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Nonlinear dynamical behavior of a hydrogen molecular ion
and similar three-body Coulomb systems

Yiwu Duan,* Charles Browne, and Jian-Min Yuan
Department of Physics and Atmospheric Science, Drexel University, Philadelphia, Pennsylvania 19104

~Received 23 June 1997; revised manuscript received 31 July 1998!

We investigate the classical dynamical stability of a hydrogen molecular ion beyond the Born-Oppenheimer
approximation. We study both the coplanar and collinear arrangements. Results show that invariant structures
exist in phase space, including a quasiperiodic zone surrounding the antisymmetric stretching periodic orbit.
Outside this zone, bound chaotic orbits exist which correspond to a hybrid motion between two types of
motion, quite different from the normal quasiperiodic or chaotic motion. We extend the dynamical stability
study to several other three-body Coulomb systems, similar to the hydrogen molecular ion, and present results
of primitive semiclassical quantization of the quasiperiodic zone of the collinear hydrogen molecular ion.
These semiclassical results suggest that the ground electronic state of the hydrogen molecular ion is stable.
@S1050-2947~99!05301-9#

PACS number~s!: 31.15.Gy, 05.45.Gg, 45.05.1x
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I. INTRODUCTION

Classical stability of the hydrogen molecular ion (H2
1) is

an interesting problem to investigate, because of its simi
ity to the gravitational three-body systems. The difference
H2

1 is that the force between protons is repulsive. Furth
more, classical stability of H2

1 has other physical implica
tions, it represents in some sense classical manifestatio
chemical bonding. Pauli@1# had studied the stability of the
H2

1 in his Ph.D. dissertation, under the supervision of So
merfeld, using the then newly invented quantum theory
Bohr. His conclusion that H2

1 was only metastable with a
equilibrium distance of 5.5 bohrs, instead of the observed
bohrs of a stable H2

1, together with the similar failure o
helium, contributed to the downfall of Bohr’s old quantu
theory. Strand and Reinhardt@2# studied the dynamics of th
H2

1 system under the Born-Oppenheimer approximat
~BOA! and following Pauli they classified the electronic m
tion into P1,P2,P3 types.~More details are given in Sec
III. ! They also showed that semiclassical quantization of
quasiperiodic behavior with the uniform approximatio
yields reasonable eigenenergies for the system. More gen
classification of three-body Coulomb systems with nuclei
arbitrary charges within BOA has recently been carried
by Abramovet al. @3# and they emphasize the semiclassi
relation between branch points of the separated equat
and the electronic transitions. Duanet al. @4# have, on the
other hand, systematically investigated the periodic orbits
the two-centered H2

1 system within BOA and showed tha
quantization using periodic orbits also yields reasonable
ergies of the system.

In the BOA limit the mass of the protons is assumed to
infinite, thus their positions are fixed, and the electron mo
under the influence of their Coulomb attraction. The abo
cited papers showed that the classical equations in this l
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are separable, thus integrable, and the phase space co
entirely of quasiperiodic behavior and an infinite number
periodic orbits exist@1–4#. In analogy to the gravitationa
three-body problem, we expect interesting dynamical beh
ior to show up, if we go beyond BOA. Muelleret al. @5# have
recently reexamined the classical stability problem of H2

1

beyond BOA and found the approximate adiabatic invari
of the system. Sohlberget al. @6#, on the other hand, hav
carried out primitive semiclassical quantization of the H2

1

system. However, up to now the classical dynamical beh
ior of H2

1 beyond BOA has not been fully explored.
The objective of the present paper is to gain more glo

understanding of the classical dynamical behavior of thr
body Coulomb systems. We are interested in finding
more about their phase space structures, whether chao
ists, and how the dynamical behavior of H2

1 differs from
that of He. The organization of the present article is as f
lows. We describe in Sec. II the regularized coordinate s
tem in which the H2

1 problem is solved. We study the dy
namics of the coplanar H2

1 system and present the lifetim
and Poincare´ surface of section results in Sec. III. We als
investigate the stability of the collinear H2

1 system and
present the results in Sec. IV. Extension to other sim
three-body Coulomb systems is also included in the sa
section. In Sec. V we discuss some of the results of primit
semiclassical quantization of the torus in the phase spac
the collinear H2

1 system. This is followed by a summar
and discussion section.

II. DESCRIPTION OF THE SYSTEM
IN REGULARIZED COORDINATES

To study the classical dynamics of H2
1 beyond the Born-

Oppenheimer approximation~non-BOA!, we can use the Ja
cobi coordinates,r, R, andu, for a three-body system, wher
R denotes the interproton distance,r the distance from the
electron to the center of mass of the two protons, andu the
angle betweenr andR. However, there exist two difficulties
in a treatment using this set of coordinates: the presenc
two very different time scales, one associated with the e
i-
238 ©1999 The American Physical Society
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PRA 59 239NONLINEAR DYNAMICAL BEHAVIOR OF A HYDROGEN . . .
tronic motion and the other the nuclear motion, and the s
gularities of two- and three-body collisions. One way
overcome partially the time scale problem is to transform
the r135r12r3 and r235r22r3 coordinates @7#, where
r1 , r2 , and r3 are the position vectors for the two proton
and the electron, respectively. The Hamiltonian in the cen
of-mass system then becomes

H5
P13

2

2m13
1

P23
2

2m23
1

P13•P23

m3
1

Z1Z3

r 13
1

Z2Z3

r 23
1

Z1Z2

r 12
521,

~1!

wherem i j denotes reduced mass of particlesi and j, Pi j the
conjugate momentum ofr i j , andZi and mi are the charge
and mass of particlei. Since the potential of a three-bod
Coulomb system is homogeneous, the dynamics is scale
variant with respect to the total energy, which is taken to
21 for an energy below the three-body breakup thresh
(E50). The problem of the two-body Coulomb singulariti
can be removed by transforming canonically to the regu
ized coordinates using, for example, the Kustaanheim
Stiefel transformation, one of the regularization transform
tions used in celestial mechanics. The regulariz
Hamiltonian for a planar configuration~i.e., all zi j 50) then
becomes

H505
R2

2p1
2

8m13
1

R1
2p2

2

8m23

1
~R1•R2!~p1•p2!2~R13R2!~p13p2!

4m3
1Z1Z3R2

2

1Z2Z3R1
21R1

2R2
2S 11

Z1Z2

R12
2 D , ~2!

where the regularized coordinatesQi8s are related to thex,y
components ofr j 3 through x135Q1

22Q2
2 ,y1352Q1Q2 and

x235Q3
22Q4

2 ,y2352Q3Q4 , and it follows r 135R1
25Q1

2

1Q2
2 and r 235R2

25Q3
21Q4

2 . We also defineR12
2 5r 12,R1

5(Q1 ,Q2),R25(Q3 ,Q4),p15(P1 ,P2),p25(P3 ,P4), and
the time t is transformed intot according todt5r 13r 23dt.
For other details of the transformation, we refer to@7,8#. We
investigate the dynamics of three-body Coulomb systems
integrating the eight Hamilton equations of motion inQi and
Pi using the fourth-order variable-step Runge-Kutta and
Bulirsch-Stoer methods@9# and report the results in the fo
lowing sections.

III. DYNAMICS OF THE COPLANAR SYSTEM

We have investigated the coplanar system of H2
1, which

is a system of three degrees of freedom and the Poin´
surface of section~PSOS! is three dimensional. Since it i
time consuming to explore the entire five-dimensional initi
value parameter space, we restrict our dynamical explora
using the following initial configurations: Starting with a
three particles on a straight line, we assume that the inter
ton distance isR0 and the electron is atxb0 distance away
from the protonB ~the right-hand-side proton!. The initial
momenta of protons, p1 and p2 , are perpendicular to the
interproton axis and their magnitudes determined from
-
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total angular momentumL ~set to zero!, and the total energy
(E521). The L50 manifold investigated here is only
submanifold of the invariant planar configuraion. With th
initial configuration the free parameters to vary areR0 and
xb0 /R0 , the latter can be varied between20.5 ~negative,
when the electron is between protons! and infinity. We in-
vestigate the dynamics of the H2

1 system and present th
results in the initial-value parameter space ofR0 andxb0 /R0

in Fig. 1. In Fig. 1~a!, the gray scale represents the lifetimeT
of H2

1 during which the molecule is considered stable. T
lifetime is defined by the time at which the overall change
R during T, DR, first becomes greater than a certain lar
value~here taken to be 20 in scaled units! @10#. It can be seen
in Fig. 1~a! that there exist two large regions in theR0

2xb0 /R0 parameter space in whichH2
1 is mostly stable up

to the time limit of integration~5000 in the scaled regular
ized time!. These regions are gray with instability island
embedded in the largerR0 zones and the white regions a
classically forbidden. Another way to present the results is
plot DR in gray scale, as done in Fig. 1~b!, in which unstable
regions correspond to large overall change ofR, i.e., DR.
This figure reveals more structures in the stable regions,
example, a light-colored band appears in the lower par
the right-hand-side region, which seems to be the most st
region.

To show what types of motion contribute to the stabil
of the H2

1 molecule, we plot several trajectories correspon
ing to points in the stable regions of Fig. 1~b!. Before dis-
cussing our findings, we first review the three types of m
tions allowed in the H2

1 molecule within the BOA@1,2#.
Following the notation of Strand and Reinhardt@2#, the three
types areP1, P2, and P3. For a P1 type of motion the
electron is restricted to move between two ellipses with
two protons located at their foci and cannot cross betw
the protons. For aP2 type of motion, on the other hand, th
electron moves inside a single ellipse and can and does c
the interproton axis. For aP3 type of motion, the electron is
confined to move inside an ellipse and a hyperbola, thus
electron moves around a single proton and does not cros
vertical bisector of the interproton axis. One may ask wh
among these three types of motion is stable and contrib
to chemical bonding, when the protons are free to move.
P1 type of motion becomes unstable, as already pointed
by Pauli, because of the Coulomb repulsion between prot
and the fact that the electron spends little time between
protons. The other two types of motion can be stable@5#, as
illustrated in Fig. 2. In Figs. 2~a! and 2~b! we plot a P2
trajectory in which the electron goes around both proto
which roughly move in the neighborhood ofx510.5 or
20.5 andy50. This trajectory originates at a point near th
tip of the light-colored stability band discussed above.
stableP3 orbit is shown in Figs. 2~c! and 2~d!, in which the
electron moves around only one proton which stays neax
51. Besides orbits of theP2 or P3 type, we have also found
stable orbits in which the trajectory continuously alterna
between theP2 andP3 types of behavior, as discussed
the recent works of Muelleret al. and Duanet al. @5,4#. We
present such an example in Figs. 2~e! and 2~f!, which shows
clearly that the electron moves alternately around both nu
and around just one. We shall call this type of motion t
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FIG. 1. Dynamical stability of the H2
1 system beyond BOA.~a! Lifetime in gray scale plotted as a function of the initial values

variablesR0 andxb0 /R0 in the coplanar case. The lifetime is defined by the time when the overall change inR0 ,DR, is greater than 20 in
scaled units. Logarithm of lifetime is used in grade scale.~b! Same as~a! except the gray scale representsDR and a contour ofDR is plotted
on top.~c! Same as in~b!, but for the collinear H2

1 system. All quantities are in atomic units withE set to21.
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P2/P3 hybrid orbit. Among the three types of stable moti
discussed above, theP2 and P2/P3 orbits are common in
the stability zone, but a stableP3 orbit is a rare event and
occurs usually near the stability boundary. This can be
derstood because a breakup reaction, H2

1→H 1H1, takes
place via aP3 type of motion.

IV. THE COLLINEAR H 2
1

AND OTHER SIMILAR SYSTEMS

A collinear study of a full three-dimensional system oft
provides valuable information about the original system.
well-known example is the bound-state study@7# and scatter-
ing study @11,12# of collinear systems of atomic helium
-

Based on this experience we expect a collinear investiga
of a H2

1 ion to provide us with useful information. Such a
investigation will be described in this section.

Unlike a coplanar system, the Poincare´ surface of section
of a collinear system is only two dimensional. This fact f
cilitates the numerical search for all possible dynamical
havior in phase space. Furthermore, the dynamical beha
of the collinear system seems to resemble that of the co
nar system, as revealed by comparing Fig. 1~b! with Fig.
1~c!. The latter is obtained by restricting all three particles
move on a straight line with the electron located between
nuclei. We see some similarities between Fig. 1~c! and Fig.
1~b!. For example, in both cases there exist regions w
small R0 in which DR remains small over the course o
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integration. On the other hand, for the largeR0 region, the
value of DR seems to fluctuate rapidly with respect to t
initial values ofR0 or xb0 . To reveal the dynamical informa
tion contained in Fig. 1~c!, we plot in Fig. 3 a PSOS obtained
by recording theR and PR values of trajectories every tim
when the electron collides with protonA. As shown in Fig. 3,
the PSOS consists of a stable Kolmogorov-Arnold-Mo
~KAM ! zone, surrounded by another stable but irregular
gion, which is itself surrounded by an unstable region,
which the H2

1 ion flies apart. The fact that the KAM zone
quasiperiodic and the surrounding region is chaotic is c
sistent with the results obtained in a Lyapunov exponent
culation. The periodic orbit in the middle of the KAM zon
turns out to be the antisymmetric stretching orbit, which
stable here, in contrast to that of atomic helium. The a
symmetric stretching periodic orbit corresponds to a perio
orbit in which the electron bounces between two protons

To find out what types of orbits exist in the stable regio

FIG. 2. Representative electron and proton trajectories of a n
BOA coplanar H2

1 system, plotted in a Cartesian coordinate s
tem with the origin located at the center of mass of the two proto
~a! A P2 type of trajectory originated atR051 andxb050.4964.
~b! Time evolution of thex component of the electron trajector
plotted in ~a!. ~c! A P3 type of trajectory originated atR052 and
xb050.5038.~d! Time evolution of thex component of the electron
trajectory plotted in~c!. ~e! A P2/P3 hybrid trajectory originated a
R051 andxb050.3196.~f! Time evolution of thex component of
the electron trajectory plotted in~e!.
r
-

-
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s
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we plot in Fig. 4 two trajectories, one from the KAM zon
and another from the irregular region of Fig. 3. The traje
tory taken from inside the KAM zone corresponds to aP2
trajectory, as exemplified by Figs. 4~c! and 4~d!. In this case,
the electron bounces rapidly between two protons, while
latter vibrate slowly relative to each other, making a brea

n-
-
s.

FIG. 3. Poincare´ surfaces of section~PSOS! of the collinear
H2

1 system. The solid curve separates theP2 and P3 types of
motion.

FIG. 4. Representative trajectories of collinear H2
1, wherexe is

the electronic coordinate measured from the midpoint ofR. ~a! A
P2 trajectory originated atR051.712 andxb050. ~b! Time evolu-
tion of thex component of the electron trajectory plotted in~a!. ~c!
A P2/P3 trajectory originated atR052.2 andxb050. ~d! Time
evolution of thex component of the electron trajectory plotte
in ~c!.
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242 PRA 59YIWU DUAN, CHARLES BROWNE, AND JIAN-MIN YUAN
ing type of motion. We show in Figs. 4~a! and 4~b! a trajec-
tory from the bound irregular region, which corresponds to
one-dimensional equivalence of theP2/P3 hybrid motion.
This type of motion is interesting, for when the interproto
distance is small, the potential barrier between two proto
remains low and the electron bounces between two proto
but when the interproton distance becomes large, the in
proton barrier rises and the electron bounces between a
ton and the interproton barrier. Thus the barrier height
creases with the interproton distance. This motion theref
represents a strong correlation between the nuclear and e
tronic motions and cannot be described adequately usin
theory based on BOA, ignoring proton motion.

Other remarkable features of theP2/P3 hybrid motion
follow. Because theP2/P3 hybrid motion is aperiodic, but
still bound, it represents a different type of chemical bondi
from aP2 orbit. The fact that the net change of the interpr
ton distance of a hybrid motion is much larger than that o
P2 type of motion suggests that it may also represent a c
sical manifestation of a nonadiabatic electronic transitio
Finally, we note that the transition from the regular to ch
otic motion as shown in Fig. 3 appears to be sudden and
correlation between the electron and nuclear motions is v
similar to that between the light and heavy atoms in a hea
light-heavy triatomic system@13#.

It is advantageous to consider all three-body Coulom
systems in a unified picture, for this helps alleviate the d
ficulty caused by very different time scales existing in H2

1.
We present in Figs. 5~a!–5~d! the PSOS of four other three
body Coulomb systems. If we make the proton mass
times greater than its natural mass@Fig. 5~a!#, the chaotic or
P2/P3 hybrid domain disappears, all bound motions a

FIG. 5. Poincare´ surfaces of section~PSOS! of other collinear
three-body Coulomb systems.~a! A model system with the proton
to electron mass ratio set to 18 360.~b! A model system with the
proton to electron mass ratio set to 183.6.~c! The Pm2P system.
The horizontal solid line comes from the initial conditions of th
trajectories.~d! The e1e2e1 system.
a
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regular, and the dynamical behavior approaches the B
limit. On the other hand, if we decrease the proton mass b
factor of 10@Fig. 5~b!# so that the mass ratio is close to th
of a m1em1 system (;200), both the KAM zone and the
bound aperiodic domain become smaller than those of
H2

1 system. Furthermore, the PSOS for aPm2P system
~mass ratio5 8.9! also has a smaller KAM zone as shown
Fig. 3~c!. Here it seems that, unlike Figs. 3 and 5~b!, the
transition from the regular to chaos behavior takes place
an ordinary Birkhoff-Poincare´ bifurcation. Finally, for the
e1e2e1 system ~unit mass ratio! shown in Fig. 5~d! the
KAM zone shrinks to a very small size, but nonzero, thus
antisymmetric stretching periodic orbit of this system is s
stable. In contrast, those of them2Pm2 system and the
atomic helium are unstable. Experimental verifications
these predictions and identification of theP2/P3 hybrid type
of motion are important@14#.

V. RESULTS OF PRIMITIVE SEMICLASSICAL
QUANTIZATION OF COLLINEAR H 2

1 MOTION

The KAM zone found in the Poincare´ surface of section
of the collinear H2

1 is large enough to support several bou
states. The immediate question that one may ask is whe
one can apply the Einstein-Brillouin-Keller~EBK! quantiza-
tion rules @15,16# to this KAM zone to obtain reasonabl
vibrational-electronic or vibronic energies of the H2

1 system
in one calculation step. This is in contrast with the tradition
methods based on BOA, in which one must first obtain
electronic potential energy curves, before calculating the
bational energy levels supported by them.

In this section we shall apply a semiclassical proced
due to Miller @17# and expanded by Wintgen and co-worke
@18–20# to the quantization of collinear H2

1. Wintgenet al.
derived a triple-Rydberg formula of the form

Enkl52
S2

@n1 1
2 1~ l 1 1

2 !gR1~2k11!gQ#2
, ~3!

where the semiclassical quantum numbersn,k,l reflect the
approximate separability of the associated wave function
local coordinates parallel and perpendicular to the perio
orbit @18#. In the present system,n denotes the nodal excita
tions along the antisymmetric periodic orbit~electron
bounces between two protons!, l counts the excitations alon
the symmetric stretch orbit~molecular vibration!, and k
counts excitations of the bending motion perpendicular to
molecular axis. There exist 2 degenerate bending mo
which contribute a factor of two in the formula. In formul
~3! gR andgQ are the winding numbers for radial and ang
lar motion transverse to the collinear antisymmetric stre
periodic orbit. At E521, we obtain numerically S
51.603 573 for the scaled action of this periodic orbit and
integrating the monodromy matrix along the periodic orb
we obtaingR50.035 03 andgQ50.3937, which are energy
independent.

As shown by Wintgen and Richter@18#, formula ~3! is
equivalent to torus quantization, but with a Gutzwiller a
proximation imposed on it, that is, the the action function
and the winding numbers are replaced by their values at
periodic orbits. Because of this approximation, the ene
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values obtained using the energy-scaling relation, nam
formula ~3!, are only valid for lowl andk values, i.e., for the
lowest vibrational quantum numbers.~Thev51 values listed
in Table I are for reference purpose only.! The energy values
obtained using formula~3! are listed in Table I, with the
‘‘exact’’ quantum mechanical values@21–24#.

We see in Table I that the predicted binding energy of
X 2Sg state of H2

1 is about 100% greater than the exa
value. This is in contrast with the result obtained by Sohlb
et al. @6#, who quantize three-mode tori using the surface-
section technique@15#. Their binding energy is about 90%
smaller than the exact value. They attribute the large erro
electron tunneling through the potential barrier which ris
as two protons recede from each other@4,6#. This tunneling
effect is certainly missing in a primitive semiclassical qua
tization treatment. Our results of previous sections sugg
another possible contributing factor, that is, we actually h
a mixed, instead of integrable, system in which theP2 KAM
zone is surrounded by theP2/P3 intermittent chaos. One
may then ask how we account for the fact that the collin
calculation predicts a more tightly bound ground state
H2

1. This may be due to the fact that in a collinear config
ration the electron is restricted to move between the
protons at all times, and thus contributes more effectively
the binding than a coplanar or three-dimensional~3D! con-
figuration. An evidence of this restricting effect is provide
by the quantum mechanical solution of the collinear syst
@25# ~within BOA!. The latter yields the strongest bindin
among all results listed. Furthermore, the results of Str
and Reinhardt@2# using primitive semiclassical quantizatio
reveal that the ground electronic state~within BOA! also
shows stronger binding forR<1.25 bohrs. Incidentally, the
equilibrium distance of 1D quantum calculations agrees w
the location of the antisymmetric periodic unit of Fig. 3~R;
2.6 bohr!.

Both collinear and coplanar~or three-mode! semiclassical
calculations predict chemical bonding in the ground el
tronic state, but this is not the case for the first excited s
(2psu), which is a very weakly bound van der Waals sta

TABLE I. Energies for H2
1 in atomic units with reference to

the double ionization and dissociation threshold. The labeln51 has
been identified with the ground electronic state,X 2Sg 51ssg,
n52 identified with the first excited electronic state,2Su52psu ,
andn53 identified with the2Pu52ppu . The labell 51 has been
identified with the vibrational quantum numberv.

n l k QM ~3D! EBK~1! a EBK~2! b QM~1D! c

1 0 0 20.597 139 1d 20.704 20.51 20.8227
1 1 0 20.587 155 7d 20.679 20.8079
2 0 0 20.499 743 5e 20.303 20.49 20.5139
3 0 0 20.133 841 9f 20.168 20.1905
3 1 0 20.132 689 8f 20.165 20.1885

aPresent EBK results with the Gutzwiller approximation, Eq.~3!.
bSohlberget al. @6#.
cQuantum mechanical~QM! results obtained by Duanet al. for a
collinear system within BOA@25#.
dMoss @21#.
ePeek@23#.
fTaylor et al. @24#, results are for theN51 rotational state.
y,
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@14#. As pointed out by Sohlberget al. the stability of this
state is entirely due to electron tunneling, thus it is not s
prising that methods based on primitive semiclassical qu
tization cannot predict its stability. On the other hand, in t
language of the previous sections, a 2psu state would cor-
respond to a stableP3 periodic orbit, which is clearly absen
in the collinear case as revealed by Fig. 3. A search of
existence in the coplanar case is so far inconclusive, thus
cannot rule out the possibility that stableP3 islands exist in
the 2D and 3D cases. As to the collinear quantum calcula
the result of the 2psu state again shows stronger bindin
than the 3D quantum result. Finally, for the 2ppu state, all
theoretical results listed in Table I predict that it is stab
~with reference to20.125 a.u.! and the relative error in the
result of formula~3! becomes to some extent more reaso
able.

Before leaving this section we note that what makes
study of the collinear configuration possible at all is the reg
larization procedure, as disussed in Sec. II. By using it
obtain a clear phase space structure for the hydrogen mol
lar ion. Regularization should improve the accuracy of t
jectory calculations in higher-dimensional space too, a pr
lem mentioned by Sohlberget al. @6# in their study.

VI. SUMMARY AND DISCUSSIONS

The purpose of the present article is to study the co
lated classical motion between the electron and the prot
which is an ingredient missing in the BOA approximatio
Within BOA, H2

1 is separable, thus integrable. It is intere
ing to find out what types of dynamical behavior will sho
up when we go beyond the adiabatic approximation. W
have found that the periodic orbits of antisymmetric stret
ing vibration of H2

1 and of a wide class of three-body Cou
lomb systems are stable. In the phase space of such sys
this periodic orbit is surrounded by a KAM zone, which
further surrounded by a region of bound aperiodic orb
calledP2/P3 hybrid orbits.

Other remarkable features of theP2/P3 hybrid motion
follow. Because theP2/P3 hybrid motion is aperiodic, bu
still bound, it represents a different type of chemical bond
from aP2 orbit. The fact that the net change of the interpr
ton distance of a hybrid motion is much larger than that o
P2 type of motion suggests that it may also represent a c
sical manifestation of a nonadiabatic electronic transiti
Finally, we note that the transition from the regular to ch
otic motion as shown in Fig. 3 appears to be sudden and
correlation between the electron and nuclear motions is v
similar to that between the light and heavy atoms in a hea
light-heavy triatomic system@13#.

This last connection can be far reaching, for it implies th
we can generalize the current formulation to the studies
hydrogen bonds. In such a model, instead of an electro
proton moves between two negative centers to induce bo
ing. This formulation is capable of explaining both the no
mal type and the short-strong or symmetric type of hydrog
bonds, discussed in recent literature@26#.

The semiclassical vibronic energies obtained by the E
procedure in the last section are not in satisfactory agreem
with the quantum results. The same is true for the thr
mode results of Sohlberget al. Together they bring out the
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importance of including electron tunneling in semiclassi
quantization of the hydrogen molecular ion@2#. Such a treat-
ment is yet to be carried out beyond the Born-Oppenhei
approximation, but it is important for the undestanding
chemical bonding. Unlike the BOA counterpart@2# where
consideration of 1D tunneling suffices, the main challen
that we are faced with is tunneling in higher-dimension
space. For this purpose it is easier to start with a collin
system, where tunneling through only a two-dimensional
tential need be considered. For such a potential trajectorie
complex coordinate space have been used@27#.

Finally, we should mention that, even in the current si
s.

ys

id,

P.

e-
re
at
e
H
i-
ha
hi
t

. B
l

er
f

e
l
r
-
in

-

ation, it seems interesting that part of the chemical bond
can come from classical contributions, as revealed by
stable phase space structures discussed in the present a
and by the results of Sohlberget al. @6#.
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