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Matter-wave interference using two-level atoms and resonant optical fields
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Physics Department, University of Michigan, Ann Arbor, Michigan 48109-1120

~Received 15 October 1998!

A theory of matter-wave interference is developed in which resonant, standing-wave optical fields interact
with an ensemble of two-level atoms. If effects related to the recoil the atoms undergo on absorbing or emitting
radiation are neglected, thetotal atomic density is spatially uniform. However, when recoil effects are in-
cluded, spatial modulation of the atomic density can occur for times that are greater than or comparable to the
inverse recoil frequency. In this regime, the atoms exhibit matter-wave interference that can be used as the
basis of a matter-wave atom interferometer. Two specific atom-field geometries are considered, involving
either one or two field-interaction zones. For each geometry, the recoil-induced spatial modulation of the total
atomic density is calculated. In contrast to the normal Talbot and Talbot-Lau effects, the spatially modulated
density isnot a periodic function of time, owing to spontaneous emission; however, after a sufficiently long
time, the contribution from spontaneous processes no longer plays a role and the periodicity is restored. With
a suitable choice of observation time and field strengths, the spatially modulated atomic density serves as an
indirect probe of the distribution of spontaneously emitted radiation.@S1050-2947~99!07803-8#

PACS number~s!: 03.75.Dg, 39.20.1q, 32.80.Lg
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I. INTRODUCTION

Atom interferometry has emerged as an important n
research area in the past 15 years@1#. Thermal atoms offer
unique properties as the working element of an interfero
eter, owing to their small de Broglie wavelength. Atom i
terferometry has already led to impressive results in pr
sion measurements of\ @2#, atomic polarizability @3#,
rotation rates@4,5# and the acceleration of gravity@6#. Appli-
cations to nanolithography have also been proposed@7#. De-
spite the advances in atom interferometry, there still does
seem to be a universally accepted definition as to what c
stitutes an atom interferometer. We have previously d
cussed@8# the distinction between classical and quantu
scattering for atom interferometers in which microfabrica
gratings are used as the ‘‘optical’’ elements in the interf
ometer. In this paper, we limit the discussion to atom int
ferometers that employ optical fields to modify the atom
state wave function. Our goal is to develop a theory
matter-wave interference in which resonant, standing-w
optical fields interact with an ensemble of two-level atom

Atom interferometers use optical fields to create atom
coherence between internal states, external~center-of-mass!
states, or both. Depending on which coherence is created
probed, one can classify such atom interferometers into th
general categories. A critical parameter in the classifica
is the productvqT, wherevq5\q2/2m is a recoil frequency
associated with the absorption or emission of radiation by
atoms,m is an atomic mass, andT is a typical time scale in
an experiment. Classical atom interferometers~CAI’s! use
internal state coherence but in no way rely on quantization
the atoms’ center-of-mass motion for their operation. T
CAI’s operate in the regimevqT!1, for which quantum
scattering effects can be ignored. If one restricts the us
the term ‘‘atom interferometer’’ to those devices which d
pend on quantization of the atoms’ center-of-mass mo
for their operation, the CAI would not qualify. Examples
PRA 591050-2947/99/59~3!/2269~10!/$15.00
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CAI’s include those based on radio-frequency@9# or optical
@10–12# Ramsey fringes.

Matter-wave atom interferometers operate only in the
gimevqT*1. We distinguish matter-wave atom interferom
eters in which thetotal atomic density is monitored from
those in which an internal state coherence or populatio
probed. The former we refer to simply as matter-wave at
interferometers~MWAI’s ! and the latter as internal stat
matter wave atom interferometers~ISMWAI’s !. An impor-
tant feature that distinguishes MWAI’s from ISMWAI’s i
the dependence of the observed signal on the parametervqT.
The ISMWAI signal does not vanish in the limitvqT!1, but
does vanish in this limit for MWAI’s. In other words,
MWAI’s depend critically on the quantization of the atom
center-of-mass motion for their operation, whereas IS
WAI’s can operate in the classical or quantum scatter
limits. Although matter wave effects can modify the signa
in ISMWAI’s, many features of the signals are determin
by classical considerations, as in CAI’s. Examples of IS
WAI interferometers include those which explore rec
splitting of optical Ramsey fringes in the frequency doma
@13–17,2# and time domain@6,18,19#.

Matter-wave atom interferometers can be constructed
ing off-resonant standing-wave optical fields. Such fields
as phase gratings for the matter waves. Atoms enter a
interaction region in their ground state, and leave the reg
with their spatial density unaffected. On the other hand,
phaseof the ground-state wave function is spatially mod
lated, corresponding to a coherence between momen
states differing byn\q(n is an integer and 4p/q is the pe-
riod of the standing-wave field!. As the matter wave evolve
freely following the field interaction region, the phas
modulated wave function is transformed into a spatia
modulated density, which can be probed using various te
niques. Atom interferometers can be constructed using
or more field-interaction zones@20–22#. In the transient echo
experiment of Cahnet al. @21#, the vanishing of spatia
modulation at the echo timest52T and t53T ~but not in
2269 ©1999 The American Physical Society
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2270 PRA 59B. DUBETSKY AND P. R. BERMAN
the immediate vicinity of the echo times! is consistent with
MWAI theory @23#. Cahnet al. also found that the spatia
modulation vanished in the classical scattering region,vqT
!1, as it must for any MWAI.

It is also possible to create MWAI’s by resonantly drivin
one-photon transitions between electronic states@23# or two-
photon Raman transitions between ground-state sublevel
ing optical fields. The lifetime of the electronic or groun
state coherence must be greater thanvq

21 , a condition that
restricts one to intercombination lines in the case of el
tronic state coherence. It is possible to show@23# that the
total atomic density is uniform in the classical scatteri
limit, but is spatially modulated in the quantum scatteri
domain,vqT*1. This effect has not yet been observed.
one were to probe the total atomic density rather than so
internal state density in the experiments of Refs.@14,15,17#,
the sought after effect should be observable.

In this paper, we describe a type of MWAI@24# that also
uses resonant rather than off-resonant fields. Two-leve
oms pass through standing wave, optical fields that re
nantly drive aclosed two-level transition in the atoms. In
contrast to Ref.@23#, it is now assumed that the excited-sta
lifetime is much less thanvq

21 . As a result of the atom-field
interaction, a matter grating in the excited state is created
is a ’’hole grating’’ in the ground state. If one neglects a
effects related to quantization of the atoms’ center-of-m
motion, it is easy to show that, after excited-state decay b
to the ground state, the ground-state density is uniform
some sense, the excited-state grating fills the ‘‘hole’’ in t
ground-state density that had been created by the field. W
the recoil associated with stimulated@25# and spontaneou
@26,27# processes are included, however, new features ap
in the ground-state density matrix.

Two specific atom-field geometries are considered. In
first, atoms characterized by a homogeneous velocity di
bution are subjected to a single radiation pulse. The pu
excites the atoms which then decay back to the lower st
The spatial modulation of the total atomic density is calc
lated as a function oft, where t is the time following the
pulse. In contrast to the normal Talbot effect@28#, the spa-
tially modulated density isnot a periodic function oft, owing
to spontaneous emission; however, after a sufficiently lo
time, the contribution from spontaneous processes no lon
plays a role and the Talbot periodicity is restored. In t
second atom-field geometry, there are two pulses separ
by an intervalT. The atomic velocity distribution in this cas
is assumed to be inhomogeneously broadened. Owing to
inhomogeneous broadening, one finds a nonvanishing sp
modulation of the density only at specific ‘‘echo times’’ fo
lowing the second pulse. In contrast to the normal Talb
Lau effect, the spatially modulated density isnot a periodic
function of T, owing to spontaneous emission; however,
sufficiently long time, the contribution from spontaneo
processes no longer plays a role and the Talbot periodici
restored. The structure of the spatially modulated densit
the vicinity of the echo times is studied, and is found
mirror the atomic density following the first pulse. With
suitable choice of observation time and field strengths,
spatially modulated atomic density serves as an indi
probe of the distribution of spontaneously emitted radiati

It is important to note that, forvqT*1, the spatial modu-
us-
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lation of the atomic density departs significantly from a u
form distribution. Thus, although certain features of the d
sity depend on the ratiovq /G!1(G is the upper-state deca
rate!, the overall qualitative nature of the density depends
the parametervqT which is not small in the quantum scat
tering limit. In analyzing the signal, it will prove useful t
separate the contributions from spontaneous and stimul
processes. Immediately following the excited-state dec
these two contributions cancel one another, but, as t
progresses, the contribution from spontaneous processes
appears, leaving a net modulated ground-state density. W
two field interaction zones are used, echolike phenomena
occur. For this caseboth stimulated and spontaneous pr
cesses contribute to the echo signals, even for pulse sep
tions T@vq

21 .
The paper is arranged as follows. The change in

atomic density matrix following the interaction of atom
with a standing-wave, optical, field is calculated in Sec. II.
Sec. III, we consider atom interference using a single-at
field-interaction zone. It is seen that focusing of the atom
similar to that found with phase gratings, can also oc
using resonant fields. The atomic density following tw
atom-field interaction zones is calculated in Sec. IV. T
results are summarized in Sec. V.

II. BASIC EQUATIONS

Atom interferometers can operate in the spatial or ti
domain. In the spatial domain an atomic beam traverses
or more field regions. In the time domain, a vapor of co
atoms~or condensate! is subjected to one or more radiatio
pulses. The spatial domain interferometer can be analyze
the time domain if calculations are carried out in the atom
rest frame. Consequently, we restrict our calculations to
time domain.

Two-level ~upper stateue& and ground stateug&) atoms
are subjected to two radiation pulses separated by a
interval T. Each radiation pulse consists of two traveling
wave components having propagation vectorsk1 and k2 ,
respectively, whereuk1u5uk2u5k5V/c, and V is the fre-
quency of each field. The total electric field can be written

E~r ,t !5êe2 iVt1 iQ–rcos~q–r /2!@E1g1~ t !1E2g2~ t2T!#

1c.c., ~2.1!

whereQ5(k11k2)/2, q5(k12k2), ê is a polarization vec-
tor, Ej is the amplitude of pulsej ( j 51,2), andgj (t) is a
smooth pulse envelope function having widtht, centered at
t5Tj , with T150 and T25T. We assume that the puls
separationT, pulse durationt, atom-field detuningD5V
2v(v is the atomic transition frequency!, upper state decay
rateG, recoil frequency

vq5\q2/2m, ~2.2!

and Doppler shiftk i•v (v is an atomic velocity! satisfy the
inequalities

GT@1, ~2.3a!

Gt!1, ~2.3b!
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uDut!1, ~2.3c!

uk i•vu!G, ~2.3d!

vqT>1. ~2.3e!

Inequality ~2.3a! implies that any excited-state populatio
created by the fields decays to the ground state in a time
is short compared with the time scale of the experime
Inequalities~2.3b! and ~2.3c! imply that spontaneous deca
and atom-field detuning can be neglected during the ra
tion pulses, while inequality~2.3d! ~atoms cooled below the
Doppler limit of laser cooling! guarantees that there is ne
ligible Doppler dephasing for times of order of the excite
state lifetime. Finally, condition~2.3e! states that we are in
the quantum scattering limit.

Conditions~2.3! allow one to map out the time develop
ment of the density matrix resulting from each radiati
pulse in three stages:~1! an impulsive change in the densi
matrix produced by the atom-field interaction,~2! a sponta-
neous decay of the excited state, and~3! a free evolution of
the density matrix. Depending on the specific application,
calculate the atomic density matrix following the first or se
ond pulse. Owing to inequalities~ 2.3!, we can define times
before (Tj

(2)) and following (Tj
(1)) pulsej such that change

in the atomic density resulting from spontaneous decay
atom-field detunings can be neglected in the time inter
Tj

(1)2Tj
(2) .

A. Stage 1

During pulsej, the density matrix, in an interaction rep
resentation, evolves according to

i\ṙ5@V,r#, ~2.4!

V52\x jgj~ t2Tj !cos~q–r /2!@cos~Q–r !sx2sin~Q–r !sy#,
~2.5!

wherex j52mEj /2\ is a Rabi frequency,m is a dipole mo-
ment operator matrix element,sx andsy are Pauli matrices
and

ue&5S 1

0D , ug&5S 0

1D . ~2.6!
at
t.

a-

-

e
-

d
l

It has been assumed that, during each pulse, any effects
ing from atomic motion can be neglected@inequalities~2.3b!
and ~2.3d!#, which is the reason the kinetic-energy term h
been omitted from the Hamiltonian in Eq.~ 2.4! ~the Raman-
Nath approximation!. Before the first pulse acts, it is as
sumed that all atoms are in their ground state. Owing
inequality ~2.3a!, all population is returned to the groun
state before the action of the second pulse att5T2 . Thus we
need only calculate the change in the ground- and exci
state density matrices produced by pulsej, starting from a
density matrix

r~r ,r 8;Tj
~2 !!5S 0 0

rgg~r ,r 8;Tj
~2 !! 0D , ~2.7!

in which all atoms are in their ground state. One can in
grate Eq.~2.4! to obtain the density matrix immediately fo
lowing the pulse at timeTj

(1) ,

r~r ,r 8;Tj
~1 !!5h j~r !r~r ,r 8;Tj

~2 !!h j
†~r 8!, ~2.8a!

h j~r !5 cos@ 1
2 u jcos~q–r /2!#2 i sin@ 1

2 u jcos~q–r /2!#

3@cos~Q–r !sx2sin~Q–r !sy#, ~2.8b!

where

u j54x jE
2`

`

dtgj~ t ! ~2.9!

is a pulse area.
It is convenient to use the Wigner representation for

density matrix,

r~r ,p,t !5E dr̂

~2p\!3
exp~2 ip–r̂ /\!r~r1 r̂ /2,r2r̂ /2,t !,

and expand the populations as

rnn~r ,p,t !5(
s

rnn~s,p,t !exp@ isq–r #. ~2.10!

Using Eqs. ~2.8!–~2.10! and expanding the

sin@ 1
2ujcos(q–r /2)# and cos@ 1

2ujcos(q–r /2)# functions in
terms of Bessel functions, one obtains, for the Fourier co
ficients,
rgg~s,p,Tj
~1 !!5 (

l ,s8
~21!s8J2l ~u j /2!J2~ l 2s8!~u j /2!rgg@s2s8,p2\q~ l 2s8/2!,Tj

~2 !#, ~2.11a!

ree~s,p,Tj
~1 !!5 (

l ,s8
~21!s8J2l 11~u j /2!J2~ l 2s8!11~u j /2!rgg$s2s8,p2\@q~ l 2~s821!/2!1Q#,Tj

~2 !%, ~2.11b!

whereJs(x) is a Bessel function of orders.
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B. Stages 2 and 3

In the next stages of the calculation, the excited state
cays to the ground state and the ground-state density m
evolves freely following the decay. The Wigner function a
sociated with the excited-state population obeys the equa
of motion

S ]

]t
1v–¹D ree~r ,p,t !52Gree~r ,p,t !. ~2.12!

It then follows from Eq.~2.12! that thes-order Fourier com-
ponent evolves as

ree~s,p,t !5exp@2~G1 isq–p/m!~ t2Tj !#ree~s,p,Tj
~1 !!.
~2.13!

The excited-state repopulates the ground state. The gro
state Wigner function is governed by the equation

S ]

]t
1v–¹D rgg~r ,p,t !5GE dnrN~nr !ree~r ,p1\kr ,t !,

~2.14!

from which it follows that the ground-state Fourier coef
cients evolve as

S ]

]t
1 isq–p/mD rgg~s,p,t !5GEdnrN~nr !ree~s,p1\kr ,t !.

~2.15!

In these equations,kr is a spontaneous photon wave vect
nr5kr /kr , andN(nr) is the normalized probability densit
for the radiation of a photon in the directionnr .

The solution of Eq.~2.14! involves both a homogeneou
and particular solution which we write as
to

-
gu
e
s

ic
e-
rix
-
on

d-

,

rgg~s,p,t !5rgg
~S!~s,p,t !1rgg

~D !~s,p,t !. ~2.16!

The homogeneous part,

rgg
~S!~s,p,t !5exp@2 isq–p~ t2Tj !/m#rgg~s,p,Tj

~1 !!,
~2.17!

represents the evolution of the ground state in the absenc
decay. TheSsuperscript indicates that this part is associa
purely with stimulated processes. The particular solut
rgg

(D)(s,p,t) represents the contribution to the ground-st
density matrix resulting from excitation by the pulse a
subsequent decay of the excited state~hence, the superscrip
D for decay!. One finds that at timest2Tj@G21 the particu-
lar solution is given by

rgg
~D !~s,p,t !5exp@2 isq–p~ t2Tj !/m#

3E dnrN~nr !~11 isvdnq /G!21

3ree~s,p1\kr ,Tj
~1 !!, ~2.18!

where

vd5\qkr /m ~2.19!

andnq5nr–q/q. The quantitysvd is a recoil frequency as
sociated with the spontaneous decay of thesth excited state
Fourier component. Alternatively,svd can be viewed as a
Doppler shift of the spontaneously emitted photon that
dependent on the momentum kicks\q which the atom ac-
quires in the excitation process.

Piecing together Eqs.~2.18!, ~2.17!, and~2.11!, one finds
that the ground state density matrix fort2Tj@G21 is given
by
rgg~s,p,t !5 (
l ,s8

~21!s8exp@2 isq–p~ t2Tj !/m#H J2l ~u j /2!J2~ l 2s8!~u j /2!rgg@s2s8,p2\q~ l 2s8/2!#

1J2l 11~u j /2!J2~ l 2s8!11~u j /2!E dnrN~nr !~11 isvdnq /G!21rgg$s2s8,p2\@q~ l 2s8/2!1Q2kr #,Tj
~2 !%J .

~2.20!
pli-
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This is the building-block solution which can be used
analyze several possible experimental schemes.

For vd
21 ,vq

21@t2Tj@G21, recoil effects can be ne
glected and the terms involving recoil momenta in the ar
ments of the density matrix elements can be dropp
In that limit the sum overl of the Bessel functions give
ds8,0 , and Eq. ~2.20! reduces to rgg(s,p,t)5

exp@2isq–p(t2Tj )/m#rgg(s,p,Tj
(2)), which implies that

rgg~r ,p,t !5rggS r2
p

m
~ t2Tj !,p,Tj

~2 !D . ~2.21!

As expected, the density matrix simply undergoes a class
translation if recoil is neglected.
-
d.

al

III. ONE FIELD-INTERACTION ZONE

When an electromagnetic wave passes through an am
tude or phase grating, the diffraction pattern as a function
the distance from the grating is a periodic function of t
so-called Talbot length. Similar effects occur for matt
waves and have been observed experimentally by Chap
et al. @29# and Nowaket al. @30#. In these experiments, on
sent ground-state atoms through a microfabricated grat
For atoms, the Talbot length is given byLT52d2/ldB ,
where d[2p/q is the period of the grating producing th
scattering andldB is the atomic de Broglie wavelength. Th
spatial periodicity in the laboratory frame translates into
temporal periodicity in the atomic rest, frame having peri
2p/vq . When atoms are scattered by resonant optical fie
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rather than microfabricated gratings or off-resonant fiel
the atomic response is no longer strictly periodic owing
spontaneous decay. In this section we calculate the ato
density following the interaction of a highly collimate
atomic beam (quubt!1) or a condensate (qut!1) with a
resonant optical field. In the atomic rest frame, the field
pears as a pulse centered atT150. The initial Wigner distri-
bution is taken asrgg(r ,p,T1

(2))5W(p) @31#, corresponding
to Fourier components
,

s,

ss

fro

s

o
en

m

,

ic

-

rgg~s,p,T1
~2 !!5ds,0W~p!. ~3.1!

In this equation,W(p) is the momentum distribution of the
atoms.

It is convenient to orient thex, y, and z axes along the
mutually orthogonal vectorsq, Q, andk13k2. It then fol-
lows from Eqs.~2.20!, along with the summation identities
Sn
~e!~a![(

l
J2l ~a!J2~ l 2n!~a!exp~2 i l a!5

1

2
exp2 ina/2$J2n@2a cos~a/4!#1~21!nJ2n@2a sin~a/4!#%, ~3.2a!

Sn
~o!~a![(

l
J2l 11~a!J2~ l 2n!11~a!exp~2 i l a!52

1

2
exp2 i ~n21!a/2$J2n@2a cos~a/4!#2~21!nJ2n@2a sin~a/4!#%,

~3.2b!

that the Fourier component at timet,

rgg~s,t !5E dprgg~s,p,t !, ~3.3!

is given by

rgg~s,t !5 1
2 ^exp~2 isq–pt/m!&$J2s@u1 sin„fTS

~st!/2…#@11C„fTD
~st!,svd /G…#

1~21!sJ2s@u1 cos„fTS
~st!/2…#@12C„fTD

~st!,svd /G…#%, ~3.4!
-

al

We
ot

rly
m

to
where^•••& represents an average over atomic momenta

fTS
~ t !5vqt ~3.5!

is the Talbot phase associated with stimulated processe

fTD
~ t !5vdt ~3.6!

is the Talbot phase associated with spontaneous proce
and

C~a,b!5E dn N~n!exp~ ianx!~11 ibnx!
21. ~3.7!

Terms involving C(a,b) in Eq. ~3.4! are connected with
spontaneous processes while the remaining terms arise
stimulated processes.

It follows from Eq. ~3.4! that the spatially homogeneou
part of the atomic density is unchanged,

rgg~0,t !51, ~3.8!

consistent with probability conservation in the closed tw
level system. We are interested primarily in the time dep
dence of the Fourier components havingsÞ0, since these
components determine the spatial modulation of the ato
density. The maximum value ofs entering the summation in
es,

m

-
-

ic

Eq. ~ 2.10! is of order max$1,u1%. It is assumed in this sec
tion that the Doppler broadening is small,

max$1,u1%uq–pt/mu!1, ~3.9!

which allows one to set̂exp(2isq–pt/m)& equal to unity in
Eq. ~3.4!. Note that, even without this factor, the gener
expression~3.4! is not a periodic function of time. Owing to
spontaneous emission, the Talbot effect is destroyed.
will see below that, for sufficiently large times, the Talb
periodicity is restored.

If both traveling wave components of the field are linea
polarized alongz, and if the ground state angular momentu
is equal to 0, then

N~n!53/8p~12nz
2!. ~3.10!

We assume that the recoil frequency is sufficiently small
ensure that

max$1,u1%vq /G!1. ~3.11!

As a consequence one need only evaluate~3.7! at b50. Us-
ing the identity@32#
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E dn ninkexp[ia–n‡54pa23H ~sina2a cosa!d i ,k1
aiak

a2
@~a223!sina13a cosa#J , ~3.12!

one finds

C~a,0!5 3
2 a23@a cosa1~a221!sina#. ~3.13!

Note thatC(a,0);123a2/16 for a!1 andC(a,0);(3/2a)sina for a@1.
The time scale of the transient response~3.4! is determined by the recoil frequencies,

vd54vk sin~Q/2!, vq54vk sin2~Q/2! ~3.14!

whereQ is the angle between the wave vectorsk1 andk2 . There are essentially two time scales in the problem, one assoc
with spontaneous processes,td5vd

21 , and one associated with stimulated processestq5vq
21 . For Fourier components

having sÞ0, it is possible to isolate the contribution from stimulated processes since the contribution from spont
processes becomes negligible fort@td . It is not difficult to understand why spontaneous processes contribute a negl
amount in this limit. The recoil phase factor associated with spontaneous processes@33# is eikr•qt/2m5einr x

vdt. As mentioned
above, this phase factor can be viewed as a recoil-related Doppler phase. When summed over all directions of the
ously emitted photon, it averages to zero forvdt@1. As a consequence, one finds from Eq.~3.4! that, for vdt@1 ands
Þ0,

rgg~s,t !51/2$J2s@u1 sin„fTS
~st!/2…#1~21!sJ2s@u1 cos„fTS

~st!/2…#%. ~3.15!
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In effect, Eq.~3.15! represents a periodic rephasing~Talbot
effect! of the ground-state amplitude gratingthat was cre-
ated immediately followingthe radiation pulse, since fo
vdt@1 the spontaneous contribution no longer plays a ro
One could have equally well ionized all the excited-st
atoms immediately following the pulse. The Fouri
components, rgg(s,t), and total density, rgg(r ,t)
5(srgg(s,t)eisq–r, are periodic functions having period
equal to 2p/vq , and can be used to measure recoil f
quency@21,34#, but, in contrast to scattering by phase gr
ings, there is no time for which the density is uniform wh
vdt@1. When all Fourier components are taken into a
count, and for large pulse areas~but not so large as to violat
the Raman-Nath approximation!,

~vqt!21@u1@1, ~3.16!

it can be shown that the atoms are focused by the field. T
new regime of atom focusing, as well as its relation to
cusing by phase gratings, will be considered in a future p
lication.

For earlier times, whent&vd
21&vq

21 , the spontaneous
term contributes to the atomic density. Ift!vd

21 , the total
density is approximately uniform since spontaneous de
‘‘refills’’ the ’’hole’’ in the ground state that is created by th
radiation pulse. From Eqs.~3.4! and ~3.13!, one finds that

rgg~s,t !' 1
64 ~svqt !2u1

2ds,11
1

10 ~21!s~svdt !2J2s~u1!.
~3.17!

The Fourier components build up ast2 whent!vd
21 . When

the angle between wave vectors is small (Q!1), and for
somewhat larger times,t;vd

21!vq
21 , Eqs.~3.4! reduces to
.
e

-
-

-

is
-
-

y

rgg~s,t !5 1
2 ~21!sJ2s@u1#@12C„fTD

~st!,0…#, ~3.18!

allowing one to isolate the contribution from spontaneo
processes. The Fourier componentrgg(s,t) is plotted in Fig.
1 as a function ofsvdt; it is not a periodic function ofsvdt.
The time dependence of Eq.~3.18! can serve as a probe o
the spontaneous emission distribution function@see Eq.
~3.7!#.

For counterpropagating waves (Q5p), the recoil fre-
quenciesvq and vd coincide and achieve their maximum
valuevd5vq54vk . In this limit, atom interference effect
occur on the shortest possible time scale. The Fourier c
ponentrgg(1,t) is plotted as a function ofvqt in Fig. 2 for
Q5p. Other Fourier components could be shown as w

FIG. 1. The quantity 12C(x,0) is plotted as a function ofx .
WhenQ!1, this function gives the time dependence of the Four
component urgg(s,t)/J2s(u1)u(x5svdt) for t;vd

21!vq
21 and

uF(T)/J2n8r(u2)u@x5r (n82n)vdT# for T;vd
21!vq

21 .
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but rgg(1,t) is the component most easily monitored usi
backscattering techniques. One sees that, initially,rgg(1,t) is
aperiodic, but it asymptotically approaches periodic behav
for vdt@1. The areau1538.9 is that for whichurgg(1,t)u
achieves its maximum, which is approximately equal to
of the initial density. The areau154.81 is chosen to maxi
mize the relative contribution of spontaneous processe
was obtained by maximizing the ratiorm /rm

as , whererm is
the maximum of the exact expression~3.4!, which occurs at
vqt;1, andrm

as is the maximum of the asymptotic expre
sion ~3.15! occurring atvqt@1.

IV. TWO FIELD-INTERACTION ZONES

In Sec. III, it was assumed that any Doppler dephas
was negligible on the time scales under consideration. In
section, we look at the limit in which

qu@vd ,vq , ~4.1!

whereu is the width of the velocity distribution in the direc
tion of q. To be specific, we take the momentum distributi
asW(p)5W'(p')Wq(pq);

Wq~pq!5
1

Apmu
e2pq

2/~mu!2
~4.2!

is the distribution of momenta in the direction ofq, and
W'(P') is the distribution of momenta transverse toq. By
combining Eqs.~3.4! and ~4.2!, one finds that, following a
single pulse, the Fourier components of the density are g
by

FIG. 2. Fourier componentrgg(1,t) for a single field-interaction
zone. The pulse areau1538.9 ~dashed curve! is chosen to maxi-
mize rgg(1,t), while the areau154.81 ~solid curve! is chosen to
maximize the relative contribution from spontaneous processes
r

5

It

g
is

n

rgg~s,t !5e2~squt!2/4J2s@u1fTS
~st!/2#, ~4.3!

correct to ordervd /qu. This term survives only for times o
order (squ)21, which implies that the argument of th
Bessel function is of orderu1vq /qu. This, in turn, implies
that only Fourier components havings;max$1,u1vq /qu%
contribute significantly for times in which Fourier compo
nents other thans50 are nonvanishing.

The picture is rather simple. The radiation pulse exci
the atoms, which then decay back to the ground state, giv
a uniform density. For timest,(squ)21, the sth Fourier
component begins to build up significantly, provide
u1vq /qu.s, and a modulated atomic density appears. F
times t.(squ)21, all spatial modulation has been wash
out as a result of Doppler dephasing. Since this time
shorter than the inverse recoil frequencies, the main feat
of the time dependencergg(s,t) found in Sec. III for homo-
geneous broadening never can be realized in this inhom
neously broadened sample.

The spatial modulation is not lost, however, and can
restored using echo techniques if a second pulse is applie
some timeT following the initial pulse. The time dependenc
of rgg(s,t,T), considered as a function ofT, displays the
same features found in Sec. III forrgg(s,t) as a function of
t. Specifically, it can be used as a probe of spontaneous
cesses.

In this section, we consider the atomic response follow
two pulses centered att50 and t5T(T150 andT25T).
One key point to remember is that the relevant time wind
for which the modulation is restored is of order (squ)21.
Thus it is possible that the Doppler dephasing associa
with spontaneous emission no longer plays a critical role
killing off the Fourier components, since this dephasing
negligible on a time scale (squ)21. We shall see this to be
the case; as a consequence the Fourier components a
’’echo times’’ have contributions fromboth the stimulated
and spontaneous terms, even forvdT@1.

The Fourier components of the density at timest2T2
@G21 following the second pulse can be written as

rgg~s,p,t !5rgg
~SS!~s,p,t !1rgg

~DS!~s,p,t !1rgg
~SD!~s,p,t !

1rgg
~DD !~s,p,t !, ~4.4!

where rgg
(IK )(s,p,t) represents the contribution from stimu

lated (K5S) or spontaneous (K5D) processes following
the second pulse that depend on the stimulated (I 5S) or
spontaneous (I 5D) component of the ground-state densit
matrix Fourier components that were created by the fi
pulse. Consider, for example,rgg

(SS)(s,p,t). Using Eqs.
~2.11a!, ~2.17!, ~3.1!, and ~4.2!, one finds that the Fourie
component

rgg
~SS!~s,t !5E dp rgg

~SS!~s,p,t !, ~4.5!

is given by
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rgg
~SS!~s,t !5(

s8
exp$2n2q2u2@s~ t2T!1~s2s8!T#2/4%(

l 1

exp$22ivq@ l 12~s2s8!/2#

3@s~ t2T!1~s2s8!T#%J2l 1
~u1/2!J2~ l 12s1s8!~u1/2!(

l 2

exp@22isvq~ t2T!~ l 22s8/2!#

3J2l 2
~u2/2!J2~ l 22s8!~u2/2!. ~4.6!
t
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When the time separation between pulses is larger than
inverse Doppler width,

quT@1, ~4.7!

the average over momenta leads to a nonvanishing cont
tion only if

s~ t2T!1~s2s8!T&~qu!21. ~4.8!

Inequality ~4.8! can be satisfied in the vicinity of the ech
times te , defined as

te5
n8

n
T, ~4.9!

wheren8 andn (n8.n) are positive integers having no com
mon factors, provided that

s5nr,s85n8r , ~4.10!

wherer is an integer. Setting

dt5t2te5t2
n8

n
T,

and using inequality~4.8! and Eqs.~4.10!, one finds that the
Doppler phase is nondestructive for times
he

u-

dt&1/~nrqu!.

Although not indicated explicitly,dt is a function oft,n,n8
andT.

Since nr5s, Eq. ~4.10! implies that the (nr)th Fourier
component (r 51,2,3, . . . ) isnonvanishing in the vicinity of
the echo time. For example, ifn51, all the Fourier compo-
nents contribute near the echo timest5n8T(n852,3 . . . ),
corresponding to a macroscopic atomic grating having pe
l/@2sin(Q/2)#; if n52, the (2r )th Fourier components con
tribute near the echo timest5n8T/2(n853,5,7, . . . ), corre-
sponding to a macroscopic atomic grating having per
l/@4sin(Q/2)#. In this manner one can generate macrosco
atomic gratings having periodl/@2nsin(Q/2)#. Note that
condition~4.8! for a nondestructive Doppler phase is aclas-
sical condition, since it does not contain\. The shape of the
echo signal about the echo times and the dependence o
signal on the time separation of the pulses are determine
effects related to quantum scattering, but the actuallocation
of the signals is determined by classical considerations o
@8#.

Using Eq.~3.2a! for the sums overl 1 and l 2 , one finds
that, atdt5t2(n8/n)T,
.

rgg
~SS!~nr,dt !5 1

4 exp@2~nrqudt !2/4#$J2r ~n82n!@u1 sin„fTS
~nrdt !/2…#1~21!~n82n!rJ2r ~n82n!@u1 cos„fTS

~nrdt !/2…#%

3$J2rn8@u2 sin~rfTLS
/2!#1~21!n8rJ2rn8@u2 cos~rfTL/2!#%, ~4.11!

wherefTLS
is a Talbot-Lau phase, defined as

fTLS
5~n82n!vqT. ~4.12!

It is easy to show that the Fourier componentrgg
(SS)(nr,dt50) does not vanish forsÞ0. We shall return to this point shortly

The remaining terms in Eq.~4.4! can be evaluated in the same manner, and one finds

rgg~nr,dt,T!5F~dt !F~T!, ~4.13a!

F~dt !5 1
2 exp@2~nrqudt !2/4#$J2r ~n82n!@u1 sin„fTS

~nrdt !/2…#@11C„fTD
~nrdt !,2r ~n82n!vd/G…#1~21!r ~n82n!J2r ~n82n!

3@u1 cos„fTS
~nrdt !/2…#@12C„fTD

~nrdt !,2r ~n82n!vd /G…#%, ~4.13b!

F~T!5 1
2 $J2rn8@u2 sin~rfTLS

/2!#@11C~rfTLD
,rnvq /G!#1~21!rn8J2rn8@u2 cos~rfTLS

/2!#@12C~rfTLD
,rnvd /G!#%,

~4.13c!
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where

fTLD
5~n82n!vdT. ~4.14!

Result ~4.13a! is the product of a term,F(dt), giving the
time dependence of the Fourier component in the vicinity
the echo time, and a term,F(T), giving its dependence on
the time separation of the pulses.

We consider these terms separately, starting withF(dt).
The exponential factor in Eq.~4.13b! leads to a non-
vanishing contribution to the atomic density only for tim
nrdt;(qu)21!vd

21,vq
21 . In this limit, and for vd /G

!1, Eq. ~4.13b! reduces to

F~dt !5exp@2~nrqudt !2/4#J2r ~n82n!@u1fTS
~nrdt !/2#.

~4.15!

Comparing this expression with Eq.~4.3!, one sees that the
atomic density near the echo times mirrors the atomic d
sity in the time intervaldt following the first pulse. Thus the
dependence of the Fourier components5nr near the echo
time can be understood in terms of the dependence of thesth
Fourier component at a timedt following the first pulse. In
this time interval, only those Fourier components havings
&u1vq /qu are created with nonnegligible amplitude.

It is important to note that the recoil dephasing resp
sible for the ’’washing out’’ of the spontaneous contributio
in the Talbot effect plays no role here, since it is negligib
small in the time intervaldt;(qu)21. The recoil dephasing
during the spontaneous decay of the excited statedoespro-
vide a small correction to Eq.~4.15! for dt50. It follows
from Eq. ~4.13b! that, to lowest order invd /G!1,

F~dt50!' 1
5 ~21!r ~n82n!@r ~n82n!vd /G#2J2r ~n82n!~u1!.

~4.16!

This is a small effect that might be difficult to measure e
perimentally.

We return now to the dependence of the Fourier com
nents onT, given byF(T). The echo configuration consid
ered in this section is the same as that which leads to
Talbot-Lau effect. In the~matter wave! Talbot-Lau effect,
the atomic density is a periodic function of the time sepa
tion between the pulses. In contrast to the normal Talbot-
effect, density~4.13a! is not a periodic function ofT, owing
to the spontaneous contributions toF(T). However, for
pulse separationsT@vd

21 , the spontaneous processes
longer contribute toF(T) and one finds the periodic depe
dence

F~T!' 1
2 $J2rn8@u2 sin~rfTLS

/2!#

1~21!rn8J2rn8@u2 cos~rfTLS
/2!#%, ~4.17!

which is reminiscent of Eq.~3.15!. For shorter pulse separa
tions T!vd

21 , the functionF(T) builds up as

F~T!' 1
10 ~21!rn8J2rn8~u2!@r ~n82n!vdT#2 ~4.18!

@compare with Eq.~3.17!#. When the angle betweenk1 and
k2 is small, one finds that, forT;vd

21!vq
21 ,
f

n-

-

-

-

e

-
u

F~T!51/2~21!n8rJ2n8r@u2#@12C~rfTLD
,0!#,

~4.19!

which is to be compared with Eq.~3.18!. The Talbot-Lau
dependenceF(T) @see Eq.~4.13c!# is qualitatively similar to
the Talbot dependence ofrgg(s,t) @see Eq.~3.4!#. In the
limit that Q!1, and forT;vd

21 @Eq. ~4.19!# or t;vd
21 @Eq.

~3.18!#, the agreement is quantitative.
For the case of counterpropagating waves (Q5p), the

dependenceF(T) is plotted in Fig. 3 forn51,r 51(s5nr
51) and n852. The pulse areau257.52 was chosen to
maximize F(T), while the areau2510.75 was chosen to
maximize the contribution from spontaneous processes.
value u2510.75 was obtained by maximizing the rat
Fm /Fm

as , whereFm is the maximum of the exact expressio
~4.13c!, which occurs atvqT;1, andFm

as is the maximum of
the asymptotic expression~4.17! occurring atvqT@1. The
amplitude of the second harmonic is as large as it was fo
single interaction zone.

V. SUMMARY

We have described a type of matter-wave atom inter
ometer~MWAI !. One or two standing-wave, resonant, puls
interact with an ensemble of atoms. Atomic motion duri
the pulse is neglected~Raman-Nath approximation!, as is
spontaneous emission. As a result of the atom-field inte
tions, the total atomic density acquires asignificantspatial
modulation that can be attributable solely to matter-wa
interference—the signals arise only for times greater than
comparable to the inverse recoil frequencyvd

21 or vq
21 .

Spontaneous processes destroy the periodicity of the Ta
or Talbot-Lau signals. However, for sufficiently long time
the spatially modulated atomic density becomes a perio
function of vqt ~Talbot effect! or vqT ~Talbot-Lau effect!.

To observe the Talbot effect discussed in Sec. III, one
use a highly collimated (quub!vq) atomic beam that is sen
through a field-interaction region. The fields can be pulsed
necessary, to ensure that the interaction time is much
than the excited state lifetime. The modulated atomic den

FIG. 3. A graph of the functionF(T) that gives the dependenc
of the Fourier componentrgg(1,dt,T) on the separation betwee
pulses. The pulse areau257.52 is chosen to maximizeF(T), while
the areau2510.75 is chosen to maximize the relative contributi
from spontaneous processes.
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can be monitored by scattering a probe field off the atom
by directly depositing the atoms on a substrate. One m
also contemplate doing this experiment in the time doma
using a Bose condensate. The Talbot-Lau effect can be
served either in the spatial domain~using an atomic beam
having an appropriate angular divergence! or in the time do-
main, using a laser-cooled and -trapped vapor.

Finally, we would like to comment on the fact that th
Talbot-Lau Fourier components, do not vanish identically
dt50 @see Eq.~4.16!#. The amplitude of these componen
at dt50 is of order (vd /G)2, reflecting the contribution of
recoil dephasing on the time scale of the excited-state
time. Although we did not give the equation in the text, the
is also a contribution to the Talbot Fourier components
order (vd /G)2 near t50. These contributions reflect th
’’opening’’ of the closed two-level system by the recoil a
sociated with spontaneous emission. As in the recoil-indu
resonances@35#, the opening of the system is connected w
quantum scattering—it vanishes in the limit that\;0.
m
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This situation differs from that involving phase grating
on open, two-level transitions. Imagine that the atoms ha
two ground statesg and g8, to which the excited state ca
decay, but that the field drives only theg-e transition. By
using a far detuned field, spontaneous emission to stateg8
can be suppressed by a factor (G/D)2. Following decay, but
for times much less than the inverse recoil time, the popu
tion densityrgg is spatially modulated to order (G/D)2, as is
rg8g8 , but the total density (rgg1rg8g8) is uniform. The
opening of thee-g, two-level, system in this case has not
ing to do with quantum scattering effects.
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