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Cooperative effects in the light and dark periods of two dipole-interacting atoms
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If an atom is able to exhibit macroscopic dark periods, or electron shelving, then a driven system of two
atoms has three types of fluorescence periods~dark, single, and double intensity!. We propose to use the
average durations of these fluorescence types as a simple and easily accessible indicator of cooperative effects.
As an example, we study two dipole-interactingV systems by simulation techniques. We show that the
durations of the two types of light periods exhibit marked separation-dependent oscillations and that they vary
in phase with the real part of the dipole-dipole coupling constant.@S1050-2947~99!03903-7#

PACS number~s!: 42.50.Ar, 42.50.Fx
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I. INTRODUCTION

Cooperative effects in the radiative behavior of ato
stored in a trap may arise from their mutual dipole-dipo
interaction if the atoms are close enough to each other. T
is particularly interesting for two or three atoms, and h
attracted considerable interest in the literature@1–25#. Re-
cently, the present authors investigated in detail the transi
from antibunching to bunching for two two-level system
with decreasing atomic distance@26#.

For a single multilevel system with a metastable state
has the striking phenomenon of macroscopic dark periods
electron shelving, in which the electron is essentially shel
for seconds or even minutes in a metastable state with
photon emissions@27–35#. For two such systems their fluo
rescence behavior would, without cooperative effects, be
the sum of the separate photon emissions, with dark per
of both atoms, and light periods of a single atom and t
atoms. In Ref.@36# the fluorescence intensity of two an
three such ions in a Paul trap was measured, and a l
fraction of almost simultaneous jumps by two and even
three ions was recorded. This fraction was orders of ma
tudes larger than that expected for independent ions. A qu
titative explanation of such a large cooperative effect
been found to be difficult@13,37–40#, and we will briefly
discuss this question again in Sec. V. Other experiment
larger distances and with different ions showed no coop
tive effects@41,42#. A numerical approach to the study o
double jumps faces the problem that for good statistics
needs very long simulation times.

As a simpler indicator of cooperative effects for syste
with light and dark periods, here we propose to use the m
durationsT0, T1, andT2 of the three different types of fluo
rescence periods, i.e. dark, single-intensity, and dou
intensity periods, respectively. The running time can
much shorter than required for double jumps, making th
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quantities easily accessible, both experimentally and in sim
lations.

In this paper we therefore present a study of coopera
effects on the mean durations of the three types of fluo
cence periods of two three-levelV systems with a metastabl
state, as a function of their distancer. The level scheme of a
single V system is depicted in Fig. 1@43#. Our simulations
show that the mean durations of the single- and doub
intensity periods,T1 and T2, depend sensitively on the
dipole-dipole interaction and thus on the atomic distancer.
They exhibit marked oscillations which decrease in amp
tude whenr increases. These oscillations seem to contin
up to a distance of well over five wavelengths of the stro
transition, where we have stopped our simulation. The r
part of the dipole-dipole coupling constant of the twoV sys-
tems also exhibits damped oscillations. As a remarkable
we find that these oscillations are in phase with those ofT1
and T2. This correspondence is easy to understand in
itively, since the real part of the dipole-dipole coupling co
stant enters the decay rates of the excited states of the c
bined two-atom system.

In Sec. II we explain the methods employed, which a
based on the quantum jump approach@44–48# ~equivalent to
the Monte Carlo wave-function approach@49# and to quan-
tum trajectories@50#!. This approach is here adapted to tw
dipole-interactingV systems.

In Sec. III we define in more detail the three types
fluorescence periods of zero, single, and double intens
This involves an averaging procedure, both experiment
and theoretically. We then present the results of our simu
tions.

In Sec. IV the numerical results are interpreted, and i
shown that one can associate three distinct subspace
states of the coupled system with the three types of fluo
cence periods. During each period the coupled system
mains in the corresponding subspace. In Sec. V we disc
and summarize our results.

II. QUANTUM JUMP APPROACH

In the quantum jump approach@44–48#, the time devel-
opment of an atomic system is described by a conditio

n,
2385 ©1999 The American Physical Society
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2386 PRA 59ALMUT BEIGE AND GERHARD C. HEGERFELDT
non-Hermitian HamiltonianHcond, which gives the time de-
velopment between photon emissions, and by a reset op
tion which gives the state or density matrix right after
emission. For a generalN-level system these have been d
rived in Refs.@46,47#. The derivation is adapted here for
system consisting of two atoms. Slight modifications ar
here since the field operator appears with different posi
arguments.

We consider two atoms, each aV configuration as shown
in Fig. 1, with the levelsu1& i , u2& i , and u3& i ( i 51 and 2!,
and fixed at positionsr i . We define operatorsSi j

6 ( i
51,2; j 52 and 3! in the two-atom Hilbert space bySi j

1

5u j & i i ^1u and Si j
25u1& i i ^ j u. For simplicity we consider the

case where the dipole moments of two atoms are the sa
i.e., 1^1uX1u j &152^1uX2u j &2[D1 j . If D1 j is real, then the
angle it forms with the line connecting the atoms is d
noted by q j . In general q j is defined through cos2 qj

5u(D1 j ,r )u2/r 2D1 j
2 , where r5r22r1. We assume the lase

radiation normal to this line so that the lasers are in phase
both atoms. The two lasers are denoted byL2 and L3. We
take zero detuning andEL j (r ,t)5Re@E0 j exp$2i(vj1t
2k•r )%#, where\v j 1 is the energy difference between lev
1 and levelj . Making the usual rotating-wave approximatio
and going over to the interaction picture the interact
Hamiltonian becomes

H I5(
i 51

2

(
j 52

3

(
k,s

\@gj k,s ak,s ei ~v j 12vk!t eik•r iSi j
11 H.c.#

1HL , ~1!

with the coupling constants

gj k,s5 ieS vk

2e0\L3D 1/2

~D1 j ,ek,s!, ~2!

and laser part

FIG. 1. V system with metastable level 2 and Einstein coe
cientA3 for level 3.V2 andV3 are the Rabi frequencies of the tw
lasers driving the weak 1-2 transition and the strong 1-3 transit
respectively.
ra-

-
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n

e,
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or

HL5
\

2 (
i 51

2

(
j 52

3

V j$Si j
11Si j

2%. ~3!

The Rabi frequencies of the lasers areV j5(e/\) D1 j•E0 j
for j 52 and 3, and they are the same for both atoms. T
operatorHI implicitly contains the dipole-dipole interactio
of the two atoms, as seen from the conditional Hamilton
Hcond further below. In the Power-Zienau formulation, whic
we have used above, this interaction is due to photon
change@1#.

Conditional Hamiltonian and waiting times. As explained
in Refs. @44–48#, Hcond is obtained~in the interaction pic-
ture! from the short-time development under the condition
no emission, i.e., from the relation

12
i

\
HcondDt5^0phuUI~Dt,0!u0ph&, ~4!

where the right-hand side is evaluated in second-order
turbation theory forDt intermediate between inverse optic
frequencies and atomic decay times. In a similar way as f
single atom@44–47#, for the system of two three-level atom
one obtains@51#

Hcond5
\

2i F (j 52

3

Aj~S1 j
1 S1 j

2 1S2 j
1 S2 j

2 !1Cj~S1 j
1 S2 j

2 1S2 j
1 S1 j

2 !G
1HL , ~5!

with the r-dependent coupling constants

Cj5
3Aj

2
eik j 1rF 1

ik j 1r
~12cos2 q j !

1S 1

~kj 1r !2
2

1

i ~kj 1r !3D ~123 cos2 q j !G , ~6!

which contain the dipole-dipole interaction between the
oms. The dependence ofCj on r is maximal for q j5p/2
~see Fig. 2!. In the following, for the Einstein coefficient
and Rabi frequencies we will assume the relations

V2!V3 , V2!V3
2/A3 and A2'0. ~7!

ThenA2 and ReC2 can be neglected inH cond; we will also
neglect ImC2, which is allowed ifr is not small compared to
l21, as seen from Fig. 2.

Let ug&, ue2&, andue3& denote the states where both atom
are in the ground state and the excited statesu2& and u3&,
respectively, and letusjk& be the symmetric andi uajk& be the
antisymmetric combinations ofu j &uk& and uk&u j &. Then Eq.
~5! becomes

-

n,
Hcond5
\

2i FA3 ~ us23&^s23u1ua23&^a23u!1~A31C3!us13&^s13u1~A32C3!ua13&^a13u12A3 ue3&^e3u

1H (
j 52

3

A2iV j~ ug&^s1 j u1us1 j&^ej u!1 iV2~ us13&^s23u1ua13&^a23u!1 iV3~ us12&^s23u2ua12&^a23u!1H.c.J G . ~8!
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FIG. 2. Dependence ofCj /Aj ( j 52,3) onr.
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Without lasers the conditional Hamiltonian is diagonal
this basis.

Between emissions the atomic time development is gi
by Ucond(t,0)5exp$2iHcondt/\%, which is nonunitary since
Hcond is non-Hermitian. The corresponding decrease in
norm of a vector is connected to the waiting time distributi
@32# for emission of a~next! photon. If at t50 the initial
atomic state isuc&, then the probabilityP0 to observeno
photon by a broadband detector~over all space! is given by
@44–47#

P0~ t;uc&)5iUcond~ t,0!uc&i2, ~9!

and the probability densityw1 of finding the first photon at
time t is

w1~ t;uc&)52
d

dt
P0~ t;uc&). ~10!

For an initial density matrix instead ofuc& the expressions
are analogous, with a trace instead of a norm squared in
~9!.

According to Eqs.~9! and ~10!, A36ReC3 describe the
decay rates ofus13& and ua13&, respectively. From this the
well-known fact follows that two atoms with dipole intera
tion can decay faster or slower than two independent at
~superradiance and subradiance@23#!. Im C3 corresponds to a
level shift of us13&, and 2Im C3 to a level shift of ua13&,
caused by the interaction between the atoms.

Reset matrix. Now we determine the reset operatio
which gives the state or density matrix right after a pho
detection. Let the state of the combined system, atoms
quantized radiation field, be given at timet by u0ph& r ^0phu,
i.e., the atomic system is described by the density matrixr,
and there are no photons~recall that the laser field is treate
classically!. If at time t1Dt a photon is found by a
non absorptive measurement, the combined system is in
state

P.UI~ t1Dt,t !u0ph& r ^0phuUI
†~ t1Dt,t !P. , ~11!

whereP.512u0ph&1A^0phu is the projector onto the one o
more photon space~sinceDt is in the above range, and thu
small one could directly take the projector onto the on
n

e

q.

s

n
us

he

-

photon space!. The probability for this event is the trace ove
Eq. ~11!. For the state of the atomic system it is irreleva
whether the detected photon is absorbed or not~intuitively
the photon travels away and no longer interacts with
atomic system!. Hence after a photon detection at timet
1Dt, the non-normalized state of the atomic system alo
denoted byR(r)Dt, is given by the partial trace over th
photon space,

R~r!Dt5trph„P.UI~ t1Dt,t !

3u0ph&r ^0phuUI
†~ t1Dt,t !P.…. ~12!

We callR(r) the non-normalized reset state@46#. Proceed-
ing as in Refs.@46,47# and using perturbation theory, on
obtains@51#

R~r!5ReC3~S13
2 rS23

1 1S23
2 rS13

1 !

1A3~S13
2 rS13

1 1S23
2 rS23

1 !. ~13!

The normalized reset state isR̂(r)[R(r)/trR(r). By Eq.
~11! the normalization ofR(r) is such that trAR(r)Dt is the
probability for a photon detection at timet1Dt when the
~normalized! state of the atomic system at timet is r. The
laser field does not appear in the reset state, just as in
case of a single atom@46,47#, since its effect during the shor
time Dt is negligible.

By a simple calculation one checks that Eq.~13! can be
written as

R~r!5~A31ReC3!R1rR1
† 1~A32ReC3!R2rR2

†

~14!

where

R15~S13
2 1S23

2 !/A25ug&^s13u1us13&^e3u

1~ us12&^s23u2ua12&^a23u!/A2,
~15!

R25~S13
2 2S23

2 !/A25ug&^a13u1ua13&^e3u

1~ us12&^a23u1ua12&^s23u!/A2.

If r is a pure state,r5uc&^cu say, thenR6rR6
† are also

pure states. This decomposition ofR(r) is advantageous fo
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simulations of trajectories. As pointed out above,A3
6ReC3 describe the decay rates ofus13& and ua13& to ug&.
The stateue3& can decay both tous13& andua13&, with respec-
tive decay ratesA36ReC3. The decay rate of the statesus23&
and ua23& is A3, and is the same as in the case of two ind
pendent atoms.

Simulation of a single trajectory.Starting att50 with a
pure state, the state develops according toUconduntil the first
emission at some timet1, determined fromw1 in Eq. ~10!.
Then the state is reset according to Eq.~13! to a new density
matrix ~which has to be normalized!, and so on.

The decomposition ofR(r) in Eq. ~14! allows one, how-
ever, to work solely with pure states, which is numerica
much more efficient. One can start with a pure stateuc&,
develop it with Ucond until t1 to the ~non-normalized!
uc(t1)&, reset to one of the pure statesR6uc(t1)&/i•i with
relative probabilities given by the factorsA36ReC3 appear-
ing in Eq.~14!, and so on. The waiting time distributions a
not changed by this procedure.

III. FLUORESCENCE JUMPS FOR TWO ATOMS

For a single atom in aV configuration, the existence o
dark periods is due to two widely different time scales in t
times between two subsequent photon emissions~cf., e.g.,
Refs. @32,44,45,35#!. The smaller time scaleT8 is of the
order ofA3

21, while the larger time scaleT9 is the inverse of
the smallest eigenvalue ofHcond/ i for a single atom. One can

pick a time,T̃, say, withT8!T̃!T9, and if the time between

two subsequent photon emissions is longer thanT̃ one may
then define this as a dark period. The mean duration of s

dark periods is essentially independent ofT̃, if chosen as
above, and is given byT9. When the waiting time betwee

two photons is less thanT̃, the atom is said to be in a ligh
period. The average intensity in a not too short light period
that of a driven two-level system, i.e., in our case the 1 an
levels.

If one has two independent,noninteracting, atoms, the
combined fluorescence is just the sum of the individual c
tributions. When both atoms are in a dark period one ha
dark period of the combined system. If only one atom is i
dark period, one observes a fluorescence period with in
sity of that of a single two-level atom~single-intensity pe-
riod!, and if both atoms are radiating one observes a dou
intensity period. However, due to fluctuations in t
emission times the latter two periods are not sharply defi
if the atoms are so close to each other that one cannot d
mine from which atom a particular photon came. To dist
guish the periods therefore, one has to use an average ph
intensity, obtained by means of an averaging timeDT. This
DT has to be large enough so that the photon inten
doubles when both atoms are not in a dark period. If, on
other hand,DT is chosen too large, one may overlook sh
fluorescence periods, and one will see more seemingly d
transitions between dark periods and double intensity per
~double jumps!. The analytic treatment of fluorescence
two independent atoms is easily obtained from the sing
atom case@36#.

For two dipole-interactingatoms which are sufficiently
close to each other, the photons cannot be attributed
-

e

ch

s
3
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a
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er-
-
ton
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e
t
ct

ds

-

a

particular atom either, and one has to consider the two in
acting atoms as a jointly radiating system. To be able
differentiate between different fluorescence phases one a
has to average the photon numbers over a time intervalDT
to arrive at an intensity, and in the following we present t
results of numerical simulations which have been obtain
by the methods explained in Sec. II.

Atomic distances of a few wavelengths. Figure 3 shows
the number of emitted photons per timeA3

21, averaged over
a time intervalDT5190/A3. If the atomic distance is large
than a third of a wavelength of the fast transition,r . 1

3 l31,
i.e., k31r .2, one can clearly distinguish three types of flu
rescence periods: dark periods~0!, single-intensity periods
~1!, and double-intensity periods~2!. For two noninteracting
atoms these would correspond to radiation of no atom,
atom, and two atoms, respectively. However, in the case
interaction and small distance the system of two atoms r
ates as a whole, and in general one cannot attribute perio
and 2 to radiation of individual atoms as in the nonintera
ing case.

The transition between the periods occurs rapidly but
instantaneously. The duration of the periods is long co
pared to the atomic time scale. From a sufficiently long t
jectory one can obtain the average lengths of the perio
denoted byT0 , T1, andT2. The results are shown in Fig. 4
The Rabi frequencyV2 of laser 2, which drives the wea
atomic 1-2 transitions, has been chosen in such a way
for independent atoms one hasT052000/A3. As seen in Fig.
4, T0 is essentially independent of the atomic distance a
thus of the dipole-dipole interaction. In contrast to this, t
two light periods are strongly distance dependent. In F
4~a!, T2 varies between 1200/A3, and 2600/A3, and a similar
behavior is also seen in Fig. 4~b!. The curve forT1 resembles
that for T2, except for smaller relative variation.

There is an interesting correspondence between ther de-
pendence ofT1 and T2 with that of ReC3. As seen from a
comparison of Figs. 4 and 5, the variations withr of all three
quantities seem to be in phase. For ImC3 the variation is out
of phase, as seen from Eq.~6!. Since ReC3 influences the
decay rates of the two-atom systems, this in-phase beha
suggests that the variation in the lengths of periods 1 an

FIG. 3. Number of photons,I (t), per timeA3
21 emitted by two

dipole-interacting atoms, averaged overDT5190/A3, for V2

50,01A3, V350,5A3, and q35p/2. ~a! k31r 510, ~b! k31r 55,
and ~c! k31r 52. The dashed curve indicates the fluorescence t
~zero, single, and double intensity!.
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FIG. 4. T0, T1, andT2 as a function ofr for q35p/2 andDT5250/A3. ~a! V350.3A3 and~b! V350.6A3. V2 has been chosen suc
that for two noninteracting atoms one hasT052000/A3.
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are due to anr dependence of the decay rates.
Small atomic distances. Our simulations have shown, fur

thermore, that forr , 1
4 l31 the intensity in period 2 decrease

and no longer reaches that of two simultaneously radia
independent atoms. For very small distance only period
and 1 remain. The reason for this will be discussed belo

IV. INTERPRETATION OF RESULTS

For a single atom~in a V configuration as in Fig. 1! one
can associate light and dark periods with certain ato
states and density matrices. During a dark period the ato
state rapidly approaches the eigenstate ofHcond with the
smallest imaginary part of the eigenvalue@44,35,52#. This
eigenstate is very close tou2&, up to terms of order
V2A3 /V3

2 andV2 /V3 @52#. Thus in a dark period, the atom
can be regarded to be approximately in the stateu2&. During
a light period the atom can be regarded to be in the equ

FIG. 5. ReC3 /A3 as a function ofr for q35p/2.
g
0

.

ic
ic

-

rium state~density matrix! of the 1-3 subsystem driven b
V3, again up to terms of the above orders@52#. A jump from
one fluorescence period to the other corresponds to a tra
tion between these atomic states, and such a transitio
caused by laser 2. WithV250 andA250 there would be no
transitions. This correspondence clearly carries over to
three fluorescence periods of two independent atoms.

We are now going to suggest a similar corresponde
between fluorescence periods and states for two dip
interacting atoms. Figure 6 depicts the Dicke states of
two-atom system@see Eq.~8!#. Dashed arrows indicate th
weak driving by laser 2, solid arrows indicate strong drivi
by laser 3 and decay, respectively. Now, forV250, i.e., no
dashed arrows, the states in Fig. 6 decompose into three
connected subspaces, namely, one spanned byue2& and the
two others spanned by the four inner and outer states, res
tively:

subspace 0: ue2&,

subspace 1: us12&,ua12&,us23&,ua23&,

subspace 2: ug&,us13&,ua13&,ue3&.

If the two atoms are in stateue2&, then each of them is in its
dark state, and thus no photon can be emitted. ForV250,
the time development in subspace 1 is exactly the sam
that for a system of two noninteracting atoms in the sa
subspace of states. This can be seen directly from Eq.~8!,
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and it is also physically obvious since two atoms can o
interact via photon exchange if none of them is in the d
stateu2&. The photon rate for subspace 1 is therefore tha
a single two-level atom with levels 1 and 3. Subspace
corresponds to the level scheme of a system of two dip
dipole-interacting two-level atoms~with levels 1 and 3!, as,
for example, recently discussed in Ref.@26#. The photon rate
of this system is, in good approximation, twice that of
single two-level atom, providedr . 1

4 l31. For smaller atomic
distance the photon rate rapidly decreases to zero, due t
increasing level shifts.

If the two-atom system has been in one of the subspa
0, 1, or 2, it will quickly approach the corresponding equ
librium state for drivingV3 and distancer. If V2Þ0 the
additional weak driving will, from time to time and in ana
ogy to a singleV system, cause transitions between the th
subspaces 0, 1, and 2, and each transition will correspon
a jump in the fluorescence.

Thus the fluorescence periods 0, 1, and 2 should co
spond to~the equilibrium states of! the subspaces 0, 1, and
respectively. This is verified by the numerical evaluation
Fig. 7. In the lower part of Fig. 7 a particular realization o
an intensity trajectory with alternating periods of fluore
cence is plotted. The three upper curves show the pop
tions of the three subspaces corresponding to this realiza
obtained by the conditional Hamiltonian and reset matrix
Sec. II. The agreement between fluorescence periods
and 2, and subspaces 0, 1, and 2 is striking. During d
periods the two-atom system is in the subspace 0, and s
larly for periods 1 and 2.

This correspondence, however, depends to some exte
how largeDT is chosen for the averaging of photon coun
If DT is chosen too large one can overlook some jum
between subspaces and some very short fluorescence pe
If DT is chosen too small there may be large intensity fl
tuations, resulting in an incorrect determination of the diff
ent periods.

If the atomic distance decreases below1
4 l31 the level

shifts of us13& and ua13& by ImC3 increase rapidly. This ren
ders the driving by laser 3 within the subspace 2 much
efficient. Hence for very small atomic distances the drivi

FIG. 6. Dicke states. The dashed and solid double arrows de
weak and strong driving, respectively. Simple arrows denote
cays.
y
k
f

2
e-

the

es

e
to

e-

-
la-
n,
f
1,

rk
i-

on
.
s
ds.
-
-

s

is essentially restricted to subspace 1. This explains the v
ishing of double-intensity periods for very small atomic d
tances.

V. DISCUSSION AND SUMMARY

Cooperative effects of two driven three-level atoms ha
been studied, where each individual atom can exhibit li
and dark periods. The atoms were considered to be a fi
distancer apart. If r is of the order of a few wavelengths o
the fluorescent light the individual photons are no long
attributable to a particular atom, and the two-atom syst
radiates as a whole, due to the dipole-dipole interaction
addition to dark periods the system shows two types of li
periods, one with fluorescence intensity as if only a sin
atom were radiating, and the other with double intensity.

We have proposed to study the mean durationsT1 andT2
of the two types of light periods as a quantity sensitive
depending on the dipole-dipole interaction and thus on
atomic distance. Experimentally and numerically these qu
tities are easily accessible.

We have performed fluorescence simulations for atom
separations of up to five wavelengths and have found os
lations inT1 andT2 of up to 40% in amplitude. The ampli
tude decreases with the atomic separation but the oscillat
seem to continue for separations larger than five wa
lengths. By simulations we have shown that ther depen-
dence ofT1 andT2 is in phase with that of the real part of th
dipole-dipole constant. This is eminently reasonable si
ReC3 directly influences the decay rates of the excited sta
of the two-atom system.

We have associated the three types of fluorescence
ods with certain subspaces of states for the two atoms an
equilibrium states in these subspaces. The equilibrium st
depend on the driving of the strong transition and on
distance. The weak driving then causes transitions betw
the subspaces. The transition rates depend not only on
weak driving, but also on the form of the respective equil
rium states and thus on the strong driving and on the ato
distance. In contrast to the mean durations of the light p

te
e- FIG. 7. Correspondence between fluorescence types and
spaces 0, 1, and 2 forV250,01A3, V350,5A3, andq35p/2. The
atomic distance is chosen as 5l31/2p.
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ods the mean duration of the dark periods is practically
dependent ofr. This is intuitively quite clear, since in th
dark state there is essentially no photon exchange and
no induced dipole-dipole interaction.

To define fluorescence periods, one has to average
number of photon emissions over a time intervalDT of a
some finite length. Hence very short fluorescence periods
washed out and not observed, and this can lead to appa
direct transitions between double-intensity periods and d
periods, or, vice versa, so-called double jumps. Experim
i,
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tally these were seen in Ref.@27#. The cooperative effects o
up to 40% found by us in the duration of the single-intens
and double-intensity periods are noticeable. Therefore,
expect that the frequency for the appearance of double ju
is also modified by the dipole-dipole interaction, but we ca
not predict whether the changes are of the two orders
magnitude reported in Ref.@27#. In addition, the system in
Ref. @27# differs from the one considered here, and it is n
obvious if and how our results would carry over to that sy
tem.
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