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Radiative atom-atom interactions in optically dense media:
Quantum corrections to the Lorentz-Lorenz formula
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Generalized single-atom Maxwell-Bloch equations for optically dense media are derived taking into account
noncooperative radiative atom-atom interactions. Applying a Gaussian approximation and formally eliminating
the degrees of freedom of the quantized radiation field and of all but a probe atom leads to an effective
time-evolution operator for the probe atom. The mean coherent amplitude of the local field seen by the atom
is shown to be given by the classical Lorentz-Lorenz relation. The second-order correlations of the field lead
to terms that describe relaxation or pump processes and level shifts due to multiple scattering or reabsorption
of spontaneously emitted photons. In the Markov limit a nonlinear and nonlocal single-atom density matrix
equation is derived. To illustrate the effects of the quantum corrections, we discuss amplified spontaneous
emission and radiation trapping in a dense ensemble of initially inverted two-level atoms and the effects of
radiative interactions on intrinsic optical bistability in coherently driven syst¢8050-29479)05703-0

PACS numbds): 42.50.Fx, 42.65.Pc

[. INTRODUCTION In the present paper we study the atomic evolution in a

dense medium irradiated by external coherent light fields.

The interaction of the radiation field with a dilute en- The macroscopic classical radiation field in the medium
semble of atoms is usually described in the semiclassical arfPe€ys Maxwell's equations with the mean atomic polariza-
dipole approximation by the well-known Maxwell-Bloch tion as source term. To derive equations of motion for the

equations. This description fails to be accurate, howevef1any-atom system, we start frqm a no_nrelat|V|st|c quantized
: . . interaction Hamiltonian. Thus interactions between the at-
when a dense medium is considered.

oms mediated by the quantized radiation field such as reab-
Since the early work of Lorentz and Lorefit] it is ' y the quantiz lation field su

' , ¢ sorption and scattering of spontaneous photons are taken into
known that the classical local field, which couples to an atonyecount.

in a dense medium, differs from the macroscaoitaxwell) Our aim is to derive an effective single-atom density-
field by a term proportional to the medium polarizat[@;3]. matrix equation. For this we introduce an interaction picture
The most prominent effects of the Lorentz-Lorght ) cor-  with the radiation field coupling to all other atoms. Assum-
rection in dense media are the change of the linear index dhg a Gaussiariand therefore classigastatistics of the in-

refraction according to the Clausius-Mossotti relafiah the  teracting field, we can formally eliminate its degrees of free-
enhancement of nonlinear susceptibilitfd3, shifts and de- dom from the probe-atom time evolution. In the Markov

formation of resonance 1ing$§,6], intrinsic optical bistability Iimitt of shortt_—livefd ﬁtf_"d corl;elations ws yi_lelldsh a dtin?i?r’]'
(7.8]. and piezophotonic switching®)]. matrix equation for the probe atom. We will show that the

On the other hand, the quantum nature of the radiativ mean coherent amplitude seen by the probe atom differs

: . . . V4rom the macroscopic Maxwell field by a term proportional
atom-atom interaction can drastically influence the behaviof, the mean polarization of the medium in agreement with

of the ensemble. In the extreme case of anisotropic, highthe classical Lorentz-Lorenz relatid2]. In addition, the
density samples, excited atoms can cooperatively emit spoitensity matrix equation contains relaxation and level-shift
taneous photons, a phenomenon known as superradiant&ms, which describe reabsorbing and multiple scattering of
[10—12. But even if the system does not fulfill the condi- spontaneously emitted photons. The corresponding relax-
tions for cooperative evolution, the presence of spontaneoustion rates and frequency shifts are proportional to the spec-
photons and the associated effects like amplified spontaneotrsm of the incoherent part of the radiation inside the me-
emission(or superluminesceng@nd radiation trappinfl3]  dium at the atomic transition frequency. This spectrum is
cannot be neglected. Imprisonment of incoherent photons eslso the Fourier transform of a certain two-time Green's
pecially affects otherwise long-lived ground-state coherfunction, for which we derive a Dyson equation. A formal
ences. We, therefore, expect radiative atom-atom interactiorsolution of the Dyson equation allows us to express the in-
to be important in areas such as resonant linear and nonlineaoherent spectrum in terms of atomic variables. Thus we
optics based on atomic phase cohergiek15, cooling of  eventually obtain a closedonlinearand spatiallynonlocal
atoms, and Bose-Einstein condensation via velocity-selectivdensity matrix equation of Lindblad-type.
coherent population trappind.6] and optical computing. Our paper is organized as follows. In Sec. Il we derive the
Another important effect of large atomic densities is theeffective single-particle time-evolution operator by formally
increase of atomic collisions. Here we will not consider theseeliminating the degrees of freedom of the quantized radiation
effects, however, and focus our attention entirely on radiafield interacting with the background atoms. In Gaussian ap-
tive interactions. proximation this operator contains first- and second-order
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field cumulants. In the Markov limit of spectrally broad field

correlations, a density matrix equation is obtained. In Sec. IlI > time
we show that the first-order term leads to the Lorentz-Lorenz “'"""""-""""---------}-->
relation between the coherent amplitude of the local field, the -
mean-field amplitude in the mediu@ivlaxwell field), and the - QO +00

mean polarization. In Sec. IV we derive a Dyson equation for
the second-order field cumulants or two-point Green'’s func-
tions and formally solve them in terms of single-atom den-
sity matrix elements. The resulting nonlinear density matrixtime contourC [17] shown in Fig. 1 that starts at= —,
equation is discussed in Sec.V for the examples of amplifie@0€s tot= + and back= —. Each physical time corre-
spontaneous emission and radiation trapping in an inhomdsponds two times on the contour. A time-ordering operator
geneously broadened system of initially excited two-levelTc is mtroduced that is identical t& on the upper branch
atoms and intrinsic optical bistability in a strongly driven (+) and toT~* on the lower branch-{) of the contour and

FIG. 1. Schwinger-Keldysh time contour.

dense ensemble of two-level atoms. orders all operators with time arguments en)(to the left of

those with time arguments ont().
Il. EFFECTIVE TIME EVOLUTION OF ATOMS With these definitions we can write EB) with a single
exponential time-evolution operator. This will considerably
A. Formal elimination of the quantized radiation field simplify the following elimination procedure:
We consider here an ensemble of atoms interacting with

the quantized radiation field under conditions, which justify T ALt Au(t-) T TBu(t2)Bu(t

the dipole and rotating-wave approximatiGRWA). Since (@ HLD AR ITB(t3)Bu(ta)])

we are interested in the dynamics of a single atom, we dis- =(T[ScA(t;)A(t,)B(t3)B(t)]), 4

tinguish a probe atom at positicﬁa with a dipole operatoﬁ

and environment atoms at positionswhose dipole opera- yhere the superscripts specify the branch of the contour,
tors are denoted by!. The Hamiltonian of the system is and
given by

H=$ Hb+ Hieig= P [E(Fo) +&(ro)] Sc:TceXP[_%—jcdvTVp(;')]: 5

[E(r)+Erp], @ With 7 denoting a time orC.

We now formally eliminate the degrees of freedom of the
whereH{, andHy, 4 are the free Hamiltonians of téh atom  quantized radiation field and the environment atoms by trac-
and the quantized radiation field, respectively, and we havég over the corresponding states. In order to express the
split the field in an operator componeBitand an external €xpectation value of an exponential operator again as an ex-

classical driving fieldE. We use an interaction picture where ponential operator, i.e., as a new—effective—time-evolution
the time evolution is described by operator, we use a generalization of the cumulant generating

function for a classical stochastic varia{g 18,19
i (= i (=
S=Texp{ - gJ'xdTVp(T)] =Texp<%J'wdTp(T)

X[E(Fo,r>+5(Fo,r)]], (2)

o

J:#

0

<exmsX}>x=exp{ b3 ;—T«xm»], ©

where the({X™) are the cumulants, which have the follow-

whereT denotes time ordering and the field operafostill ing explicit form:

contains the coupling to all other atoms. For notational sim-
plicity we have suppressed vector indices of the dipole mo-

ment and electric field. With the help of E®), any (time- {(X))y=(X), (7)
ordered correlation function of probe-atom operatofg,

and By, in the Heisenberg-picturésubscript ‘H”) can be

related to interaction picture operators via ((XY))=(XY)=(XXY), etc. 8

-1
(T {Au(t)An(t2) IT[BK(t3)By(ta)]) As can be seen from E¢p), the elimination procedure leads
=(T S IA(t})A(t,) ]T[SB(t3)B(t,)]),  (3) in general to an infinite number of terms in the effective
action. To make the problem tractable, we will, however,
where(- - -) stands for T{py- - -} with pg=p(—=) being  assume that the radiation field is Gaussian, i.e., that all cu-
the initial density operator at= — . mulants({E™) with m>2 vanish identically. This is a con-
A very helpful formal simplification of Eq(3) can be sistent, and for our purposes, well justified approximation.
achieved by introducing the so-called Schwinger-Keldyshwith this we find
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Secﬁ:<sc>field is the local field seen by the probe atom, and
[ . . -~ . I
:TCex4%J‘CdTp(T)[g(ro,T)+<E(ro,’T)>] D,uv(rO!Tl;rO!TZ)
1 =({(TcE, (ro,7)E; (fo,mp)))e (772,
oz Cd?lfcd?zp(?l)D(Fo,?l:Fo,?z)p(?z) : (15)
©) L
CLu(ro,71ir0,72)
where T D tie(r—
. . . =((TcE,(ro,7)E, (rg, 7))yt *(n 72,
D,u,v(llz):<<TCE;L(rliTl)Ev(rZ17-2)>> (10) (16)
is a(tensorial Green’s functionGF) of the interacting elec-
tric field, and we have used the abbreviatiorsr}, 7, and B. Markov approximation and single-atom density-matrix
2=r,,7,. Note, that we used a short notation, and equation

p(1)D(1,2)p(2) ~in Eq. (9  should  read The effective single-atom time-evolution operatdr3)
Ei,ﬁ:lpa(l)DaB(l,Z) ps(1,2). We now apply the rotating- leads in general to integro-differential equations of motion.
wave approximation. For this we introduce slowly varying We, therefore, restrict the discussion to situations that justify
positive and negative frequency components, a Markov approximation, i.e., we assume that the character-
. . oL istic decay time of field cumulants is short compared to the
p(r)=p"(n)+p (n=p (e '*+p (r)e'“’, (11 characteristic time of the atomic dynamics. This is the case,
for example, if the medium is inhomogeneously broadened.
E(r)=E"(7)+E (n)=E*(n)e *+E (7)€", We note that the Markov approximation used in the present
(12 paper rules out superradiance, since the superradiance time is
. ) N . shorter than the decay time of field correlatiddd,12. In
with » being the transition frequency of the consideredorder to describe fasioperativeprocesses, pair correlations
probe atom, and neglect combinations of the typ& " and  petween different atoms need to be taken into account as a
p~E". Thus we have dynamical variable.
The Markov approximation amounts to assuming a

i . . o . Lo . . . . .
Stéff:-l-c exp{ %J' dr{p T (NE(Fo, 1) +p (DE] (Fo,7)] o-correlation ofD ,, andC,,, in physicaltimes.
C
Dy(7,7)=Dyi(n) é(r=71"), (17

14

1 v [ o
_%fchlfchZ[p (Do, mifo. 72)P (72) CﬁB(T,T')=CﬁB(T)5(T—T'), (19

+ p(Tl)c(ro’Tl;rO’TZ)p+(72)]] , (13 with A,Be{+,—} explicitly denoting the contour branches.
It is convenient to introduce dimensionless dipole operators
where o,0', such thap; (t)=p,0,(t) andp, (t)=p ,oL(t) (and

R R R corresponding relations for the slowly-varying variables
EL(r)=E,(r,t) +(E,(r,1)) (14  With this we eventually arrive at

i‘@ ” - (r - /2 + /2 + /2
Secﬁ:TCexplT”f wdf[a#(msw(ro,T)—a#(r_)sw(ro,T)+aL(T+)5L#(rO,T)—UL(T_)EL#(rO,T)]

I'y(w,7) +7,w(w,f))

23 T v , ) 3
_fwdr%[%(u)almwaﬂ(r)oI(T)—2aﬂ(7)al(r+)]—fwdr< 5 5

oo

X[oi<r+m<m+al(n)a,L(r_)—2oi<r_)aﬂ<r+>]+'gf_wdrH,ww,r)[a,L(u)ai(u)—o#(n)a:(f_)

—oU (7)o () o1 )ou(r )]+ %—fidfhw(w,f)[al(n)%(ﬁ)—UI(T)U,L(T)]]- (19
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The lower indicest at the time argument denote the branch i 9 [ . .- B
on the Schwinger-Keldysh contour, which is relevant for op-h,.,(o,t)=> TJ dr{{[E,(ro,t),E, (ro,t—7)])e™"*"
erator ordering under the action ©f . The first term in Eq. 0
I%(?;I?ieeslgrilr?eli\?V\t/T interaction of the probe atom with the ~([E; (To,t) EX (Fo,t+n)])e e (25)
is the corresponding spontaneous contribution. Within the
_ g g iwr approximations made,,, reflects the Lamb shift of excited
Fw(a),t)—7fwdr{(E#(ro,t)EV (ro,t+7)))e states altered by the presence of the medium. Here we are not
(20) interested in the Lamb shift and, therefore, consider it in-
cluded in the free Hamiltoniahl, [20].
The effective time-evolution operatdt9) directly leads
‘@/«“‘0” “H(Fy,wit) (21)  to the following master equation for the single-atom density
h? O operator:

is a positive Hermitian matrix, whose eigenvalues describe
decay and pump rates induced by the incoherent photon%
inside the medium. Equatiof20) has a simple physical in-
terpretation. The incoherent radiation inside the medium
causes stimulated transitions from excited to ground states
and vice versa. The corresponding rate is proportional to the
spectral density of the radiation taken at the atomic transition _(M 4 Ter 7#

frequency. Apart from some dimensional constaﬁ_;r 2
precisely the spectral energy density of the incoherent field

the positiorfo and at the transition frequenay of the probe
atom.

' 9 - i
[Ho,p]+l#[U#é‘LM—I—a’Lé’E}L,p]-{—%H
X[o, ol—o O'M,p]——{O'MO'Vp‘l‘pO' o —ZO'VPO'M}

{O'VO'Mp'f'pO' o _ZO'M[)O'I}. (26)

a’Fhis is the first main result of the present paper. We note that

this equation is nonlinear and nonlocal, since the light shift

and decay matrices depend via the field correlations on the

surrounding atoms. The equation does, however, have the

+,> t+7) E’(F t)])ei“” Lindbla_d_ form[21] and thus preserves positivity and t_he total

vaTe el 0 probability. In order to obtain a closed set of equations, we
(22) calculate in the following sections the yet unknown quanti-

ties &, I'y,, andH,, in terms of single-atom density-

is the spontaneous contribution to the “down rate” in the matrix elements.

atomic medium(Note that the commutator contains the field

operatordnteracting with the environment atom$ince we Ill. THE AVERAGE LOCAL FIELD

are not interested here in the effects of the medium to the AND THE LORENTZ-LORENZ RELATION

spontaneous decay, we replagg, by the free-space value

yw [20]. We will show in Appendix A, that Eq22) indeed

leads to the well-known Wigner-Weisskopf result for radia-

tive decay in free space, if we repla&eby the free field. 5 - 5 > >

Light shiftys induced %y the incoherpent co)r/nponent of the ra- E(rH=&r.H+(E(r.). @7

diation field inside the medium are described by the Hermitrpq first term is the external coherent fighd field in the

lan matrix, absence of the mediumand the second term is the mean
coherent amplitude of the field scattered by all other atoms.

-z t)E*(FO,t—r)>>e’i“” Note, that the contribution of the probe atom itself is not
included. On the other hand, the macroscopic fi€jg,

which enters Maxwell’s equations, is thatal field inside the

%
7Mv(w!t): #2

We recognize from Eq(26) that the probe atom is
coupled to a classicdt-numbey field of amplitude

i 9.0
HMV((u,t): %

—((E,(ro,0E, (ro,t+7)))e*7]. (23)  medium (averaged over a spatial region large compared to
the characteristic atomic distance, but smaller th3n Thus
Equation(23) can also be expressed in termsbf *: the local field, given in Eq.(27) differs from the macro-
scopic Maxwell field essentially by the scattering contribu-
#py M (ro,w i) tion of the probe atom itself. In a continuum approximation,
p(@,1) = f do we find
’ 37 ret 2 4.0 4
:Zﬁ PJ dw,F,w(w ,t)’ (24 EL (T )=Enalr ) — Qf d3r f dt’ Dggp(r,tir',t")
T J-o wo—o'
X(Pug(t')), (28)

whereP denotes the principle part of the integral. In systems

with inhomogeneous broadening, the collective light shiftswhereD§' is the free-field retarded propagator afyl,) is

are often negligible as they are usually small compared to théhe expectation value of the probe-dipole operdiorthe

inhomogeneous width. Heisenberg pictupe ¢ is the atomic density anid, denotes
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integration over a small sphere of radies The retarded D™ (1,2), where the superscripts+” specify contour

propagator of the electric field is given pg2] branches. The first and the last are the time- and anti-time
ordered propagators and the retarded and advanced propaga-
Dret ih # ., 9 |8r—cr) tors are given by the combinatiofi24]
Doas(1,2= ®( 7) aﬁ;—c P r—
X2z D'*(1,2=D**(1,2-D*(1,2=D""(12-D" (12,
wherer=t;—t,, r=|r;—r,|, and® is the Heaviside step Da(1.2)=D*+(1,2~D~*(1,2=D* (12 —D~~(1.2).

function. (37)
When substitutingd ! from Eq. (29) into Eq. (28), we

note that in the limitt— 0 Only the term that results from the Within the RWA and in the absence of thermal photons we

second spatial derivative ofrlsurvives. Using have
# 1  Ax adv
I _5(3)(r1_ r2) 5043’ (30) DOa/g(l 2) DOa,B(lyZ), (38)
IXGaxE T 3 .
i DOaﬁ(liz)%Ov (39)
we find
1 Dous(1,2~Dgap(1,2) ~ Dig(1,2), (40
ELTD=En(r, D)+ 3—e(Pu() =Eu(r.H)+ 3P,
3€0 3 Doup(12~—Dil4(1,2. (41)

(31)

which is identical to the classical Lorentz-Lorenz relation A formal solution to the atom-field interaction can be

[1,2] when we identifyP=o(py). It should be mentioned glvgn in terms of & D_yso_n-mtegrzfll equavu{zm], by intro-

that the Lorentz-Lorenz relation holds for the mean ampli-dUcing a formal polarization functioll ,5(1,2),

tude of the field and not for the field operators itself as

claimed in[23]. | o Du13)=Do. - [ [ di'd3 Dy
Making use of Eq(31) we can define an effective semi- c

classical interaction operator . .
XIM,5(1",2")Dg,(2',2). (42

_; p’M(t)ELM(rj ). (32) Here fd1 denotes integration over the Schwinger-Keldysh

contour as well as spatial integration over the medium. The

Dyson equation(42) represents nothing else than a formal

summation of the perturbation series where the polarization
We now discuss the light shift and decay matrices in theunction is determined by the medium response. We now

generalized density-matrix equati¢®6) in more detail. Both have to find a good approximation fbf(1,2).

depend on the field cumulants or Green’s functions,

IV. QUANTUM CORRECTIONS

2. Self-consistent Hartree approximation

D, (rrt)=((E,(r,HE, (r.t"))). (33 One easily verifies that in lowest order in the atom-field

e e o coupling, the polarization function is given by a correlation
(Note that the superscript= + " indicates that the first-time function of dipole operators of noninteracting atoms,
argument is on the lower and the second-time argument on

the upper branch of the Keldysh contour and has nothing to

do with the frequency components of the fi¢l@ihe aim of 11 (1 2)= “‘052 {Teol (1) o, ﬁ(t2)>>free

the present section is to calculgle * in terms of atomic ] e .

variables. For this we apply nonequilibrium Green’s function . e ..

techniqueg24]. XO(ry=rj)o(ra=rj). (43

1. Dyson-equation for I1,2) This corresponds to a Hartree approximation in many-body
theory. This approximation is physically justified, when the
nonlinear light shift and decay terms do not affect the atomic
dynamics, that is if the probability that a specific atom reab-
sorbs or scatters a spontaneous photon is small. Such a situ-
fw(l 2)= <<TcE (rl VE; (r2 2)))s (34) ation is realized, for example, in the classical case of radia-
. L. L. tion trapping where a small number of photofmuch
Douin(1,2)=((TcEp,(r1,t1)Eg,(r2,t2))), (35  smaller than necessary to saturate the melisrtrapped in
a dense absorbing mediym3]. We are here also interested,
whereE, denotes the free field, i.e., without coupling to the however, in situations, where incoherent photons signifi-
medium. The contour-Green’s functi@(1,2) contains four ~cantly alter the atomic dynamics. A consistent approxima-
real-time GFs: D**(1,2), D~ "(1,2), D" (1,2), and tion, which accounts also for these cases is the self-consistent

We define the exact and tHknown) free Green'’s func-
tions on the Keldysh contour as



2432 MICHAEL FLEISCHHAUER AND SUSANNE F. YELIN PRA 59

_ D (1,2)
e DR _
szzDxzos Dret(l,Z)

FIG. 3. Graphical representation of E@5). The incoherent
l'[ret ) intensity at the position of the probe atom is the sum of all sponta-
(1,2) neous contribution propagated through the medium.

. [dt[d3?
- - O uf v

I (PRIHPROE PE O(ty—to)
FIG. 2. Feynman diagrams, definitions.
t - o
Hartree approximation, where the cumulantsfrefe dipole x; ([o],(t),0j,(t2) ) (ri—r))
operators in Eq(43) are replaced by cumulants fteract-
ing dipole operators. X S(F p— F,-). (48)

The names reflect the physical meaning of the terms. The
5 5 _Pa¥p Fourier transform oflI® is proportional to the spontaneous
Map(1,2)= 2 <<TCUJ"(t1)UJB 2)»5 emission spectrum of the atoms and thatIbf! gives the
.. susceptibility of the medium.

X &(ra—rj). (44) Equations (45) and (46) can be given an instructive
graphical representation shown in Figs. 2—4. Equatith)
(illustrated in Fig. 3 says that the incoherent radiation inten-
sity is obtained by summing the spontaneous-emission con-
tributions from all atoms propagated through the medium.
The iteration of the Dyson equatiqd6) (shown in Fig. 4
describes multiple scattering of spontaneous photons by at-

. et adv oms during the propagation from a source atom to the probe
D.gs (1,2):—j f d3d4D,,(1, 3)H A3.4D55(4,2), atom.

(49)

As shown in Appendix B the Dyson equation for the con-
tour GF can be rewritten in the RWA in terms of the real-
time GFs as follows:

3. Explicit expressions for the collective decay

h Dret 12 Dadv 21)] ob he D rate and light-shift

where obeys the Dyson equation .
S(1:20= (2] y y g We now approximately solve the Dyson equat{d6) for

the retarded propagator in the medium. We first introduce a

re‘(l 2 DE)EtB(l 2)_f de d4D™ (1.3) continuum approximation.

Oau
X I1'%(3,4D'%(4,2). (46) Hfi(F1,t1;F2t2)=f dsFPfﬁ(F,tl,tz)ﬁ(ﬂ—F)ﬁ(Fz—F),
(49)
Here, the time integration goes frome to «© and we have
introduced the atomic source correlation pret(r] 1) = Mva@(tl t,) <[U L(t),07,(t2)]),
(50)

. 9ub s
I3, (r1,tyir,tp) = 22

T . . .
Ej: ((‘Tm(tl)‘fj (12))) whereN is the atom density and the overline denotes aver-
aging over some inhomogeneous distribution. Similarly

X 8(r—r;)8(rp—r)) (47) o o o
wa(rl:tlirzntz):f d*rPS (1 ty,tp) (ry—1)8(rp—r),
as well as the atomic response function (51
SIZIDEIZI = mmeDmem= 4 memDe-- zzezz:z

FIG. 4. Graphical representation of Dyson equat{df) for retarded GF inside the medium. Iteration generates all-order scattering
contributions.
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. R YJW@)V - d I.o.o.. ......o./.
P/“/(rj !tlvtz): hz N<<0-“,L(tl)0-jv(t2)>> (52) ® . .... * ce, * .. |®
L ] ° * N P Py . ° 0.. .\
Thus Eq.(46) reads Q — a
> N N R [} [} i Y
D;ye[t;(ll.tl;l’z,tz):Dgeot(ﬁ(rl,tl;rg,tz)—f_ dtif_ dt; oy
FIG. 5. Dense sample of inhomogeneously broadened two-level
X fvdsFiDBe;M(Flvtl;Fi Y atoms in cylindrical geometry.
Xpret(F,.t, t/)Dret(F/ tor t,) , - e w iﬁ~re +
wl 11,61, 15,12, 15). q0=q0(r,w,t)+|q0(r,w,t)=E 1+3—€0P (r,w;t)].

(53 (57)

To solve this integral equation, we now make the followingqg is the inverse absorption/amplification length in the me-
approximations. We first extend the spatial integration to indium andqy characterizes the corresponding phase shift. We
finity, which basically means that we are solving for the here have assumed tham[P'e|#/3e,< 1.

retarded propaga}or in an mfln_ltely extended m_edlurp. Sec- With Eq. (56) we can now expresB (o, w;t) in terms
ondly, we replace; in the atomic response function oy, of atomic variables

i.e., we evaluate the response at the position of the source.

We furthermore consider quasistationary conditions, i.e., as- 5204 ezqg<F,w;t)r

sume thatP™{t;,t5) depends only on the time differenee D *(rg,ot)=————| dr ———Pr,w;t).
1012 NG 0 6m)2e2c4 v 2

=t;—t,. We only keep an overall sloparametrig time (67)"€qC r 58

dependence. This means that we consider propagation times
short compared to the characteristic time of the atomic evo- S s .
lution, which is consistent with the earlier Markov approxi- Heré r=[r—ro| is the distance between source and probe
mation. With these simplifications we can turn the integralatom' With Eq.(58) we finally find for the collective decay

equation(53) into an algebraic one by Fourier transformation "at€ and light shift,

with respect tox=r,—r, and 7=t,—t,. At this point a 2,4 Q2007000
word of caution is needed: As will be discussed in Appendix I(wt)= v J d3r PS(r,w;t), (59
C, the retarded GF in aamplifying medium is not Fourier (67)%e3c*)v r2
transformable, since it grows exponentially witk |x|. We
therefore, should view the transformations as finite-time and ho’w® -
finite-space Fourier transforms, and hence the algebraic H(wvt):mﬁ/ s
0

equation as an approximation.
Using the definition

- . (60

— 27T r2 w— o'

* dew’ equ(F,w/;t)r '|55(I7,w';t)
P f

E(a,w):f d%?f drF(x,re 197eld X (54)
Voo - Equations(59) and (60) are the second major result of the
present paper. In applying these results to a specific problem,

the solution of Eq(53) reads we still have to calculate the source correlati®hin terms
-~ - ~ - of density matrix elements. This then yields a closed nonlin-
D"{(q,w;t)=[1+D§(q,w)- P w;t)] - DFYq, ). ear and nonlocal density matrix equation. We will illustrate

(55  this for some examples in the following section.

Here D™ andIT"' denote 3< 3 matrices in coordinate space V. EXAMPLES
and1l is the unity matrix.

For simplicity we now disregard polarization, i.e., we re-
place the X3 matrices by simple functions. We note, how-  We here consider an inhomogeneously broadened dense
ever, that a generalization is straight forward. As shown inensemble of randomly polarized two-level atoms in a cylin-

A. Inhomogeneously broadened two-level system

detail in Appendix C, we eventually arrive at drical geometry as shown in Fig. 5. For this system the time
evolution of the dipole operatar=|b)(a| is determined by
. ihw? e%r the simple Heisenberg-Langevin equation
D"™(X,w;t)=— 5 ——e 9, (56) _ .
6mec” ' o=~ (iwhy+ )0+ N0ise, (62)

where is the wavelength of the transition under consider-where the noise term denotes a white noise source, which is
ation in the rest frame, and=|x|=|r;—r,|. however of no interest herew),= w3+ A; is the atomic
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transition frequency in the laboratory frame. We here takavhereA = w— w2, is the detuning from the atomic resonance
into account Doppler broadening, which leads to a shifof 4t rest. For the collective decay rate only the real paf'sf

the lab-frame transition frequency from the rest- frame frés important, which enters the absorption coefficient accord-
guencyw?,. The collective light shift is small compared to ing to Eq.(57),

the average Doppler shift and, therefore, neglected. The co-
herence decay ratE,, consists of two contributions, one
resulting from free-space spontaneous degand the other (r w,t)=

_\/_ Paa(r t)— pbb(r t) ~ 22202

from the collective decay’, I',,=I"+ y/2. Equation(61) Ao (69)
can easily be solved by Laplace transformatioe(s,t)
=[odTe %x(t+ 7)), which yields Similarly, we have for the source term in the strong Doppler
limit,
j
~t, Paalt)
o (sit)oi(t)))y=——, (62 . rt
Mo T PS(r,w,o— J_ a a""( Leaiml 7o)
<<’6__(S.t)0_'_r(t)>>: pho(t) 63) Combining Egs.(69) and (70) and applying the relation
/= s+iw,,+ T between the free-space radiative decay satnd the dipole
momenty:p?=3mhe,ciylw® [25] (cf. also Appendix A
From this we immediately obtain yields the collective decay rai®9) for a proﬁbe atom with
(lab-frame transition frequency» at positionry,
(t) = ppp(t) ner
Pret(rJ on)=2 9? Paa pbb (64) e e2do(r .1
ﬁz rab-i-l(w—wab) F(w,t)Z'yf d r2qo(r,w,t)—2
v 47r
- 2p? LT rt
PS(, ,w,t):ﬁzN pz""a abj . (69 Pl (71)
he (Iap)™+ (0~ wgp) Paalr,t) = ppu(r,t)

whereg is the dipole moment of the transition and the over-with r = |F— FO|. To obtain the effective decay/pump rate we
bar denotes averaging over the velocity distribution of thehave to average over the velocity distribution
atoms, which is given by the Gaussian distribution

o

—_ 0.2 2
1 A2 F(t)=F(w,t)=J dw e (@7 @) 225 (@ 1).

W(A )= exp — . (66) 2w

V2mAp 2A3 (72

Since the lab-frame atomic transition frequency depends We now discuss two I|m_|t|ng cases. In the_ﬂrst case we
on the velocity, the collective decay rate, which is propor- assume a small excitation in the medium. This corresponds

tional to the incoherent radiation spectrum at this frequency fo the clellssk;cal jltuagotr\],voflradllatlon dtrapp\l/r\llg n ﬁm ;]nhort‘rr]]o-t
will be velocity dependent as well. Thus we have in genera eneously broadene o-level medium. Yve will show tha

a set of nonlinear coupled equations corresponding to differ= In this case Eq(72) leads to the integral equation of Holstein
ent velocity classes. If there are fast velocity-changing coll|ll3] In the second case we will disregard the spatial depen-
sions, the population dynamics of all velocity classes Wlll’dence but keep the nonlinearities, and consider the temporal

however, be approximately the same. In this case we may SSVOIUt'On from an initially excited ensemble.

1. Linear limit and Holstein equations of radiation trapping

LaO=pl (D)=1p,,(1.1), 6
Pun V) =PV =22y (1) (€7 For small excitation, the retarded light propagation can be

- . regarded as propagation in a medium with all population in
where pe{a,b} andr denotes the position of the atoms & ower state, i.egpp=1 andp,,=0. Thus
aa

considered. Note, however, that this approximation does not

hold if the inhomogeneous broadening mechanism is not due 0N o \/— A2
to Doppler as for example in solids. In that case one has to  qj(r,w,t)=qg(w,t)=— 37 . ATlAS (73
consider the full set of equations. Using E7), we find in € C

the fimit of large Doppler broadeningp>I"ap, and we can approximate the denominator in E4L) by

2N (F1) = pop(F. t) —1. This results in
(Y
Pe(r,0,t)= 2 V2 Paa Pob AZ/242

Ap

AlAp
1-i f dy e v

r<t>~yfvd3FG<Fo,F>paa<F,t> (74)

(68)

where
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o equ(w,t)r
G(ro,r=—2dp(w,) ———— (75)
47r
® 1
:_f do——=—e" & 02q7(w,1)
—x 27TAD
eZqS(w,t)r
X— (76)
4qr?
- dx e —L iexp[—K e*XZr]
\/; —o 4qr2)or 0 .

(77

HereK,=N\2g andg= y/\/27Ap characterizes the ratio of
the homogeneous to the inhomogeneous width.
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0.2

FIG. 6. Time dependence of excitation in spatially homoge-
neous, dense two-level medium. Time is in units of the inverse
free-space decay rate=N\?d=0 (dotted, 100 (solid line), 500

The dynamical evolution of the ensemble is described bydashed ling g=y/\2wAp=0.01.

the Bloch equation

Paa(To,t) =T () —[y+ 2T () ]paa(To,t).

In the small-excitation limit, the terip,, is of second or-
der and can be neglected. We thus arrive atlitihear inte-
gral equation for the atomic excitation,

(78)

baa<Fo,t>=—ypaa<Fo,t>+ydeSFGGO,F)paa(F,t).
79

Equation(79) is the integrodifferential equation for radiation
trapping derived by Holstein ifl3] for the special case of
Doppler-broadened two-level atoms. Thus, in the linea

Note thatl"(t)/y remains finite ap,,= 1/2, since the diverg-
ing denominator is multiplied by a vanishing integral expres-
sion.

The time evolution of the excited-state population from an
initially completely inverted system is shown in Fig. 6 for
different values of the densityy=N\?d=100 (solid line)
and »=500 (dashed linpandg=0.01. The dotted line cor-
responds to the free-space decay. One recognizes a honexpo-
nential behavior, with an accelerated decay in the initial
phase corresponding to amplified spontaneous emission and
a substantial slowdown of decay in the long-time limit.

The effective rate of decay of the excitatiohg

—Paalpaa 1S shown in Fig. 7. One can see that fgr
=500 the initial decay rate is already of the order of the

limit, we have rederived the theory of radiation trapping ofinhomogeneous Doppler-width (lpg\p/y~1.6) and the

[13].

2. Dynamics of initially inverted two-level system
in small-sample approximation

Let us now discuss a nonlinear problem, but in a smal

volume, such that the space dependence can be disregard&c:; .
d for the casep=100, that the decay becomes exponential

In this case we can carry out the volume integral placing th
probe atom on the axis of the long cylindrical samfdee
Fig. 5. We find for the decay rate for a probe atom with
transition frequency,

I'(w,t) . Paalt) _ B 7A2/2A%
Y oD paat) 1 ST KOE TR
(80)
whereA=w— 2, and
K(t)=Kod[pob(t) — paalt)]. (81)

Averaging over the inhomogeneous velocity distribution
of the atoms yields

() palt) 1

Y Pon(D)—paa(t) 7

xjx dy e {1—exd —K(he ). (82

Markov approximation of slow atomic evolution becomes
invalid. For higher atomic densities the system would show
superradiant decay in the initial phase, which cannot be de-
scribed by the single-atom density matrix equation. As noted
pefore, modeling of the cooperative decay requires a two-
gtpm density matrix description. One also verifies from Fig.

again in the long-time limit. The asymptotic escape rate is
given by

i
]
log§ ol =100 ——
i} 500 --------
]
0.5 ||
, & free decay
\
\
-0.5 \\\
ab e
0 5 10 15 20
vt

FIG. 7. Effective rate of decall o= — paa/paa fOr examples of
Fig. 6. Dotted line corresponds to free-space decay. Amplified
spontaneous emission in the initial phase and slowdown of decay in
final phase are apparent.
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0.5
F(—O:’t) ’ paa 04
F( ) L5 ) C=1l; 4 K
03} | 580 %
: : 7
o1 '
02}
0.5
0
- 2 3 4 5
Q/y

FIG. 8. Spectral distribution of incoherent decay as function of  F|G. 10, Stationary excited-state population as function of
time. »=500g=0.01. Dotted line shows Doppler distribution of qriying-field Rabi-frequency( for different cooperativity param-
atolmic transition frequencie®ot normalizedl Time is in units of  eters. Herel = * =0.

2

cal value. The bistability results from an effective feedback

y introduced by the Lorentz-Lorenz correction.

T o (83 We here consider a dense ensemble of resonantly driven
Kod(7 InKod) two-level systems as shown in Fig. 9. For simplicity of the
present discussion we assume that the driving field is homo-
which can be orders of magnitude smaller tharThis result  geneous. For most practical realizations this assumption is
agrees with Eq(1.1) of [13b] up to a numerical factor of the not valid. We are here, however, interested in principle ques-
order of unity, which is due to the fact that we here havetions and will therefore ignore drive-field depletion. The as-
disregarded a possible spatial inhomogeneity. sumption of a homogeneous driving field implies a homoge-

It is also instructive to consider the time-dependent specneous behavior of the atomic system and we can disregard
trum of incoherent radiation or equivalentiyw,t). Thisis  the spatial dependence in the collective decay and light-shift
done in Fig. 8 forp=>500. Shown is the spectral distribution terms. The density matrix equations for the system under
at different times normalized to the averaged fa(€). The  consideration read in a rotating frame,
dotted line shows thénot normalizedl inhomogeneous dis-
tribution of atomic frequencies according to E§6). One paa=—Tapaat T ppp—i(Qpan— QpZp), (84)
recognizes that the incoherent spectrum broadens with the
decay of excitation. In the initial phase of amplified sponta-
neous emissiony#t=0, . ..,1) one can sdbat the radiation
spectrum is narrower than the inhomogeneous atomic spe
trum. This gives the first indication of spectral condensation
a well-known phenomenon in amplifying media and lasers.

Yesc—

bab: —LapPap— 1 (2 +Cypap)(Paa— Pob) (85)

fihere we have assumed a réal I,=y+y*+T is the

total population decay rate out of the excited state, with

andy* being the free-space radiative and nonradiative decay

rates, and” the collective decay ratd. =1+ (y+ y*)/2.

B. Effects of radiative atom-atom interactions on intrinsic There is no collective light-shift contribution here due to
optical bistability symmetry reasons. One recognizes a term proportional to the

eatomic polarizatiorp,,, that adds to the Rabi-frequendy.

One of the most interesting dynamical effects in densé” ™~ . :
media due to the Lorentz-Lorenz nonlinearity is the possibil-11iS t€rm is due to the Lorentz-Lorenz correcti81) and

ity of intrinsic optical bistability predicted ifi7]. If a radia- @S the character of a feedbatomic polarization gener-

tively broadened two-level system is resonantly driven by €S @ fie_ld cgntrilgqtiorﬁ:ypab, which couples back to the
coherent field of Rabi-frequend, it shows mirrorless, i.e., 20m. C=N\"/47" is the cooperativity parameter that es-

intrinsic bistability, if the atomic density exceeds some criti- Sentially determines the number of atoms in a volurie
The stationary solution of Eq$84) and (85) for the ex-

cited state population fdr = y* =0 is shown in Fig. 10 for

. different cooperativities. One recognizes bistability ©r
—_— — a =3.

- 7*( Y QL We now analyze the effect of incoherent photons inside
:: ‘\\_;__ . the medium. To self-consistently determine the collective de-

cay rate, we have to calculate correlations of the dipole op-
eratorso=|b)(a] and o' in terms of density matrix ele-
- ments. More precisely we need the second order cumulants,
d i.e., correlations of operators minus their mean valwdsch
FIG. 9. Strongly driven, dense two-level medium.and y* are nonzero in the present cas&@hus we start with the
describe radiative and nonradiative decays, respectively,(and Heisenberg-Langevin equations féor=o0— (o) and o,
denotes Rabi frequency of local field. =0aa—(0aa), Whereo,,=|a)(al:
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So=—T 3y80— 2iQ 57,4+ Noise, (86) We now consider a thin plate of thicknedss shown in
Fig. 9 and assume that the beam diameter of the driving field

is large compared td. Carrying out the spatial integrations

in Eqg. (59 using Eqgs.(90) and (89), we find the following

whereQ, =Q+ Cyp,,. The relevant correlations can be ob- relation for the collective decay rate:

tained from these equations by Laplace transformation. This

yields at resonancew(= w,y,),

00 3a=— 2T 3p80 22— 1 (QF 60— Q 60) + noise, (87)

r 1 o2+ 2|1Q,|? (1
—_——— —_ —_— —e
Y Poo—Paa Paa™ |Pabl ng PaaPbb

(89) (91)

Zqu).
SOZN Iap(paa—Pob)
h? T2 +210.2°

’ISret(wab):

252N ['2 _ 2y1+2(0, |2 This equatio_n forl" is not yet ex.plicit sincel’ enters th_e

9N lap(Paa |pat2’| ) 210, PaaPbb. right-hand side of the equation in an essentially nonlinear

h? Fap(Tapt+2[Q[?) way. Using the stationary solutions of the density matrix
(89  equationsg84) and(85) with I' as independent variable, one

. . . can (with some additional approximationsolve (91).
Note that we have omitted space and time arguments, sinch, ( PP n Eas (9D

RF"S( Wap) =

we are interested in the stationary properties of the system in 's yields
a homogeneous sample. From E88) we immediately find
the absorption coefficient ' paa (1-eK) ©2
2 Y 1-2paa ’
oMo Ta (. (90
° 3heo © 12420 Paa Poor with

or 1+ y*1y(1—2paa)
202192+ 2CH1—2pa0) 2+ [ 1+ ¥ 1 Y(1—2paa) 1M1 —2p,a)?

(93

C is the cooperativity parameter, ane: 7rd/\. Eq. (45) and Fig. 3 by the corresponding free-space Green’s
In Fig. 11 we show the stationary solutions for the function.

excited-state population as a function of the driving-field e note that we did not intend to present a comprehen-

Rabi-frequency() for different cooperativity parameters and Sive discussion of effects that could affect intrinsic optical

for purely radiative decay, i.ey* =0. The dotted curves bistability. In particular, in atomic vapors, collisions may

correspond to the solutions without radiative atom-atom jn-nave a much more prpnounced effect. Furth_ermore, the
teractions. As can be seen, bistability persists, but cannot bcéegletlolr) c_)f the pump f'elld n:eds to behtaken :nto_ acco;fnt
resolved for physically reasonable values af= 100 in Fig. ?n rea '?t'c exper%nentad fC bemes S.lélc ‘Zs selective reflec-
11(b)]. Radiation trapping prevents the energy to escapeIOn spectroscopy27] need to be considered.
from the sample and already very small external pumping is
sufficient to keep the atoms in a highly excited state.

The situation is different, if there is also nonradiative de- We have shown that the interaction of a classical radiation
cay, as shown in Fig. 1gherey* = y). In comparison to the field with a dense ensemble of atoms can be described by
radiatively broadened case of Fig. 11, the bistability curvesnodified Maxwell-Bloch equations in the Markov limit.
are only moderately altered even for large samples with While the equations for the macroscopic classical field, the
=1000. The critical cooperativity at which bistability starts Maxwell equations, remain unchanged, the atomic equations
to occur is somewhat increased. The nonradiative decay pr@f motion have additional nonlinear and spatially nonlocal
vides an additional energy escape channel, such that therms that result from the exchange of spontaneous photons
trapped incoherent radiation is not strong enough to keep thieetween the atoms. The first nonlinear term, the LL correc-
atoms in the excited state. tion, is only present if there is initial coherence or an external

Thus we can conclude that radiative atom-atom interaceoherent field. The nonlinear and nonlocal collective decay
tions do not destroy intrinsic bistability in driven two-level and level-shift terms are present whenever there is excited-
systems, if nonradiative decay is present. This is differenstate population. In the Markov limit of spectrally broad in-
from our previous resulf26]. The reason for this discrep- coherent radiation inside the medium, the modified Bloch
ancy is that our previous approach essentially neglected thequations have the form of single-atom density matrix equa-
medium effect on the retarded propagation and was, therdions. They are of the Lindblad type and thus fulfill the for-
fore, inconsistent for larger densities. This would corresponanal requirements for conservation of probability and positiv-
to replacing the retarded propagator of ihieractingfield in  ity. The effect of the collective decay has been discussed for

VI. SUMMARY
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the examples of an initially excited system of inhomoge-which is the free-space spontaneous emission rate from the
neously broadened two-level atoms and intrinsic optical bi\Wigner-Weisskopf theory25].

stability. In the first case we find accelerated deaperlu-
minescencgin the initial phase and radiation trapping in the
final phase. In the long-time limit, where the excited state
population is small, the equations of motion coincide with
the Holstein equations of radiation trappifig]. The collec-
tive decay modifies intrinsic optical bistability in a strongly " . .
driven two-level system. As opposed to our previous predicin€ contour GF. Noting thatD, * =0 in RWA, we immedi-
tion [26], bistability persists, however, if also nonradiative &t€!y find from Eq.(42),

decay is present. Collective decay and pump processes as
well as light shifts are relevant for the population dynamics

APPENDIX B: DYSON EQUATION FOR REAL-TIME
GREEN'’S FUNCTIONS

In this appendix we derive the integral equatig4s) and
(46) for the real-time GF from the Dyson equatio#2) for

D++ DO++ D++H++D+++D++H+ D™ +

and are particularly important for ground-state coherences in —Dg II" D *+Dg I "D, (B1)
multilevel systems. A detailed discussion of coherence ef-
fects in dense multilevel systems as well as the study of D f=-D, I "D *+D, I""D*", (B2

cooperative decay processes will be the subject of future _ o
work. where we used a short notatiorD, 1" "D~ *

=[[d3d4 Dga;(l,B)H;V_(BA)D;,3*(4,2) and the integra-
tion goes over physical times fromoo to = and over the
volume of the sample. Note the sign changes in EBg)
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APPENDIX A: FREE-SPACE DECAY RATE Applying the relation
ady, =T7t+ 17—+ _Trt- -
In Eq. (22) we have given the spontaneous decay rate inl_I (1.2=I""(1.2-1""(1,9=11""(12 -1 ((1|§1%,))

the atomic medium. We now show that this expression leads
to the well-known Wigner-Weisskopf result for the radiative and subtracting Eq(B4) from Eq. (B3) yields the Dyson
decay of a two-level atom if the interacting field is replacedequation forDaV=p*+t+—_p~*:

by the free field. For a single two-level transition with dipole

- adv
moment alonge,,, we have, according to E¢22),

OapB

—f fd3d4D

D2%(1,2 =DJ%%(1,2

adv

(1,391133(3,9D3%(4,2),

2 ro
zp—f d7([Eg,(To.t+7),Eq,(ro,)])e'“". (A1) Ot
h2) e (B6)
The free-field commutator is given §22] where we have restored full notation. Sm@'e‘(l 2)
—Dad"(2 1) one immediately obtains the correspondmg
[EJM(FO,H T).EEM(Fo.t)] Dyson equation for the retarded propagator,
2
e 1L a-)eon ) D5(1.2-Dg,(12 - | [ d3daDig, (19
26y (277)° k?
X115(3,4D%5(4,2 (B7)
Substituting Eq(A2) into Eq. (Al) yields ith
Wi
2 h® 1 K2 ret ++
_9 ho? szﬂk(l——’;- A3) Me(1,2=11" (1,2 117, (12
h? 2e4C3 (27) k M, (1,2-1,,(12
Finally carrying out the angle integration leads to gg
- L, Pl g1, - t2) 2 ([0, (t2).u(t2)])
9w 8w
-re TP (A4)
37henc®  3heghd X 8(rr})8(ry—r)). (B8)
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Thus we obtain the Dyson equatié#6) of Sec. IV for the
retarded propagator inside the medium.

We now turn toD ~ . Substitutingll =~ =I1"*—II""in
Eq. (B4) we find
D_+=—DBetHrEtD_+—DBetH_+DadV. (Bg)

Iteration of this equations yields

retH retD ret 4D retl—[ retD retl—[ retD ret
— 4., ']H—+Dadv

D T= _[Dret
(B10)

which can be rewritten in the compact form

D;g(1,2)=—f fd3d4D'et(1 I3, (3,9D3%(4,2),

(B12)
where
IT5,,(1,2=11,, (1,2
=TS (o]t (1)
X 8(r—r;)8(rp—r)). (B12)
Thus we arrive at Eq45) of Sec. IV.
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FIG. 11. Stationary excited-state population as function of

driving-field Rabi-frequency) for radiative decay ¥*=0) and
with radiative atom-atom interactions= wd/\ =1 (upper picturg
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APPENDIX C: SOLUTION OF THE DYSON EQUATION
FOR D™

With the approximations made in Sec. IV 3, we derived
the matrix solution(55) for the Fourier transform of the re-
tarded GF in the medium.

=[1+DF(d,w)-P{w,0)] - DFd,w).
(CY

Bret(a,w,t

To evaluate this expression, we first approximate the Fourier
transform of the free-space retarded propagator. According
to [22],

2 2
0 o(r—cr)
E)ectyﬁ(lz )| 6, 2_C2 @B ( )
ar IXG X5 r
(C2
with r=|x|=|r,—r,| and7=t;—t,. Thus,
ret i% w2 XaXB (?2 e—iwr/c
Difas(x)= CAme| 27T vz 2] x
(C3

For largew, such that <r, only the spatial derivative of the
exponential contributes and we find

iﬁwz 5 XoXg e*IwI’/C ca
4776002\ w2 ro €4

E)ectyﬁ(x w)=—

We now approximate EqC4) by ignoring the polariza-
tion, i.e., by performing an orientation average.

XaXg XaXg 1
— ==0,3-
r2 r2 3 ek

This approximation is exact when the medium is randomly
polarized. EquationiC5) leads to

(CH

0.5

» v.'.-.vn”""‘

04

0.3

0.2

0.1

Q/y

FIG. 12. Stationary excited state population as function of
driving-field Rabi-frequency) in the presence of additional nonra-
diative decay ¢* = y) and with radiative atom-atom interactions.

andr =100 (lower picturg. Dotted curves show behavior without r=1000. Dotted curves show corresponding behavior without ra-

radiative atom-atom interactiorisee Fig. 10.

diative atom-atom interactions for* = y.
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ihw? e lerlc poles on the real axis gt= = w/c. In the free-space case we
> (C6)  had to introduce the constaet-0 to move the pole at|
6meoc r =w/c into the lower half plangand at the same time to
move the pole afj= — w/c into the upper one This is nec-
essary to have retarded propagation. ker0 one would
. i w2 1 obtain the advanced propagator. If absorbingmedium is
Dget(q,w): — present, RgP™!] is negative and hence addseoTherefore,
3eoc? 2_ 212, 5.2 again the only contributing pole is that @t w/c. However,
g°— w/c +2ie —, (C7) ; N L X )
if the medium isamplifying there is a problem. In this case
] . Re P™'] is positive and counteracts In such a case the pole
where we have mtrodu_ced a small positive constarto 4 g=—w/c could move into the lower half plane and we
move the pole afj=w/c into the lower half of the complex \youId obtain an advanced instead of a retarded propagator.
plane. . _ The origin of this problem is that the retarded propagator in
Substituting Eq(C7) into Eq.(C1), we find an amplifying medium is strictly speaking not Fourier trans-
formable, since it is an exponentially growing function of

E){ft(i,w)z -

and thus,

. 1 e . distance. In such a case, one has to take into account the
D"{(x,w) = 3 d3gD"™(q,w)e ' finite spatial dimensions of the amplifying medium and in-
(27 troduce a cutoff function, which leads to a finite-space Fou-
rier transform. Although this lacks mathematical rigor, we
_ f dq now assume that the effect of the cutoff function is modeled
 Bm2e 2 €0C> by a sufficiently large value o€, such that the pole aq
~ w/c remains in the lower half plane. With this we find
qefiqr
% w? ~ . Ryret v iho? &% —iqgr
92— ?[1+2iﬁ/3eoPre‘(w)]+2i ewlc D"(x,w)=— P - e (C9
(C8  where
We evaluate this integral by contour integration along the in
real g axis and back in the lower half plan@ote thatr Qo(Tr,)= —| 1+ _Pret(r w,b)|. (C10
>0). In free spaceF=0) and fore=0, we would have two 3eo
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