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Tunneling control by high-frequency driving
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The second-order perturbation theory in the framework of the Kramers-Henneberger oscillating frame rep-
resentation of the HamiltonigiH. A. Kramers,Quantum MechanicéNorth-Holland, Amsterdam, 1936W.
C. Henneberger, Phys. Rev. Le2fl, 838(1968] is used to study the tunneling process in a periodically driven
double-well potential. The eigenstates of the Floquet Hamiltonian are efficiently approximated when a field
frequency is larger than a classical frequency of the time-averaged Hamiltonian. The conditions for coherent
enhancement and suppression of tunneling are obtained when the standard perturbation theory fails. It is shown
that the enhancement and suppression of tunneling is due to field-induced coupling between states of a
one-period averaged effective potent{@1050-294{@9)00103-1

PACS numbg(s): 42.50.Hz, 03.65-w, 73.40.Gk, 12.38.Bx

Interest in tunable short-wavelength sources has stimu- - 5
lated numerous experimental and theoretical investigations H(x,t)= =— + V(X+ ag Sin(wt)), ©)

of photoinduced dynamics in strong laser fie[ds2]. The 2m
physical phenomena in strong laser fields are very differe%hereaozamwz. In this representation, the quasienergies

from weak fields, which implies that one cannot use pertury e 5| shifted by the same amouihown as “the pondero-
bation theory around the field-free Hamiltonian in photoin- ..\ e energy’) &,=E, + S2/4mw?, where

duced processes in strong fields. The proof that the radius of

convergence of perturbation expansions in ac and dc fields is 9

zero[3] supports this hypothesis. However, in the limit of (—iﬁ—-f—ﬁ(x't’)) D (x,t')=E,D(x,t). (4)
high-frequency driving, the Kramers-Henneber@¢éH) os- at’

cillating frame representatidd| can be used for an effective ) ) ) )

description of physical systems in strong laser figltl<]. Since we are interested only in quasienergy dlffer_erjces, the
We show that high-frequency second-order perturbatiopPectrum of the Floguet Hamiltonian in Eg) is sufficient.
theory based on the KH frame representation can be used for Using the ¢t') method[7], in whicht’ acts as an addi--
control of tunneling enhancement and suppression in periodfional coordinate, a time-independent perturbative expansion

The Hamiltonian of a one-dimensional systéchosen as @ One-period time-averaged Hamiltonian is chosen as the
a mode) driven by the periodic field is given by zeroth-order one:
P . Ho(X)= p—iw (x) (5)
H(x,t)= %+V(x)+8xsm(wt), (1) 0 2m OV
where

whereS and w are the amplitude and the frequency of the

driving. The solution of the Schdinger equation is ex- 1T
panded in the basis set of eigenfunctions of the Floquet VO(X):TJ V(X+ aq sin(wt’))dt’. (6)
Hamiltonian 0

5 The zeroth-order contribution to the spectrum of the Floquet
( _iﬁ_,Jr H(x,t’)) D () =D (x,t'), ?) Hamiltonian is then field strength dependent and is given by

. d
i+ Ho(0 | W) =B, ()

wheret’ serves as an additional coordinate in the generalized
Hilbert spacq5,6] of square-integrable functions, which are

defined on the domain-co<x<+o and O<t'<T. T whereE(® =E(Q+%wm (k=1,2,...;m=0,+1,+2,...),
=2/ w is the period of the driving, and ,(x,t)=®,(x,t ’
+T) and &, are the quasistationary Floquet states and the \Pff’%](x,t’)=¢>(k°)(x)exp(iwmt’), (8)

guasienergies, respectively.
The oscillating frame representation of Ef)) is obtained and
by two successive unitary transformations, wherein a pure
time-dependent terrfwhich physically is not important since Ho(x) 0 (x)=EL ¥ (x). (9)
it yields only an overall phase facjois dropped(see, e.g.,
Ref.[11]). The KH oscillating frame Hamiltonian is given by ~ The perturbation/(x,t") is defined as
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. quasienergy splitting grows and the tunneling rate is en-
V(xt')= ;O Va(x)expiont’), (100 hanced. In addition, exact crossings between the quasienergy
" doublet occur and then the tunneling is suppre$&adl3. A

whereV,(x) is thenth Fourier component of the potential in further tunneling enhancement is obtained when a singlet-

the oscillating frame representation. The first-order correcdoublet crossing takes place. Then one of Floquet states of
tion to the eigenvalues vanishes, the doublet interacts with the third state and an avoided

crossing between quasienergies of Floquet states with the
Ef<1>:<<qf§<0r>n(x,t/)|V(X,t/)|qr§(0r)n(x,t')>>:o, (1D same symmetry occurs. In this case a three-state dynamics is

’ ' obtained[15]. However, exactly at the avoided crossing

and the second-order correction quasienergy term is given bgoint, the complete oscillations of the tunneling probability
are preserved and the tunneling rate is again proportional to

2 K00 [Va(¥)| 612 (X)) 2 " the splitting between the two quasienergies of the doublet
K =22 = P— (12 [Eq. (14)]. The latter grows significantly due to the interac-
7Pk k k’ @ tion between one of the doublet states with the third state,

and the tunneling is further enhanced. Therefore, if one can
efficiently approximate the quasienergies splitting, one could
predict the tunneling enhancement and suppression.

Since we consider a time-periodic potential, Efj2) ob-
tained by the (;t") method is equivalent to E¢103) of Ref.
[1]. p. 465, which was developed by Gavrila using the In the low-driving-frequency limit, i.e., whem<(}, a

Green's function of the Floquet Hamiltonian. The difference S
. ] __.two-level system approximation can be used to calculate the
is that the {,t’) method can be extended to the nonperiodic ) - :

quasienergy splitting. In this ca$#2,13,17

Hamiltonians provided the laser pulse duration is much

larger than one optical cycle. 21| X| )
One should expect this perturbation expansion to hold A=A0JO<T),

when the frequency of the field is larger than a classical

frequency of the particl€) in the time-averaged potential. It \yhereJ, is the zeroth-order Bessel function. This model can

can be exemplified for the case of a periodically driven hargficiently account for the tunneling suppression, but is un-
monic oscillator[8]. In this case, the potential in the KH gpje to predict the tunneling enhancement.

(15

frame is given by We show that using high-frequend§dF) second-order
mO?2 )2 perturbation theory one can calculate the tunneling splitting
V(x,t)= ——[x%+ a} sirf(wt)]+| —| Sxsin(wt). and explain the coherent tunneling enhancement and sup-
2 w pression in the high-frequency—strong-field limit. We con-

(13)  sider a double-well potential in the form

The first term in Eq(13) is the harmonic oscillator with a _ —a(x=x1)% 1 a—a(x—xy)?

- L o : . =- + 2
time-periodic(always positive energy shift. It can be time V(x) D(e © ) (16
averaged, resulting in the effective zeroth-order rise of th§yhere the ionization energP=2, x;=—x,=10, anda

energy levels. The second term is a small perturbation pro=g g15 (atomic units are used throughouThis potential
vided w> (). Therefore, for sufficiently large field frequency sypports six doublets of states with energy below the top of
one can use the perturbation expansion for much strongghe barrier and therefore corresponds to a semiclassical re-
fields than in standard perturbation theory. gime.

Tunneling in the presence of the external periodic field EFrom Egs.(7), (11), and (12) one obtains that in the

has been investigated extensively in recent ygassl6l. It framework of second-order perturbation theory the tunneling
was demonstratefll0,11,15,1% that the coherent enhance- s[plitting is given by

ment and suppression of tunneling is based on a dynamica
symmetry of the Floquet Hamiltoniark{ —x, t—t+T/2) A=AQ+A@) (17
and is associated with exact and avoided crossings of
quasienergies. It was also shohl,15,1§ that the com- Where
pleteness of tunneling in the presence of the driving is pre-
served when two Floquet states, associated with the lowest

almost degenerate pair of states in the double-well potentie}g the zeroth-order term that is due to the change in energy

[which we G!enote bybl(_x), Pa(X)], dominat_e the eXpan_sion levels in the one-period averaged effective poterifialand
of the solution of the time-dependent Satliriger equation.

In this case, one can show that the tunneling rate is deter- AP=|EP—EP?)| (19)
mined by the splitting of a pair of Floquet states, i.e.,

AO=[EY —EY| (18

is the second-order correction term that is due to the field-
_ A induced coupling between staték?). The zeroth-order ap-
@un= 35 (14 proximation can be used to estimate the classical frequency
Q) in the effective averaged double-well potenfial] and to
where A=|E,—E,|. For the field-free cas&, andE; are find the range ofr, values for which the complete tunneling
energies of the first two almost degenerate sthaiegx),  will still be relevant. The conditions for that are problem
¥,(x)] and the tunneling rate is associated with the unperdependent and in our example studied, &>7 the one-
turbed energy splittinghg. When the field is turned on, the period averaged effective potential is no longer a double-
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FIG. 1. Quasienergy splitting of two Floquet states that have
maximal overlap with the first two unperturbed states in the double-
well potential [ ¢1(X), ¢¥»(x)], as a function of the driving fre-
quency forag=3. The solid line stands for the numerically exact
result calculated by thett’) method[7] using 128 Fourier basis
functions[exp(n2mx/L), L=120], 5 Floquet channels, and 20/
time steps. The dotted line stands for the quasienergy splitting cal- © 0.0 A ;
culated using second-order high-frequency perturbation thetfy 0.0 20 4.0
PT) in the Kramers-Henneberger oscillating frame representation of a, (a-u-)
the Hamiltonian(17). The long-dashed line stands for the zeroth- ) n
order term in the high-frequency perturbation expangits). The FIG. 2. (a) Quasienergy splitting of two Floquet states that have

dashed line stands for the quasienergy tunneling splitting calculate@f@ximal overlap with the first two unperturbed states in the double-
using two-level system approximatighs). well potential[ ¢1(X), »(x)], as a function ofe, for the driving
frequencyw=1.07. The solid, dotted, and long-dashed lines are

well potential and therefore, for larger values @f, many  defined as in Fig. 1. The dashed line stands for the quasienergy
Floquet states will contribute and the tunneling completenestinneling splitting calculated using second-order perturbation
will be lost. theory with the field-free(FF) Hamiltonian H(x,t")=—iAdlot’

In Fig. 1 the tunneling splitting as a function of the driv- +p%2m+V(x) as the zeroth-order Hamiltoniatb) Projection of
ing frequency calculated using the second-order HF perturthe Floguet states onto the first unperturbed state of the double-well
bation expansioli17) is compared with the numerically ex- potentialC(1,i) = f ¢, (x)®;(x,0)dx, as a function ofr,. The solid
act solution forag=3. Sinceay=S/mw? is kept constant, line (i=1) stands for the maximal projection and the dotted line
when the frequency of the driving increases, the driving am{i=2) stands for the one before maximét) Same agb) for the
plitude increases as well. As one can see in Fig. 1, theecond unperturbed state of the double-well potentjék).
second-order HF perturbation expansion is an excellent ap-
proximation for the tunneling splitting fow>0.8, which is In Fig. 2 the tunneling splitting calculated using the
about 4 times the classical frequencsl(:A(zo,)gzo.Z for  second-order HF perturbation expansi@i) as a function of
ap=3 in our case studigdFor very small driving frequen- « for ®=1.07 is compared with the numerically exact so-
cies, the two-level system approximati¢tb) is very good Iution and with the second-order perturbation theory when
and for large frequencies, the zeroth-order splitting associthe field-free Hamiltonian is the zeroth-order one. Again,
ated with the one-period averaged effective potential is obsince the frequency is held fixed, the increasexgfmeans
tained. In the range 01w <<0.6 both approximations break the increase of the driving amplitude. As one can see in Fig.
down. However, the exact numerical calculation shows tha?, the field-free perturbation theory is able to describe the
in this range of driving frequencies and field amplitudestunneling splitting only for very small values ef, [dashed
many Floquet states contribute to the solution of the Schroline in Fig. 2a)]. However, the second-order perturbation
dinger equation, i.e., the completeness of the tunneling itheory based on the oscillating frame representation is a good
lost. This is because we consider large driving amplitudes foapproximation for all values aof,. Another important result
which close quasienergy states are strongly mixed. The conis thatthe second-order correction in the HF perturbation
pleteness is regained once the driving frequency is close texpansion dominates over the zeroth-order.ofiee latter
(or higher tham the top of the barrier energy in the effective becomes important only for large valuesaf for which the
potential EQ =V,(x=0). (In our caseES)~0.8 for oy  tunneling completeness is logsee Figs. &) and 2c)].
=3.) For such frequencies, distinct singlet-doublet crossingg herefore, the tunneling enhancement is a result of a reso-
occur, each time when the driving frequency is in resonanc@ant or nonresonant coupling between states in the effective
with the energy difference between the lowest doublet opotential(12). For small values ofy the tunneling splitting
states and other states in the one-period averaged effectibegins to grow approximately as a second power of the driv-
potential. ing amplitude due to theonresonant coupling of one of the
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doublet states to a third sta@nd it exhibits additional reso- behavior of the states above the top of the barrier is different
nant growth due to singlet-doublet crossings. The crossingom that of the doublet states. The energy of the low doublet
occur each time when the difference between energy levelstates grows as, grows. This is because they are localized
of the one-period averaged effective potential coincides witthear the minima of the potential wells where the potential is
fiwn. In addition, the exact quasienergy crossings in the douwell approximated by an harmonic oscillator. From ELR)

blet occur and then the tunneling is suppressed. The eryne can see that the energy levels of the harmonic oscillator
hancement and suppression are based on the coupling bgre shifted up in the one-period time-averaged potential.
tween one of the QOubIet states to the_ excited states, whilgowever, the zeroth-order high-energy states are lowered
the second state in the doublet remains uncoupled. In thgnce the double-well potential becomes broader after one-
strong-field case, this is possible when the energy of the thirde ioq averaging. Therefore, for certain values of the field
state is above the top of the barrier since in this energy réamplitude, the zeroth-order energy difference between the

gion, the difference between adjacent states is much largegvest doublet of states and high states will be in resonance
than below the top of the barrier. Therefore, although theyii, the photon energy.

field is strong, not many Floquet states are mixed and two- or

three-state dynamics is obtained. However, one cannot use We gratefully acknowledge discussions with Professor P.
very high driving frequencies to couple very-high-energyHanggi and S. Kohler. This work was supported by the Israel
states since their interaction with the states of the lowesAcademy of Sciences and Humanities and by the fund for
doublet is very small. One can show that the zeroth-ordethe promotion of research at the Technion.
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