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The recently proposed idea of “protective” measurement of a quantum state is critically examined, and
generalized. Earlier criticisms of the idea are discussed, and their relevance to the proposal assessed. Several
constraints on measuring apparatus required by “protective” measurements are discussed, with emphasis on
how they may restrict their experimental feasibility. Though “protective” measurements result in an un-
changed system state and a shift of the pointer proportional to the expectation value of the measured observable
in the system state, the actual reading of the pointer position gives rise to several subtleties. We propose several
schemes for reading the pointer position, both when the apparatus is treated as a classical system as well as
when its quantum aspects are taken into account, that address these issues. The tiny entanglement which is
always present due to deviation from extreme adiabaticity in realistic situations is argued to be the weakest
aspect of the proposal. Because of this, one can never perform a protective measurement on a single quantum
system with absolute certainty. This clearly precludes an ontological status for the wave function. Several other
conceptual issues are also discus$8d.050-2947®9)08702-9

PACS numbd(s): 03.65.Bz

[. INTRODUCTION the outcome of a large number of measurement& oh an
ensemble of identically prepared statesarewith probabil-
Quantum mechanics is a theory which has been tremerity |¢;|? and the “expectation value” ofA in |n), is con-
dously successful in explaining how the physical worldstrued as the ensemble averafgc;|?a;. The eigenvalue
works, but its measurement aspects have been plagued witlondition(1) can be interpreted as a sort of consistency con-

interpretational problems since its inception. The generaljition for this interpretation. Clearly any other stajie)

credo is that the value of a real physical observable, de- 3Ci|a;) with ;=€ %ic; will also yield an identical distri-
scribed by a Hermitian operator, has meaning only when thg n ! '

YT ; ution of a; as|n) in an ensemble measurement Af To
system is in its eigenstate, i.e.,

determingn), therefore, many ensemble measurements have
to be carried out with different observables. The number of
Alaj)=ajla;), () such independent ensemble measurements needed to deter-
mine the original state is dictated by the “size” of the den-

wherea; is the eigenvalue of corresponding to the eigen- Sity matrix which is the number of independent parameters
state|a;). Furthermore, if the system is in a state which ~ needed to specify the density matrix. ' .

is not an eigenstate @ a measurement éfcan, as aresult,  Apart from granting only an “epistemological” meaning
yield any of the eigenvalues @ while “collapsing” |n) to 10 the quantum stat(ewave function, this interpretation Iead_s
|a;) at the same time. Thus the outcome of a single measurd?® & notion of reality fundamentally different from that in
ment on a single quantum system cannot be assigned afj@ssical mechanics. It also puts observation or measure-
significance. As a corollary, the state of a single quantunf€nts on a totally dlfferent foo'glng than in classical _mechan-
system cannot also be attributed any objective significancdCS (8 Wheeler succinctly put it, “no phenomenon is a phe-
The statistical interpretation, originating in the early worksnemenon until itis an observed phenomenprt the same

of Einstein[1], can be considered the “optimal way out” for {ime, the notion of “collapse™ or the “projection postulate,”

this strange aspect of quantum phenomena. According t8S enunciated by von Neumafi2], leads to its own set of
this, if |n) has the(unique expansion conceptual difficulties. As the density matrix of a pure state

(trp=1=trp?) turns into that of a mixed state (ir
=1trp?<1) after the ensemble measurement, something
Iny=2>, cila;), (2)  that can never be achieved through an unitary evolution, it
i appears as if new elements have to be introduced into the
theoretical framework to accommodate the measurement
process. This in a nutshell is the “measurement problem” of
*Electronic address: dass@imsc.ernet.in guantum theory. Proposals to “solve” this fantastic situation
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no feasible means of experimentally testing these at the mo- The paper is organized as follows: in Sec. Il, we present
ment, they remain as merely matters of individual taste.  the idea of protective measurements in a rigorous way, and
For a single quantum state, the situation is even morghen go on to generalize it. We also discuss a few examples
complex. When the state & priori unknown, measurement Which highlight some subtle points regarding the original
of any observable is generically not going to be an eigenstatAAV proposal. In Sec. IlI, we critically analyze various criti-
measurement. Consequently, after the measurement, the st&téms of the original AAV proposal and assess their rel-
of the system will change in an uncontrollable manner. Anyévance to the issue. In Sec. IV we discuss the very important
number of subsequent measurements are not going to giveSu€ of spreading of the pointer position and suggest some
information about the original state: i.e., the average value¥/@Ys to circumvent the problem. In Sec. V we make detailed

of the outcome of repeated measurements have no bearing Bq.{narlgs on tthet'restrlctlons |mpotsed czjnt;]hef me{:lbs'll.Jtrlngf appa-
the expectation value of the observable in the original stat atus by protective measurements, and the feasibility of prac-

(for an interesting twist to this, see Sec. IV.IDf course, the ical implementation of the idea. We also discuss the rel-
. ' A ’ evance of protective measurement to the issue of the
expectation value of any observalfldn ana priori known

o “reality” of the wave function. Finally, in Sec. VI, we sum-
state|n) can always be calculated. In such a situation ON&harize the main results of the present investigation.
can also come up with schemes to perform a

_ ‘measure- - a more rigorous derivation as well as a generalization of
ment” of the expectation value as well as the associateghq original AAV proposalSec. 1), a discussion of the rel-
variance by either using so-called reversible measuremenisance of the degeneracy of the tafistem and apparatus
[5], or by avoiding entanglement. But one does not gain anyjamiltonian with exampleéSec. Il B), a careful treatment of
new information about the system. Even teriori known  the effects of switching on/off of the apparatus-system inter-
wave function is verified only in a statistical sense. In factaction (Sec. 119, an unambiguous rephrasing of the AAV
one is only performing an ensemble measurement in disspin4 example(Sec. Il B are features of this paper designed
guise. Thus neither the genefi@s opposed to a priori un- to bring greater clarity to the discussion. Sections lll-V are
known) state of a single quantum system nor the expectatiototally new contributions, to our knowledge.
values of observables in it can be given any meaning. The
standard lore, therefore, denies any “reality” or “ontologi- Il. PROTECTIVE MEASUREMENT
cal” meaning to the wave function. ) _ _

Therefore, the recent proposal by Aharonov, Anandan, Let us first consider a cor_lvent|onal measurement.Qet
and Vaidman(AAV ) [6-9] of a scheme involving adiabatic be an operator, corresponding to the observable of the sys-

measurements, which they have called “protective” mea€m we wish to measure, and let it interact with an appropri-

surements, wherein they have claimed the possibility of mes2!€ @Pparatuéin what follows, we shall use the notion of an

surement of A) in the stategn) of a single quantum system appgratus to indicate a quantum system to which fuII.infor-
for any observableA, without disturbing|n), has indeed mation about the system can be transferriédough an in-

raised surprise and skepticism among mab§—17. This teraction
proposal is remarkable from many points of view, all of a H,=g(t)QAQs, ®)
fundamental nature, and therefore deserves the most careful
scrutiny. AAV claimed to be able to measufa), for any ~ whereQ, is an observable of the apparatus, &f{d) is the
A,[n), whereas we saw that the standard lore does not allotrength of the interaction normalized such tiatt g(t)
it even if one is willing to disturjn) uncontrollably. Even =1. The interaction is nonzero only in the short interval
more remarkably, they claimed to be able to do so without0,7]. Let the system be in an initial state) which is not
disturbing the system at all. This allows for these protectivenecessarily an eigenstate Qf, and the apparatus be in a
measurements to be repeated with sufficiently many obsenstate|#(ro)), which is a wave packet of eigenstates of the
ables to determine completely the state modulo an overafperatorR, conjugate taQ,, centered at the eigenvalug.
phase. Here again, the number of different observables to bEhe interactiorH, is of short duration, and assumed to be so
protectively measured in order to determine the state of thétrong that the effect of the free Hamiltonians of the appara-
system is governed by the number of independent parameteligs and the system can be neglected. Then the combined
in the density matrix. Thus, their proposal, as stressed byave function of the system and the apparatus at the end of
them, allows for an “ontological” meaning to the wave the interaction can be written as
function of a single system. i

AAV made many proposals to realize such protective (7)) =M% 1)| h(r()). 4
measurements which can be broadly split into two categoy e expand ») in the eigenstates ®@s and|s;), we obtain
ries: (i) a quantum Zeno-type measurement made oraan
priori known state of the single system; afid) an adiabatic . _
measurement made @m a priori unknownstate of the sys- | ( T))ZZ e MQnsici|s;)| (1)), 5
tem which, however, iknownto be a non-degenerate eigen-
state ofan a priori unknown HamiltonianHere we restrict wheres; are the eigenvalues €Js, andc; are the expansion
our attention to only the second category which we feel is theoefficients. The exponential term shifts the center of the
more interesting one. A number of criticisms of this proposalwave packet bys; :
have appeared subsequentlp—17. In this paper we criti-
cally review and assess the original proposal as well as the |¢(T)>:2 Cilsi)|(ro+s)). (6)
criticisms. We also extend the scope and generality of both. i
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This is an entangled state, where the position of the wave

. . 11— -
packet becomes correlated with the eigensttgs Detect- E(ay,u)=E —(u|Qg m)ai+{u|Hg u). (12
ing the center of the wave packet g+ s; will throw the T
system into the eigenstals,). Till here the treatment is exact, except for ignoring the

Protective measurements, on the other hand, make use sifvitching on and switching off times to begin with. We jus-
the opposite limit where the interaction of the system withtify ignoring these in Sec. Il C. It should be kept in mind that
the apparatus isveakandadiabatic Here the system is as- the expectation valugQg),, depends on the eigenvalagof
sumed to be in a nondegenerate eigenstate of its HamiRa- The sum over in Eq. (11) makes it appear as if the
tonian, and the interaction being weak and adiabatic, we carftate is entangled. But the important point to notice is that
not neglect the free Hamiltonians. Let the Hamiltonian of thethe basis|u) can be made to barbitrarily close to the

combined system be original basis, as the interaction is assumed to be weak, so
that|u)=|u)+O(LT)+--- . In the largeT limit, one can
H(t)=H,+Hs+g(t)QaQs, (7)  assume the states to be unperturbed, and retain only terms of

O(1/T) in the energythis is necessary as(a;,u) is mul-
whereH , andHg are the Hamiltonians of the apparatus andtiplied by T in Eq. (11)], which amounts to using first-order
the System, respective|y_ The Coup“ggt) acts for a |0ng perturbation theory. This yleldS eigenvalues of the form
time T, and goes to zero smoothly before and after the inter- 1
action. It is also normalized ag}dtg(t)=1. Therefore, E(ay,u)=E+ f<M|Qs|M>ai+<M|H5|M>+O(1f|'2)-
g(t)~1/T is small and constant for the most part|tH 0) is (13
the state vector of the combined apparatus system just befo[e

the measurement process begins, the state vectorTafter N addition to_th|s, th? sum over d'sappeafs’ and only the
given by term whereu = v survives. Thus we can write the apparatus

part of the exponent again in the operator form
[t=T)=Te~/Ho"(7¥"]t=0), (8  [t=T)me (MHATUMONQI (NI 1) (r)).

whereT is the time-ordering operator. We divide the interval  Now it is easy to see that the second term in the exponent

[0,T] into N equal intervalAT, so thatAT=T/N, and be- | shift the center of the wave packdi(ry)) by an
cause the full Hamiltonian commutes with itself at different gmount( | Qg »):

times during[ 0,T], we can write Eq(8) as _ _
| (T)y =&~ WWRAT= W] [ (rg+(Qs),)).  (19)

iAT N
[t=T)= [ exr{ T ] |t=0). This shows that at the end of the interaction, the center of the

9 |Wwave packetd(ry)) shifts by(v|Qg|v).
The idea behind this approximation is that(ja| ») only

Let us now examine the case wh@®R commutes with the  one term is large and close to unity, and rest of the terms are
free Hamiltonian of the apparatus, i.eQA,HA]=0, so that very small, of the order T/. Making T very large, one can
we can have eigenstatés;) such thatQala;)=a;|a;) and make the smaller terms arbitrarily close to zero. Thus the
Halai)=E%a;). Choudhury, Dasgupta, and Dafte4] con-  state is effectively not entangled, and so the original wave
sidered only two cases: one whef@,,H,]=0 and function is not destroyed during the measurement. Looking
[Qs,Hs]=0, and another where[Q,,HA]#0 and at the position of the wave packet, one can determine the
[Qs,Hg]#0. Thus they put an additional restriction tigyg expectation valuéQsg), . This, basically, is the essence of
and Qg either commute or do not commute with the unper-the argument for protective measurements, although it was
turbed Hamiltonian, together, and miss the important cas@0t shown with this much rigor in the original proposal. Fur-
where[Qa,Hal=0 and[Qg,Hs]#0. Now|a;) are also ex- ther, it has been asserted that oneedsthe condition
act eigenstates of the instantaneous Hamiltoblét) in the  [Qa,Ha]=0 to obtain a clean protective measuremiit
apparatus subspace. So the exact instantaneous eigenstdfethie following we will show that this condition is not really
can be written in a factorized forfia;)[), where|[u) are ~ Necessary for a protective measurement, and the idea can be
system states which depend on the eigenvalu@pf i.e., ~Made quite general.
they are the eigenstates of [J4;Qs+Hsg. Let us assume
the initial state to be a direct product of a nondegenerate

1
Ha+ Hs"‘?QAQs)

A. General case

eigenstate oHg,|v), and|¢(rp)): We consider again the Hamiltonian in E@). As we are
interested in examining the possibility of protective measure-
[t=0)=[v)[#(ro)). (10 ments in the most general context,
Introducing a complete set of exact eigenstates in the above [Ha,Qa]#0, [Hs,Qq]#0. (16)

equation, the wave function at a tifiecan now be written as
T denotes the duration of the adiabatic measurement. If
t=T)= el/ME@ WNATIZNT Y (i) a: ro)), |t=0) is the state vector just before the measurement process
[t=T) % 2l ) (ullv)(ail]éro) begins, the state vector aft€iis again given by Eq(8). Here
(11 again, withg(t)=1/T, the Hamiltonian is time independent

. . and no time ordering is needed. In that case,
where the exact instantaneous eigenvalbés, , ) can be

written as [t=T)=€"T"t=0), (17
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where If |¢) of the apparatus is so chosen that it is peaked around
9.0 a valuex, of the operatoiX (the pointer variableconjugate
H:HA+HS+ 'ﬁ‘r S (18) to Y, |e,[Y,X]:|ﬁ,
I o N eX(Q91] h(x0)) =] b(Xo+(Qs),))- 27

We start with an initial state satisfying the conditions laid

down by[6-8] Thus, modulo the issue of the “spreading of the pointer po-
sition” by Ha, which is present in any case even in the

[t=0)=[v)|¢), (19 special case discussed earlier, the protective measurement of

. . . without disturbing |v) is a generic possibility. It
where|v) is a nondegenerate eigenstateHef, and|¢) is a (Qs), : :
general state of the apparatus, not necessarily an eigenstgtréomd of course be_pomted out'that, on the one hand, it may
of H,, (which we shall denote generically Big)). Then not always be possible to physically realize the operator

and, on the other hand, an operator canonically conjugate to

|t=T>=eiHT|y>|¢>, (20) Y need not always exist. For example, there is no operator
canonically conjugate t&X2. These and the restrictions due
We further expand¢) in the basida), and write to degeneracy oH, may severely restrict the choice of re-
alistic possibilities.
t=T)y=e"T> dy|v)|b). (21)
| ) % bl >| ) B. Degeneracy ofH, eigenstates
Denoting the exact eigenstatestéfoy |V, ,) and the cor- As we discussed earlier, in order that EB3) holds, we
responding eigenvalues I#(u,a), we have require that|u)|a) be anondegenerateeigenstate ofH,

=H,+Hg. However, the case where such degeneracy is due
. to the degeneracy of eigenstatestif alone, is not really a
[t=T)= % dbza e'E(#’a)T<\I’u,a| vo) ¥, 0. (22 problem as a suitable basis in the degenerate subspace can be
. chosen in terms of which E@23) still holds good. We give
So far no approximations have been made, except, dWo examples to clarify this aspect.
course, for ignoring the switching on and switching off times ) _
in the beginning(see, however, Sec. I)CThe Hamiltonian 1. Two harmonic oscillators
H of Eq. (18) can be thought of ablo=H+Hg perturbed Let us consider the situation where both the apparatus and
by QaQs/T. Using the fact thaQ,Qs/T is a small pertur-  the system are harmonic oscillators with frequeacyThus
bation and that the eigenstatesttf are of the formv)|a),

perturbation theory gives Ha=P22M + :M 02X2,
(28)
|V, =Im|a)+O0(1M)+-- -, Hs= p2/2m+ i mw?x?.
(23)
B 1 The energy eigenvalues for the eigenstates of this combined
E(p,a)=p+En(@)+ +(Qs)(Qnaat- - system labeled byN,n)=|N)|n) are

An important qualification needs to be made here. It is E(N,n)=fio(N+n+1). (29
important for Eq.(23) to hold that|)|a) be anondegener-
ateeigenstate oH,=H 5+ Hg, except when the degeneracy
arises solely due to the degeneracy of the eigenstatds, of
Otherwise, even in the limiT—o«, the exact eigenstates o
H do not approachu)|a). We discuss this aspect in more
detail in Sec. 11 B, with the help of two illustrative examples.

_ Substituting Eq(23) into Eq.(22), and taking the larg& | ot ys concentrate on a degenerate subspace in the sum over
limit, yields (w,a) in Eq.(22). For illustration, let us choose the subspace
with energy E(0,1)=E(1,0). The unperturbed states are
[t=T)=>, e["THEadT+Qus(Qs)ld, |b)|v). (24)  [1)|0) and|0)|1), respectively. The interactioH, lifts the
b degeneracy, and the eigenstatesHef Hy+H, are

For example, the stat®,0) is nondegenerate, but the states
|1,0),]|0,2) are degenerate. Now consider the adiabatic inter-
¢ action

Hi=g(t)X-x. (30)

We now introduce the operator B 11,00+(0,2)

) ,
2
Y=20 (Qu)elb)(bI. (25 2
with energy eigenvaluesE.=2hw=*=g\, where A
It is important to note that the operatgiis a property of the ~ =(0|X|1)(1|x|0). Thus if the initial state were of the type
apparatus alone and does not depend on the sydtetarms =\ dy|N)|0), the contribution in Eq(22), proportional to
of Y, the above equation can be recast as d,, would be

(31)

[t=T)=e"TeHaTe!Y(Q:| ¢} |v). (26) eE+T(+]1,0]+)+eE-T(—|1,0] ). (32)
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After some simplifications this reduces to really a gentle process. Therefore, it is intuitively clear that
- o no violence has been committed against the adiabaticity of
e'#"“!{cosghT|1,0+i sing\ T|0, 1)}, (33)  interactions. Nevertheless, it is desirable to put this intuitive

feeling on a firmer mathematical ground to make sure noth-

ing subtle has been missed out.

6120071 c0sN|1,00+i SinA |0, 1)} 34 For this purpose let us assume -that the mteraptmn is
{ 1.0 0.} 34 smoothly switched on during the period<@<AT. During

This introduces strong entanglement between the apparattf3iS period let the functiog(t) be smooth and bounded by
and system even in the adiabatic limit and consequently nd/T, i.e., [g(t)[<1/T. We can also arrange f@(t) to be

which in theT—< limit reduces to

protective measurement is possible. monotonically increasing, but this is not crucial.
Now let us divide the intervdl0,AT] into M equal parts
2. Harmonic oscillator coupled to spir particle system of 7 each. The initial Hamiltonian is theH, and the final

Hamiltonian isH,+ QaQs/T. During the interval labeled by
m, the Hamiltonian is

H™=Hy+0gnQaQs- (37)

Let the exact eigenstates and eigenvalues of this Hamiltonian
With the choiceuBy=3%w, we see that the staté8)|+) be (™) andE™ . As the Hamiltonian is noime depen-
and|1>|:)eare degenerate. Also, the interaction Hamiltoniandem. i}fyis neceslgary to use time-ordered products. The state
H/=gXo-n is not diagonal in this degenerate subspaceatt=AT is given by

Again, there will be strong entanglement between the appa-
ratus and system even in the adiabatic limit.

What one learns from these examples is that whenever the
eigenstates oH, are degenerate in the sense mentioned
above, and when the interaction Hamiltonitdpis not diag- In a manner analogous to how we obtained €§), we now
onal in that degenerate subspace, entanglement between thigtain
apparatus and system cannot be avoided even in the adiabatic
limit. These two examples are cases of what could be called _

“accidental” degeneracy oH,. AT) Eb db 2

It is also clear that whenever eithelr, or Hg has a con-

Let us consider a spik-particle (system coupled to a
harmonic oscillatofapparatus The total Hamiltonian is

H=P?%2M + 1M 0?X?+ uByo,+gXo-n. (35

|AT)=]] em7t=0). (38)

3R R MM s81,82, . am

(M)

tinuous spectrurti, generically has degenerate eigenstates. X €l By o "By, Ey ~aM)|\I’ﬁL":'w)’aM)

As an example, consider the situation whelghas continu-

ous spectruma?, and Hg the discrete spectrum: uB,. X(‘I’ﬂ\:ﬂ),aMl\I’ﬂ\fnj),aMfl)- o

Clearly the statea) and |a’) are degenerate whenever

a’?=a?+2uB,. It is obvious thata'2=2uB,. This is an X(‘I’(ﬂll),a1|\1’fg,ao>~ . (39

example of what we call “generic” degeneracy ldf,. Pro-

tective measurement in such cases is possible oril; iis ~ Because the Hamiltonians at adjacent time intervals (
diagonal in the degenerate subspace. In the case whenl) differ by (9;—0i+1)QaQs, Which is again small and
[Ha,Qa]=0, H, isindeed diagonal in the respective degen-bounded byQ,Qs/T, we have

erate subspace and protective measurement is possible, as we (i+1) 0
saw in Sec. II. Wher{H,,Q4]#0, the situation is more (Wi 1o Vi )= Oy 1. 0ay, 1 o,

complex. ForH, to be diagonal in the degenerate subspace

requires (a|Qa/a’)=0 whenevera’?=a?+2uB, for the (9417 G (AFTOWT)+- -

example considered &/Qala’)=0 for all a,a’ would have (40
meant[H,,Q4]=0). This already precludes the prototypi- .
cal Hamiltonian for Stern-Gerlach experiments: Here A=(»,b|QaQg|»,b), and dots refer to terms higher
order in 1. Likewise, the energy eigenvalues satisfy
H=P2/2M + uByo,+ uB;Xa - n. (36) -
KBz A5 EQ o =E,p+GiA. (41)

The only reason the AAV spig-example works is because o _ _ o
of the assumptio®?/2M =0. We shall see this more clearly Combining these equations and taking the liMitarge, one
in Sec. Il E. obtains

AT
C. Switching on/off of the interaction |AT>=ex;{ i(v+EpAT+ f dt g(t)A) dp|b)| ).

In our treatment so far, we have ignored the possible ef- ° (42)
fects of the switching on and off of the apparatus-system
interaction. This may appear at first to question the use of th®©n comparing with Eq(24), it can be seen that the effect of
adiabatic treatment. However, it should be borne in mind thasmoothly switching on the interaction in the interval XT)
the change in the total Hamiltonian during these periods becan be completely ignored. The same also applies for the
ing QaQs/T is very small, and the switching on and off is interval when the interaction is smoothly switched off.
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D. An example with [H,Qa]=0 way to look at this example in order to avoid any confusion.
Let us now consider a specific example embodied by théVe take the inhomogeneous field to Bexn. We takeH,
Hamiltonian =0, or equivalently ignoreP?/2M. The relevant Hamil-
tonian is
P2 -
H=om T #Booztg(DuBPo-n, (43 H=— uByo-n— ug(t)Bxa-n. (51)

whereM is the mass of the particle with spin whose positionAs before,g(t) is taken to be 1. It should be noted that
acts as an apparatys,the magnetic moment of the particle, Bn is an a priori unknown magnetic fiel€onsequently, we
B, the homogeneous magnetic field that breaks the degerhall not assume anything about the sizeBgf The initial
eracy ofHg, and B;Pn a momentum-dependentagnetic ~ state is chosen to be

field that couples the apparatus and system degrees of free- L e 5

dom (o). Thus in this example[Ha,Qa]=0, while [t=0)=€P*|+), o-n[x)==|%). (52)
[Hs,Qs]#0. Further, v=+ uB,, while E,(a)=a?%2M.

We take the initial state to be It should be emphasized that this initial stateigriori un-

known. The Hamiltonian of Eq(37) is the Hamiltonian of

[t=0)=|¢(€,0))[+), (44)  the spin3 particle in the effective magnetic field
where|¢(€,0)) is a wave packet of widtle centered ak s n.on X
=0. It is clear from the general discussion that in this case B=Bon+B ™ (53
Y=P, and that the pointer is the center of the wave packet. ) _
In position representation whose eigenstates are given by
(x|¢(e,0)>=5‘1’277‘1/4e‘X2/262. (45) H|i>= i,uB|i>. (54)

We can decompose this wave packet in terms of the plangonsequently, the state BT is given by

wave stategeigenstates ofl ) 0 6
|t=T)=cos5e'“®T/+)+sinze”'“*T—), (55

1 .
d(a)= —f dx e '¥(x| #(€,0)). (46) ) .
v2m where6 is the angle betweeB andn. As T—x,§—0, and
One obtains |+)—|+). Also
_ .22 X5 =
d(a)=m Hel%e <2, (47) B—Bo+Bin-n. (56)
Combining these details with E¢13), one finds that in the
case of this example Thus
|t:T>:ei,uBoTei(P2/2M)TeiP/.LBi<t;-ﬁ>+| +>|¢(€,O)> |t:T>_>ei/-LBoTei(pO+:“Biﬁ"ﬁx)| :~|-> (57)

_ . Hence the momentum of the apparatus shifts@iﬁ-ﬁ
The operatoe!"##i{” "™+ only shifts the center of the wave —(,,B,5-n)3, while the system remains in the same state
packet without changing its width and'(®"/2")T only  to begin with.
spreads the wave packet without shifting the center. Thus we The language used inadvertently by AAV in describing
find this example has, in our view, been partly responsible for
. o some of the misunderstandings about the AAV proposal en-
[t=T)=e'BoT|+)| p(e(T),uBi(a-n))), (490  gendering a class of criticisms in Ref$0—17. For example
AAV stated that ‘B is very large compared to the Stern-

where Gerlach field.” This unnecessarily gives the impression that

1 T2 B, is a priori known, and consequentlﬁr) is alsoa priori
e(T)2=§ e+ W) (500  known. A less confusing way to state this would have been

to say that because of adiabaticity the Stern-Gerlach field
e{Bi(x/T) can be made much smaller than aBy. Likewise,
éA\AV stated that “to see the transition from the usual Stern-
Gerlach case, we may gradually incre&gefrom 0.” This

too gives the same false impressionByf being known(and
hence controllablea priori. In fact, while the usual Stern-
Gerlach setup involves an impulsive transition, the modified

The AAV example of protective measurement on a spin- Stern-Gerlach setup involves an adiabatic transition. This

state by an inhomogeneous magnetic field attracted a lot afan be understood as arising out of tunBgonly in a for-
criticism[10—17. Here we present what we think is a better mal way.

is the standard formula for the spreading of the wave pack
One may note that the spread in the pointer position in thi
example is independent of the system state.

E. AAV spin-3 example
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lll. ASSESSING THE CRITICISMS “the signal” by them and the apparatugcalled “the
robe”) maintain anexactdisentanglement after the mea-
urement. This is achieved by using the following interesting
groperty of coherent states of a harmonic oscillator: For a

The proposal of protective measurements drew a lot og
criticism on various countsl0—17. Although there has been
an attempt to clarify some of these misunderstandings by th AR ngn | any
original authors themselve8], many points remain to be HamiltonianH=7%«(s'p+sp’),
clarified. In this section we review the various criticisms and - ) )
assess their relevance to the issue of protective measure- U®)]B)d v)p=laB=iby)day=ibB)y, (58)
ments. whereU=¢M ands,s’,p,p' are the annihilation and cre-

A. Are we measuring at all? ation operators of _the system and probe respectively; further,
] ] ] o a=coskt andb=sinkt. Now they take the squeezed coher-

Schwinger[10] raised the following objections to the ent statda,r), as the system state and the squeezed vacuum
AAV proposal: (i) Even in .the conventional Stern-Gerlach state|0,q), as the probe state. The above-mentioned property
(SG) setup, as the SG field is weakened, the two beams begig coherent states then implies that the disentangled state

to overlap and no SG measurement is performieg.Re- |,1)5|0,0), remains disentangled under the unitary evolu-
peated SG measurements have already demonstrated t,[he -

. . ; N : ion U, providedq=—-r+i¢ for any arbitrary phasep.
Svr:\?:?ggzt%wlpl|tude(ep|stemolog|calmterpretatlon of the Their idea is then to make a measurement on the probe to

Unlike the response of Aharonov and Anandan to thismfer an observable in the signal state, undo the “determin-

[18], we do agree with Schwinger that the effective SG fieldIStiC change” of the system .by driving it back to its original
is w,eak because of theTlfactor. But the circumstances are state through a classical field, and repeat this process as

otherwise quite different from an usual SG measuremen any times as one needs. They called this a “protective

. . S . ; measurement” because measurements are being carried out
Since the interaction time in protective measurements is ver

large, even a weak SG field is able to produce a measurab?éen the system .Wh'le mamtammg.the ability to restore th?
= : - system to its original state. The price they had to pay for this
shift in the apparatus pointer position.

Regarding the second point made by Schwinger, it shoul 25 Toengljﬂgegr'&r;tkpu?;vleggs ck);g\:ﬁezyséeg? 'csrfzt;a'::rife
be emphasized that AAV did not claim to associate reality y ; P 9
. : : needed for protective measurements.
with all wave functions. For example, the wave function for

unstable systems can only be interpreted statistically. Als Aharonov and Vaidmanl9) criticized this work on the
repeated n%odified S@roteyctive) meapsurements are ir)llc.ieed%aSis that the squeezed state they used is not a nondegenerate
consistent with treating the wave function as “real.” eigenstate of the harmonic-oscillator Hamiltonian, and hence

does not satisfy the criterion for protective measurement.
Also, the authors of Refl19] claimed that the scheme of
Alter and Yamamoto allowed for disentanglement to be
Rovelli[12] and, Samuel and Nityananfit7] objected to maintained only when certain observables are measured,
this proposal on the grounds that the fact that the wave funanuch the same way as in eigenstate measurement or in
tion does not collapse is a trivial consequence of it being ariideal von Neumann” measurements. In their rebuttal to
eigenstate of the dominant Hamiltonian to start with. Thougtthis, Alter and Yamamotd16] emphasized that one can
what they said about entanglement is correct, they overmeasurall the observables associated with the signal. They
looked the crucial fact that the shift in the pointer is propor-further asserted that in their scheme entanglemeexastly
tional to the expectation value of an operator whilcles not  avoided, while the protective measurement scheme of AAV
commutewith this dominant Hamiltonian. Thus ommea-  avoids this only approximately. We fully agree with this lat-
suresthe expectation value of an arbitrary operator of theter remark, and shall analyze its true import a little later.
system, while the wave function does not collapse for obvi- As we see it, the scheme of R¢fl5] is quite different
Ous reasons. from that of AAV, and suffers from the requirement of fall
Another objection of these authors is that the wave funcpriori knowledge of the state which is not a restriction on the
tion has to be knowm priori in order to make a protective AAV proposal. On the other hand, this scheme is attractive
measurement. This claim is not completely correct, becauskeecause it avoids entanglement exactly, and is yet another
all that is required in the analysis of protective measurementsandidate scheme to measure expectation values of observ-
is that the system is in a nondegenerate eigenstate of igbles in the single quantum state without irretrievably de-
Hamiltonian, allowing for the possibility of the situation stroying it. To this extent it appears reasonable also to call
where the Hamiltonian and the state may be unknown. Inthe scheme of Ref.15] a protective measurement, even if
deed, one can find situations where one may know that the single quantum state does not satisfy the criterion laid out
system is in an eigenstate without knowing the Hamiltonianby AAV.
An example is a trapped atom, where the potential may not One of the objections raised by Ghose and H¢8 (in
be known beforehand, but one does know that after a suffiaddition to stating that protective measurements require the
ciently long time the atom is to be found in the ground state specification of the statés that AAV did not solve the prob-
Protective measurement, in principle, allows the measurdem of wave function collapse. Protective measurement does
ment of any operator of the trapped particle, without destroynot solve the problem of wave function collapse, and AAV
ing the state. did not claim otherwise, as they stated quite explicitly in Ref.
Alter and Yamamotd15] constructed an interesting ex- [8]. The crucial point here is that there is no entanglement
ample of a type of measurement whereby the sygtatied between the system and the apparatus after the adiabatic in-

B. Are we measuring a known state?
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teraction. So, if an actual measurement, by whatever mechgointer shifts by an amount proportional to the expectation
nism, is made on the apparatus, whigleversibly registers  value of the measured observable, we now move over to the
the outcome, the wave function of tilsystemwill not col-  jssue of retrieving the information about the center of the
lapse. This is similar to an eigenstate measurement using thgaye packet. One can see that in any setup for protective
conventional method, where the wave function of the SyStertTEweasurements the pointer wave packet will spread simply

does e change during the process of measurement, so g . \se the detected pointer variable does not commute with
guestion of collapse, as far as the wave function of the sys: e free Hamiltonian of the apparatus. The condition for
tem is concerned, does not arise. The wave function of th diabatici : hat the i bparatus. £ h ith
apparatus on the other hand, does “collapse” in the sense2dia aticity requires that the interaction of the system wit

that the outcome has to be registered in an irreversible wayn€ apparatus be for as long a duration as possible. However,
This aspect of the measurement problem is certainly nothe increased spreading of the wave packet of the pointer

solved by protective measurements. would interfere with resolving the shift of the center. This
_ aspect of protective measurements was completely over-
C. Is the final state entangled? looked in the original AAV proposal and, as we shall see in

The most serious attack on the idea of protective measurdhis section, it is crucial for protective measurements to
ments can be made on the grounds that, in realistic situawork.
tions, the wave function of the system apparatus combine is In order to obtain a detectable shift in the pointer position,
still entangled, though the degree of entanglement can bi¢ seems reasonable that the increase in the width of the wave
made arbitrarily small, the probability of finding the systempacket should be at least smaller than the shift. In the ex-
in a state orthogonal to the initial state being of orddr1/ ample discussed in Sec. |1 D, we compared the square of the
This is so because, in first-order perturbation theory, the coryiqih of the wave packete?+ (T2/M2€2)] with the square
rection to the energy eigenstate is orthogonal to it. For eNaf the shift in the position of the wave packet, which is

semble measurement, this small “corruption” is inconse-
. oo ! Do . Thus, to have a good measuremeéint; M.
guential as it will affect the distribution of the outcome very fz?osrz;’ this expression ong can see that in ordfa(r?tsgviﬁcr'éase

little. By working with suitably large ensembles one can iso- . . . :
late and control this admixture. This is the reason why thedS one would desire for an adiabatic interaction, one can only

adiabatic theorem works in the conventional interpretation officrease the masd Qf the partlcle_. On the other hand, if the
quantum mechanics. For a single system, however, even dR€asured expectation valiQs), is very small,T also has
extremely tiny entanglement can have disastrous consd0 be small in order to resolve the shift in the pomter_from
quences as a single measurement can yield any outcorig€ spread. So, even in the casg,,H,]=0, the spreading
whose probability is nonzero, resulting in a collapse to thedf the wave packet is unavoidable, and hence puts a limit on
small admixture. the time of the interaction, which in turn would interfere with
The issue of entanglement was also raised by Choudhuryhaking the interaction adiabatic.
Dasgupta, and Dattfl4] as well as Alter and Yamamoto From the analysis of the cag€,,H,]=0, one would
[16]. However, we have some objections to the technicarecall that the initial apparatus state is a wave packet of an
treatment of Ref[14]. They used small time evolution equa- eigenstate of the operator conjugate@a. Now because
tions repeatedly in their paper, made unwarranted restrictionsQ, ,H]=0, that operator does not commute wil . This
like simultaneous commutativityor lack of i) of QA,Qs  will lead to a spreading of the wave packet under the action
with H ,Hs respectively, etc. They also argued, fallaciously, of the free Hamiltonian of the apparatti, . In order that
that entanglement perSiStS even in the adiabatic limit. This Igf]e wave packet does not Spread very quick|y, the initial
a consequence of their ignoring the fact that the support fofyigth of the wave packets should not be too small. The
the wave function where this happens is exp_onenually Sma”spread will be more as time increases, and so one should try
However, these authors stressed the point that there afg yeep the measurement time as small as possible to avoid
subtleties regarding the reading of the pointer position. l.nspreading. But in protective measurements the interaction
Iﬁgtvg\% %%réﬁg:héfet?gr::)s[)lg?gu}gengltnééhﬁ;r%%jp;%dt”H?S to be adiabatic. So, one has to strike a balance between
the burden of protective measurements is passed on’to a mg%? spreading of the wave packet and the time of interaction.
Several conceptual issues arise even though the general

surement of the pointer position. We have fully analyzed thisformalism shows a way of measuring expectation values of

problem in Secs. IV and V. . ; . .
: . observables without disturbing thsingle state. What has
We fully concur with Alter and Yamamof(i6] regarding een shown is that this protective way of measurement shifts

the serious consequences of entanglement, however smafly, pointer position by an amount depending on the expec-

foor:emc%ﬁgrﬁgéegtzrﬁ;|Sknfrfb2¥sc§$rgsgt§;§ prrscgf:é riﬁr?;gY_ation values of observables in the state of the single system
Y prep s opposed to being shifted by all possible eigenvalues of the

ggilhsé?iﬁzl Sr?)t:ahc?;{vghasgille?g?gIegfor:%vggugdn tnh?; 2&0' Fservable in the conventional measurement picture. The im-
P P ication is that the measurement of the pointer position re-

numbgr. That, however, pr_ecludes attaching any ontologic ults in a measurement of the expectation value.
meaning to the wave function.

IV. “READING OUT” THE POINTER POSITION B. Nature of the apparatus
This raises some fundamental issues. According to the

guantum-mechanical lore, no single measurement of an ob-
Having established the fact that an adiabatic interactiorservable in a quantum state yields the value of the observ-

makes it possible that the center of the wave packet of thable. Among the many critics of the AAV proposal, only

A. “Spreading” of the pointer
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Choudhury, Dasgupta, and Daftd4] emphasized this fun- tem is given by theshift of the pointer position and not the
damental problem. To understand this issue properly ipointer position itself, it is possible to consider the coupling
should be understood that the wave padckethe example of between a single apparatus and the system and make re-
Sec. I) was used to model an apparatus. According to thepeated measurements on tfeingle apparatus. Again, the
conventional interpretation of quantum mechanics the appaeason why conventional measurements fail in this regard is
ratus has to be treated as being “classical.” More preciselythat there every act of measurement irretrievably changes
the ideal apparatus must satisfy the following conditiqils: both the system state and the apparatus state. In the case of
superposition of pointer states should not be realizable, anthe protective measurements too, the state of the apparatus
(i) the outcome of themeasuremenbf the pointer state itself is continually being altered by the measurement in an
should itself be dispersion free. That the wave packet modalinpredictable manner. But the shift between two successive
for the apparatus used had associated with it the dispeesionmeasurements constitutes a measuremen(iQa), and its
would then be interpreted as an artifact of the model. Tcaverage value can be determined by performing a large num-
rephrase Penroge0], even though the model of the appara- ber of such measurements. In practice, the measurement of
tus has not been delicately organized in such a way that théhe position of the pointer can be made with a suitably small
adiabatic interaction is magnified to a classically observableuncertainty, and the subsequent measurement done after an
event, one must consider that it could have been so organterval not too long to increase(t) but long enough to
nized Only a more satisfactory model of the apparatusjustify the adiabaticity. Such considerations will play an im-
would lead to a resolution of these issues. It should beortant role in practical implementations.

stressed that the requirement of the nonrealizability of the One must, however, point out some caveats. Strictly
superposition of pointer states is an important prerequisitepeaking, even if the wave packet is sharply peaked, the first
for any such model, and this may necessitate a more conmmeasurement of the position can yield any value not neces-
plete analysis including agencies for decoherence as considarily centered around the mean value. Whether this will
ered in Ref[21]. If one accepts this interpretation, a single render useless the idea of repeated measurements on a single
protective measurement would yield the expectation value ofpparatus is to be settled by more careful examinations of the
a chosen observable in the state of the single quantum sygoints raised. This brings us again to the point mentioned
tem, which, moreover, is left undisturbed by the measureearlier that the wave packet as a model of the apparatus must
ment process. provide, if not dispersion-free measurements, that at least the

The skeptic may argue that when such a consistent treaineasured values of the pointer position are close to its mean.
ment of the apparatus is made, the conclusions of the present

analysis may also not hold. Then one will have to reckon p_qguantum nondemolition measurement of the apparatus
with the quantum nature of the apparatus used in the forego- ) , )
ing analysis, and introduce the inevitable classical apparatus |Nere is yet another interesting way out of the problem of
at a later stage. measuring the shift of the wave packet of the pointer. This is
In that case the wave-packet dispersioshould be taken Pased on repeated weak quantum nondemolii@ND)
seriously, and a number of difficulties seem to arise. A singldneasurement§22] performed on theapparatus Recently
measurement done on the wave packet will not yield thdlter and Yamamot$23] analyzed the problem of a series of
location of the center. One possibility is that we consider€Peated weak QND measurement on a quantum system, to
adiabatic coupling of a single quantum system to an enaddress the question of getting information about the un-
semble of apparatuses, and make measurements on the grown wave function of a single quantum system from such
semble of apparatuses to determine the pointer position. Thigéasurements. They concluded that it is possible to obtain
is not such an unreasonable arrangement. For example, tif2€ mean value of an observable in an unknown state, but no
ensemble of apparatuses could be a beam of atoms interaétformation can be obtained about the uncertainty of the ob-
ing adiabatically with the spin of the system. Such an enServable. Hence one cannot obtain any information about the
semble approach inevitably carries with it uncertainty in theWave function. Also, the state is completely altered in the
knowledge of the position of the apparatus. However, thdfOC€ss. _ _ _
pointer position which is the average of the outcome of these Their scheme is best illustrated through the first of the two

position measurements, can be determined with arbitrary ag@xamples considered in R¢23]. This is a series of photon
curacy. number QND measurements performed on a single wave

packet of light. The probéapparatukis a squeezed coherent
state|ag,r) with real squeezing parameterThe signal and
gfrobq are correlated through an unitary transformatibn

The reason one was forced to consider an ensemble of gy wheren. andh the phot b i
measurements in the conventional measurement was that t Oe:’ the ' Wte?rqeg?] 3” rr;‘t)):rere eepct'oef)ln nTug; er %loa?rah%rt?)n
(impulsive coupling of the system to the apparatus resulte Sys P , T€Speclively. SIl9 P

in an entangled superposition where all possible pointer po[lumber is inferred from measuring the second quadrature of

sitions could be realized with appropriate probabilities. Inlhe~ piobe. A seru'as of such measurements .y|elds
contrast, in the protective measurements only a single pointét:N2.Ns, . . . for the inferred photon number of the signal.
position is chosen. This affords a more interesting alternativd he photon number distribution in the unknown initial state
to considering an ensemble of apparatuses, as argued aboigtaken to bePy(n)=N[n,n,,Af], with unknownn, and
Since the state of the system is unaltered and the expectatidv§, where N[X,Xq,02]=(270?) Y2exd —(x—xo)%/20?] is

value of observables in the state of the single quantum sys normalized normal distribution; hemfn is the uncertainty

C. Repeated measurement of a single state
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due to measurements and is controllable as in classical memost promising possibility for experimentally realizing pro-

surements. tective measurements.
With each measurement, the system stai@ngesand the
photon number distribution of the signal aftermeasure- V. SOME FINAL REMARKS

ments becomes P, (n)=N[n,n{,AZ], with n{
= AL (no/A8) + (Eni /A7) and AR=[(L/AG) + (K/ADT ™. N .
The important features of this example to concentrate on are From our general d'SC!JS,S'O” of protective mef’:\surements,
Q) Pk(ngk)), the diffusion of the center aftérmeasurements, it is c_Iear that many restrictions may have to be |mpos_ed on
N by N[N no.(k/A2)A2A2]. This distribution is the kind of apparatus to be u.s.ed.. By an apparatus in this
'S given by NiNo ™Mo, (K 2m) Ro3k _ - context, we shall mean a specificationtdf andQ, . In the
centered at g. (i) If n=3{_/ni/k and An’=35(N;  general case whef@,,HA]#0, it is not clear whether the
—n)?/(k—1) are the mean and variance of the outcome obperatorsX and Y can be physically realized in an actual

measurements; ,Nn,, ..., theprobability distribution ofn  setup. Also, as already pointed out, it may not always be

and S=[(k—1)/A2]An? are given byN[n,ny, A2+ A2/K] possible to even find aX that is canonically conjugate ta

and (S (k—l)]mrespectively where(z[’x OV'] (i)s thg N The other important restriction on the apparatus comes

distribution of the variablex which is centered at. Thus, from the requirement thdw@ in our general treatment
hile Tris & “aood” estimator for m AnZ beina centered at should not be a degenerate eigenstatd pf Hg+ H 5 unless

w2| € 9 ) ! 9 o the perturbatiorgQaQs is diagonalin the degenerate sub-

A7, has nothing to do with the initial uncertaintig. (iii)

- e T space. GenericallyH, should not have a continuous spec-
Eventually, the width of the distributioR,(n) becomes zero trum, though in a specific example given in Sec. Il D, conti-

which means .the signal becomes an eigenstate of phomr‘ihity of the spectrum was not a problem because the
numbgr with e|genva}lueo. . perturbation there was diagonal in the degenerate subspace.

.Wh|le the conclusions of Ref23] were negative as far 8S |n fact, in all cases whetiH ,,QA]=0, the perturbation will
using repeated weak QND measurements to determine the, giagonal in the degenerate subspéeeall that|v) is a
unknown wave function of a single system, it appears tailor,gngdegenerateigenstate oHg). These considerations rule
made to solve the problem of “reading the pointer position” oyt, for example, the prototypical Hamiltonian in discussions
in protective measurements. Thus we apply their scheme ngf the Stern-Gerlach setup, i.e.H=P%2M+ uB,o,

to the system part of the protective measurement setups, bg{[ BXa-n. As emphasized above, AAV in their spin-
I . ’

to the apparatus part instead. Then we can obtain informatiog)((,mm'e chosél.=0. But once this is relaxed. the difficul-
about the center of the wave packet, which in the protectivgog stressed he/:e become relevant. '
measurement scheme carries information on the expectation Te gther important point to emphasize is t@Qs/T

values of observables in the system state, through repeat@flo,id be a well-defined perturbation ougj in the sense
measurement of théquantum apparatus. There is also the that its matrix elements in the basis spanned by the eigen-
added advantage that the variance in the outcome of thesgates of the unperturbed Hamiltonian should exist. This too
repeated measurements has nothing to do with the spread figles out the prototypical Hamiltonian in the discussions of
the wave packet of the apparatus. The uncertainty in théne Stern-Gerlach model mentioned above, because the ex-
measured values ¢f)s) will therefore be more like errors in  pectation value ok in any plane-wave state does not exist.
classical measurements which are controllable. Hence theidot only should the matrix elements exist, at least some of
need not be any uncontrolled uncertainty in the reconstructhe diagonal matrix elements &, should be nonvanishing,
tion of the original state. The concerns expressed in Se@s otherwise there will be no shift in the pointer position.
IV A are mitigated in an elegant manner. This, for example, rules out a linear position coupling in the
This example comes closest to realizing the ideals of aase of a Harmonic oscillator.
classical apparatus, but nevertheless deals with an apparatusOne might have a thought that the Stern-Gerlach Hamil-
that is treated quantum mechanically. We need not cartonian could have been used with some sort of “regulariza-
about the fact that it does not give us information about thdion” such as putting the particle in a box, or treating the free
variance, as all we need to know, in order to complete thearticle as a harmonic oscillator with a very timy But both
protective measurement, is the position of the center of @hese are unsatisfactory for the purpose of protective mea-
pointer wave packet. There is an added bonus to this methaglirements, because in the first cése) in the eigenstates of
in the sense that, can be determined as the average of theP?/2M with box-boundary conditions is always the same and
outcome of sequence of measuremeadswell as by per- is at the center of the box. Then the operafaf our general
forming an eigenstate measurement on the eventual apparareatment is the identity operator for which there is no ca-
tus state We also do not care that the original state is de-nonical conjugate. Physically, this means that the adiabatic
stroyed after the measurement, because for us it is the stait@eraction only produces an overall phase which is of no
of the apparatus that is destroyed, and not that of the systernonsequence in shifting the pointer position. The second al-
Thus one may proceed with a protective measurement biernative of treating the free particle as the limit of a har-
first allowing an adiabatic interaction of the system with anmonic oscillator with vanishing frequency is also no good, as
apparatus which can be treated quantum mechanically. Thig this case the expectation valuexah the oscillator energy
would result in a shifted wave packet of the pointer. One careigenstates vanishes and there will be no pointer position
then do a series oveak QND measurements on this wave shift. In these cases a more rigorous handling than what per-
packet to obtain the position of the center. This seems tharbation theory offers may be needed.

A. Restrictions on the apparatus
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It is not clear that even the case whé@,,H,]=0 is  surements are likely to give the right answer. But it still
easily realizable experimentally. In the example of Sec. Il Dprecludes associating a “reality” with the wave function of a
one needs a momentum-dependent magnetic field. While it isingle system.
always possible to create a position-dependent magnetic field Unruh raised an objection to associating a “reality” with
experimentally by using inhomogeneous fields, it is not cleathe wave function even after assuming the validity of the
how one would create the former. These restrictiondan  jdea of protective measurements on a single sy$teth He
andQs are not warranted in the conventional, i.e., impulsiveargued that the energy eigenstates may be considered to have
measurements, as the@,Qs is dominant and/Ha,/Hs 3 “reality,” but that cannot be concluded about any arbitrary
can be neglected in comparisdihe integration is over the = giate For the reasons mentioned above, we do not believe

duration of the impulse one should associate a “reality” even with the energy eigen-
_ _ states of a system.
B. Does itreally work for a single system? Unruh also pointed out that “protection” in the sense

In this entire analysis it has been assumed that entanglésed by AAV is an attribute which a system either already
ment effectsbetween the apparatus and the systeem be has or does not have, which means that only if a system is
made arbitrarily small a§ is made large. In the case of already in a nondegenerate energy eigenstate can a protective
conventional measurements, a small contamination of theneasurement be performed on it. One cannot “protect” a
wave function will also have only a small statistical effect. given unknown wave function.

With a large enough ensemble of states, the effect of such

small admixtures in the wave function can be controlled. In VI. SUMMARY

the case of protective measurements the situation is radically

different. However small the amplitude for entanglement in In summary, we have critically examined the idea of pro-
the largeT limit, the outcome of the first measurement on tective measurement of a quantum state. We have shown that
the single system can always be states of the system artge idea can be generalized to the case where the interaction
apparatus which are part of the small amplitude. This woulddamiltonian does not commute with the free Hamiltonian.
have a deleterious effect on the subsequent measurementsWe have also looked at earlier criticisms of the idea, and
is clear that this potential problem persists no matter hov@OﬂC'Uded that most of them are not relevant to the original
large T (or how small 1T) is made. Stated differently, how- proposal. The relevant criticisms, we believe, are the com-
ever largeT is made, thepossibilitythat even a “protective Ments by Alter and Yamamotd6] on the omnipresent in-
measurement” projects the system into a state orthogonal tbhitesimal entanglement, comments by Choudhury, Das-
its initial state can never be ruled out. The fact that¢ae ~ 9upta, and Dattql4] pointing out the subtleties in reading
culated probabilityfor this to happen could be extraordinar- out the pointer, and the comments by Unriti] on the

ily tiny is of no consequence because for a single Systenipterpretation of protective measurements. We have dis-
under such circumstances, probabilistic concepts are inapplfussed various conceptual issues involved in the process of
cable. To illustrate this in the specific context of the exampleProtective measurements, and inferred that there are several
of Sec. Il E, the angl@ is always nonzero though very small, constraints imposed on the measuring apparatus. It is pointed
and the original spin is precessing around the unknown magut that a single measurement does not yield any informa-
netic field with this inclination. Quantum mechanically tion. We have proposed two schemes as a way out of this
speaking, any measurement can realize both the initial stafoblem. One of these involves performing repeated mea-

|;l> as well as its orthogonal complemelit). This may surements on the single quantum system, making use of the

well be the most formidable obstacle to realizing protectivefaCt that the system wave function does not change. The

measurements with certaintin this sense it is the conven- other proposal involves performing a series of quantum non-

tional interpretation of the wave function and measurement emtol(ljtlon mteasuremﬁnt_s Olrll tlaqfaiparatu_s V\I'h'Ch ;S tt(') be
that is protected against the vagaries of statistical fluctua- reated quantum mechanically, alter a singie protective mea-
tions surement on the quantum system. After analyzing all the

issues involved, we have concluded that although experi-
mentally realizing protective measurements is a possibility,
one can never perform a protective measurement on a single
The idea of a protective measurement, like its convenguantum system with absolute certainty because of the tiny
tional counterpart, also has some philosophical issues assonavoidable entanglement which is always there. This is suf-
ciated with it. Because of the fact that there exists a possificient ground for precluding the “reality” of the wave func-
bility of measuring the expectation value of an observabldion. In this sense we agree with Unruh that what the AAV
from an unknown wave function when it is an energy eigen-proposal has achieved is a fresh understanding of the nature
state, one might tend to associate a reality with energy eigeref measurements in quantum mechanics, rather than elevate
states. If one believes that what can be measured is “real,the wave function to a new status.
then the energy eigenstates appear, on first glance, to satisfy On the practical side, it appears that protective measure-
this condition, and seem to be special in this regard. On thenents(where possiblecan be used to determine the wave
other hand, the ubiquitous tiny entanglement makes it imposfunction using considerably smaller ensembles than in tradi-
sible to make a measurement on one single system, witlional measurements, with the added bonus that the ensemble
complete certainty, as we discussed above. If the entanglés practically left intact after the measurements. We give the
ment is really tiny, it may not be that bad from a practical following semiquantitative argument in support of this. Of
point of view, in the sense that a small number of such meaeourse, a more detailed model-specific analysis would be re-

C. Philosophical issues
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quired to make these arguments more concrete. The size of the conventional ensemblg required to match
Let us compare the measurement of some quadity  this precision is roughly Jsf), and is given by

both conventional ensemble measurements as well as in pro-

tective measurements. In the latter case, let us consider doing _T4 1

it with an ensemble oNp identically prepar.ed stlates and let NC_? [<X>i+ 1N,] '

the former be done with an ensembleNyf identically pre-

pared states. In the case of protective measurements we obhus with large enougfi one can achieve a substantial re-

tain, with probability 1-c?/T?, the exact expectation value duction in the ensembles required for protective measure-

(X)exace @nd, with probabilityc?/ T2, the expectation value ments, for any given degree of precision in measurements.

(X), , wherec depends on the details of the system and The estimate provided above is crucially dependent on one’s

refers to the normalized state in the subspace normal to thability to carry out the QND measurement on the apparatus

initial state as picked out by first-order perturbation theory. Itas detailed in Sec. IV D.

is worth noting that the relative probability 1/T2, as in This is indeed a very attractive practical spin-off for the

first-order perturbation the change in the wave function isAAV proposal. The other attractive feature, as already men-

orthogonalto it. This works to a tremendous advantage fortioned earlier, is that the original pure ensemble remains pure

realizing protective measurements. Thus the error in the esvith probability 1—c¢?/ T2, whereas in conventional mea-

timation of the expectation value by protective measuresurements the original pure ensembledsnpletelydestroyed

ments isc3(X), /T2. Of course the statistical error i, in the sense that it is reduced to a mixed ensemble from

weighed with the relevant probability should also be takerwhich it cannot be reconstructed.

into account. Combining the errors in quadrature, for the

(60)

estimate of error in protective measurements one obtains ACKNOWLEDGMENT
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