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Quantum mechanically exact analytical solutions are obtained for a two-state exponential model, in which
the exponent of diabatic coupling is one-half of that of the diabatic potential curve. A very simple and accurate
semiclassical formula is found for the nonadiabatic transition probability. This gives a direct generalization of
the Landau-Zener and Rosen-Zener formulas.
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Here, we report a quantum mechanically exact analyt
solution of the following coupled Schro¨dinger equations:

F2
\2

2m

d2

dx2 1V̂~x!G ĉ~x!5Eĉ~x!, ~1!

where

V̂~x!5S U1 Ve2ax

Ve2ax U21V2e22axD ~2!

with U1.U2 andV2.0, and

ĉ~x!5S c1~x!

c2~x! D . ~3!

This model is different from the ordinary exponential mod
in which the exponents are the same for diagonal and
diagonal potentials@1–3#. Since the latter exponential mod
is known to cover both the Landau-Zener formula and
Rosen-Zener formula in certain limits, we are working on
more general exponential model in attempt to formulat
unified theory which can cover both Landau-Zen
Stueckelberg and Rosen-Zener-Demkov cases. The pre
work presents one step forward to that aim, since the
exponents are different.

Introducing the new variables,

z5
mV2

2\2a2 e22ax, ~4!

m25
8m

\2a2 ~E2U1! and n25
8m

\2a2 ~E2U2!, ~5!

we can transform Eq.~1! into
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d
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2ap11D2 )

p51

4 S z
d

dz
2bpD J c150, ~6!

where

a1,2516 ih/4,

an

FIG. 1. Diabatic~dash line! and adiabatic~solid line! potentials.
The potential energies and coordinate are scaled ase
52mE/(\2a2) andX5ax @see Eq.~18! also#, i.e., dimensionless.
The dimensionless energy parameters aree150.0, e2522.0, and
e3523.0 @see Eq.~18!#, and 2mV/(\2a2)5).
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b1,25
1
2 6 in/4 and b3,456 im/4 ~7!

with

h25
8m

\2a2 H E2S U12
V2

V2
D J . ~8!

Equation~6! can be solved in terms of the Meijer’sG func-
tions @4# and asymptotic expressions of the adiabatic wa
functionsw j (x)( j 51,2) are explicitly obtained in the sam
way as before@2#,

w j~x! ——→
x→1`

Aj j 11Bj j 2~ j 51,2!,
~9!

w1~x! ——→
x→2`

0

e

and

w2~x! ——→
x→2`

Aj j 21Bj j 1~ j 53!,

where

j 65
1

Apj

expF6 i
pj

\
xG ~10!

with pj5A2m(E2U j ) andU35U12V2/V2 . The adiabatic
potential 1 is the upper one and repulsive atx→2`, but the
adiabatic potential 2 converges to the constantU3 in the
limit, which is called channel 3~see Fig. 1!. The 333 nona-
diabatic transition matrixN defined byAi5S jNi j Bj are fi-
nally obtained as
the
N115Ab42b3
G~b12b4!G~b22b4!G~b32b4!G~a22b3!G~a12b3!

G~b12b3!G~b22b3!G~b42b3!G~a22b4!G~a12b4!

sin@p~b42b1!#sin@p~b32b1!#

sin@p~b42a1!#sin@p~b32a1!#
, ~11a!

N125Ap1

p2
Ab42b111/2

1

4l1/2~b1
22b3

2!

G~b12b4!G~b22b4!G~b32b4!G~a22b1!G~a12b1!

G~b22b1!G~b32b1!G~b42b1!G~a22b4!G~a12b4!

3
sin@p~b32b4!#sin@p~b12a1!#

sin@p~b32b1!#sin@p~b42a1!#
, ~11b!

N135Ap3

p1
Aa12b321

G~11b12a1!G~11b22a1!G~11b32a1!G~11b42a1!G~a22b3!G~a12b3!

G~11a22a1!G~b12b3!G~b22b3!G~b42b3!

3
sin@p~b32a1!#sin@p~b12a1!#

p sin@p~b32b1!#
, ~11c!

N225Ab22b1
b2

22b4
2

b1
22b3

2

G~b12b2!G~b32b2!G~b42b2!G~a22b1!G~a12b1!

G~b22a1!G~b32b1!G~b42b1!G~a22b2!G~a12b2!

sin@p~b32b2!#sin@p~b12a1!#

sin@p~b22a1!#sin@p~b32b1!#
, ~11d!

N2352Ap3

p2
Aa12b121/2

1

4l1/2~b1
22b3

2!

G~11b12a1!G~11b22a1!G~11b32a1!G~11b42a1!G~a22b1!G~a12b1!

G~11a22a1!G~b22b1!G~b32b1!G~b42b1!

3
sin@p~b32a1!#sin@p~b12a1!#

p sin@p~b32b1!#
, ~11e!

and

N3352Aa12a2
G~11b12a1!G~11b22a1!G~11b32a1!G~11b42a1!G~11a12a2!

G~11b12a2!G~11b22a2!G~11b32a2!G~11b42a2!G~11a22a1!

sin@p~b32b1!#sin@p~b12a1!#

sin@p~a22b3!#sin@p~a22b1!#
,

~11f!

whereA5mV2 /(2h2a2), l5\2a2V2 /(8mV2) andG(x) is the gamma function. From these expressions we can obtain
following simple expressions for transition probabilities:

uN11u25

cosh2Fp2 ~q11q2!Gsinh2Fp2 ~q32q1!G
sinh2Fp2 ~q11q3!Gcosh2Fp2 ~q22q1!G , ~12a!

uN12u25

sinh~pq1!sinh~pq2!sinhFp2 ~q32q1!GcoshFp2 ~q22q3!G
cosh2Fp2 ~q22q1!GcoshFp2 ~q21q3!GsinhFp2 ~q11q3!G , ~12b!
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uN13u25

sinh~pq1!sinh~pq3!coshFp2 ~q22q3!GcoshFp2 ~q11q2!G
coshFp2 ~q21q3!Gsinh2Fp2 ~q11q3!GcoshFp2 ~q22q1!G , ~12c!

uN22u25

cosh2Fp2 ~q11q2!Gcosh2Fp2 ~q22q3!G
cosh2Fp2 ~q21q3!Gcosh2Fp2 ~q22q1!G , ~12d!

uN23u25

sinh~pq2!sinh~pq3!sinhFp2 ~q32q1!GcoshFp2 ~q11q2!G
cosh2Fp2 ~q21q3!GsinhFp2 ~q11q3!GcoshFp2 ~q22q1!G , ~12e!
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and

uN33u25

sinh2Fp2 ~q32q1!Gcosh2Fp2 ~q22q3!G
sinh2Fp2 ~q11q3!Gcosh2Fp2 ~q21q3!G , ~12f!

with

qj5pj /\a~ j 5123!. ~13!

It should be noted that these are quantum mechanically e
expressions.

uN13u2 is the most interesting quantity, because this rep
sents the nonadiabatic transition probability for one pass
of the transition region. In the special case ofV250, this
becomes

uN13u2 ——→
V2→0

2 exp@2p~q11q2!#

3

sinh~pq1!coshFp2 ~q11q2!G
coshFp2 ~q22q1!G . ~14!

This case corresponds to the Rosen-Zener case@1,2# and Eq.
~14! coincides with the exact solution obtained by Oshe
and Voronin@5#. It can be easily seen that

Eq. ~14!5@11ep~q22q1!#21~12e22pq2!~11e2p~q11q2!!

[pRZ~12e22pq2!~11e2p~q11q2!!, ~15!

where pRZ is the Rosen-Zener probability and the residu
two factors represent the threshold effect.

At high energies the following approximate formula
~semiclassical approximation! hold

uN13u2.expFp2 ~q12q3!G coshFp2 ~q22q3!G
coshFp2 ~q22q1!G [p, ~16!
ct

-
ge

v

l

uN11u2.~12p!2, uN12u25~12p!p, uN22u25p2,
~17!

uN23u2.12p, and uN33u2.0.

Figures 2 and 3 showuN13u2 of Eq. ~12c! and its approxima-
tion ~p! given by Eq.~16! for certain parameter values, whe
e ande j ( j 5123) are dimensionless quantities defined a

e52mE/\2a2, e j52mUj /\2a2,

and qj5Ae2e j . ~18!

Except at very low energies near threshold, the semiclass
approximation@Eq. ~16!# works very well. It is interesting to
note that the Landau-Zener and the Rosen-Zener param
are given by

FIG. 2. Nonadiabatic transition probabilityuN13u2. The exact
one ~solid line! is given by Eq.~12c! and the approximate one
~dashed line! is given by Eq.~16!. The energy is scaled, i.e., dimen
sionless, as in Fig. 1. The dimensionless parameters aree150.0,
e2522.0, e3521.0(A), 23.0(B), and25.0(C) @see Eq.~18!#.
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dLZ5
p~adiabatic coupl.!2

\vuslope differ.u U
diab. cross.

5
p

2
~q32q1! ~19!

and

dRZ5
puasymp. pot. diff.u
\vuexpon. of coupl.u

5p~q22q1!.

FIG. 3. The same as Fig. 2 except for the parameterse2

5210.0, ande3527.0(A), 29.0(B), and211.0(C).
. A

s

Thus, in the limitV2→0 or q3→` Eq. ~16! agrees with the
Rosen-Zener formula,pRZ5@11exp(dRZ)#21 and in the
limit ( q22q1)→` Eq. ~16! covers the Landau-Zener for
mula, pLZ5exp(22dLZ). Since both parameters are expli
itly contained in the formula~16!, this makes a direct gener
alization of the two LZ and RZ formulas.

In this Report we have discussed the caseV2.0. In the
case ofV2,0 the system becomes a four-channel proble
but could be solved exactly with use of the method similar
the present one. Furthermore, a bit more general case tha
channel 1 contains also the function}e22ax can be treated
by the semiclassical~Eikonal! approximation. These will be
discussed in a future publication. These works including
previous ones@2,3#, however, just present one step towar
our ambitious goal of formulating a unified theory whic
should work for general potentials and could cover bo
Landau-Zener-Stueckelberg and Rosen-Zener-Dem
cases. Recently, the former~LZS! case has been solved com
pletely by Zhu and Nakamura to cover practically who
ranges of energy and coupling strength@6,7#. It would be a
very challenging task to formulate a unified theory to inclu
even this one.

This work was partially supported by a Grant-in-Aid fo
Scientific Research on Priority Area ‘‘Quantum Tunneling
Group of Atoms as Systems with Many Degrees of Fr
dom,’’ by Research Grant No. 10440179, and by an Inter
tional Collaboration Program of the Ministry of Educatio
Science, Sports and Culture of Japan. This work was a
supported by Russian National Foundation for Fundame
Research.
c-
@1# E. E. Nikitin and S. Ya. Umanskii,Theory of Slow Atomic
Collisions ~Springer-Verlag, Berlin, 1984!.

@2# V. I. Osherov and H. Nakamura, J. Chem. Phys.105, 2770
~1996!.

@3# V. I. Osherov, V. G. Ushakov, and H. Nakamura, Phys. Rev
57, 2672~1998!.

@4# Y. Luke, Mathematical Functions and Their Application
~Academic, New York, 1975!.
@5# V. I. Osherov and A. I. Voronin, Phys. Rev. A49, 265~1994!.
@6# H. Nakamura and C. Zhu, Comments At. Mol. Phys.32, 249

~1996!.
@7# H. Nakamura, inDynamics of Molecules and Chemical Rea

tions, edited by R. E. Wyatt and J. Z. H. Zhang~Dekker, New
York, 1996!.


