatus state is a wave packet of
eigenstate of the operator conjugate toQA . Now because
@QA ,HA#50, that operator does not commute withHA . This
will lead to a spreading of the wave packet under the act
of the free Hamiltonian of the apparatusHA . In order that
the wave packet does not spread very quickly, the ini
width of the wave packets should not be too small. T
spread will be more as time increases, and so one shoul
to keep the measurement time as small as possible to a
spreading. But in protective measurements the interac
has to be adiabatic. So, one has to strike a balance betw
the spreading of the wave packet and the time of interact

Several conceptual issues arise even though the gen
formalism shows a way of measuring expectation values
observables without disturbing the~single! state. What has
been shown is that this protective way of measurement sh
the pointer position by an amount depending on the exp
tation values of observables in the state of the single sys
as opposed to being shifted by all possible eigenvalues of
observable in the conventional measurement picture. The
plication is that the measurement of the pointer position
sults in a measurement of the expectation value.

B. Nature of the apparatus

This raises some fundamental issues. According to
quantum-mechanical lore, no single measurement of an
servable in a quantum state yields the value of the obs
able. Among the many critics of the AAV proposal, on
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Choudhury, Dasgupta, and Datta@14# emphasized this fun
damental problem. To understand this issue properly
should be understood that the wave packet~in the example of
Sec. II! was used to model an apparatus. According to
conventional interpretation of quantum mechanics the ap
ratus has to be treated as being ‘‘classical.’’ More precis
the ideal apparatus must satisfy the following conditions:~i!
superposition of pointer states should not be realizable,
~ii ! the outcome of themeasurementof the pointer state
should itself be dispersion free. That the wave packet mo
for the apparatus used had associated with it the dispersie
would then be interpreted as an artifact of the model.
rephrase Penrose@20#, even though the model of the appar
tus has not been delicately organized in such a way that
adiabatic interaction is magnified to a classically observab
event, one must consider that it could have been so o
nized. Only a more satisfactory model of the appara
would lead to a resolution of these issues. It should
stressed that the requirement of the nonrealizability of
superposition of pointer states is an important prerequi
for any such model, and this may necessitate a more c
plete analysis including agencies for decoherence as con
ered in Ref.@21#. If one accepts this interpretation, a sing
protective measurement would yield the expectation valu
a chosen observable in the state of the single quantum
tem, which, moreover, is left undisturbed by the measu
ment process.

The skeptic may argue that when such a consistent tr
ment of the apparatus is made, the conclusions of the pre
analysis may also not hold. Then one will have to reck
with the quantum nature of the apparatus used in the fore
ing analysis, and introduce the inevitable classical appar
at a later stage.

In that case the wave-packet dispersione should be taken
seriously, and a number of difficulties seem to arise. A sin
measurement done on the wave packet will not yield
location of the center. One possibility is that we consid
adiabatic coupling of a single quantum system to an
semble of apparatuses, and make measurements on th
semble of apparatuses to determine the pointer position.
is not such an unreasonable arrangement. For example
ensemble of apparatuses could be a beam of atoms inte
ing adiabatically with the spin of the system. Such an
semble approach inevitably carries with it uncertainty in
knowledge of the position of the apparatus. However,
pointer position which is the average of the outcome of th
position measurements, can be determined with arbitrary
curacy.

C. Repeated measurement of a single state

The reason one was forced to consider an ensembl
measurements in the conventional measurement was tha
~impulsive! coupling of the system to the apparatus resul
in an entangled superposition where all possible pointer
sitions could be realized with appropriate probabilities.
contrast, in the protective measurements only a single poi
position is chosen. This affords a more interesting alterna
to considering an ensemble of apparatuses, as argued a
Since the state of the system is unaltered and the expect
value of observables in the state of the single quantum
it

e
a-
y,

nd

el

o

e

a-
s
e
e
te

-
id-

of
s-
-

t-
ent
n
o-
us

e
e
r
-
en-
is

the
ct-
-

e
e
e
c-

of
the
d
o-

er
e
ve.

ion
s-

tem is given by theshift of the pointer position and not th
pointer position itself, it is possible to consider the coupli
between a single apparatus and the system and make
peated measurements on the~single! apparatus. Again, the
reason why conventional measurements fail in this regar
that there every act of measurement irretrievably chan
both the system state and the apparatus state. In the ca
the protective measurements too, the state of the appa
itself is continually being altered by the measurement in
unpredictable manner. But the shift between two succes
measurements constitutes a measurement of^QS&, and its
average value can be determined by performing a large n
ber of such measurements. In practice, the measureme
the position of the pointer can be made with a suitably sm
uncertainty, and the subsequent measurement done afte
interval not too long to increasee(t) but long enough to
justify the adiabaticity. Such considerations will play an im
portant role in practical implementations.

One must, however, point out some caveats. Stric
speaking, even if the wave packet is sharply peaked, the
measurement of the position can yield any value not nec
sarily centered around the mean value. Whether this
render useless the idea of repeated measurements on a
apparatus is to be settled by more careful examinations of
points raised. This brings us again to the point mention
earlier that the wave packet as a model of the apparatus m
provide, if not dispersion-free measurements, that at leas
measured values of the pointer position are close to its m

D. Quantum nondemolition measurement of the apparatus

There is yet another interesting way out of the problem
measuring the shift of the wave packet of the pointer. This
based on repeated weak quantum nondemolition~QND!
measurements@22# performed on theapparatus. Recently
Alter and Yamamoto@23# analyzed the problem of a series
repeated weak QND measurement on a quantum system
address the question of getting information about the
known wave function of a single quantum system from su
measurements. They concluded that it is possible to ob
the mean value of an observable in an unknown state, bu
information can be obtained about the uncertainty of the
servable. Hence one cannot obtain any information about
wave function. Also, the state is completely altered in t
process.

Their scheme is best illustrated through the first of the t
examples considered in Ref.@23#. This is a series of photon
number QND measurements performed on a single w
packet of light. The probe~apparatus! is a squeezed coheren
stateua0 ,r & with real squeezing parameterr. The signal and
probe are correlated through an unitary transformationÛ

5eimn̂sn̂p, wheren̂s and n̂p are the photon number operato
for the system and probe, respectively. The signal pho
number is inferred from measuring the second quadratur
the probe. A series of such measurements yie
ñ1 ,ñ2 ,ñ3 , . . . for the inferred photon number of the signa
The photon number distribution in the unknown initial sta
is taken to beP0(n)5N@n,n0 ,D0

2#, with unknownn0 and
D0

2 , whereN@x,x0 ,s2#5(2ps2)21/2exp@2(x2x0)
2/2s2# is

a normalized normal distribution; hereDm
2 is the uncertainty
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due to measurements and is controllable as in classical m
surements.

With each measurement, the system statechangesand the
photon number distribution of the signal afterk measure-
ments becomes Pk(n)5N@n,n0

(k) ,Dk
2#, with n0

(k)

5Dk
2@(n0/D0

2)1((ñi /Dm
2 )# and Dk

25@(1/D0
2)1(k/Dm

2 )#21.
The important features of this example to concentrate on
~i! Pk(n0

(k)), the diffusion of the center afterk measurements
is given by N@n0

(k) ,n0 ,(k/Dm
2 )D0

2Dk
2#. This distribution is

centered at n0. ~ii ! If n̄5( i 51
k ñi /k and Dn̄25(1

k(ñi

2n̄)2/(k21) are the mean and variance of the outcome

measurementsñ1 ,ñ2 , . . . , theprobability distribution ofn̄

and S5@(k21)/Dm
2 #Dn2 are given byN@ n̄,n0 ,D0

21Dm
2 /k#

and x2@S,(k21)#, respectively, wherex2@x,n# is the x2

distribution of the variablex which is centered atn. Thus,

while n̄ is a ‘‘good’’ estimator for n0 ,Dn̄2 being centered at
Dm

2 has nothing to do with the initial uncertaintyD0
2. ~iii !

Eventually, the width of the distributionPk(n) becomes zero
which means the signal becomes an eigenstate of ph
number with eigenvaluen0 .

While the conclusions of Ref.@23# were negative as far a
using repeated weak QND measurements to determine
unknown wave function of a single system, it appears tai
made to solve the problem of ‘‘reading the pointer positio
in protective measurements. Thus we apply their scheme
to the system part of the protective measurement setups
to the apparatus part instead. Then we can obtain informa
about the center of the wave packet, which in the protec
measurement scheme carries information on the expecta
values of observables in the system state, through repe
measurement of the~quantum! apparatus. There is also th
added advantage that the variance in the outcome of t
repeated measurements has nothing to do with the spre
the wave packet of the apparatus. The uncertainty in
measured values of^QS& will therefore be more like errors in
classical measurements which are controllable. Hence t
need not be any uncontrolled uncertainty in the reconst
tion of the original state. The concerns expressed in S
IV A are mitigated in an elegant manner.

This example comes closest to realizing the ideals o
classical apparatus, but nevertheless deals with an appa
that is treated quantum mechanically. We need not c
about the fact that it does not give us information about
variance, as all we need to know, in order to complete
protective measurement, is the position of the center o
pointer wave packet. There is an added bonus to this me
in the sense thatn0 can be determined as the average of
outcome of sequence of measurementsas well as by per-
forming an eigenstate measurement on the eventual app
tus state. We also do not care that the original state is d
stroyed after the measurement, because for us it is the
of the apparatus that is destroyed, and not that of the sys

Thus one may proceed with a protective measuremen
first allowing an adiabatic interaction of the system with
apparatus which can be treated quantum mechanically.
would result in a shifted wave packet of the pointer. One c
then do a series ofweakQND measurements on this wav
packet to obtain the position of the center. This seems
a-
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most promising possibility for experimentally realizing pr
tective measurements.

V. SOME FINAL REMARKS

A. Restrictions on the apparatus

From our general discussion of protective measureme
it is clear that many restrictions may have to be imposed
the kind of apparatus to be used. By an apparatus in
context, we shall mean a specification ofHA andQA . In the
general case where@QA ,HA#Þ0, it is not clear whether the
operatorsX and Y can be physically realized in an actu
setup. Also, as already pointed out, it may not always
possible to even find anX that is canonically conjugate toY.

The other important restriction on the apparatus com
from the requirement thatun&ua& in our general treatmen
should not be a degenerate eigenstate ofH05HS1HA unless
the perturbationgQAQS is diagonal in the degenerate sub
space. Generically,HA should not have a continuous spe
trum, though in a specific example given in Sec. II D, con
nuity of the spectrum was not a problem because
perturbation there was diagonal in the degenerate subsp
In fact, in all cases where@HA ,QA#50, the perturbation will
be diagonal in the degenerate subspace~recall thatun& is a
nondegenerateeigenstate ofHS). These considerations rul
out, for example, the prototypical Hamiltonian in discussio
of the Stern-Gerlach setup, i.e.,H5P2/2M1mB0sz

1mBiXsW •nW . As emphasized above, AAV in their spin-1
2

example choseHA50. But once this is relaxed, the difficul
ties stressed here become relevant.

The other important point to emphasize is thatQAQS /T
should be a well-defined perturbation overH0 in the sense
that its matrix elements in the basis spanned by the eig
states of the unperturbed Hamiltonian should exist. This
rules out the prototypical Hamiltonian in the discussions
the Stern-Gerlach model mentioned above, because the
pectation value ofx in any plane-wave state does not exi
Not only should the matrix elements exist, at least some
the diagonal matrix elements ofQA should be nonvanishing
as otherwise there will be no shift in the pointer positio
This, for example, rules out a linear position coupling in t
case of a Harmonic oscillator.

One might have a thought that the Stern-Gerlach Ham
tonian could have been used with some sort of ‘‘regulari
tion’’ such as putting the particle in a box, or treating the fr
particle as a harmonic oscillator with a very tinyv. But both
these are unsatisfactory for the purpose of protective m
surements, because in the first case^uxu& in the eigenstates o
P2/2M with box-boundary conditions is always the same a
is at the center of the box. Then the operatorY of our general
treatment is the identity operator for which there is no c
nonical conjugate. Physically, this means that the adiab
interaction only produces an overall phase which is of
consequence in shifting the pointer position. The second
ternative of treating the free particle as the limit of a ha
monic oscillator with vanishing frequency is also no good,
in this case the expectation value ofx in the oscillator energy
eigenstates vanishes and there will be no pointer posi
shift. In these cases a more rigorous handling than what
turbation theory offers may be needed.
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It is not clear that even the case where@QA ,HA#50 is
easily realizable experimentally. In the example of Sec. I
one needs a momentum-dependent magnetic field. While
always possible to create a position-dependent magnetic
experimentally by using inhomogeneous fields, it is not cl
how one would create the former. These restrictions onQA
andQS are not warranted in the conventional, i.e., impuls
measurements, as thereQAQS is dominant and*HA ,*HS
can be neglected in comparison~the integration is over the
duration of the impulse!.

B. Does it really work for a single system?

In this entire analysis it has been assumed that entan
ment effects~between the apparatus and the system! can be
made arbitrarily small asT is made large. In the case o
conventional measurements, a small contamination of
wave function will also have only a small statistical effe
With a large enough ensemble of states, the effect of s
small admixtures in the wave function can be controlled.
the case of protective measurements the situation is radic
different. However small the amplitude for entanglement
the large-T limit, the outcome of the first measurement o
the single system can always be states of the system
apparatus which are part of the small amplitude. This wo
have a deleterious effect on the subsequent measuremen
is clear that this potential problem persists no matter h
largeT ~or how small 1/T) is made. Stated differently, how
ever largeT is made, thepossibility that even a ‘‘protective
measurement’’ projects the system into a state orthogona
its initial state can never be ruled out. The fact that thecal-
culated probabilityfor this to happen could be extraordina
ily tiny is of no consequence because for a single sys
under such circumstances, probabilistic concepts are ina
cable. To illustrate this in the specific context of the exam
of Sec. II E, the angleu is always nonzero though very sma
and the original spin is precessing around the unknown m
netic field with this inclination. Quantum mechanical
speaking, any measurement can realize both the initial s
u1̃& as well as its orthogonal complementu2̃&. This may
well be the most formidable obstacle to realizing protect
measurements with certainty.In this sense it is the conven
tional interpretation of the wave function and measureme
that is protected against the vagaries of statistical fluctu
tions.

C. Philosophical issues

The idea of a protective measurement, like its conv
tional counterpart, also has some philosophical issues a
ciated with it. Because of the fact that there exists a po
bility of measuring the expectation value of an observa
from an unknown wave function when it is an energy eige
state, one might tend to associate a reality with energy eig
states. If one believes that what can be measured is ‘‘re
then the energy eigenstates appear, on first glance, to sa
this condition, and seem to be special in this regard. On
other hand, the ubiquitous tiny entanglement makes it imp
sible to make a measurement on one single system,
complete certainty, as we discussed above. If the entan
ment is really tiny, it may not be that bad from a practic
point of view, in the sense that a small number of such m
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surements are likely to give the right answer. But it s
precludes associating a ‘‘reality’’ with the wave function of
singlesystem.

Unruh raised an objection to associating a ‘‘reality’’ wit
the wave function even after assuming the validity of t
idea of protective measurements on a single system@11#. He
argued that the energy eigenstates may be considered to
a ‘‘reality,’’ but that cannot be concluded about any arbitra
state. For the reasons mentioned above, we do not be
one should associate a ‘‘reality’’ even with the energy eige
states of a system.

Unruh also pointed out that ‘‘protection’’ in the sens
used by AAV is an attribute which a system either alrea
has or does not have, which means that only if a system
already in a nondegenerate energy eigenstate can a prote
measurement be performed on it. One cannot ‘‘protect’
given unknown wave function.

VI. SUMMARY

In summary, we have critically examined the idea of pr
tective measurement of a quantum state. We have shown
the idea can be generalized to the case where the intera
Hamiltonian does not commute with the free Hamiltonia
We have also looked at earlier criticisms of the idea, a
concluded that most of them are not relevant to the origi
proposal. The relevant criticisms, we believe, are the co
ments by Alter and Yamamoto@16# on the omnipresent in-
finitesimal entanglement, comments by Choudhury, D
gupta, and Datta@14# pointing out the subtleties in readin
out the pointer, and the comments by Unruh@11# on the
interpretation of protective measurements. We have
cussed various conceptual issues involved in the proces
protective measurements, and inferred that there are se
constraints imposed on the measuring apparatus. It is poi
out that a single measurement does not yield any inform
tion. We have proposed two schemes as a way out of
problem. One of these involves performing repeated m
surements on the single quantum system, making use o
fact that the system wave function does not change.
other proposal involves performing a series of quantum n
demolition measurements on theapparatus, which is to be
treated quantum mechanically, after a single protective m
surement on the quantum system. After analyzing all
issues involved, we have concluded that although exp
mentally realizing protective measurements is a possibil
one can never perform a protective measurement on a si
quantum system with absolute certainty because of the
unavoidable entanglement which is always there. This is s
ficient ground for precluding the ‘‘reality’’ of the wave func
tion. In this sense we agree with Unruh that what the AA
proposal has achieved is a fresh understanding of the na
of measurements in quantum mechanics, rather than ele
the wave function to a new status.

On the practical side, it appears that protective meas
ments~where possible! can be used to determine the wa
function using considerably smaller ensembles than in tra
tional measurements, with the added bonus that the ense
is practically left intact after the measurements. We give
following semiquantitative argument in support of this. O
course, a more detailed model-specific analysis would be
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quired to make these arguments more concrete.
Let us compare the measurement of some quantityX in

both conventional ensemble measurements as well as in
tective measurements. In the latter case, let us consider d
it with an ensemble ofNp identically prepared states and l
the former be done with an ensemble ofNc identically pre-
pared states. In the case of protective measurements we
tain, with probability 12c2/T2, the exact expectation valu
^X&exact, and, with probabilityc2/T2, the expectation value
^X&' , wherec depends on the details of the system and'
refers to the normalized state in the subspace normal to
initial state as picked out by first-order perturbation theory
is worth noting that the relative probability;1/T2, as in
first-order perturbation the change in the wave function
orthogonalto it. This works to a tremendous advantage
realizing protective measurements. Thus the error in the
timation of the expectation value by protective measu
ments isc2^X&' /T2. Of course the statistical error 1/ANp
weighed with the relevant probability should also be tak
into account. Combining the errors in quadrature, for
estimate of error in protective measurements one obtain

ep5
c2

T2AF ^X&'
2 1

1

Np
G . ~59!
n-

n,

L

ro-
ing

ob-

he
t

s
r
s-
-

n
e

The size of the conventional ensembleNc required to match
this precision is roughly 1/ep

2 , and is given by

Nc5
T4

c4

1

@^X&'
2 11/Np#

. ~60!

Thus with large enoughT one can achieve a substantial r
duction in the ensembles required for protective measu
ments, for any given degree of precision in measureme
The estimate provided above is crucially dependent on on
ability to carry out the QND measurement on the appara
as detailed in Sec. IV D.

This is indeed a very attractive practical spin-off for th
AAV proposal. The other attractive feature, as already m
tioned earlier, is that the original pure ensemble remains p
with probability 12c2/T2, whereas in conventional mea
surements the original pure ensemble iscompletelydestroyed
in the sense that it is reduced to a mixed ensemble fr
which it cannot be reconstructed.
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