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Analytic solution for retardation in two-atom systems
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The spontaneous emission of a pair of two identical and fixed two-level atoms, sharing initially a single
excitation, is considered. It is shown that the solution which involves all the retardation times obtained by
Milonni and Knight[Phys. Rev. A10, 1096(1974] is also valid for interatomic distances less than half of a
transition wavelength. The effects of the interatomic distance on the time evolution of the atomic state popu-
lations are examinedS1050-294{®9)07203-0

PACS numbdps): 42.50.Ct, 42.50.Fx

The energy transfer between a pair of atoms and the rolwith ., being the transition dipole moment for atamlo-

of causality have been subjects of long-standing interest bezated at ,, ande, being a polarization unit vector. To facili-
cause of their fundamental importar{de-9]. The problem is  tate the comparison, we follow closely the notation used in
usually formulated in terms of a pair of two-level atoms a[4,s).

fixed distance apart, atom 1 in the upper state, atom 2 inthe  The system wave function at timecan be written as
lower state, and no photon in the radiation field. From the

causality principle, one would expect that at times less than |p(t))=Dby(t)|u,1)[{0}) +b,(t)|l,u)|{0})

t=2r/c, atom 1 decays as if isolated in free space. Mean-

while, atom 2 may have nonvanishing upper state population n b (O 131 3
only aftert=r/c. At timet=2r/c, atom 1 starts to be aware ; OILDHL- @

of atom 2, and so on. Formulas for the various probability )
amplitudes which show how all the retardation timegc Using the Schrdinger equation and the initial condition
enter have been obtained by Milonni and Knig#t5] (see b (0)=0, one can derive the following equations for the
also[6]) under the condition that the atoms are larger tharprobability amplitudes of finding atom 2) in the upper
half of a transition wavelength apart. In this Brief Report, westate:
will show that this condition is, in fact, unnecessary. In doing .
so, we extend the results of Milonni and Knight on higher- ) _ 4t "+ _
order retardation effecf#,5] and of Goldstein and Meystre Or(t) n:212 oKm”(t t)b(thdt’,  m=12, (4
on the dipole-dipole interactiori0] to interatomic distances
less than half a wavelength. We analyze the effects of thehere
interatomic distance on the time behavior of the atomic
state populations and demonstrate explicitly the transition VI * —i(wg—wg)(t—t’
from our model to the Dicke model of superradiaridd], Knn(t=17)= ; gr(k)gs(k)e 1w, (5)
which occurs when the two atoms get close enough to each
other. The kernelK ,,(t—t") can be evaluatetsee the Appen-
The process under discussion is governed by the Hamildix) and put in Eqs(4) to yield
tonian, in the electric dipole and rotating wave approxima-
Hpie)
C c
m,n=1,2 (n#m), (6)

tions, bm(t)=— Bbm(t) + fby,

1
HIE ﬁwkalak-l- 2 shwoopm,
K m=122

2 3 3y
+4 K)oal+o* (K)ola], 1 where B=2u“wy/ (3hc®) is one-half the free-space decay
; m:21,2[gm( JTmaict Om(K) ond] @ rate,H(x) is the Heaviside unit step function, and the coef-

+ ] ~ ficientf is defined as
where a, and a, are the photon creation and annihilation

operators andy,, chm, ando,, are Pauli operators for atom 3 p q q o
m. The coupling constantg,,(k) read f=- 55 W+ i(kor)g_ (kor)z e,
27w\ 2 "~ _ _ _ o
Im(K) =i v (- €€ M, 2 p=0, gq=2 for Am=0 transitions, (7)

p=1, gq=-1 for Am==x1 transitions,
*On leave from the Institute of Physics, National Center for Sci-with ko= wg/c. It is convenient to introduce

ences and Technology, 1 Mac Dinh Chi St., Dist. 1, Ho Chi Minh
City, Vietnam. C.(t)=b(t)xby(1), (8)
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which obey uncoupled delay differential equations

r
t— —). 9

- r
Cat)= —,8C+(t)tfc+(t_ E) -t

The Laplace transform of these leads to

Ib, (|2

1

Cx(s)= s+BFf exp(—sr/c)’

(10

which is nothing but Eq(17) given in [5]: C.(s)=1/s
+A(s)=B(s)] with A(s) andB(s) given by Eqs(27) and
(40), respectively. To find the original functior..(t) from
Eq. (10), Milonni and Knight have assumdgr =3, so that
the integrand in the inverse Laplace transform can be ex- ! AR 1 ‘ 1, 1 !

panded into a power series. The integral can then be per- i f ; ®
formed using the contour integral techniques to divg 0.8 I R D B S S
o Lty s . s ]

ci(t>=n§0 ()M A (), (12) s |
= 0.4 -} ....... ........... .......... e ......... i

wheret,=t—nr/c.
Here we show that Eq$9) can be solved exactly, without

the additional assumptiokyr =3 on the interatomic dis- VA b : ‘

tance, as follows. First, for the sake of simplicity, we define 0 [ W L
~ ~ o 1 2 3 4 5 8 1T 8
C.(t)=ef'C.(1), T=ef°f, (12 2t

so that Eqs(9) become FIG. 1. Upper state populations @) atom 1 andb) atom 2 as

functions of the dimensionless timeBR for r =\/2 (dotted curvg,
< —_—— r r=0.2\/2 (solid curve, and free-space decégashed curve Atom
C.(t)y== fCi(t— E) H ( t— E) . (13 1 is excited and atom 2 deexcitedtat0. Am= *1 transitions are
assumed ang\/c=10"3.
For timest<r/c, Egs. (13) become ordinary differential
equations, which can be integrated easily. Once the solutioh0 prove that Eqs(15) are indeed solutions of EqéL3), we
for t<r/c is known, we can compute the solution fotc  differentiate both sides of them to obtain
<t=<2r/c, and so on. The results of several first steps are,

n n—-1
. o L . 1 1
with the initial conditionsC..(0)=1, = _ LF\kek—1_ L F o Fkek
Can(h=2 G (D=1 2 (=D,
~ r
C.(t)=1 for Ostsz, . r
zth+(nl)(t_ E), n=l,2,3 e (16)
~ ~ r 2r
C.(=1%fty for —<ts-—, It is not difficult to see that these together with the case of
n=0, which is trivial, are equivalent to Eq§13) and our
~ 5 1 . or 3r proof is completed. The piecewise solutiofi®), together
C.(t)y=1xft;+ E(if)ztg for thgz, with Egs. (12), yield readily the result1l). Thus, we have

shown that Eqs(11) are exact solutions to Eq§9) for an
1 1 arbitraryr and the conditiokyr =3 required by Milonni and
Co()=1*TFt;+ —(=DH23+ —(=1)%3 Knight [5] is only a specific feature of their method of deri-
2! 3! vation. Note, however, that the solutiofisl) are still bound
by the conditions imposed upon the delay differential equa-
for —<t<_— o (14) tions (6) and (9) (see the Appendjx
c c In Fig. 1, we plot the probabilities of finding atom[ Eig.
) ] 1(a)] and atom JFig. 1(b)] in their upper states as functions
From Eqgs.(14), it can be deduced that the solution of Egs. of the dimensionless time/ for the interatomic distances

(13) is of the form r=\/2 (dotted curve, r=0.2\/2 (solid curve, and for free-
n space decaydashed curye Am==*1 transitions are as-
. m=> i(i’f)ktt for W <i< (n+1)r’ sumed:; i.e., the two dipoles are parallel to each other and
=n i=o k! c c perpendicular to the interatomic axisand B\/c is taken to

be 10 °—a typical value for the optical range. From Fig.
n=0,12... . (15 1(a), it is visible that when the two atoms are half a wave-
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, e are less than half of a transition wavelength apart, and, as a
? ‘ 3 ‘ consequence, we have extended the range of applicability of
previous studies on phenomena such as high-order retarda-
tion effects[4,5] and dipole-dipole interactiongl0]. We
have investigated numerically the time behavior of the
atomic state populations for different interatomic distances

; and different atomic initial states, and pointed out the new
b features appearing when the atoms are less than half of a
transition wavelength apart.

2
lb, ,®1

— : 5 H.T.D. would like to thank the Nishina Memorial Foun-
e — dation for support and the University of Electro-
Communications for hospitality.

) APPENDIX
FIG. 2. Upper state populations of atoms 1 and|B,(t)|?

=|b,(t)|?] as functions of the dimensionless timgtfor the ini- To calculate the kernel&,,(t—t"), Eq. (5), we replace
tial state|+)=(|u,l)+|I,u))/y2. Other parameters are the same asthe summation ovek by an integral
in Fig. 1.
Y

D -5 | dk
length apart, atom 1 decays almost as it does in free space. k (27)°\=12
When the distance between the two atoms decreases, t
spontaneous emission is enhanced in agreement with the
perradiance feature predicted by Didld] and, as time goes

lIjls‘sing Eqs(2) and(5), after performing the integrations over
ie angle variables, we get

on, the interference produced by multiple reemissions and , 2u? (= 80— wg)(t—t')
reabsorptions of light results in an oscillatory energy ex- Kmm(t—t ):_Wfo dow’e 0

change between atom 1 and atom 2. For longer times,

|b1(1)|?] and|b,(t)|? become equal because of the symmetry 2u? (= Byt
inherent in our model. One can also see a considerable trap- =~ wa dy(y+wo)°e

ping of the energy within the atomic system for long times, 0

an effect that can be explained by the fact that the initial =—-2B4(t—t"), (A1)

atomic statgu,1)= (| +)+| _>)/\/§’ where wherem=1,2. In going from the second equation to the third

we have retained the dependenceyamnly in the exponen-
tial. This approximation can be explained as folld&g]. A

y in (y+ w)® in the second equation can be replaced by
alo[—i(t—t')], which would give rise to a derivative of
contains the antisymmetric stdte ) which is a nonradiative 6(t—t") with respect to timet in the third equation. This,
one according to the Dicke modgl1]. Note that the upper When put in Egs.(4), would result in a time derivative
state population of atom 2 starts to increase from zero onlfd/t)bm(t). If the time variation ofb(t) is assumed to be

after time intervals of /c, which are too small to be seen in Slow compared to the atomic oscillations at the optical fre-
the scale of Fig. (b). quency wq, the terms containinggy can be neglected. We

When the two atoms are close together, a more realistip@ve also extended the frequency integral to minus infinity,

initial state is the state+) given in Eq.(17), which allows which is equivalent to not making any rotating-wave ap-

either atom 1 or atom 2 to be excited with equal probabilitiesp rol)r;lrgastilr%rillg,%anner we get

att=0. It is not difficult to solve the delay differential equa- ’ g

tions (9) under new initial condition<, (0)= J2, C_(0) , 38 p . o

—0 by following the same lines outlined in Eqd2)—(16)  Kmn(t=t")=——- m[é‘(t—t —rlc)e’o

and to find thatC_ (t) is equal to\2 times the right hand

side of Eq.(11) andC_(t)=0. In Fig. 2, we plot the upper

state populations of atom 1 and atonfi|B(t)|?=|b,(t)|?]

as functions of the dimensionless tim@gt2with the same

parameters as in Fig. 1, except that the initial state is how

+). It can be seen that the spontaneous emission is signifi- q _

cantly enhanced for an interatomic distance less than half a - (k—r)2[ S(t—t'—ric)e'o’

wavelength. Numerical calculation®ot shown herealso 0

indicate a strong inhibition of spontaneous emission under ,

the initial condition of antisymmetric atomic state ). +8(t—t'+r/c)e o]y, (A2)
In conclusion, with the aid of the “method of steps,” we

have found that the solutions by Milonni and Knight to the wherem,n=1,2 (m#n) andp andq are defined as in Egs.

delay differential equations which govern the radiative decay7). Insertion of Eqs(Al) and (A2) into Egs.(4) leads to

of a pair of two two-level atoms hold also when the atomsEgs. (6).

|r>:%<|u,l>r|l.u>>, 1

_ i —ikor
S(t—t'+r/c)e” o' ]+ (ko)

X[8(t—t' —r/c)e o’ — §(t—t’' +r/c)e ko]
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