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Nonlinear dynamical behavior of a hydrogen molecular ion
and similar three-body Coulomb systems
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We investigate the classical dynamical stability of a hydrogen molecular ion beyond the Born-Oppenheimer
approximation. We study both the coplanar and collinear arrangements. Results show that invariant structures
exist in phase space, including a quasiperiodic zone surrounding the antisymmetric stretching periodic orbit.
Outside this zone, bound chaotic orbits exist which correspond to a hybrid motion between two types of
motion, quite different from the normal quasiperiodic or chaotic motion. We extend the dynamical stability
study to several other three-body Coulomb systems, similar to the hydrogen molecular ion, and present results
of primitive semiclassical quantization of the quasiperiodic zone of the collinear hydrogen molecular ion.
These semiclassical results suggest that the ground electronic state of the hydrogen molecular ion is stable.
[S1050-294{@9)05301-9

PACS numbdrs): 31.15.Gy, 05.45.Gg, 45.05x

[. INTRODUCTION are separable, thus integrable, and the phase space consists
entirely of quasiperiodic behavior and an infinite number of
Classical stability of the hydrogen molecular ion,(H is  periodic orbits exis{1-4]. In analogy to the gravitational
an interesting problem to investigate, because of its similarthree-body problem, we expect interesting dynamical behav-
ity to the gravitational three-body systems. The difference iror to show up, if we go beyond BOA. Muellet al.[5] have
H,* is that the force between protons is repulsive. Furtherfecently reexamined the classical stability problem of H
more, classical stability of 5 has other physical implica- beyond BOA and found the approximate adiabatic invariant
tions, it represents in some sense classical manifestation 8f the system. Sohlbergt al. [6], on the other hand, have

chemical bonding. Paulil] had studied the stability of the carried out primitive semiclassical quantization of thg'H

H," in his Ph.D. dissertation, under the supervision of SomSYStém- However, up to now the classical dynamical behav-
2 P or of H,™ beyond BOA has not been fully explored.

merfeld, using the then newly invented quantum theory of The objective of the present paper is to gain more global

Boh_r_. H.'S conclusmn that 1 was _only metastable with an nderstanding of the classical dynamical behavior of three-
equilibrium distance of 5.5 bohrs, instead of the observed 2'§ody Coulomb systems. We are interested in finding out

bor_\rs of a st.able b, together with the sirr)ilar failure of more about their phase space structures, whether chaos ex-
helium, contributed to the downfall of Bohr's old quantum ists, and how the dynamical behavior of, Hdiffers from

the+ory. Strand and Reinharidi] studied the dynamics of the {h4¢ of He. The organization of the present article is as fol-
H," system under the Born-Oppenheimer approximationgys. We describe in Sec. Il the regularized coordinate sys-
(BOA) and following Pauli they classified the electronic mo- tem in which the H* problem is solved. We study the dy-
tion into P1,P2,P3 types.(More details are given in Sec. namics of the coplanar H system and present the lifetime
I1l.) They also showed that semiclassical quantization of theind Poincaresurface of section results in Sec. lll. We also
quasiperiodic behavior with the uniform approximation jnvestigate the stability of the collinear,H system and
yields reasonable eigenenergies for the system. More genefiglesent the results in Sec. IV. Extension to other similar
classification of three-body Coulomb systems with nuclei ofthree-body Coulomb systems is also included in the same
arbitrary charges within BOA has recently been carried oukection. In Sec. V we discuss some of the results of primitive
by Abramovet al.[3] and they emphasize the semiclassicalsemiclassical quantization of the torus in the phase space of

relation between branch points of the separated equationfe collinear H* system. This is followed by a summary
and the electronic transitions. Duat al. [4] have, on the and discussion section.

other hand, systematically investigated the periodic orbits of

the tvyo—c_entergd al systgm Wl_thln BOA_ and showed that Il. DESCRIPTION OF THE SYSTEM
guantization using periodic orbits also yields reasonable en- IN REGULARIZED COORDINATES
ergies of the system.

In the BOA limit the mass of the protons is assumed to be To study the classical dynamics ofHbeyond the Born-
infinite, thus their positions are fixed, and the electron move®©ppenheimer approximatiaimon-BOA), we can use the Ja-
under the influence of their Coulomb attraction. The above<€obi coordinates;, R, and#, for a three-body system, where
cited papers showed that the classical equations in this limiR denotes the interproton distanaethe distance from the

electron to the center of mass of the two protons, éritle
angle betweem andR. However, there exist two difficulties
*Permanent address: Department of Physics, Hunan Normal Unin a treatment using this set of coordinates: the presence of
versity, Changsha 410081, People’s Republic of China. two very different time scales, one associated with the elec-
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tronic motion and the other the nuclear motion, and the sintotal angular momenturh (set to zerg, and the total energy
gularities of two- and three-body collisions. One way to(E=—1). The L=0 manifold investigated here is only a
overcome partially the time scale problem is to transform tosubmanifold of the invariant planar configuraion. With this
the ris=ry—r3 and rps=r,—rz coordinates[7], where initial configuration the free parameters to vary &g and
ry, rp, andrs are the position vectors for the two protons yx, ;/R,, the latter can be varied between0.5 (negative,
and the electron, respectively. The Hamiltonian in the centerghen the electron is between protprand infinity. We in-
of-mass system then becomes vestigate the dynamics of the,H system and present the

2 2 results in the initial-value parameter spaceRgfandx,,/R
Pl Ph , PuPi 225 22 2.2, P paceRgtandxso/Ro

- =—1, in Fig. 1. In Fig. Xa), the gray scale represents the lifetime
2p13 2p23 Mg frs Tz Tr2 of H,™ during which the molecule is considered stable. The
@) lifetime is defined by the time at which the overall change of

wherep;; denotes reduced mass of particieandj, P;; the R during T, AR, first beco.mes greater than a certain large
conjugate momentum af;, andZ; andm; are the charge yaluc_a(here taken to be 20 in scaled unit&O0]. I_t can _be seen
and mass of particle. Since the potential of a three-body in Fig. 1(a) that there exist two large regions in thi®,
Coulomb system is homogeneous, the dynamics is scale in=Xno/Ro parameter space in whidt," is mostly stable up
variant with respect to the total energy, which is taken to bgo the time limit of integration’5000 in the scaled regular-
—1 for an energy below the three-body breakup thresholdzed timg. These regions are gray with instability islands
(E=0). The problem of the two-body Coulomb singularities embedded in the largé®, zones and the white regions are
can be removed by transforming canonically to the regularelassically forbidden. Another way to present the results is to
ized coordinates using, for example, the Kustaanheimoplot AR in gray scale, as done in Fig(H), in which unstable
Stiefel transformation, one of the regularization transforma—regions correspond to large overall changeRofi.e., AR.
tions used in celestial mechanics. The regularizedrhis figure reveals more structures in the stable regions, for
Hamiltonian for a planar configuraticine., all z;=0) then  example, a light-colored band appears in the lower part of
becomes the right-hand-side region, which seems to be the most stable
R2 2 R2 2 region.
_ 2P1 + 1P2 To show what types of motion contribute to the stability
8uriz 8Buos of the H," molecule, we plot several trajectories correspond-
ing to points in the stable regions of Figbl. Before dis-
+ (Ry-R2)(P1-P2) ~ (R1XRa) (P2 p2) +2,Z4R2 cussing our findings, we first review the three types of mo-
4mg tions allowed in the H" molecule within the BOA[1,2].
) Following the notation of Strand and Reinha#i, the three

H=0

212,
2

2) types areP1, P2, andP3. For aP1 type of motion the
R12

electron is restricted to move between two ellipses with the
two protons located at their foci and cannot cross between
where the regularized coordinat@ss are related to th&,y  the protons. For #2 type of motion, on the other hand, the
components of ;5 throughx;3= Qi-Q2,y13=2Q,Q, and  electron moves inside a single ellipse and can and does cross
Xp3= Q%—Qi,yzsz 2Q3Q,, and it follows r3= Ri:Qi the interproton axis. For B3 type of motion, the electron is
+Q3 andr,;=R3=Q3+Q3. We also defineR?,=r;,,R; confined to move inside an ellipse and a hyperbola, thus the
=(Q1,Q,),R,=(Q3,Q4),p1=(P;1,P,),p,=(P3,P,), and electron moves around a single proton and does not cross the
the timet is transformed intor according todt=r ;o ,:d 7. vertical bisector of the interproton axis. One may ask WhICh
For other details of the transformation, we refef7c8]. We ~ @mong t_hese thrt_ae types of motion is stable and contributes
investigate the dynamics of three-body Coulomb systems b{P chemical bonding, when the protons are free to move. The
integrating the eight Hamilton equations of motionQnand 1 type of motion becomes unstable, as already pointed out
P, using the fourth-order variable-step Runge-Kutta and th@y Pauli, because of the Coulomb repulsion between protons

Bulirsch-Stoer methodg9] and report the results in the fol- and the fact that the electron spends little time between the
lowing sections. protons. The other two types of motion can be stdbleas

illustrated in Fig. 2. In Figs. @ and 2Zb) we plot a P2
trajectory in which the electron goes around both protons
which roughly move in the neighborhood &&= +0.5 or

We have investigated the coplanar system gf Hwhich ~ —0.5 andy=0. This trajectory originates at a point near the
is a system of three degrees of freedom and the Poincatég of the light-colored stability band discussed above. A
surface of sectiofPSOS is three dimensional. Since it is stableP3 orbit is shown in Figs. @) and Zd), in which the
time consuming to explore the entire five-dimensional initial-electron moves around only one proton which stays mear
value parameter space, we restrict our dynamical exploratior 1. Besides orbits of thB2 or P3 type, we have also found
using the following initial configurations: Starting with all stable orbits in which the trajectory continuously alternates
three particles on a straight line, we assume that the interprdsetween theP2 andP3 types of behavior, as discussed in
ton distance iR, and the electron is at,, distance away the recent works of Muelleet al. and Duaret al. [5,4]. We
from the protonB (the right-hand-side protonThe initial  present such an example in Figée)2and Zf), which shows
momenta of protons, ;pand p, are perpendicular to the clearly that the electron moves alternately around both nuclei
interproton axis and their magnitudes determined from theand around just one. We shall call this type of motion the

2 2p2
+Z,Z,R3+RRS| 1+

Ill. DYNAMICS OF THE COPLANAR SYSTEM
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FIG. 1. Dynamical stability of the jf system beyond BOA(a) Lifetime in gray scale plotted as a function of the initial values of
variablesR, andx,, /R, in the coplanar case. The lifetime is defined by the time when the overall chafge AR, is greater than 20 in
scaled units. Logarithm of lifetime is used in grade scddgSame aga) except the gray scale represeAR and a contour oAR is plotted
on top.(c) Same as inb), but for the collinear H" system. All quantities are in atomic units wihset to—1.

P2/P3 hybrid orbit. Among the three types of stable motion Based on this experience we expect a collinear investigation
discussed above, the2 andP2/P3 orbits are common in of a H,* ion to provide us with useful information. Such an
the stability zone, but a stabR3 orbit is a rare event and investigation will be described in this section.

occurs usually near the stability boundary. This can be un- Unlike a coplanar system, the Poincauwgface of section
derstood because a breakup reaction” HH +H", takes Of a collinear system is only two dimensional. This fact fa-

place via aP3 type of motion. cilitates the numerical search for all possible dynamical be-
havior in phase space. Furthermore, the dynamical behavior
IV. THE COLLINEAR H ,* of the collinear system seems to resemble that of the copla-

AND OTHER SIMILAR SYSTEMS nar system, as revealed by comparing Fi¢) with Fig.

1(c). The latter is obtained by restricting all three particles to
A collinear study of a full three-dimensional system oftenmove on a straight line with the electron located between the
provides valuable information about the original system. Anuclei. We see some similarities between Fig) and Fig.
well-known example is the bound-state sty@yand scatter- 1(b). For example, in both cases there exist regions with
ing study[11,12 of collinear systems of atomic helium. small R, in which AR remains small over the course of
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we plot in Fig. 4 two trajectories, one from the KAM zone
and another from the irregular region of Fig. 3. The trajec-
tory taken from inside the KAM zone corresponds t®2
trajectory, as exemplified by Figs(c} and 4d). In this case,
the electron bounces rapidly between two protons, while the
latter vibrate slowly relative to each other, making a breath-

0 500 1000 1500 2000
t

Ry=1.7121 Re=1.7121

FIG. 2. Representative electron and proton trajectories of a non *
BOA coplanar H* system, plotted in a Cartesian coordinate sys-
tem with the origin located at the center of mass of the two protons
(& A P2 type of trajectory originated @&,=1 andxy,=0.4964. 3k
(b) Time evolution of thex component of the electron trajectory r
plotted in(a). (c) A P3 type of trajectory originated &,=2 and
Xpo=0.5038.(d) Time evolution of thex component of the electron
trajectory plotted inc). (e) A P2/P3 hybrid trajectory originated at
Ro=1 andx,,=0.3196.(f) Time evolution of thex component of
the electron trajectory plotted if). <

integration. On the other hand, for the larBg region, the
value of AR seems to fluctuate rapidly with respect to the
initial values ofR, or x,o. To reveal the dynamical informa- .t
tion contained in Fig. ), we plot in Fig 3 a PSOS obtained
by recording theR and P values of trajectories every time 26}
when the electron collides with protagx As shown in Fig. 3,
the PSOS consists of a stable Kolmogorov-Arnold-Moser2.4;
(KAM) zone, surrounded by another stable but irregular re-
gion, which is itself surrounded by an unstable region, in 22} @
which the H* ion flies apart. The fact that the KAM zoneis -2 -1 0 1 2 o 100 200 300
quasiperiodic and the surrounding region is chaotic is con- %o t
sistent with the results obtained in a Lyapunov exponent cal- g 4. Representative trajectories of collinear Hwherex, is
culation. The periodic orbit in the middle of the KAM zone ihe electronic coordinate measured from the midpoinRofa) A
turns out to be the antisymmetric stretching orbit, which isp2 trajectory originated aR,=1.712 andx,,=0. (b) Time evolu-
stable here, in contrast to that of atomic helium. The antition of thex component of the electron trajectory plotted(@. (c)
symmetric stretching periodic orbit corresponds to a periodia P2/P3 trajectory originated aR,=2.2 andx,,=0. (d) Time
orbit in which the electron bounces between two protons. evolution of thex component of the electron trajectory plotted
To find out what types of orbits exist in the stable regions,in (c).
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10 ; ‘ S regular, and the dynamical behavior approaches the BOA
limit. On the other hand, if we decrease the proton mass by a
factor of 10[Fig. 5(b)] so that the mass ratio is close to that
of auteu® system 200), both the KAM zone and the
bound aperiodic domain become smaller than those of the
H,* system. Furthermore, the PSOS forPa P system
(mass ratio= 8.9) also has a smaller KAM zone as shown in
Fig. 3(c). Here it seems that, unlike Figs. 3 anthp the
transition from the regular to chaos behavior takes place via
an ordinary Birkhoff-Poincareifurcation. Finally, for the
e"e e’ system(unit mass ratip shown in Fig. %d) the
KAM zone shrinks to a very small size, but nonzero, thus the
antisymmetric stretching periodic orbit of this system is still
stable. In contrast, those of the " Pu~ system and the
atomic helium are unstable. Experimental verifications of
these predictions and identification of tR€/P3 hybrid type
of motion are importanf14].

V. RESULTS OF PRIMITIVE SEMICLASSICAL
QUANTIZATION OF COLLINEAR H ,* MOTION

The KAM zone found in the Poincarsurface of section
of the collinear H* is large enough to support several bound
FIG. 5. Poincaresurfaces of sectiolPSOS of other collinear  states. The immediate question that one may ask is whether
three-body Coulomb system&) A model system with the proton one can apply the Einstein-Brillouin-KelléEBK) quantiza-
to electron mass ratio set to 18 3G0) A model system with the tion rules[15,16 to this KAM zone to obtain reasonable
proton to electron mass ratio set to 1836. The Pu™ P system.  vibrational-electronic or vibronic energies of thg Hsystem
The horizontal solid line comes from the initial conditions of the in one calculation step. This is in contrast with the traditional
trajectories(d) Thee“e"e” system. methods based on BOA, in which one must first obtain the

: . P ... electronic potential energy curves, before calculating the vi-
ing type of motion. We show in Figs(d and 4b) a trajec bational energy levels supported by them.

tory from the bound irregular region, which corresponds to a . : : .
In this section we shall apply a semiclassical procedure

one-dimensional equivalence of tiR2/P3 hybrid motion. due to Miller[17] and expanded by Wintgen and co-workers

This type of motion is interesting, for when the interproton L " .
distance is small, the potential barrier between two protongls._zq to the quantization of collinear 1. Wintgenet al.
gerlved a triple-Rydberg formula of the form

remains low and the electron bounces between two proton
but when the interproton distance becomes large, the inter- 5
o S
proton barrier rises and the electron bounces between a pro- Epg=— ,
ton and the interproton barrier. Thus the barrier height in- [N+3+(1+3)yr+ (2k+1)ye]?
creases with the interproton distance. This motion therefore
represents a strong correlation between the nuclear and eleshere the semiclassical quantum numberyk,| reflect the
tronic motions and cannot be described adequately using @pproximate separability of the associated wave functions in
theory based on BOA, ignoring proton motion. local coordinates parallel and perpendicular to the periodic
Other remarkable features of tH&2/P3 hybrid motion  orbit [18]. In the present system,denotes the nodal excita-
follow. Because thé®2/P3 hybrid motion is aperiodic, but tions along the antisymmetric periodic orbiglectron
still bound, it represents a different type of chemical bondingoounces between two protonscounts the excitations along
from aP2 orbit. The fact that the net change of the interpro-the symmetric stretch orbitmolecular vibration, and k
ton distance of a hybrid motion is much larger than that of acounts excitations of the bending motion perpendicular to the
P2 type of motion suggests that it may also represent a clagnolecular axis. There exist 2 degenerate bending modes,
sical manifestation of a nonadiabatic electronic transitionwhich contribute a factor of two in the formula. In formula
Finally, we note that the transition from the regular to cha-(3) yr andyg are the winding numbers for radial and angu-
otic motion as shown in Fig. 3 appears to be sudden and thlar motion transverse to the collinear antisymmetric stretch
correlation between the electron and nuclear motions is verperiodic orbit. At E=—1, we obtain numerically S
similar to that between the light and heavy atoms in a heavy=1.603 573 for the scaled action of this periodic orbit and by
light-heavy triatomic systerfil3]. integrating the monodromy matrix along the periodic orbit,
It is advantageous to consider all three-body Coulombwe obtainyg=0.03503 andyg=0.3937, which are energy
systems in a unified picture, for this helps alleviate the dif-independent.
ficulty caused by very different time scales existing ig'H As shown by Wintgen and Richt¢d 8], formula (3) is
We present in Figs. (®8)—5(d) the PSOS of four other three- equivalent to torus quantization, but with a Gutzwiller ap-
body Coulomb systems. If we make the proton mass temproximation imposed on it, that is, the the action functionals
times greater than its natural md$sg. 5a)], the chaotic or and the winding numbers are replaced by their values at the
P2/P3 hybrid domain disappears, all bound motions areperiodic orbits. Because of this approximation, the energy

()
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TABLE I. Energies for H* in atomic units with reference to [14]. As pointed out by Sohlbergt al. the stability of this
the double ionization and dissociation threshold. The label has  state is entirely due to electron tunneling, thus it is not sur-
been identified with the ground electronic stak;3,=1sog,  prising that methods based on primitive semiclassical quan-
n=2 identified with the first excited electronic staf&,=2poy. tization cannot predict its stability. On the other hand, in the
andn=3 identified with the“Il,=2pm, . The labell =1 has been  |anguage of the previous sections, pa2, state would cor-
identified with the vibrational quantum number respond to a stabl@3 periodic orbit, which is clearly absent
in the collinear case as revealed by Fig. 3. A search of its

n Ik QM (3D) EBK(1)® EBKQ2® QM@D)® existence in the coplanar case is so far inconclusive, thus we

1 0 0 -0597139F —0.704 —-051 —0.8227 cannot rule out the possibility that stal#8 islands exist in

1 1 0 -05871557 —0.679 —0.8079 the 2D and 3D cases. As to the collinear quantum calculation

2 0 0 —-0499743% —0.303 —0.49 —0.5139 the result of the EO'U state again shows Stronger blndlng

3 0 0 -01338419 -0.168 —0.1905 than the 3D quantum result. Finally, for thg@ 2, state, all

3 1 0 -01326898 —0.165 —0.1885 theoretical results listed in Table | predict that it is stable
(with reference to—0.125 a.u. and the relative error in the

8Present EBK results with the Gutzwiller approximation, Eg). result of formula(3) becomes to some extent more reason-

bSohlberget al. [6]. able.

‘Quantum mechanicdlQM) results obtained by Duaet al. for a Before leaving this section we note that what makes the

collinear system within BOA25]. study of the collinear configuration possible at all is the regu-

9Moss[21]. larization procedure, as disussed in Sec. Il. By using it we

‘Peek[23]. obtain a clear phase space structure for the hydrogen molecu-

Taylor et al.[24], results are for th&=1 rotational state. lar ion. Regularization should improve the accuracy of tra-

jectory calculations in higher-dimensional space too, a prob-

values obtained using the energy-scaling relation, namelyem mentioned by Sohlberet al. [6] in their study.
formula(3), are only valid for lom andk values, i.e., for the
lowest vibrational quantum numbef3hev =1 values listed
in Table | are for reference purpose onlyhe energy values
obtained using formuld3) are listed in Table I, with the The purpose of the present article is to study the corre-
“exact” quantum mechanical valud21-24. lated classical motion between the electron and the protons,

We see in Table | that the predicted binding energy of thewhich is an ingredient missing in the BOA approximation.
XZEQ state of H* is about 100% greater than the exactWithin BOA, H,™ is separable, thus integrable. It is interest-
value. This is in contrast with the result obtained by Sohlbergng to find out what types of dynamical behavior will show
et al.[6], who quantize three-mode tori using the surface-of-up when we go beyond the adiabatic approximation. We
section techniqué¢l5]. Their binding energy is about 90% have found that the periodic orbits of antisymmetric stretch-
smaller than the exact value. They attribute the large error ting vibration of H,* and of a wide class of three-body Cou-
electron tunneling through the potential barrier which risedomb systems are stable. In the phase space of such systems,
as two protons recede from each othé6]. This tunneling this periodic orbit is surrounded by a KAM zone, which is
effect is certainly missing in a primitive semiclassical quan-further surrounded by a region of bound aperiodic orbits,
tization treatment. Our results of previous sections suggestalled P2/P3 hybrid orbits.
another possible contributing factor, that is, we actually have Other remarkable features of tH&2/P3 hybrid motion
a mixed, instead of integrable, system in which R KAM follow. Because thé*2/P3 hybrid motion is aperiodic, but
zone is surrounded by thB2/P3 intermittent chaos. One still bound, it represents a different type of chemical bonding
may then ask how we account for the fact that the collineafrom aP2 orbit. The fact that the net change of the interpro-
calculation predicts a more tightly bound ground state forton distance of a hybrid motion is much larger than that of a
H,". This may be due to the fact that in a collinear configu-P2 type of motion suggests that it may also represent a clas-
ration the electron is restricted to move between the twaical manifestation of a nonadiabatic electronic transition.
protons at all times, and thus contributes more effectively td=inally, we note that the transition from the regular to cha-
the binding than a coplanar or three-dimensiof@D) con-  otic motion as shown in Fig. 3 appears to be sudden and the
figuration. An evidence of this restricting effect is provided correlation between the electron and nuclear motions is very
by the quantum mechanical solution of the collinear systensimilar to that between the light and heavy atoms in a heavy-
[25] (within BOA). The latter yields the strongest binding light-heavy triatomic systerfil3].
among all results listed. Furthermore, the results of Strand This last connection can be far reaching, for it implies that
and Reinhardf2] using primitive semiclassical quantization we can generalize the current formulation to the studies of
reveal that the ground electronic stdigithin BOA) also  hydrogen bonds. In such a model, instead of an electron, a
shows stronger binding fdR<1.25 bohrs. Incidentally, the proton moves between two negative centers to induce bond-
equilibrium distance of 1D quantum calculations agrees withing. This formulation is capable of explaining both the nor-
the location of the antisymmetric periodic unit of Fig(R~ mal type and the short-strong or symmetric type of hydrogen
2.6 bohy. bonds, discussed in recent literat(izs].

Both collinear and coplandor three-modgsemiclassical The semiclassical vibronic energies obtained by the EBK
calculations predict chemical bonding in the ground elecprocedure in the last section are not in satisfactory agreement
tronic state, but this is not the case for the first excited statavith the quantum results. The same is true for the three-
(2pay), which is a very weakly bound van der Waals statemode results of Sohlbergt al. Together they bring out the

VI. SUMMARY AND DISCUSSIONS
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importance of including electron tunneling in semiclassicalation, it seems interesting that part of the chemical bonding

quantization of the hydrogen molecular if2l. Such a treat- can come from classical contributions, as revealed by the

ment is yet to be carried out beyond the Born-Oppenheimestable phase space structures discussed in the present article

approximation, but it is important for the undestanding ofand by the results of Sohlber al. [6].

chemical bonding. Unlike the BOA counterpd&] where

consideration of 1D tunneling suffices, the main challenge

that we are f_aced with i_s _tunnel_ing in higher_—dimensi_onal ACKNOWLEDGMENTS

space. For this purpose it is easier to start with a collinear

system, where tunneling through only a two-dimensional po- We thank Professor Greg Ezra for useful discussions. The

tential need be considered. For such a potential trajectories iwork was supported by the National Science Foundation un-

complex coordinate space have been y&4. der Grant No. PHY9408879, and the National Natural Sci-
Finally, we should mention that, even in the current situ-ence Foundation of China.

[1] W. Pauli, Ann. Phys(Leipzig) 68, 177 (1922. and J. M. YuanWorld Scientific, Singapore, 1992Vol. 4, p.

[2] M. P. Strand and W. P. Reinhardt, J. Chem. P¥@.3812 254,
(1979. [12] X. Tang, Y. Gu, and J. M. Yuan, Phys. Rev.54, 496(1996;

[3] D. I. Abramov, S. Yu. Ovchinnikov, and E. A. Solov'ev, Phys. B. Q. Bai, Y. Gu, and J. M. Yuan, PhysicaTl8 17 (1998.
Rev. A42, 6366(1990. [13] R. Skodje and M. J. Davis, J. Chem. Phg8, 2429(1988.

[4] Y. W. Duan, J. M. Yuan, and C. G. Bao, Phys. Rev.52 [14] A. Carrington, I. R. McNab, and C. A. Montgomerie, Phys.
3497 (1995. Rev. Lett._61, 1573(1988; J. Phys. B22, 3551(1989.

[5] 3. Mueller, J. Burgdoerfer, and D. W. Noid, J. Chem. Phys.[15] D. W. Noid, M. L. Koszykowski, and R. A. Marcus, J. Chem.
103 4985(1995. Phys.67, 404(1977).

[6] K. Sohlberg, R. E. Tuzun, B. G. Sumpter, and D. W. Noid [16] M. C. Gutzwiller,Chaos in Classical and Quantum Mechanics

Phys. Rev. A57, 906 (1998 (Springer, New York, 1990
[7] K. Richter, G. Tanner, and D. Wintgen, Phys. Rew4& 4182 (171 W. H.' Miller, J. Chem. Phys63, 996(1979.
(1993, ' ' ' ' [18] (Dl.g\évélpntgen and K. Richter, Comments At. Mol. Phy8, 261
[8] S. J. Aarseth and K. Zare, Celest. MedB, 185.(1974). [19] G. Tanner and D. Wintgen, Phys. Rev. Lét5, 2928(1995.
[9] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. [5q] p_ wintgen, A. Burgers, K. Richter, and G. Tanner, Prog.
Flannery,Numerical Recipes2nd ed.(Cambridge University Theor. Phys. Suppll16 121 (1994.
Press, Cambridge, England, 1992 [21] R. E. Moss, Mol. Phys80, 1541(1993; 78, 371(1993.
[10] The valueAR=20 is arbitrarily taken to be the distance be- [22] G. G. Balint-Kurti, R. E. Moss, I. A. Sadler, and M. Shapiro,
yond which the hydrogen molecular ion system is considered Phys. Rev. Ad1, 4913(1990.
dissociatednot ionized, for the energy of the system is fixed at [23] J. M. Peek, J. Chem. Phys0, 4595(1969.
—1, the three free-particle asymptotic states are not energet{24] J. M. Taylor, Z. C. Yan, A. Dalgarno, and J. F. Babb, “Varia-
cally accessible and the system can only fly apart ds H tional calculations on the hydrogen molecular ion,” Harvard
+H). We define the lifetime of dissociation using this arbi- University report.
trarily chosen distance. Our numerical results indicate tha{25] Y. Duan, M. Yin, W. An, and C. He, Commun. Theor. Phys.
when one of the protons is far from the hydrogen atom by this (to be published
distance, the chance for the three particles to come back td26] D. G. Drueckhammer and B. Schwartz, J. Am. Chem. Soc.
gether again is very small. 117, 11 902(1999; K. Aoki, H. Yamawaki, and M. Sakashita,
[11] G. S. Ezra, K. Richter, G. Tanner, and D. Wintgen, J. Phys. B Phys. Rev. Lett76, 784 (1996.
24, 1413(199)); R. Blumel and W. R. Reinhardt, iQuantum  [27] S. C. Creagh and N. D. Whelan, Phys. Rev. L&&, 4975
Nonintegrability: Directions in Chagsedited by D. H. Feng (1996.



