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Analytic solution for retardation in two-atom systems

Ho Trung Dung* and Kikuo Ujihara
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The spontaneous emission of a pair of two identical and fixed two-level atoms, sharing initially a single
excitation, is considered. It is shown that the solution which involves all the retardation times obtained by
Milonni and Knight@Phys. Rev. A10, 1096~1974!# is also valid for interatomic distances less than half of a
transition wavelength. The effects of the interatomic distance on the time evolution of the atomic state popu-
lations are examined.@S1050-2947~99!07203-0#

PACS number~s!: 42.50.Ct, 42.50.Fx
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The energy transfer between a pair of atoms and the
of causality have been subjects of long-standing interest
cause of their fundamental importance@1–9#. The problem is
usually formulated in terms of a pair of two-level atoms
fixed distancer apart, atom 1 in the upper state, atom 2 in t
lower state, and no photon in the radiation field. From
causality principle, one would expect that at times less t
t52r /c, atom 1 decays as if isolated in free space. Me
while, atom 2 may have nonvanishing upper state popula
only aftert5r /c. At time t52r /c, atom 1 starts to be awar
of atom 2, and so on. Formulas for the various probabi
amplitudes which show how all the retardation timesnr/c
enter have been obtained by Milonni and Knight@4,5# ~see
also @6#! under the condition that the atoms are larger th
half of a transition wavelength apart. In this Brief Report, w
will show that this condition is, in fact, unnecessary. In doi
so, we extend the results of Milonni and Knight on highe
order retardation effects@4,5# and of Goldstein and Meystr
on the dipole-dipole interaction@10# to interatomic distances
less than half a wavelength. We analyze the effects of
interatomic distancer on the time behavior of the atomi
state populations and demonstrate explicitly the transi
from our model to the Dicke model of superradiance@11#,
which occurs when the two atoms get close enough to e
other.

The process under discussion is governed by the Ha
tonian, in the electric dipole and rotating wave approxim
tions,

H5(
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\vkak
†ak1 (

m51,2
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\v0smz
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k

(
m51,2

@gm~k!smak
†1gm* ~k!sm

† ak#, ~1!

where ak
† and ak are the photon creation and annihilatio

operators andsm , sm
† , andsmz are Pauli operators for atom

m. The coupling constantsgm(k) read

gm~k!5 i S 2pvk

\V D 1/2

~mm• êk!eik–rm, ~2!
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with mm being the transition dipole moment for atomm lo-
cated atrm andêk being a polarization unit vector. To facili
tate the comparison, we follow closely the notation used
@4,5#.

The system wave function at timet can be written as

uc~ t !&5b1~ t !uu,l &u$0%&1b2~ t !u l ,u&u$0%&

1(
k

blk~ t !u l ,l &u$1k%&. ~3!

Using the Schro¨dinger equation and the initial conditio
blk(0)50, one can derive the following equations for th
probability amplitudes of finding atom 1~2! in the upper
state:

ḃm~ t !5 (
n51,2

E
0

t

Kmn~ t2t8!bn~ t8!dt8, m51,2, ~4!

where

Kmn~ t2t8!52(
k

gm* ~k!gn~k!e2 i ~vk2v0!~ t2t8!. ~5!

The kernelsKmn(t2t8) can be evaluated~see the Appen-
dix! and put in Eqs.~4! to yield

ḃm~ t !52bbm~ t !1 f bnS t2
r

cDHS t2
r

cD ,

m,n51,2 ~nÞm!, ~6!

where b52m2v0
3/(3\c3) is one-half the free-space deca

rate,H(x) is the Heaviside unit step function, and the coe
ficient f is defined as

f 52
3

2
bF p

ik0r
1

q

i ~k0r !3 2
q

~k0r !2Geik0r ,

p50, q52 for Dm50 transitions, ~7!

p51, q521 for Dm561 transitions,

with k05v0 /c. It is convenient to introduce

C6~ t !5b1~ t !6b2~ t !, ~8!

-
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which obey uncoupled delay differential equations

Ċ6~ t !52bC6~ t !6 f C6S t2
r

cDHS t2
r

cD . ~9!

The Laplace transform of these leads to

C6~s!5
1

s1b7 f exp~2sr/c!
, ~10!

which is nothing but Eq.~17! given in @5#: C6(s)51/@s
1A(s)6B(s)# with A(s) andB(s) given by Eqs.~27! and
~40!, respectively. To find the original functionsC6(t) from
Eq. ~10!, Milonni and Knight have assumedk0r *3, so that
the integrand in the inverse Laplace transform can be
panded into a power series. The integral can then be
formed using the contour integral techniques to give@5#

C6~ t !5 (
n50

`
1

n!
~6 f !ntn

ne2btnH~ tn!, ~11!

wheretn5t2nr/c.
Here we show that Eqs.~9! can be solved exactly, withou

the additional assumptionk0r *3 on the interatomic dis-
tance, as follows. First, for the sake of simplicity, we defi

C̃6~ t !5ebtC6~ t !, f̃ 5ebr /cf , ~12!

so that Eqs.~9! become

Ċ̃6~ t !56 f̃ C̃6S t2
r

cDHS t2
r

cD . ~13!

For times t<r /c, Eqs. ~13! become ordinary differentia
equations, which can be integrated easily. Once the solu
for t<r /c is known, we can compute the solution forr /c
<t<2r /c, and so on. The results of several first steps a
with the initial conditionsC̃6(0)51,

C̃6~ t !51 for 0<t<
r

c
,

C̃6~ t !516 f̃ t1 for
r

c
<t<

2r

c
,

C̃6~ t !516 f̃ t11
1

2!
~6 f̃ !2t2

2 for
2r

c
<t<

3r

c
,

C̃6~ t !516 f̃ t11
1

2!
~6 f̃ !2t2

21
1

3!
~6 f̃ !3t3

3

for
3r

c
<t<

4r

c
, . . . . ~14!

From Eqs.~14!, it can be deduced that the solution of Eq
~13! is of the form

C̃6n~ t !5 (
k50

n
1

k!
~6 f̃ !ktk

k for
nr

c
<t<

~n11!r

c
,

n50,1,2, . . . . ~15!
x-
r-

n

e,

.

To prove that Eqs.~15! are indeed solutions of Eqs.~13!, we
differentiate both sides of them to obtain

Ċ̃6n~ t !5 (
k51

n
1

~k21!!
~6 f̃ !ktk

k2156 f̃ (
k50

n21
1

k!
~6 f̃ !ktk11

k

56 f̃ C̃6~n21!S t2
r

cD , n51,2,3, . . . . ~16!

It is not difficult to see that these together with the case
n50, which is trivial, are equivalent to Eqs.~13! and our
proof is completed. The piecewise solutions~15!, together
with Eqs. ~12!, yield readily the result~11!. Thus, we have
shown that Eqs.~11! are exact solutions to Eqs.~9! for an
arbitraryr and the conditionk0r *3 required by Milonni and
Knight @5# is only a specific feature of their method of der
vation. Note, however, that the solutions~11! are still bound
by the conditions imposed upon the delay differential eq
tions ~6! and ~9! ~see the Appendix!.

In Fig. 1, we plot the probabilities of finding atom 1@Fig.
1~a!# and atom 2@Fig. 1~b!# in their upper states as function
of the dimensionless time 2bt for the interatomic distance
r 5l/2 ~dotted curve!, r 50.2l/2 ~solid curve!, and for free-
space decay~dashed curve!. Dm561 transitions are as
sumed; i.e., the two dipoles are parallel to each other
perpendicular to the interatomic axisz, andbl/c is taken to
be 1023—a typical value for the optical range. From Fi
1~a!, it is visible that when the two atoms are half a wav

FIG. 1. Upper state populations of~a! atom 1 and~b! atom 2 as
functions of the dimensionless time 2bt for r 5l/2 ~dotted curve!,
r 50.2l/2 ~solid curve!, and free-space decay~dashed curve!. Atom
1 is excited and atom 2 deexcited att50. Dm561 transitions are
assumed andbl/c51023.



a
,
e

an
x
e
tr
tra
s

tia

n
n

ist

ie
-

r

w
n
lf

de

e
he
ca
m

as a
y of
rda-

he
es

ew
of a

-
-

r

ird

by
f

re-

ity,
p-

.

a

2526 PRA 59BRIEF REPORTS
length apart, atom 1 decays almost as it does in free sp
When the distance between the two atoms decreases
spontaneous emission is enhanced in agreement with th
perradiance feature predicted by Dicke@11# and, as time goes
on, the interference produced by multiple reemissions
reabsorptions of light results in an oscillatory energy e
change between atom 1 and atom 2. For longer tim
ub1(t)u2u andub2(t)u2 become equal because of the symme
inherent in our model. One can also see a considerable
ping of the energy within the atomic system for long time
an effect that can be explained by the fact that the ini
atomic stateuu,l &5(u1&1u2&)/A2, where

u6&5
1

A2
~ uu,l &6u l ,u&), ~17!

contains the antisymmetric stateu2& which is a nonradiative
one according to the Dicke model@11#. Note that the upper
state population of atom 2 starts to increase from zero o
after time intervals ofr /c, which are too small to be seen i
the scale of Fig. 1~b!.

When the two atoms are close together, a more real
initial state is the stateu6& given in Eq.~17!, which allows
either atom 1 or atom 2 to be excited with equal probabilit
at t50. It is not difficult to solve the delay differential equa
tions ~9! under new initial conditionsC1(0)5A2, C2(0)
50 by following the same lines outlined in Eqs.~12!–~16!
and to find thatC1(t) is equal toA2 times the right hand
side of Eq.~11! andC2(t)50. In Fig. 2, we plot the uppe
state populations of atom 1 and atom 2@ ub1(t)u25ub2(t)u2#
as functions of the dimensionless time 2bt with the same
parameters as in Fig. 1, except that the initial state is nou
1&. It can be seen that the spontaneous emission is sig
cantly enhanced for an interatomic distance less than ha
wavelength. Numerical calculations~not shown here! also
indicate a strong inhibition of spontaneous emission un
the initial condition of antisymmetric atomic stateu2&.

In conclusion, with the aid of the ‘‘method of steps,’’ w
have found that the solutions by Milonni and Knight to t
delay differential equations which govern the radiative de
of a pair of two two-level atoms hold also when the ato

FIG. 2. Upper state populations of atoms 1 and 2@ ub1(t)u2

5ub2(t)u2# as functions of the dimensionless time 2bt for the ini-
tial stateu1&5(uu,l &1u l ,u&)/A2. Other parameters are the same
in Fig. 1.
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are less than half of a transition wavelength apart, and,
consequence, we have extended the range of applicabilit
previous studies on phenomena such as high-order reta
tion effects @4,5# and dipole-dipole interactions@10#. We
have investigated numerically the time behavior of t
atomic state populations for different interatomic distanc
and different atomic initial states, and pointed out the n
features appearing when the atoms are less than half
transition wavelength apart.

H.T.D. would like to thank the Nishina Memorial Foun
dation for support and the University of Electro
Communications for hospitality.

APPENDIX

To calculate the kernelsKmn(t2t8), Eq. ~5!, we replace
the summation overk by an integral

(
k
→

V

~2p!3 (
l51,2

E d3k.

Using Eqs.~2! and~5!, after performing the integrations ove
the angle variables, we get

Kmm~ t2t8!52
2m2

3\pc3E
0

`

dvv3e2 i ~v2v0!~ t2t8!

52
2m2

3\pc3E
2v0

`

dy~y1v0!3e2 iy~ t2t8!

522bd~ t2t8!, ~A1!

wherem51,2. In going from the second equation to the th
we have retained the dependence ony only in the exponen-
tial. This approximation can be explained as follows@12#. A
y in (y1v0)3 in the second equation can be replaced
]/]@2 i (t2t8)#, which would give rise to a derivative o
d(t2t8) with respect to timet in the third equation. This,
when put in Eqs.~4!, would result in a time derivative
(]/]t)bm(t). If the time variation ofbm(t) is assumed to be
slow compared to the atomic oscillations at the optical f
quencyv0 , the terms containingy can be neglected. We
have also extended the frequency integral to minus infin
which is equivalent to not making any rotating-wave a
proximation@4,5#.

In a similar manner, we get

Kmn~ t2t8!52
3b

2 H p

ik0r
@d~ t2t82r /c!eik0r

2d~ t2t81r /c!e2 ik0r #1
q

i ~k0r !3

3@d~ t2t82r /c!eik0r2d~ t2t81r /c!e2 ik0r #

2
q

~k0r !2@d~ t2t82r /c!eik0r

1d~ t2t81r /c!e2 ik0r #J , ~A2!

wherem,n51,2 (mÞn) andp andq are defined as in Eqs
~7!. Insertion of Eqs.~A1! and ~A2! into Eqs. ~4! leads to
Eqs.~6!.
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