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Quantum mechanically exact analytical solutions are obtained for a two-state exponential model, in which
the exponent of diabatic coupling is one-half of that of the diabatic potential curve. A very simple and accurate
semiclassical formula is found for the nonadiabatic transition probability. This gives a direct generalization of
the Landau-Zener and Rosen-Zener formulas.
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Here, we report a quantum mechanically exact analytical 2 d
solution of the following coupled Schdinger equations: zH (zd—z— a,+1
p=1
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This model is different from the ordinary exponential model,
in which the exponents are the same for diagonal and off-
diagonal potentialf1—3]. Since the latter exponential model
is known to cover both the Landau-Zener formula and the
Rosen-Zener formula in certain limits, we are working on a
more general exponential model in attempt to formulate a
unified theory which can cover both Landau-Zener-
Stueckelberg and Rosen-Zener-Demkov cases. The present
work presents one step forward to that aim, since the two
exponents are different.

Introducing the new variables,

Potential energy

z= mV2 e*2ax (4) channel 1
24 2a2 ’
2 8m 2 8m danels e, channel 2
=gz (E-Uy) and =7 (E-Uy), (9 . . I .
-1 0 Coordinate 1 2
we can transform Eq(1) into FIG. 1. Diabatic(dash ling and adiabati¢solid line) potentials.

The potential energies and coordinate are scaled es
=2mE/(#%a?) andX=ax [see Eq(18) alsd], i.e., dimensionless.
*Permanent address: Institute of Chemical Physics, Russialihe dimensionless energy parameters &re 0.0, e,= —2.0, and
Academy of Science, Chernogolovka, Moscow 142432, Russia. e;=—3.0[see Eq(18)], and 2nV/(#%a?)=v3.
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bi,=3*iv/4 and bs,=*iul4 (77 and
ith o I
" , p2(x) —— Ajj - +Bjj . (1=3),
) 8m V
7" =722\ E- Ul_\Tz : 8  where
Equation(6) can be solved in terms of the MeijerG func- j+=iexp{ +j Pi (10)
tions [4] and asymptotic expressions of the adiabatic wave - \/p—J h
functions ¢;(x)(j=1,2) are explicitly obtained in the same
way as beford?2], with p;=2m(E—U;) andU3=U;—V?/V,. The adiabatic
potential 1 is the upper one and repulsivexat —«, but the
(%) o Aj.+Bij_(j=12 adiabatic potential 2 converges to the constdstin the
@i —— Al 7B -(J= L9, limit, which is called channel 8see Fig. 1 The 3x 3 nona-
X—— 0 ©) diabatic transition matriN defined byA;=3;N;;B; are fi-
p1(X) —— 0 nally obtained as
|
Ny Abs- b5 (P17 DT (ba— by I (b5 —by)T (8~ by T (83 —bg) Sirfm(by—byIsitm(bs—by)]
H I'(by—=b3)['(by—b3)I'(bs—b3)(ax—bs)I'(a;—by) sifm(bs—ay)]sin m(bs—a;)]"’
N \/E e by L I'(b;—b)T (b~ by)I'(by—by)T'(a,—b;)T' (a3~ by)
12 2 ANY2(bT—Db3) T(by—by)T'(bz—by)I'(by—by)T (a,—b,)T (a;—by)
sin{ w(bz—by,)]sin 7w(b;—a,)] (11b)
sif m(bz—by)]sim(by—a;)]’
\ :\/gAalb3lr(1+bl—al)r(1+bz—al)r(1+b3—a1)r(1+b4—a1)r(a2—b3)r(al—b3)
3 1 ['(1+a;—ay Tl (by—b3)T'(by—b3)I'(by—bs)
sin m(bg—ay)]sin 7w(b;—a;)] (110
a sin w(bs—by)] '
N AB2- by b3 —bj T'(by—b,)I'(bs—b,)T (by—b)T(a,—~b)T'(a;—by) sinf m(3—b)]sin{ m(b; —a,)] .
22 bf—bj ['(by—ay)T(bg—by)T(by—by)T(az—by)T (8 —by) sin m(b,—ay)]sin m(bs—by)]’
Nowe — &Aal_bl_llz 1 I'd+by;—ay)l'(1+b,—a)l'(1+bs—a)I'(1+bs—a)'(a,—by)I'(a;—bq)
2 P2 4NY(b3 -~ b3) I'(1+a;—ay)I'(bp—by)I'(bg—by)I'(by—by)
sin w(bg—ay)]sin 7(b;—ay)]
X asiia(bs—by] (119
and
N Aalfazr(l—i_ bl_al)r(1+ bz_al)r(l+ b3_al)r(l+ b4—al)T(l+a1—a2) Sil’[w(bg—bl)]sir[w(bl—al)]
33=

I'(1+b;—ay))l'(1+by,—ay,)l'(1+bs—a,)['(1+bs—a,)['(1+a,—a;) siw(a,—bs)]siNm(a,—b,)]’
(119

whereA=mV,/(2h%2a?), N\=#2a?V,/(8mV?) andI'(x) is the gamma function. From these expressions we can obtain the
following simple expressions for transition probabilities:

cosHt z(q1+q2) sink? g(%—%)}
INpq|%= - - , (123
sintf| 5 (91 +d3) |cost? E(qz—ql)}
sinr(wa)sinf(qu)sinf{g(q3—q1) COSf{g(QZ_%)}
[Nyl =——— = - ' (120
coslH E(Q2_Q1) cos?{g(qfrqg) Sim‘{f(%"‘%)
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sinh(mqy)sinf(7qs)cosh= (A2~ qa) |cosh 7 (A1 +d2)
|N13|2: ) (129
T . T T
COSV{E(Qz‘F%) sink? E(Q1+Q3) COS"{f(Qz_%)}
o o
costt| = (a4, +z) |costf| (g2~ aa)
|N22|2: = = ) (129
costt| = (dz+qy) |cost? §(q2—q1)}
sinh(7qy)sinh(7qs)sin E((13_(11) Ccos E(Q1+Q2)
INg %= : (129
T | T
cosit 5 (G2+0s3) Slm{g((hﬂls) COS*{E(Qz_ql)}
|
and INul?=(1-p)% [Ng®>=(1-p)p, [Np*=p?
. ™ w 2__1_ 2__ (17)
sinf?| > (qs—ds) |cos E(%‘%)} IN2g*=1-p, and [Ngg*=0.
2_
Nagl*= L - . (129 Figures 2 and 3 shoWN,42 of Eq. (120 and its approxima-
sint? 5 (A1+03) coslt 5 (G2+0s3) tion (p) given by Eq.(16) for certain parameter values, where
e ande;(j=1—3) are dimensionless quantities defined as
with e=2mE/#%a?, €=2mU,/h2%a?,

(18

and g;=+e—g;.
It should be noted that these are quantum mechanically exact . ) .
expressions. Except at very low energies near threshold, the semiclassical

IN,42 is the most interesting quantity, because this repregpproximatior{Eq. (16)] works very well. It is interesting to
sents the nonadiabatic transition probability for one passageCte that the Landau-Zener and the Rosen-Zener parameters
of the transition region. In the special case\6f=0, this  &'€ given by
becomes

Vy—0
IN1g* —— 2 exg — m(q:+qp)]
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This case corresponds to the Rosen-Zener B&¢and Eqg.
(14) coincides with the exact solution obtained by Osherov
and Voronin[5]. It can be easily seen that

Eq. (14)=[1+e™ % 9] }(1— e 27%2)(1+ e~ "(d1702))
(15

© Probabili

15 —

0.10 ,"'
=Pral—e *™%)(1+e ""9R), '
where pr7 is the Rosen-Zener probability and the residual 005 1
two factors represent the threshold effect.
At high energies the following approximate formulas
(semiclassical approximatipold
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FIG. 2. Nonadiabatic transition probabilityN;52. The exact
one (solid line is given by Eq.(120 and the approximate one
(dashed lingis given by Eq(16). The energy is scaled, i.e., dimen-
sionless, as in Fig. 1. The dimensionless parameters g+®.0,
€,=—2.0,e3=—1.0(A), —3.0(B), and—5.0(C) [see Eq.(18)].
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Thus, in the limitV,—0 or q;— Eq. (16) agrees with the
Rosen-Zener formulapry=[1+exp@r,)]~! and in the
limit (q,—q;)—> Eqg. (16) covers the Landau-Zener for-
mula, p z=exp(—24,7). Since both parameters are explic-
. itly contained in the formuld16), this makes a direct gener-
alization of the two LZ and RZ formulas.

In this Report we have discussed the c&se-0. In the
case ofV,<0 the system becomes a four-channel problem,
but could be solved exactly with use of the method similar to
the present one. Furthermore, a bit more general case that the
channel 1 contains also the functiere™ 2*X can be treated
by the semiclassicdEikonal) approximation. These will be
discussed in a future publication. These works including our
previous one$2,3], however, just present one step towards
our ambitious goal of formulating a unified theory which
should work for general potentials and could cover both
Landau-Zener-Stueckelberg and Rosen-Zener-Demkov
cases. Recently, the form@rZS) case has been solved com-
pletely by Zhu and Nakamura to cover practically whole
ranges of energy and coupling stren¢@7]. It would be a
very challenging task to formulate a unified theory to include

FIG. 3. The same as Fig. 2 except for the parametgrs €even this one.
=—10.0, andes=—7.0(A), —9.0(B), and—11.0(C).
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