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Tunneling control by high-frequency driving
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~Received 24 July 1998!

The second-order perturbation theory in the framework of the Kramers-Henneberger oscillating frame rep-
resentation of the Hamiltonian@H. A. Kramers,Quantum Mechanics~North-Holland, Amsterdam, 1956!; W.
C. Henneberger, Phys. Rev. Lett.21, 838~1968!# is used to study the tunneling process in a periodically driven
double-well potential. The eigenstates of the Floquet Hamiltonian are efficiently approximated when a field
frequency is larger than a classical frequency of the time-averaged Hamiltonian. The conditions for coherent
enhancement and suppression of tunneling are obtained when the standard perturbation theory fails. It is shown
that the enhancement and suppression of tunneling is due to field-induced coupling between states of a
one-period averaged effective potential.@S1050-2947~99!00103-1#

PACS number~s!: 42.50.Hz, 03.65.2w, 73.40.Gk, 12.38.Bx
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Interest in tunable short-wavelength sources has sti
lated numerous experimental and theoretical investigat
of photoinduced dynamics in strong laser fields@1,2#. The
physical phenomena in strong laser fields are very differ
from weak fields, which implies that one cannot use pert
bation theory around the field-free Hamiltonian in photo
duced processes in strong fields. The proof that the radiu
convergence of perturbation expansions in ac and dc field
zero @3# supports this hypothesis. However, in the limit
high-frequency driving, the Kramers-Henneberger~KH! os-
cillating frame representation@4# can be used for an effectiv
description of physical systems in strong laser fields@1,2#.
We show that high-frequency second-order perturba
theory based on the KH frame representation can be use
control of tunneling enhancement and suppression in peri
cally driven double-well potentials.

The Hamiltonian of a one-dimensional system~chosen as
a model! driven by the periodic field is given by

H~x,t !5
px

2

2m
1V~x!1Sx sin~vt !, ~1!

whereS and v are the amplitude and the frequency of t
driving. The solution of the Schro¨dinger equation is ex-
panded in the basis set of eigenfunctions of the Floq
Hamiltonian

S 2 i\
]

]t8
1H~x,t8!D Fn~x,t8!5EnFn~x,t8!, ~2!

wheret8 serves as an additional coordinate in the generali
Hilbert space@5,6# of square-integrable functions, which a
defined on the domain2`,x,1` and 0,t8,T. T
52p/v is the period of the driving, andFn(x,t)5Fn(x,t
1T) and En are the quasistationary Floquet states and
quasienergies, respectively.

The oscillating frame representation of Eq.~1! is obtained
by two successive unitary transformations, wherein a p
time-dependent term~which physically is not important sinc
it yields only an overall phase factor! is dropped~see, e.g.,
Ref. @11#!. The KH oscillating frame Hamiltonian is given b
PRA 591050-2947/99/59~3!/2511~4!/$15.00
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H̃~x,t !5
px

2

2m
1V„x1a0 sin~vt !…, ~3!

wherea05S/mv2. In this representation, the quasienerg
are all shifted by the same amount~known as ‘‘the pondero-
motive energy’’! En5En1S2/4mv2, where

S 2 i\
]

]t8
1H̃~x,t8!D F̃n~x,t8!5EnF̃n~x,t8!. ~4!

Since we are interested only in quasienergy differences,
spectrum of the Floquet Hamiltonian in Eq.~4! is sufficient.

Using the (t,t8) method@7#, in which t8 acts as an addi-
tional coordinate, a time-independent perturbative expans
can be applied to Eq.~4!. Following the work of Gavrila@1#,
a one-period time-averaged Hamiltonian is chosen as
zeroth-order one:

H0~x!5
px

2

2m
1V0~x!, ~5!

where

V0~x!5
1

TE0

T

V„x1a0 sin~vt8!…dt8. ~6!

The zeroth-order contribution to the spectrum of the Floq
Hamiltonian is then field strength dependent and is given

S 2 i\
]

]t8
1H0~x!D Ck,m

~0! ~x,t8!5Ek,m
~0! Ck,m

~0! ~x,t8!, ~7!

whereEk,m
(0) 5Ek

(0)1\vm (k51,2, . . . ;m50,61,62 , . . . ),

Ck,m
~0! ~x,t8!5fk

~0!~x!exp~ ivmt8!, ~8!

and

H0~x!fk
~0!~x!5Ek

~0!fk
~0!~x!. ~9!

The perturbationV(x,t8) is defined as
2511 ©1999 The American Physical Society
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V~x,t8!5 (
nÞ0
Vn~x!exp~ ivnt8!, ~10!

whereVn(x) is thenth Fourier component of the potential i
the oscillating frame representation. The first-order corr
tion to the eigenvalues vanishes,

Ek
~1!5^^Ck,m

~0! ~x,t8!uV~x,t8!uCk,m
~0! ~x,t8!&&50, ~11!

and the second-order correction quasienergy term is give

Ek
~2!5 (

nÞ0
(
k8

z^fk
~0!~x!uVn~x!ufk8

~0!
~x!& z2

Ek
~0!2Ek8

~0!
1\vn

. ~12!

Since we consider a time-periodic potential, Eq.~12! ob-
tained by the (t,t8) method is equivalent to Eq.~103! of Ref.
@1#, p. 465, which was developed by Gavrila using t
Green’s function of the Floquet Hamiltonian. The differen
is that the (t,t8) method can be extended to the nonperio
Hamiltonians provided the laser pulse duration is mu
larger than one optical cycle.

One should expect this perturbation expansion to h
when the frequency of the field is larger than a class
frequency of the particleV in the time-averaged potential.
can be exemplified for the case of a periodically driven h
monic oscillator@8#. In this case, the potential in the KH
frame is given by

V~x,t !5
mV2

2
@x21a0

2 sin2~vt !#1S V

v D 2

Sx sin~vt !.

~13!

The first term in Eq.~13! is the harmonic oscillator with a
time-periodic~always positive! energy shift. It can be time
averaged, resulting in the effective zeroth-order rise of
energy levels. The second term is a small perturbation p
videdv@V. Therefore, for sufficiently large field frequenc
one can use the perturbation expansion for much stron
fields than in standard perturbation theory.

Tunneling in the presence of the external periodic fi
has been investigated extensively in recent years@9–16#. It
was demonstrated@10,11,15,16# that the coherent enhance
ment and suppression of tunneling is based on a dynam
symmetry of the Floquet Hamiltonian (x→2x, t→t1T/2)
and is associated with exact and avoided crossings
quasienergies. It was also shown@11,15,16# that the com-
pleteness of tunneling in the presence of the driving is p
served when two Floquet states, associated with the low
almost degenerate pair of states in the double-well poten
@which we denote byc1(x), c2(x)], dominate the expansion
of the solution of the time-dependent Schro¨dinger equation.
In this case, one can show that the tunneling rate is de
mined by the splitting of a pair of Floquet states, i.e.,

v tun.
D

\
, ~14!

whereD5uE22E1u. For the field-free caseE2 and E1 are
energies of the first two almost degenerate states@c1(x),
c2(x)] and the tunneling rate is associated with the unp
turbed energy splittingD0. When the field is turned on, th
-
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quasienergy splitting grows and the tunneling rate is
hanced. In addition, exact crossings between the quasien
doublet occur and then the tunneling is suppressed@12,13#. A
further tunneling enhancement is obtained when a sing
doublet crossing takes place. Then one of Floquet state
the doublet interacts with the third state and an avoid
crossing between quasienergies of Floquet states with
same symmetry occurs. In this case a three-state dynami
obtained @15#. However, exactly at the avoided crossin
point, the complete oscillations of the tunneling probabil
are preserved and the tunneling rate is again proportiona
the splitting between the two quasienergies of the dou
@Eq. ~14!#. The latter grows significantly due to the intera
tion between one of the doublet states with the third sta
and the tunneling is further enhanced. Therefore, if one
efficiently approximate the quasienergies splitting, one co
predict the tunneling enhancement and suppression.

In the low-driving-frequency limit, i.e., whenv!V, a
two-level system approximation can be used to calculate
quasienergy splitting. In this case@12,13,17#

D5D0J0S 2S^c1uxuc2&
\v D , ~15!

whereJ0 is the zeroth-order Bessel function. This model c
efficiently account for the tunneling suppression, but is u
able to predict the tunneling enhancement.

We show that using high-frequency~HF! second-order
perturbation theory one can calculate the tunneling splitt
and explain the coherent tunneling enhancement and
pression in the high-frequency–strong-field limit. We co
sider a double-well potential in the form

V~x!52D~e2a~x2x1!2
1e2a~x2x2!2

!, ~16!

where the ionization energyD52, x152x2510, and a
50.015 ~atomic units are used throughout!. This potential
supports six doublets of states with energy below the top
the barrier and therefore corresponds to a semiclassica
gime.

From Eqs. ~7!, ~11!, and ~12! one obtains that in the
framework of second-order perturbation theory the tunnel
splitting is given by

D5D~0!1D~2!, ~17!

where

D~0!5uE2
~0!2E1

~0!u ~18!

is the zeroth-order term that is due to the change in ene
levels in the one-period averaged effective potential~7! and

D~2!5uE2
~2!2E1

~2!u ~19!

is the second-order correction term that is due to the fie
induced coupling between states~12!. The zeroth-order ap-
proximation can be used to estimate the classical freque
V in the effective averaged double-well potential@11# and to
find the range ofa0 values for which the complete tunnelin
will still be relevant. The conditions for that are proble
dependent and in our example studied, fora0.7 the one-
period averaged effective potential is no longer a doub
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well potential and therefore, for larger values ofa0, many
Floquet states will contribute and the tunneling completen
will be lost.

In Fig. 1 the tunneling splitting as a function of the dri
ing frequency calculated using the second-order HF per
bation expansion~17! is compared with the numerically ex
act solution fora053. Sincea05S/mv2 is kept constant,
when the frequency of the driving increases, the driving a
plitude increases as well. As one can see in Fig. 1,
second-order HF perturbation expansion is an excellent
proximation for the tunneling splitting forv.0.8, which is
about 4 times the classical frequency (V.D223

(0) .0.2 for
a053 in our case studied!. For very small driving frequen-
cies, the two-level system approximation~15! is very good
and for large frequencies, the zeroth-order splitting ass
ated with the one-period averaged effective potential is
tained. In the range 0.1,v,0.6 both approximations brea
down. However, the exact numerical calculation shows t
in this range of driving frequencies and field amplitud
many Floquet states contribute to the solution of the Sch¨-
dinger equation, i.e., the completeness of the tunneling
lost. This is because we consider large driving amplitudes
which close quasienergy states are strongly mixed. The c
pleteness is regained once the driving frequency is clos
~or higher than! the top of the barrier energy in the effectiv
potential ESEP

(0) [V0(x50). ~In our case,ESEP
(0) .0.8 for a0

53.) For such frequencies, distinct singlet-doublet crossi
occur, each time when the driving frequency is in resona
with the energy difference between the lowest doublet
states and other states in the one-period averaged effe
potential.

FIG. 1. Quasienergy splitting of two Floquet states that ha
maximal overlap with the first two unperturbed states in the dou
well potential @c1(x), c2(x)], as a function of the driving fre-
quency fora053. The solid line stands for the numerically exa
result calculated by the (t,t8) method@7# using 128 Fourier basis
functions@exp(in2px/L), L5120], 5 Floquet channels, and 250/v
time steps. The dotted line stands for the quasienergy splitting
culated using second-order high-frequency perturbation theory~HF-
PT! in the Kramers-Henneberger oscillating frame representatio
the Hamiltonian~17!. The long-dashed line stands for the zero
order term in the high-frequency perturbation expansion~18!. The
dashed line stands for the quasienergy tunneling splitting calcul
using two-level system approximation~15!.
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In Fig. 2 the tunneling splitting calculated using th
second-order HF perturbation expansion~17! as a function of
a0 for v51.07 is compared with the numerically exact s
lution and with the second-order perturbation theory wh
the field-free Hamiltonian is the zeroth-order one. Aga
since the frequency is held fixed, the increase ofa0 means
the increase of the driving amplitude. As one can see in F
2, the field-free perturbation theory is able to describe
tunneling splitting only for very small values ofa0 @dashed
line in Fig. 2~a!#. However, the second-order perturbatio
theory based on the oscillating frame representation is a g
approximation for all values ofa0. Another important result
is that the second-order correction in the HF perturbatio
expansion dominates over the zeroth-order one. The latter
becomes important only for large values ofa0 for which the
tunneling completeness is lost@see Figs. 2~b! and 2~c!#.
Therefore, the tunneling enhancement is a result of a re
nant or nonresonant coupling between states in the effec
potential~12!. For small values ofa0 the tunneling splitting
begins to grow approximately as a second power of the d
ing amplitude due to thenonresonant coupling of one of th
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-
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FIG. 2. ~a! Quasienergy splitting of two Floquet states that ha
maximal overlap with the first two unperturbed states in the doub
well potential@c1(x), c2(x)], as a function ofa0 for the driving
frequencyv51.07. The solid, dotted, and long-dashed lines
defined as in Fig. 1. The dashed line stands for the quasien
tunneling splitting calculated using second-order perturbat
theory with the field-free~FF! HamiltonianH(x,t8)52 i\]/]t8
1px

2/2m1V(x) as the zeroth-order Hamiltonian.~b! Projection of
the Floquet states onto the first unperturbed state of the double-
potentialC(1,i )5*c1(x)F i(x,0)dx, as a function ofa0. The solid
line (i 51) stands for the maximal projection and the dotted li
( i 52) stands for the one before maximal.~c! Same as~b! for the
second unperturbed state of the double-well potentialc2(x).
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2514 PRA 59BRIEF REPORTS
doublet states to a third stateand it exhibits additional reso
nant growth due to singlet-doublet crossings. The cross
occur each time when the difference between energy le
of the one-period averaged effective potential coincides w
\vn. In addition, the exact quasienergy crossings in the d
blet occur and then the tunneling is suppressed. The
hancement and suppression are based on the coupling
tween one of the doublet states to the excited states, w
the second state in the doublet remains uncoupled. In
strong-field case, this is possible when the energy of the t
state is above the top of the barrier since in this energy
gion, the difference between adjacent states is much la
than below the top of the barrier. Therefore, although
field is strong, not many Floquet states are mixed and two
three-state dynamics is obtained. However, one cannot
very high driving frequencies to couple very-high-ener
states since their interaction with the states of the low
doublet is very small. One can show that the zeroth-or
g
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behavior of the states above the top of the barrier is differ
from that of the doublet states. The energy of the low doub
states grows asa0 grows. This is because they are localiz
near the minima of the potential wells where the potentia
well approximated by an harmonic oscillator. From Eq.~13!
one can see that the energy levels of the harmonic oscill
are shifted up in the one-period time-averaged poten
However, the zeroth-order high-energy states are lowe
since the double-well potential becomes broader after o
period averaging. Therefore, for certain values of the fi
amplitude, the zeroth-order energy difference between
lowest doublet of states and high states will be in resona
with the photon energy.
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