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Radiative atom-atom interactions in optically dense media:
Quantum corrections to the Lorentz-Lorenz formula

Michael Fleischhauer and Susanne F. Yelin
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Generalized single-atom Maxwell-Bloch equations for optically dense media are derived taking into account
noncooperative radiative atom-atom interactions. Applying a Gaussian approximation and formally eliminating
the degrees of freedom of the quantized radiation field and of all but a probe atom leads to an effective
time-evolution operator for the probe atom. The mean coherent amplitude of the local field seen by the atom
is shown to be given by the classical Lorentz-Lorenz relation. The second-order correlations of the field lead
to terms that describe relaxation or pump processes and level shifts due to multiple scattering or reabsorption
of spontaneously emitted photons. In the Markov limit a nonlinear and nonlocal single-atom density matrix
equation is derived. To illustrate the effects of the quantum corrections, we discuss amplified spontaneous
emission and radiation trapping in a dense ensemble of initially inverted two-level atoms and the effects of
radiative interactions on intrinsic optical bistability in coherently driven systems.@S1050-2947~99!05703-0#

PACS number~s!: 42.50.Fx, 42.65.Pc
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I. INTRODUCTION

The interaction of the radiation field with a dilute e
semble of atoms is usually described in the semiclassical
dipole approximation by the well-known Maxwell-Bloc
equations. This description fails to be accurate, howe
when a dense medium is considered.

Since the early work of Lorentz and Lorenz@1# it is
known that the classical local field, which couples to an at
in a dense medium, differs from the macroscopic~Maxwell!
field by a term proportional to the medium polarization@2,3#.
The most prominent effects of the Lorentz-Lorenz~LL ! cor-
rection in dense media are the change of the linear inde
refraction according to the Clausius-Mossotti relation@2#, the
enhancement of nonlinear susceptibilities@4#, shifts and de-
formation of resonance lines@5,6#, intrinsic optical bistability
@7,8#, and piezophotonic switching@9#.

On the other hand, the quantum nature of the radia
atom-atom interaction can drastically influence the beha
of the ensemble. In the extreme case of anisotropic, h
density samples, excited atoms can cooperatively emit sp
taneous photons, a phenomenon known as superradi
@10–12#. But even if the system does not fulfill the cond
tions for cooperative evolution, the presence of spontane
photons and the associated effects like amplified spontan
emission~or superluminescence! and radiation trapping@13#
cannot be neglected. Imprisonment of incoherent photons
pecially affects otherwise long-lived ground-state coh
ences. We, therefore, expect radiative atom-atom interact
to be important in areas such as resonant linear and nonli
optics based on atomic phase coherence@14,15#, cooling of
atoms, and Bose-Einstein condensation via velocity-selec
coherent population trapping@16# and optical computing.

Another important effect of large atomic densities is t
increase of atomic collisions. Here we will not consider the
effects, however, and focus our attention entirely on rad
tive interactions.
PRA 591050-2947/99/59~3!/2427~15!/$15.00
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In the present paper we study the atomic evolution in
dense medium irradiated by external coherent light fiel
The macroscopic classical radiation field in the mediu
obeys Maxwell’s equations with the mean atomic polariz
tion as source term. To derive equations of motion for
many-atom system, we start from a nonrelativistic quantiz
interaction Hamiltonian. Thus interactions between the
oms mediated by the quantized radiation field such as re
sorption and scattering of spontaneous photons are taken
account.

Our aim is to derive an effective single-atom densi
matrix equation. For this we introduce an interaction pictu
with the radiation field coupling to all other atoms. Assum
ing a Gaussian~and therefore classical! statistics of the in-
teracting field, we can formally eliminate its degrees of fre
dom from the probe-atom time evolution. In the Marko
limit of short-lived field correlations this yields a density
matrix equation for the probe atom. We will show that t
mean coherent amplitude seen by the probe atom dif
from the macroscopic Maxwell field by a term proportion
to the mean polarization of the medium in agreement w
the classical Lorentz-Lorenz relation@2#. In addition, the
density matrix equation contains relaxation and level-s
terms, which describe reabsorbing and multiple scattering
spontaneously emitted photons. The corresponding re
ation rates and frequency shifts are proportional to the sp
trum of the incoherent part of the radiation inside the m
dium at the atomic transition frequency. This spectrum
also the Fourier transform of a certain two-time Gree
function, for which we derive a Dyson equation. A form
solution of the Dyson equation allows us to express the
coherent spectrum in terms of atomic variables. Thus
eventually obtain a closed,nonlinearand spatiallynonlocal
density matrix equation of Lindblad-type.

Our paper is organized as follows. In Sec. II we derive
effective single-particle time-evolution operator by forma
eliminating the degrees of freedom of the quantized radia
field interacting with the background atoms. In Gaussian
proximation this operator contains first- and second-or
2427 ©1999 The American Physical Society
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field cumulants. In the Markov limit of spectrally broad fie
correlations, a density matrix equation is obtained. In Sec
we show that the first-order term leads to the Lorentz-Lor
relation between the coherent amplitude of the local field,
mean-field amplitude in the medium~Maxwell field!, and the
mean polarization. In Sec. IV we derive a Dyson equation
the second-order field cumulants or two-point Green’s fu
tions and formally solve them in terms of single-atom de
sity matrix elements. The resulting nonlinear density ma
equation is discussed in Sec.V for the examples of ampli
spontaneous emission and radiation trapping in an inho
geneously broadened system of initially excited two-le
atoms and intrinsic optical bistability in a strongly drive
dense ensemble of two-level atoms.

II. EFFECTIVE TIME EVOLUTION OF ATOMS

A. Formal elimination of the quantized radiation field

We consider here an ensemble of atoms interacting w
the quantized radiation field under conditions, which just
the dipole and rotating-wave approximation~RWA!. Since
we are interested in the dynamics of a single atom, we
tinguish a probe atom at positionrW0 with a dipole operatorpW

and environment atoms at positionsrW j whose dipole opera
tors are denoted bydW j . The Hamiltonian of the system i
given by

H5(
j

H0
j 1Hfield2pW •@EW ~rW0!1EW~rW0!#

2(
j Þ0

dW j
•@EW ~rW j !1EW~rW j !#, ~1!

whereH0
j andHfield are the free Hamiltonians of thej th atom

and the quantized radiation field, respectively, and we h
split the field in an operator componentE and an externa
classical driving fieldE. We use an interaction picture whe
the time evolution is described by

S5T expH 2
i

\E2`

`

dtVp~t!J 5T expH i

\E2`

`

dtp~t!

3@E~rW0 ,t!1E~rW0 ,t!#J , ~2!

whereT denotes time ordering and the field operatorE still
contains the coupling to all other atoms. For notational s
plicity we have suppressed vector indices of the dipole m
ment and electric field. With the help of Eq.~2!, any ~time-
ordered! correlation function of probe-atom operatorsAH
and BH in the Heisenberg-picture~subscript ‘‘H ’’ ! can be
related to interaction picture operators via

^T21@AH~ t1!AH~ t2!#T@BH~ t3!BH~ t4!#&

5^T21@S21A~ t1!A~ t2!#T@SB~ t3!B~ t4!#&, ~3!

where ^•••& stands for Tr$r0•••% with r05r(2`) being
the initial density operator att52`.

A very helpful formal simplification of Eq.~3! can be
achieved by introducing the so-called Schwinger-Keldy
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time contourC @17# shown in Fig. 1 that starts att52`,
goes tot51` and backt52`. Each physical time corre
sponds two times on the contour. A time-ordering opera
TC is introduced that is identical toT on the upper branch
(1) and toT21 on the lower branch (2) of the contour and
orders all operators with time arguments on (2) to the left of
those with time arguments on (1).

With these definitions we can write Eq.~3! with a single
exponential time-evolution operator. This will considerab
simplify the following elimination procedure:

^@T21AH~ t1!AH~ t2!#@TBH~ t3!BH~ t4!#&

5^TC@SCA~ t1
2!A~ t2

2!B~ t3
1!B~ t4

1!#&, ~4!

where the superscripts6 specify the branch of the contou
and

SC5TC expH 2
i

\EC
dťVp~ ť !J , ~5!

with ť denoting a time onC.
We now formally eliminate the degrees of freedom of t

quantized radiation field and the environment atoms by tr
ing over the corresponding states. In order to express
expectation value of an exponential operator again as an
ponential operator, i.e., as a new—effective—time-evolut
operator, we use a generalization of the cumulant genera
function for a classical stochastic variableX @18,19#:

^exp$sX%&X5expH (
m50

`
sm

m!
^^Xm&&J , ~6!

where thê ^Xm&& are the cumulants, which have the follow
ing explicit form:

^^X&&5^X&, ~7!

^^XY&&5^XY&2^X&^Y&, etc. ~8!

As can be seen from Eq.~6!, the elimination procedure lead
in general to an infinite number of terms in the effecti
action. To make the problem tractable, we will, howev
assume that the radiation field is Gaussian, i.e., that all
mulants^^Em&& with m.2 vanish identically. This is a con
sistent, and for our purposes, well justified approximatio
With this we find

FIG. 1. Schwinger-Keldysh time contour.
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SC
eff5^SC&field

5TC expH i

\EC
dť p~ ť !@E~rW0 ,ť !1^E~rW0 ,ť !&#

2
1

2\2EC
dť1E

C
dť2 p~ ť1!D~rW0 ,ť1 ;rW0 ,ť2!p~ ť2!J ,

~9!

where

Dmn~ 1̌,2̌!5^^TCEm~rW1 ,ť1!En~rW2 ,ť2!&& ~10!

is a ~tensorial! Green’s function~GF! of the interacting elec-
tric field, and we have used the abbreviations 1ˇ [rW1 ,t1 and
2̌[rW2 ,t2 . Note, that we used a short notation, a
p(1̌)D(1̌,2̌)p(2̌) in Eq. ~9! should read
(a,b51

3 pa(1̌)Dab(1̌,2̌)pb(1̌,2̌). We now apply the rotating-
wave approximation. For this we introduce slowly varyin
positive and negative frequency components,

p~ ť !5p1~ ť !1p2~ ť !5 p̃1~ ť !e2 ivt1 p̃2~ ť !eivt, ~11!

E~ ť !5E1~ ť !1E2~ ť !5Ẽ1~ ť !e2 ivt1Ẽ2~ ť !eivt,
~12!

with v being the transition frequency of the consider
probe atom, and neglect combinations of the typep1E1 and
p2E2. Thus we have

SC
eff5TC expH i

\EC
dť@p1~ ť !E L

2~rW0 ,ť !1p2~ ť !E L
1~rW0 ,ť !#

2
1

2\2EC
dť1E

C
dť2@ p̃1~ ť1!D~rW0 ,ť1 ;rW0 ,ť2! p̃2~ ť2!

1 p̃2~ ť1!C~rW0 ,ť1 ;rW0 ,ť2! p̃1~ ť2!#J , ~13!

where

ELm~rW,t !5Em~rW,t !1^Em~rW,t !& ~14!
is the local field seen by the probe atom, and

Dmn~rW0 ,ť1 ;rW0 ,ť2!

5^^TCEm
2~rW0 ,ť1!En

1~rW0 ,ť2!&&e2 iv~t12t2!,

~15!

Cmn~rW0 ,ť1 ;rW0 ,ť2!

5^^TCEm
1~rW0 ,ť1!En

2~rW0 ,ť2!&&e1 iv~t12t2!.

~16!

B. Markov approximation and single-atom density-matrix
equation

The effective single-atom time-evolution operator~13!
leads in general to integro-differential equations of motio
We, therefore, restrict the discussion to situations that jus
a Markov approximation, i.e., we assume that the charac
istic decay time of field cumulants is short compared to
characteristic time of the atomic dynamics. This is the ca
for example, if the medium is inhomogeneously broaden
We note that the Markov approximation used in the pres
paper rules out superradiance, since the superradiance tim
shorter than the decay time of field correlations@11,12#. In
order to describe fastcooperativeprocesses, pair correlation
between different atoms need to be taken into account
dynamical variable.

The Markov approximation amounts to assuming
d-correlation ofDmn andCmn in physicaltimes.

Dmn
AB~t,t8!5Dmn

AB~t!d~t2t8!, ~17!

Cmn
AB~t,t8!5Cmn

AB~t!d~t2t8!, ~18!

with A,BP$1,2% explicitly denoting the contour branche
It is convenient to introduce dimensionless dipole operat
s,s†, such thatpm

1(t)5`msm(t) andpm
2(t)5`msm

† (t) ~and
corresponding relations for the slowly-varying variable!.
With this we eventually arrive at
SC
eff5TC expH i `m

\ E
2`

`

dt@sm~t1!E Lm
2 ~rW0 ,t!2sm~t2!E Lm

2 ~rW0 ,t!1sm
† ~t1!E Lm

1 ~rW0 ,t!2sm
† ~t2!E Lm

1 ~rW0 ,t!#

2E
2`

`

dt
Gmn~v,t!

2
@sm~t1!sn

†~t1!1sm~t2!sn
†~t2!22sm~t2!sn

†~t1!#2E
2`

`

dtS Gmn~v,t!

2
1

gmn~v,t!

2 D
3@sn

†~t1!sm~t1!1sn
†~t2!sm~t2!22sn

†~t2!sm~t1!#1
i

\E2`

`

dt Hmn~v,t!@sm~t1!sn
†~t1!2sm~t2!sn

†~t2!

2sn
†~t1!sm~t1!1sn

†~t2!sm~t2!#1
i

\E2`

`

dt hmn~v,t!@sn
†~t1!sm~t1!2sn

†~t2!sm~t2!#J . ~19!
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The lower indices6 at the time argument denote the bran
on the Schwinger-Keldysh contour, which is relevant for o
erator ordering under the action ofTC . The first term in Eq.
~19! describes the interaction of the probe atom with
local field in RWA.

Gmn~v,t !5
`m`n

\2 E
2`

`

dt^^Em
2~rW0 ,t !En

1~rW0 ,t1t!&&eivt

~20!

5
`m`n

\2
D̃mn

21~rW0 ,v;t ! ~21!

is a positive Hermitian matrix, whose eigenvalues descr
decay and pump rates induced by the incoherent pho
inside the medium. Equation~20! has a simple physical in
terpretation. The incoherent radiation inside the medi
causes stimulated transitions from excited to ground st
and vice versa. The corresponding rate is proportional to
spectral density of the radiation taken at the atomic transi
frequency. Apart from some dimensional constants,D̃mn

21 is
precisely the spectral energy density of the incoherent fiel
the positionrW0 and at the transition frequencyv of the probe
atom.

gmn~v,t !5
`m`n

\2 E
2`

`

dt^@En
1~rW0 ,t1t!,Em

2~rW0 ,t !#&eivt

~22!

is the spontaneous contribution to the ‘‘down rate’’ in t
atomic medium.~Note that the commutator contains the fie
operatorsinteracting with the environment atoms.! Since we
are not interested here in the effects of the medium to
spontaneous decay, we replacegmn by the free-space valu
gmn

0 @20#. We will show in Appendix A, that Eq.~22! indeed
leads to the well-known Wigner-Weisskopf result for rad
tive decay in free space, if we replaceE by the free field.
Light shifts induced by the incoherent component of the
diation field inside the medium are described by the Herm
ian matrix,

Hmn~v,t !5
i

\

`m`n

2 E
0

`

dt@^^Em
2~rW0 ,t !En

1~rW0 ,t2t!&&e2 ivt

2^^Em
2~rW0 ,t !En

1~rW0 ,t1t!&&e1 ivt#. ~23!

Equation~23! can also be expressed in terms ofD21:

Hmn~v,t !5
`m`n

2p\
PE

2`

`

dv8
D̃mn

21~rW0 ,v8;t !

v2v8

5
\

2p
PE

2`

`

dv8
Gmn~v8,t !

v2v8
, ~24!

whereP denotes the principle part of the integral. In syste
with inhomogeneous broadening, the collective light sh
are often negligible as they are usually small compared to
inhomogeneous width.
-
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hmn~v,t !5
i

\

`m`n

2 E
0

`

dt$^@Em
2~rW0 ,t !,En

1~rW0 ,t2t!#&e2 ivt

2^@Em
2~rW0 ,t !,En

1~rW0 ,t1t!#&eivt% ~25!

is the corresponding spontaneous contribution. Within
approximations made,hmn reflects the Lamb shift of excited
states altered by the presence of the medium. Here we ar
interested in the Lamb shift and, therefore, consider it
cluded in the free HamiltonianH0 @20#.

The effective time-evolution operator~19! directly leads
to the following master equation for the single-atom dens
operator:

ṙ52
i

\
@H0 ,r#1 i

`m

\
@smE Lm

2 1sm
†E Lm

1 ,r#1
i

\
Hmn

3@smsn
†2sn

†sm ,r#2
Gmn

2
$smsn

†r1rsmsn
†22sn

†rsm%

2S Gmn

2
1

gmn
0

2 D $sn
†smr1rsn

†sm22smrsn
†%. ~26!

This is the first main result of the present paper. We note
this equation is nonlinear and nonlocal, since the light s
and decay matrices depend via the field correlations on
surrounding atoms. The equation does, however, have
Lindblad form@21# and thus preserves positivity and the to
probability. In order to obtain a closed set of equations,
calculate in the following sections the yet unknown quan
ties EL , Gmn , and Hmn in terms of single-atom density
matrix elements.

III. THE AVERAGE LOCAL FIELD
AND THE LORENTZ-LORENZ RELATION

We recognize from Eq.~26! that the probe atom is
coupled to a classical~c-number! field of amplitude

EWL~rW,t !5EW~rW,t !1^EW ~rW,t !&. ~27!

The first term is the external coherent field~5 field in the
absence of the medium!, and the second term is the mea
coherent amplitude of the field scattered by all other ato
Note, that the contribution of the probe atom itself is n
included. On the other hand, the macroscopic fieldEM ,
which enters Maxwell’s equations, is thetotal field inside the
medium ~averaged over a spatial region large compared
the characteristic atomic distance, but smaller thanl3). Thus
the local field, given in Eq.~27! differs from the macro-
scopic Maxwell field essentially by the scattering contrib
tion of the probe atom itself. In a continuum approximatio
we find

ELa~rW,t !5EMa~rW,t !2
i

\
%E

Ke

d3rW8E
2`

`

dt8 D0ab
ret ~rW,t;rW8,t8!

3^pHb~ t8!&, ~28!

whereD0
ret is the free-field retarded propagator and^pH& is

the expectation value of the probe-dipole operator~in the
Heisenberg picture!. % is the atomic density andKe denotes
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integration over a small sphere of radiuse. The retarded
propagator of the electric field is given by@22#

D0ab
ret ~1,2!5

i\

4pe0c
Q~t!F dab

]2

]t2
2c2

]2

]x2
a]x2

bGd~r 2ct!

r
,

~29!

wheret5t12t2 , r 5urW12rW2u, andQ is the Heaviside step
function.

When substitutingD0
ret from Eq. ~29! into Eq. ~28!, we

note that in the limite→0 only the term that results from th
second spatial derivative of 1/r survives. Using

]2

]x2
a]x2

b

1

r
52

4p

3
d~3!~rW12rW2!dab , ~30!

we find

EWL~rW,t !5EWM~rW,t !1
1

3e0
%^pW H~ t !&5EWM~rW,t !1

1

3e0
PW ,

~31!

which is identical to the classical Lorentz-Lorenz relati
@1,2# when we identifyPW 5%^pW H&. It should be mentioned
that the Lorentz-Lorenz relation holds for the mean am
tude of the field and not for the field operators itself
claimed in@23#.

Making use of Eq.~31! we can define an effective sem
classical interaction operator

VL52(
j

pW m
j ~ t !EWLm~rW j ,t !. ~32!

IV. QUANTUM CORRECTIONS

We now discuss the light shift and decay matrices in
generalized density-matrix equation~26! in more detail. Both
depend on the field cumulants or Green’s functions,

Dmn
21~rW,t;rW,t8!5^^Em

2~rW,t !En
1~rW,t8!&&. ~33!

~Note that the superscript ‘‘21 ’’ indicates that the first-time
argument is on the lower and the second-time argumen
the upper branch of the Keldysh contour and has nothin
do with the frequency components of the field.! The aim of
the present section is to calculateD21 in terms of atomic
variables. For this we apply nonequilibrium Green’s functi
techniques@24#.

1. Dyson-equation for D„1̌,2̌…

We define the exact and the~known! free Green’s func-
tions on the Keldysh contour as

Dmn~ 1̌,2̌!5^^TCEm
2~rW1 , ť1!En

1~rW2 , ť2!&&, ~34!

D0mn~ 1̌,2̌!5^^TCE0m
2 ~rW1 , ť1!E0n

1 ~rW2 , ť2!&&, ~35!

whereE0 denotes the free field, i.e., without coupling to t
medium. The contour-Green’s functionD(1̌,2̌) contains four
real-time GFs: D11(1,2), D21(1,2), D12(1,2), and
-
s

e

n
to

D22(1,2), where the superscripts ‘‘6 ’’ specify contour
branches. The first and the last are the time- and anti-t
ordered propagators and the retarded and advanced prop
tors are given by the combinations@24#

D ret~1,2!5D11~1,2!2D12~1,2!5D21~1,2!2D22~1,2!,
~36!

Dadv~1,2!5D11~1,2!2D21~1,2!5D12~1,2!2D22~1,2!.
~37!

Within the RWA and in the absence of thermal photons,
have

D0ab
11 ~1,2!'D0ab

adv ~1,2! , ~38!

D0ab
21 ~1,2!'0, ~39!

D0ab
12 ~1,2!'D0ab

adv ~1,2!2D0ab
ret ~1,2!, ~40!

D0ab
22 ~1,2!'2D0ab

ret ~1,2!. ~41!

A formal solution to the atom-field interaction can b
given in terms of a Dyson-integral equation@24#, by intro-
ducing a formal polarization functionPab(1̌,2̌),

Dmn~ 1̌,2̌!5D0mn~ 1̌,2̌!2E E
C
d1̌8 d2̌8 D0ma~ 1̌,1̌8!

3Pab~ 1̌8,2̌8!Dbn~ 2̌8,2̌!. ~42!

Here*Cd1̌ denotes integration over the Schwinger-Keldy
contour as well as spatial integration over the medium. T
Dyson equation~42! represents nothing else than a form
summation of the perturbation series where the polariza
function is determined by the medium response. We n
have to find a good approximation forP(1,2).

2. Self-consistent Hartree approximation

One easily verifies that in lowest order in the atom-fie
coupling, the polarization function is given by a correlatio
function of dipole operators of noninteracting atoms,

Pab
~0!~ 1̌,2̌!5

`a`b

\2 (
j

^^TCs j a
† ~ ť1!s j b~ ť2!&& free

3d~rW12rW j !d~rW22rW j !. ~43!

This corresponds to a Hartree approximation in many-bo
theory. This approximation is physically justified, when t
nonlinear light shift and decay terms do not affect the atom
dynamics, that is if the probability that a specific atom rea
sorbs or scatters a spontaneous photon is small. Such a
ation is realized, for example, in the classical case of rad
tion trapping where a small number of photons~much
smaller than necessary to saturate the medium! is trapped in
a dense absorbing medium@13#. We are here also intereste
however, in situations, where incoherent photons sign
cantly alter the atomic dynamics. A consistent approxim
tion, which accounts also for these cases is the self-consis
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Hartree approximation, where the cumulants offree dipole
operators in Eq.~43! are replaced by cumulants ofinteract-
ing dipole operators.

Pab~ 1̌,2̌!5
`a`b

\2 (
j

^^TCs j a
† ~ ť1!s j b~ ť2!&&d~rW12rW j !

3d~rW22rW j !. ~44!

As shown in Appendix B the Dyson equation for the co
tour GF can be rewritten in the RWA in terms of the re
time GFs as follows:

Dab
21~1,2!52E E d3 d4 Dam

ret ~1,3!Pmn
s ~3,4!Dnb

adv~4,2!,

~45!

whereDmn
ret (1,2)@5Dnm

adv(2,1)# obeys the Dyson equation

Dab
ret ~1,2!5D0ab

ret ~1,2!2E E d3 d4D0am
ret ~1,3!

3Pmn
ret ~3,4!Dnb

ret~4,2!. ~46!

Here, the time integration goes from2` to ` and we have
introduced the atomic source correlation

Pmn
s ~rW1 ,t1 ;rW2 ,t2!5

`m`n

\2 (
j

^^s j m
† ~ t1!s j n~ t2!&&

3d~rW12rW j !d~rW22rW j ! ~47!

as well as the atomic response function

FIG. 2. Feynman diagrams, definitions.
-

Pmn
ret ~rW1 ,t1 ;rW2 ,t2!5

`m`n

\2
Q~ t12t2!

3(
j

^@s j m
† ~ t1!,s j n~ t2!#&d~rW12rW j !

3d~rW22rW j !. ~48!

The names reflect the physical meaning of the terms.
Fourier transform ofPs is proportional to the spontaneou
emission spectrum of the atoms and that ofP ret gives the
susceptibility of the medium.

Equations ~45! and ~46! can be given an instructive
graphical representation shown in Figs. 2–4. Equation~45!
~illustrated in Fig. 3! says that the incoherent radiation inte
sity is obtained by summing the spontaneous-emission c
tributions from all atoms propagated through the mediu
The iteration of the Dyson equation~46! ~shown in Fig. 4!
describes multiple scattering of spontaneous photons by
oms during the propagation from a source atom to the pr
atom.

3. Explicit expressions for the collective decay
rate and light-shift

We now approximately solve the Dyson equation~46! for
the retarded propagator in the medium. We first introduc
continuum approximation.

Pmn
ret ~rW1 ,t1 ;rW2t2!5E d3rWPmn

ret ~rW,t1 ,t2!d~rW12rW !d~rW22rW !,

~49!

Pmn
ret ~rW j ,t1 ,t2!5

`m`n

\2
NQ~ t12t2!^@s j m

† ~ t1!,s j n~ t2!#&,

~50!

whereN is the atom density and the overline denotes av
aging over some inhomogeneous distribution. Similarly

Pmn
s ~rW1 ,t1 ;rW2 ,t2!5E d3rWPmn

s ~rW,t1 ,t2!d~rW12rW !d~rW22rW !,

~51!

FIG. 3. Graphical representation of Eq.~45!. The incoherent
intensity at the position of the probe atom is the sum of all spon
neous contribution propagated through the medium.
ring
FIG. 4. Graphical representation of Dyson equation~46! for retarded GF inside the medium. Iteration generates all-order scatte
contributions.
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Pmn
s ~rW j ,t1 ,t2!5

`m`n

\2
N^^s j m

† ~ t1!s j n~ t2!&&. ~52!

Thus Eq.~46! reads

Dab
ret ~rW1 ,t1 ;rW2 ,t2!5D0ab

ret ~rW1 ,t1 ;rW2 ,t2!2E
2`

`

dt18E
2`

`

dt28

3E
V
d3rW18D0am

ret ~rW1 ,t1 ;rW18 ,t18!

3Pmn
ret ~rW18 ;t18 ,t28!Dnb

ret~rW18 ,t28 ;rW2 ,t2!.

~53!

To solve this integral equation, we now make the followi
approximations. We first extend the spatial integration to
finity, which basically means that we are solving for t
retarded propagator in an infinitely extended medium. S
ondly, we replacerW18 in the atomic response function byrW2 ,
i.e., we evaluate the response at the position of the sou
We furthermore consider quasistationary conditions, i.e.,
sume thatPret(t18 ,t28) depends only on the time differencet
5t182t28 . We only keep an overall slow~parametric! time
dependence. This means that we consider propagation t
short compared to the characteristic time of the atomic e
lution, which is consistent with the earlier Markov approx
mation. With these simplifications we can turn the integ
equation~53! into an algebraic one by Fourier transformati
with respect toxW[rW12rW2 and t[t12t2 . At this point a
word of caution is needed: As will be discussed in Appen
C, the retarded GF in anamplifying medium is not Fourier
transformable, since it grows exponentially withr 5uxW u. We
therefore, should view the transformations as finite-time a
finite-space Fourier transforms, and hence the algeb
equation as an approximation.

Using the definition

F̃̃~qW ,v!5E
V`

d3xWE
2`

`

dt F~xW ,t!e2 ivteiq•W xW, ~54!

the solution of Eq.~53! reads

D̃̃ret~qW ,v;t !5@11 D̃̃0
ret~qW ,v!•P̃ret~v;t !#21

• D̃̃0
ret~qW ,v!.

~55!

HereDret andPret denote 333 matrices in coordinate spac
and1 is the unity matrix.

For simplicity we now disregard polarization, i.e., we r
place the 333 matrices by simple functions. We note, how
ever, that a generalization is straight forward. As shown
detail in Appendix C, we eventually arrive at

D̃ ret~xW ,v;t !52
i\v2

6pe0c2

eq09r

r
e2 iq08r , ~56!

wherel is the wavelength of the transition under consid
ation in the rest frame, andr 5uxW u5urW12rW2u.
-

c-

e.
s-

es
-

l

x

d
ic

n

-

q05q08~rW,v,t !1 iq09~rW,v,t !5
v

c F11
i\

3e0
P̃ret~rW,v;t !G .

~57!

q09 is the inverse absorption/amplification length in the m
dium andq08 characterizes the corresponding phase shift.

here have assumed thatuIm@ P̃ret#u\/3e0,1.
With Eq. ~56! we can now expressD̃21(rW0 ,v;t) in terms

of atomic variables

D̃21~rW0 ,v,t !5
\2v4

~6p!2e0
2c4EV

d3rW
e2q09~rW,v;t !r

r 2
P̃s~rW,v;t !.

~58!

Here r 5urW2rW0u is the distance between source and pro
atom. With Eq.~58! we finally find for the collective decay
rate and light shift,

G~v,t !5
`2v4

~6p!2e0
2c4EV

d3rW
e2q09~rW,v;t !r

r 2
P̃s~rW,v;t !, ~59!

H~v,t !5
\`2v4

~6p!2e0
2c4EV

d3rW

3PE
2`

` dv8

2p

e2q09~rW,v8;t !r

r 2

P̃s~rW,v8;t !

v2v8
. ~60!

Equations~59! and ~60! are the second major result of th
present paper. In applying these results to a specific prob
we still have to calculate the source correlationPs in terms
of density matrix elements. This then yields a closed non
ear and nonlocal density matrix equation. We will illustra
this for some examples in the following section.

V. EXAMPLES

A. Inhomogeneously broadened two-level system

We here consider an inhomogeneously broadened d
ensemble of randomly polarized two-level atoms in a cyl
drical geometry as shown in Fig. 5. For this system the ti
evolution of the dipole operators5ub&^au is determined by
the simple Heisenberg-Langevin equation

ṡ j52~ ivab
j 1Gab!s j1noise, ~61!

where the noise term denotes a white noise source, whic
however of no interest here.vab

j 5vab
0 1D j is the atomic

FIG. 5. Dense sample of inhomogeneously broadened two-l
atoms in cylindrical geometry.
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transition frequency in the laboratory frame. We here ta
into account Doppler broadening, which leads to a shiftD j of
the lab-frame transition frequency from the rest-frame f
quencyvab

0 . The collective light shift is small compared t
the average Doppler shift and, therefore, neglected. The
herence decay rateGab consists of two contributions, on
resulting from free-space spontaneous decayg and the other
from the collective decayG, Gab5G1g/2. Equation~61!

can easily be solved by Laplace transformation„x̃(s,t)
ª*0

`dt e2stx(t1t)…, which yields

^^s̃ j
†~s;t !s j~ t !&&5

raa
j ~ t !

s2 ivab
j 1Gab

, ~62!

^^s̃ j~s;t !s j
†~ t !&&5

rbb
j ~ t !

s1 ivab
j 1Gab

. ~63!

From this we immediately obtain

P̃ret~rW j ,v,t !5
`2

\2
N

raa
j ~ t !2rbb

j ~ t !

Gab1 i ~v2vab
j !

, ~64!

P̃s~rW j ,v,t !5
2`2

\2
N

raa
j ~ t !Gab

~Gab!
21~v2vab

j !2
, ~65!

where` is the dipole moment of the transition and the ov
bar denotes averaging over the velocity distribution of
atoms, which is given by the Gaussian distribution

W~D j !5
1

A2pDD

expH 2
D j

2

2DD
2 J . ~66!

Since the lab-frame atomic transition frequency depe
on the velocity, the collective decay rate, which is prop
tional to the incoherent radiation spectrum at this frequen
will be velocity dependent as well. Thus we have in gene
a set of nonlinear coupled equations corresponding to dif
ent velocity classes. If there are fast velocity-changing co
sions, the population dynamics of all velocity classes w
however, be approximately the same. In this case we may

rmm
j ~ t !5rmm

j ~ t !5:rmm~rW,t !, ~67!

where mP$a,b% and rW denotes the position of the atom
considered. Note, however, that this approximation does
hold if the inhomogeneous broadening mechanism is not
to Doppler as for example in solids. In that case one ha
consider the full set of equations. Using Eq.~67!, we find in
the limit of large Doppler broadeningDD@Gab ,

P̃ret~rW,v,t !5
`2N

\2
A2p

raa~rW,t !2rbb~rW,t !

DD
e2D2/2DD

2

3F12 iA2

pE0

D/DD
dy e2y2/2G , ~68!
e

-
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e
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whereD5v2vab
0 is the detuning from the atomic resonan

at rest. For the collective decay rate only the real part ofP̃ret

is important, which enters the absorption coefficient acco
ing to Eq.~57!,

q09~rW,v,t !5
`2N

3\e0

v

c
A2p

raa~rW,t !2rbb~rW,t !

DD
e2D2/2DD

2
.

~69!

Similarly, we have for the source term in the strong Dopp
limit,

P̃s~rW,v,t !5
2`2N

\2
A2p

raa~rW,t !

DD
e2D2/2DD

2
. ~70!

Combining Eqs.~69! and ~70! and applying the relation
between the free-space radiative decay rateg and the dipole
moment`:`253p\e0c3g/v3 @25# ~cf. also Appendix A!
yields the collective decay rate~59! for a probe atom with
~lab-frame! transition frequencyv at positionrW0 ,

G~v,t !5gE
V
d3rW 2q09~rW,v,t !

e2q09~rW,v,t !r

4pr 2

3
raa~rW,t !

raa~rW,t !2rbb~rW,t !
, ~71!

with r 5urW2rW0u. To obtain the effective decay/pump rate w
have to average over the velocity distribution

G~ t !5G~v,t !5E
2`

`

dv
1

A2pDD

e2~v2vab
0

!2/2DD
2
G~v,t !.

~72!

We now discuss two limiting cases. In the first case
assume a small excitation in the medium. This correspo
to the classical situation of radiation trapping in an inhom
geneously broadened two-level medium. We will show th
in this case Eq.~72! leads to the integral equation of Holste
@13#. In the second case we will disregard the spatial dep
dence but keep the nonlinearities, and consider the temp
evolution from an initially excited ensemble.

1. Linear limit and Holstein equations of radiation trapping

For small excitation, the retarded light propagation can
regarded as propagation in a medium with all population
the lower state, i.e.,rbb51 andraa50. Thus

q09~rW,v,t !5q09~v,t !52
`2N

3\e0

v

c

A2p

DD
e2D2/2DD

2
~73!

and we can approximate the denominator in Eq.~71! by
21. This results in

G~ t !'gE
V
d3rWG~rW0 ,rW !raa~rW,t ! ~74!

where
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G~rW0 ,rW !522q09~v,t !
e2q09~v,t !r

4pr 2
~75!

52E
2`

`

dv
1

A2pDD

e2~v2vab
0

!2/2DD
2
2q09~v,t !

3
e2q09~v,t !r

4pr 2
~76!

5
1

Ap
E

2`

`

dx e2x2S 2
1

4pr 2D ]

]r
exp@2K0e2x2

r #.

~77!

HereK05Nl2g andg5g/A2pDD characterizes the ratio o
the homogeneous to the inhomogeneous width.

The dynamical evolution of the ensemble is described
the Bloch equation

ṙaa~rW0 ,t !5G~ t !2@g12G~ t !#raa~rW0 ,t !. ~78!

In the small-excitation limit, the termGraa is of second or-
der and can be neglected. We thus arrive at thelinear inte-
gral equation for the atomic excitation,

ṙaa~rW0 ,t !52graa~rW0 ,t !1gE
V
d3rWG~rW0 ,rW !raa~rW,t !.

~79!

Equation~79! is the integrodifferential equation for radiatio
trapping derived by Holstein in@13# for the special case o
Doppler-broadened two-level atoms. Thus, in the lin
limit, we have rederived the theory of radiation trapping
@13#.

2. Dynamics of initially inverted two-level system
in small-sample approximation

Let us now discuss a nonlinear problem, but in a sm
volume, such that the space dependence can be disrega
In this case we can carry out the volume integral placing
probe atom on the axis of the long cylindrical sample~see
Fig. 5!. We find for the decay rate for a probe atom wi
transition frequencyv,

G~v,t !

g
5

raa~ t !

rbb~ t !2raa~ t !
$12exp@2K~ t !e2D2/2DD

2
#%,

~80!

whereD5v2vab
0 , and

K~ t !5K0d@rbb~ t !2raa~ t !#. ~81!

Averaging over the inhomogeneous velocity distributi
of the atoms yields

G~ t !

g
5

raa~ t !

rbb~ t !2raa~ t !

1

Ap

3E
2`

`

dy e2y2
$12exp@2K~ t !e2y2

#%. ~82!
y

r
f

ll
ed.
e

Note thatG(t)/g remains finite atraa51/2, since the diverg-
ing denominator is multiplied by a vanishing integral expre
sion.

The time evolution of the excited-state population from
initially completely inverted system is shown in Fig. 6 fo
different values of the densityh[Nl2d5100 ~solid line!
andh5500 ~dashed line! andg50.01. The dotted line cor-
responds to the free-space decay. One recognizes a none
nential behavior, with an accelerated decay in the ini
phase corresponding to amplified spontaneous emission
a substantial slowdown of decay in the long-time limit.

The effective rate of decay of the excitationGeff

52 ṙaa /raa is shown in Fig. 7. One can see that forh
5500 the initial decay rate is already of the order of t
inhomogeneous Doppler-width (log10DD /g'1.6) and the
Markov approximation of slow atomic evolution becom
invalid. For higher atomic densities the system would sh
superradiant decay in the initial phase, which cannot be
scribed by the single-atom density matrix equation. As no
before, modeling of the cooperative decay requires a tw
atom density matrix description. One also verifies from F
7 for the caseh5100, that the decay becomes exponen
again in the long-time limit. The asymptotic escape rate
given by

FIG. 6. Time dependence of excitation in spatially homog
neous, dense two-level medium. Time is in units of the inve
free-space decay rate.h[Nl2d50 ~dotted!, 100 ~solid line!, 500
~dashed line!. g5g/A2pDD50.01.

FIG. 7. Effective rate of decayGeff52 ṙaa /raa for examples of
Fig. 6. Dotted line corresponds to free-space decay. Amplifi
spontaneous emission in the initial phase and slowdown of deca
final phase are apparent.
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gesc5
g

K0d~p ln K0d!1/2
, ~83!

which can be orders of magnitude smaller thang. This result
agrees with Eq.~1.1! of @13b# up to a numerical factor of the
order of unity, which is due to the fact that we here ha
disregarded a possible spatial inhomogeneity.

It is also instructive to consider the time-dependent sp
trum of incoherent radiation or equivalentlyG(v,t). This is
done in Fig. 8 forh5500. Shown is the spectral distributio
at different times normalized to the averaged rateG(t). The
dotted line shows the~not normalized! inhomogeneous dis
tribution of atomic frequencies according to Eq.~66!. One
recognizes that the incoherent spectrum broadens with
decay of excitation. In the initial phase of amplified spon
neous emission (gt50, . . . ,1) one can seethat the radiation
spectrum is narrower than the inhomogeneous atomic s
trum. This gives the first indication of spectral condensati
a well-known phenomenon in amplifying media and lase

B. Effects of radiative atom-atom interactions on intrinsic
optical bistability

One of the most interesting dynamical effects in den
media due to the Lorentz-Lorenz nonlinearity is the possi
ity of intrinsic optical bistability predicted in@7#. If a radia-
tively broadened two-level system is resonantly driven b
coherent field of Rabi-frequencyV, it shows mirrorless, i.e.
intrinsic bistability, if the atomic density exceeds some cr

FIG. 8. Spectral distribution of incoherent decay as function
time. h5500,g50.01. Dotted line shows Doppler distribution o
atomic transition frequencies~not normalized!. Time is in units of
g21.

FIG. 9. Strongly driven, dense two-level medium.g and g*
describe radiative and nonradiative decays, respectively, andVL

denotes Rabi frequency of local field.
e

c-

he
-

c-
,

.

e
l-

a

-

cal value. The bistability results from an effective feedba
introduced by the Lorentz-Lorenz correction.

We here consider a dense ensemble of resonantly dr
two-level systems as shown in Fig. 9. For simplicity of t
present discussion we assume that the driving field is ho
geneous. For most practical realizations this assumptio
not valid. We are here, however, interested in principle qu
tions and will therefore ignore drive-field depletion. The a
sumption of a homogeneous driving field implies a homo
neous behavior of the atomic system and we can disreg
the spatial dependence in the collective decay and light-s
terms. The density matrix equations for the system un
consideration read in a rotating frame,

ṙaa52Garaa1Grbb2 i ~Vrab2Vrab* !, ~84!

ṙab52Gabrab2 i ~V1Cgrab!~raa2rbb!, ~85!

where we have assumed a realV. Ga5g1g* 1G is the
total population decay rate out of the excited state, withg
andg* being the free-space radiative and nonradiative de
rates, andG the collective decay rate.Gab5G1(g1g* )/2.
There is no collective light-shift contribution here due
symmetry reasons. One recognizes a term proportional to
atomic polarizationrab that adds to the Rabi-frequencyV.
This term is due to the Lorentz-Lorenz correction~31! and
has the character of a feedback~atomic polarization gener
ates a field contributionCgrab, which couples back to the
atom!. C5Nl3/4p2 is the cooperativity parameter that e
sentially determines the number of atoms in a volumel3.

The stationary solution of Eqs.~84! and ~85! for the ex-
cited state population forG5g* 50 is shown in Fig. 10 for
different cooperativities. One recognizes bistability forC
>3.

We now analyze the effect of incoherent photons ins
the medium. To self-consistently determine the collective
cay rate, we have to calculate correlations of the dipole
eratorss5ub&^au and s† in terms of density matrix ele-
ments. More precisely we need the second order cumula
i.e., correlations of operators minus their mean values~which
are nonzero in the present case!. Thus we start with the
Heisenberg-Langevin equations fords[s2^s& and dsaa
5saa2^saa&, wheresaa5ua&^au:

f FIG. 10. Stationary excited-state population as function
driving-field Rabi-frequencyV for different cooperativity param-
eters. Here,G5g* 50.
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dṡ52Gabds22iVLdsaa1noise, ~86!

dṡaa522Gabdsaa2 i ~VL* ds2VLds†!1noise, ~87!

whereVL5V1Cgrab . The relevant correlations can be o
tained from these equations by Laplace transformation. T
yields at resonance (v5vab),

P̃ret~vab!5
`2N

\2

Gab~raa2rbb!

Gab
2 12uVLu2

, ~88!

P̃s~vab!5
2`2N

\2

Gab
2 ~raa2urabu2!12uVLu2raarbb

Gab~Gab
2 12uVLu2!

.

~89!

Note that we have omitted space and time arguments, s
we are interested in the stationary properties of the syste
a homogeneous sample. From Eq.~88! we immediately find
the absorption coefficient

q095
`2N

3\e0

vab

c

Gab

Gab
2 12uVLu2

~raa2rbb!. ~90!
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We now consider a thin plate of thicknessd as shown in
Fig. 9 and assume that the beam diameter of the driving fi
is large compared tod. Carrying out the spatial integration
in Eq. ~59! using Eqs.~90! and ~89!, we find the following
relation for the collective decay rate:

G

g
5

1

rbb2raa
S raa2urabu21

2uVLu2

Gab
2

raarbbD ~12e2q09d!.

~91!

This equation forG is not yet explicit sinceG enters the
right-hand side of the equation in an essentially nonlin
way. Using the stationary solutions of the density mat
equations~84! and~85! with G as independent variable, on
can ~with some additional approximations! solve Eqs.~91!.
This yields

G

g
'

raa

122raa
~12e2K!, ~92!

with
K5Cr
11g* /g~122raa!

2V2/g212C2~122raa!
21@11g* /g~122raa!#

2/4~122raa!
2

. ~93!
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C is the cooperativity parameter, andr 5pd/l.
In Fig. 11 we show the stationary solutions for th

excited-state population as a function of the driving-fie
Rabi-frequencyV for different cooperativity parameters an
for purely radiative decay, i.e.,g* 50. The dotted curves
correspond to the solutions without radiative atom-atom
teractions. As can be seen, bistability persists, but canno
resolved for physically reasonable values ofr @r 5100 in Fig.
11~b!#. Radiation trapping prevents the energy to esc
from the sample and already very small external pumpin
sufficient to keep the atoms in a highly excited state.

The situation is different, if there is also nonradiative d
cay, as shown in Fig. 12~hereg* 5g). In comparison to the
radiatively broadened case of Fig. 11, the bistability cur
are only moderately altered even for large samples witr
51000. The critical cooperativity at which bistability star
to occur is somewhat increased. The nonradiative decay
vides an additional energy escape channel, such that
trapped incoherent radiation is not strong enough to keep
atoms in the excited state.

Thus we can conclude that radiative atom-atom inter
tions do not destroy intrinsic bistability in driven two-lev
systems, if nonradiative decay is present. This is differ
from our previous result@26#. The reason for this discrep
ancy is that our previous approach essentially neglected
medium effect on the retarded propagation and was, th
fore, inconsistent for larger densities. This would correspo
to replacing the retarded propagator of theinteractingfield in
-
be

e
is

-

s

o-
he
he

-

t

he
e-
d

Eq. ~45! and Fig. 3 by the corresponding free-space Gree
function.

We note that we did not intend to present a compreh
sive discussion of effects that could affect intrinsic optic
bistability. In particular, in atomic vapors, collisions ma
have a much more pronounced effect. Furthermore,
depletion of the pump field needs to be taken into acco
and realistic experimental schemes such as selective re
tion spectroscopy@27# need to be considered.

VI. SUMMARY

We have shown that the interaction of a classical radiat
field with a dense ensemble of atoms can be described
modified Maxwell-Bloch equations in the Markov limit
While the equations for the macroscopic classical field,
Maxwell equations, remain unchanged, the atomic equat
of motion have additional nonlinear and spatially nonloc
terms that result from the exchange of spontaneous pho
between the atoms. The first nonlinear term, the LL corr
tion, is only present if there is initial coherence or an exter
coherent field. The nonlinear and nonlocal collective dec
and level-shift terms are present whenever there is exci
state population. In the Markov limit of spectrally broad i
coherent radiation inside the medium, the modified Blo
equations have the form of single-atom density matrix eq
tions. They are of the Lindblad type and thus fulfill the fo
mal requirements for conservation of probability and posit
ity. The effect of the collective decay has been discussed
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the examples of an initially excited system of inhomog
neously broadened two-level atoms and intrinsic optical
stability. In the first case we find accelerated decay~superlu-
minescence! in the initial phase and radiation trapping in th
final phase. In the long-time limit, where the excited st
population is small, the equations of motion coincide w
the Holstein equations of radiation trapping@13#. The collec-
tive decay modifies intrinsic optical bistability in a strong
driven two-level system. As opposed to our previous pred
tion @26#, bistability persists, however, if also nonradiativ
decay is present. Collective decay and pump processe
well as light shifts are relevant for the population dynam
and are particularly important for ground-state coherence
multilevel systems. A detailed discussion of coherence
fects in dense multilevel systems as well as the study
cooperative decay processes will be the subject of fu
work.
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APPENDIX A: FREE-SPACE DECAY RATE

In Eq. ~22! we have given the spontaneous decay rate
the atomic medium. We now show that this expression le
to the well-known Wigner-Weisskopf result for the radiati
decay of a two-level atom if the interacting field is replac
by the free field. For a single two-level transition with dipo
moment alongeWm , we have, according to Eq.~22!,

g5
`2

\2E2`

`

dt^@E0m
1 ~rW0 ,t1t!,E0m

2 ~rW0 ,t !#&eivt. ~A1!

The free-field commutator is given by@22#

@E0m
1 ~rW0 ,t1t!,E0m

2 ~rW0 ,t !#

5
\c

2e0

1

~2p!3E d3kW kS 12
km

2

k2 D e2 ickt. ~A2!

Substituting Eq.~A2! into Eq. ~A1! yields

g5
`2

\2

\v3

2e0c3

1

~2p!2E d2VkS 12
km

2

k2 D . ~A3!

Finally carrying out the angle integration leads to

g5
`2v3

3p\e0c3
5

8p2`2

3\e0l3
, ~A4!
-
i-

e

-

as
s
in
f-
f

re

d
re

e

n
s

which is the free-space spontaneous emission rate from
Wigner-Weisskopf theory@25#.

APPENDIX B: DYSON EQUATION FOR REAL-TIME
GREEN’S FUNCTIONS

In this appendix we derive the integral equations~45! and
~46! for the real-timeGF from the Dyson equation~42! for
the contourGF. Noting thatD0

2150 in RWA, we immedi-
ately find from Eq.~42!,

D115D0
112D0

11P11D111D0
11P12D21,

2D0
12P22D211D0

12P21D11, ~B1!

D2152D0
22P22D211D0

22P21D11, ~B2!

where we used a short notationD0
22P22D21

5**d3d4 D0am
22 (1,3)Pmn

22(3,4)Dnb
21(4,2) and the integra-

tion goes over physical times from2` to ` and over the
volume of the sample. Note the sign changes in Eqs.~B2!
and ~B1! resulting from the fact that the contour integratio
on the lower branch goes in the reverse direction. Mak
use of Eqs.~38!–~41!, we obtain

D115D0
adv2D0

adv@~P112P21!D11

2~P122P22!D21#2D0
ret@P21D11

2P22D21#, ~B3!

D2152D0
ret@P21D112P22D21#. ~B4!

Applying the relation

Padv~1,2![P11~1,2!2P21~1,2!5P12~1,2!2P22~1,2!
~B5!

and subtracting Eq.~B4! from Eq. ~B3! yields the Dyson
equation forDadv5D112D21:

Dab
adv~1,2!5D0ab

adv ~1,2!

2E E d3 d4 D0am
adv ~1,3!Pmn

adv~3,4!Dnb
adv~4,2!,

~B6!

where we have restored full notation. SinceDmn
ret (1,2)

5Dnm
adv(2,1) one immediately obtains the correspondi

Dyson equation for the retarded propagator,

Dab
ret ~1,2!5D0ab

ret ~1,2!2E E d3 d4 D0am
ret ~1,3!

3Pmn
ret ~3,4!Dnb

ret~4,2! ~B7!

with

Pmn
ret ~1,2!5Pmn

11~1,2!2Pmn
12~1,2!

5Pmn
21~1,2!2Pmn

22~1,2!

5
`m`n

\2
Q~ t12t2!(

j
^@s j m

† ~ t1!,s j n~ t2!#&

3d~rW1rW j !d~rW22rW j !. ~B8!
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Thus we obtain the Dyson equation~46! of Sec. IV for the
retarded propagator inside the medium.

We now turn toD21. SubstitutingP225P212P ret in
Eq. ~B4! we find

D2152D0
retP retD212D0

retP21Dadv. ~B9!

Iteration of this equations yields

D2152@D0
ret2D0

retP retD0
ret1D0

retP retD0
retP retD0

ret

21•••#P21Dadv, ~B10!

which can be rewritten in the compact form

Dab
21~1,2!52E E d3 d4 Dam

ret ~1,3!Pmn
s ~3,4!Dnb

adv~4,2!,

~B11!

where

Pmn
s ~1,2![Pmn

21~1,2!

5
`m`n

\2 (
j

^^s j m
† ~ t1!s j n~ t2!&&

3d~rW12rW j !d~rW22rW j !. ~B12!

Thus we arrive at Eq.~45! of Sec. IV.

FIG. 11. Stationary excited-state population as function
driving-field Rabi-frequencyV for radiative decay (g* 50) and
with radiative atom-atom interactions.r 5pd/l51 ~upper picture!
and r 5100 ~lower picture!. Dotted curves show behavior withou
radiative atom-atom interactions~see Fig. 10.!
APPENDIX C: SOLUTION OF THE DYSON EQUATION
FOR D̃ ret

With the approximations made in Sec. IV 3, we deriv
the matrix solution~55! for the Fourier transform of the re
tarded GF in the medium.

D̃̃ret~qW ,v,t !5@11 D̃̃0
ret~qW ,v!•P̃ret~v,t !#21

• D̃̃0
ret~qW ,v!.

~C1!

To evaluate this expression, we first approximate the Fou
transform of the free-space retarded propagator. Accord
to @22#,

D0ab
ret ~1,2!5

i\

4pe0c
Q~t!F dab

]2

]t2
2c2

]2

]x2
a]x2

bGd~r 2ct!

r
,

~C2!

with r 5uxW u5urW12rW2u andt5t12t2 . Thus,

D̃0ab
ret ~xW ,v!52

i\

4pe0
S v2

c2
dab1

xaxb

r 2

]2

]r 2D e2 ivr /c

r
.

~C3!

For largev, such thatl!r , only the spatial derivative of the
exponential contributes and we find

D̃0ab
ret ~xW ,v!52

i\v2

4pe0c2S dab2
xaxb

r 2 D e2 ivr /c

r
. ~C4!

We now approximate Eq.~C4! by ignoring the polariza-
tion, i.e., by performing an orientation average.

xaxb

r 2
→K xaxb

r 2 L 5
1

3
dab . ~C5!

This approximation is exact when the medium is random
polarized. Equation~C5! leads to

f FIG. 12. Stationary excited state population as function
driving-field Rabi-frequencyV in the presence of additional nonra
diative decay (g* 5g) and with radiative atom-atom interaction
r 51000. Dotted curves show corresponding behavior without
diative atom-atom interactions forg* 5g.
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D̃0
ret~xW ,v!52

i\v2

6pe0c2

e2 ivr /c

r
~C6!

and thus,

D5 0
ret~qW ,v!52

2i\v2

3e0c2

1

q22v2/c212i e
v

c
, ~C7!

where we have introduced a small positive constante to
move the pole atq5v/c into the lower half of the complex
plane.

Substituting Eq.~C7! into Eq. ~C1!, we find

D̃ ret~xW ,v!5
1

~2p!3E d3qW D5 ret~qW ,v!e2 iq•W xW

52
\v2

6p2e0c2

dab

r E
2`

`

dq

3
qe2 iqr

q22
v2

c2
@112i\/3e0P̃ret~v!#12i ev/c

.

~C8!

We evaluate this integral by contour integration along
real q axis and back in the lower half plane~note thatr
.0). In free space (P50) and fore50, we would have two
s

P

s.

.

.

h

e

poles on the real axis atq56v/c. In the free-space case w
had to introduce the constante.0 to move the pole atq
5v/c into the lower half plane~and at the same time to
move the pole atq52v/c into the upper one!. This is nec-
essary to have retarded propagation. Fore,0 one would
obtain the advanced propagator. If anabsorbingmedium is
present, Re@Pret# is negative and hence adds toe. Therefore,
again the only contributing pole is that atq'v/c. However,
if the medium isamplifying, there is a problem. In this cas
Re@Pret# is positive and counteractse. In such a case the pol
at q52v/c could move into the lower half plane and w
would obtain an advanced instead of a retarded propaga
The origin of this problem is that the retarded propagator
an amplifying medium is strictly speaking not Fourier tran
formable, since it is an exponentially growing function
distance. In such a case, one has to take into accoun
finite spatial dimensions of the amplifying medium and i
troduce a cutoff function, which leads to a finite-space Fo
rier transform. Although this lacks mathematical rigor, w
now assume that the effect of the cutoff function is mode
by a sufficiently large value ofe, such that the pole atq
'v/c remains in the lower half plane. With this we find

D̃ ret~xW ,v!52
i\v2

6pe0c2

eq09r

r
e2 iq08r , ~C9!

where

q0~rW,v,t !5
v

c F11
i\

3e0
P̃ret~rW,v,t !G . ~C10!
ov,

tt.
e,
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