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Numerical approach to the ground and excited states of a Bose-Einstein condensed gas
confined in a completely anisotropic trap
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The ground and excited states of a weakly interacting and dilute Bose-Einstein condensed gas, confined
in a completely anisotropic harmonic oscillator potential, are determined at zero temperature within the
Bogoliubov approximation. The numerical calculations employ a computationally efficient procedure based on
a discrete variable representation~DVR! of the Hamiltonian. The DVR is efficient for problems where the
interaction potential may be expressed as a local function of interparticle coordinates. In order to address
condensates that are both very large~;106 atoms! and fully anisotropic, the ground state is found using a
self-consistent field approach. Experience has demonstrated, however, that standard iterative techniques ap-
plied to the solution of the nonlinear partial differential equation for the condensate are nonconvergent. This
limitation is overcome using the method of direct inversion in the iterated subspace~DIIS!. In addition, the
sparse structure of the DVR enables the efficient application of iterative techniques such as the Davidson
and/or Lanczos methods, to extract the eigenvalues of physical interest. The results are compared with recent
experimental data obtained for Bose-Einstein condensed alkali-metal vapors confined in magnetic traps.
@S1050-2947~99!05803-5#

PACS number~s!: 03.75.Fi, 05.30.Jp, 32.80.Pj
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I. INTRODUCTION

The experimental achievement of Bose-Einstein cond
sation ~BEC! in dilute alkali-metal gases confined in ma
netic traps@1–4# has generated tremendous interest in
behavior of the inhomogeneous, weakly interacting, and
lute Bose gas. At low temperatures, the confined Bose g
have been shown to be well described by mean-field line
response theories~MFLRT’s! based on the Bogoliubov@5,6#
approximation, which assumes that the number of cond
sate atomsN0 is a substantial fraction of the total numb
@7–13#. The finite-temperature extensions of this theo
such as the Hartree-Fock-Bogoliubov and Popov approxi
tions @14,15#, also have been successfully applied to the
systems@16–22#, though the microscopic basis for these a
proaches and their agreement with experiment remain so
what uncertain@22–24#.

The usual approach taken within MFLRT is to first sol
the ~time-independent! nonlinear Schro¨dinger equation for a
given number of atoms in the condensate; the resulting w
function and chemical potential are then used in the line
ized equations for the quasiparticle excitations in order
obtain the eigenmodes of the system. At finite temperatu
the significant depletion of the condensate requires that
procedure be iterated to self-consistency. The magnit
of the nonlinear, or self-energy, term appearing in
Schrödinger equation for the ground state is proportional
the condensate density. Thus, a fully three-dimensional s
tion of the nonseparable equation for the condensate pres
a number of numerical challenges, particularly for large v
ues ofN0 .

The magnetic trap used to confine these gases is
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approximated by a harmonic potential, in which the freque
cies (vx ,vy ,vz) are generally incommensurate. All of th
published experimental realizations to date have emplo
traps with either spherical or cylindrical symmetry, whic
are more conducive to numerical study. The number of
perimental groups which have obtained BEC of confin
alkali-metal gases is steadily rising, however@25#. In order to
consider a range of possible trap geometries, as well a
permit future investigations of any time-dependent prop
ties, it is necessary to generalize the numerical calculati
to allow for complete anisotropy. The purpose of the pres
paper is to demonstrate that the numerical obstacles ma
overcome and to outline a robust and computationally e
cient procedure within the MFLRT.

The approach taken by us is based on a discrete vari
approximation~DVR! @26# to the equations governing th
statics of the condensate. The DVR has several advant
over the methods used by others for the current probl
Most standard techniques discretize the solution to the pa
differential equations~PDE’s! for the condensate and excita
tions either in physical~grid! space or in function~basis set!
space. Grid-based methods@27# have the advantage that a
local interactions between particles have a local represe
tion while the kinetic energy takes on a sparse and typic
banded structure. This sparsity is a consequence of~typi-
cally! low-order finite difference approximations to the d
rivatives in the PDE, and is crucial for the implementation
iterative techniques@28,29# developed for large, sparse linea
systems@30#. The disadvantage of grid methods is that it
often difficult to approximate the derivatives that appear
the PDE’s to sufficient accuracy without resorting to hig
order differences or very small step sizes. While an accu
2232
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representation of the kinetic energy is arguably of minor i
portance for the ground state whenN0 is large, it is crucial
for the subsequent determination of excitations. Expans
in function space~often called spectral and/or pseudospec
methods@31#! are typically superior since it is possible
‘‘analytically’’ differentiate the functions without further ap
proximation. These methods, however, require the evalua
of potential energy matrix elements by quadrature, leadin
a nondiagonal and dense matrix representation of local
erators.

The DVR exploits the dual relationship between cert
orthogonal polynomials~such as the classical orthogon
polynomials! and the points and weights of a Gauss quad
ture. By using an appropriate set of polynomials as a b
for expanding the solution to the PDE, it is possible to ma
tain almost all of the advantages of a grid-based approac
well as the global convergence of a finite basis set. In
DVR, any local potential energy operator is diagonal a
therefore easy to compute. The multidimensional kinetic
ergy also has a sparse representation because it is a com
ing sum of one-dimensional operators. The sparseness i
as structured as is the case for more traditional approac
but the expense of generating the kinetic energy matrix
ments is mitigated by the iterative method used to solve
PDE: these terms need only be evaluated once. It is
worth noting that the expansion coefficients of the solutio
to the PDE are trivially related to the values of the soluti
on the quadrature points that serve as the physical grid.
haps the most important point to stress, though, is that
solutions of the PDE scale very efficiently with basis set si
This will become very important for three-dimensional pro
lems where the size of the various matrices could easily b
large as 100 000 by 100 000.

The usual starting point for the theoretical treatment
the inhomogeneous, weakly interacting, dilute Bose ga
zero temperature is the time-independent MFLRT in
Bogoliubov approximation. Since the derivation of the r
sulting equations may be found in many places@32#, only the
central results are presented here. In the absence of inho
geneities other than the confining potential, all wave fu
tions may be assumed to be real. In the weakly interac
and low-density limit relevant to the experiments of intere
the interatomic interactions may be approximated by a tw
bodyd-function contact potential with a coupling constantg.
Minimizing the grand canonical potential for interactin
bosons and then linearizing the resultant equations for
amplitude of the condensatec(r ) and the excitations,u(r )
and v(r ), leads, respectively, to the Gross-Pitaevskii~GP!
@33,34# for the condensate and the Bogoliubov@5,6# equa-
tions for the excitations:

L̂c~r !5mc~r !, ~1!

~ L̂2m1VH!un~r !2VHvn~r !5enun~r !, ~2!

~ L̂2m1VH!vn~r !2VHun~r !52envn~r !, ~3!

where the nonlinear Schro¨dinger operator is written as

L̂52
\2

2M
¹W 21Vtrap~r !1VH . ~4!
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The nonlinearity of the GP equation is due to the mean-fie
or Hartree, potentialVH5guc(r )u2; at long wavelengths, the
coupling constantg'4p\2a/M , wherea andM are, respec-
tively, thes-wave scattering length and the mass of the ato
Only the casea.0 will be considered here. The chemic
potentialm fixes the number of atomsN0 in the condensate
~the contribution from the excitations is ignored in th
Bogoliubov approximation!, anden are the collective excita-
tions of the system. Note that the condensate is the z
energy solution of the Bogoliubov equations,c(r )5u0(r )
5v0(r ); the excitation frequencies are measured with
spect to the ground-state energym.

The confinement due to the magnetic trap is well d
scribed by a completely anisotropic harmonic oscillator p
tential:

Vtrap5
M

2
~vx

2x21vy
2y21vz

2z2!. ~5!

The analysis of the GP and Bogoliubov equations is con
erably simplified by reexpressing the trap frequenciesv
and coordinates in terms of the scaled variab
(vx ,vy ,vz)5v0(1,a,b) and (x,y,z)→d0(x,y,z), where
d05A\/Mv0 is the characteristic oscillator length in thex̂
direction. As a result, the coupling constant becomesg
→4ph0 , where we defineh0[N0a/d0 . The Schro¨dinger
operator is then

L̂52 1
2 ¹W 21 1

2 ~x21a2y21b2z2!14ph0c2~r !. ~6!

All energies~including m,en) are now given in trap units
\v0 . With these choices, the condensate and excited-s
wave functions are normalized to unity in the rescaled~di-
mensionless! coordinates:

E drc2~r !51, ~7!

E dr @un
2~r !2vn

2~r !#51. ~8!

In the next section we discuss the numerical methods u
to solve these equations.

II. NUMERICAL METHODS

The discrete variable representation is particularly use
for the problem of trapped Bose-condensed atoms. As
cussed in the Introduction, all potential energy operators
the Hamiltonian are local and therefore have a diagonal
trix representation, while the kinetic energy still has a fai
simple and sparse structure. Since only the low-lying mo
are relevant to the static properties of the weakly interact
Bose gas at low temperatures, the sparse Hamiltonian m
ces are ideally suited to iterative techniques for the deter
nation of eigenvalues. Since these methods are dominate
matrix-vector multiplies, a structured and sparse matrix
fers considerable computational savings.

An important feature of the GP equation is that the int
action potential depends nonlinearly on the solution. Th
for a given N0 , the lowest eigenvaluem and eigenvector
c(r ) must be found self-consistently. In practical terms
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robust iterative method is required. Indeed, as discussed
low, no solution to the GP equation may be found simply
straight iteration when the universal scaling parameteh
[abh0*10. Sincea/d0 is typically of order 102321022,
only a few thousand atoms in the trap~several orders of
magnitude fewer than are experimentally relevant! would be
sufficient to prevent the solution to the GP equation by ite
tive methods. We have developed a variant of a well-kno
technique, called direct inversion in the iterative subsp
~DIIS! @35# to render convergent the self-consistency proc
for the largeN0 of practical interest. DIIS complements a
ternative numerical approaches, such as the method of s
est descents~imaginary-time propagation!, which have been
successfully applied to the trapped Bose condensates@36–
38#.

A. DVR techniques

The basic ideas of a discrete variable representation
quite old. The earliest applications@39# were designed to
simplify the calculation of certain classes of matrix eleme
that appeared in finite basis set, variational calculations. S
sequent authors@26,40–43# began to use the DVR more d
rectly and, in some instances, to view it as the primary r
resentation for the problem under consideration. T
viewpoint of the current authors is that the DVR follow
naturally from a particular choice of a finite basis set, o
that is mathematically linked to Gauss quadratures.

Let us consider a basis of functions,$fn(x), n51,N%,
perhaps satisfying some set of boundary conditions ove
finite or infinite interval, which is complete enough for e
panding any unknown function over that interval to sufficie
accuracy. For simplicity we assume that these functions fo
an orthonormal basis for the space. What we seek i
complementary set of ‘‘coordinate eigenfunctions
$ui(x), i 51,N%, and a generalized quadrature consisting
roots and weights$xk ;wk , k51,N%, such that

ui~xk!5d i ,k . ~9!

We now expand the unknownui(x) in the set of functions
fn(x),

ui~x!5 (
n51

N

fn~x!^fnuui&, ~10!

and assume it is possible to evaluate the overlap integ
^fnuui&, sufficiently accurately using the generalized quad
ture rule so that

^fnuui&5wifn~xi !, ~11!

ui~x!5wi (
n51

N

fn~x!fn~xi !. ~12!

The result~11! follows directly from Eq.~9! and the integra-
tion rule for a Gauss quadrature:

^ f ug&[E
a

b

dxw~x! f ~x!g~x![(
k

wkf ~xk!g~xk!, ~13!
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wherew(x) is a non-negative weight function. Moreover, th
d-function property~9! of the coordinate eigenfunctions i
exactly satisfied by Eq.~12! at the quadrature pointsxk ,
since thefn form a complete set:

(
n51

N

fn~xk!fn~xi !5
d i ,k

wi
. ~14!

It should be underlined that theui(x) defined by Eq.~12!
are highly localized in the vicinity of the quadrature poin
but are not trued functions, since they are finite forxÞxk .

Since the coordinate eigenfunctionsui(x) are defined as
continuous functions ofx, it is possible to differentiate and
tabulate them using the known properties of thefn(x). The
crucial step, of course, is to be able to find the set of ba
functions and the related generalized quadrature that jus
Eqs.~11,12!.

While no conditions have thus far been placed on the
fn(x), other than orthonormality and completeness, in pr
tice the requirement that theui(x) satisfy Eq.~9! and Eqs.
~11,12! limits the basis functions to the classical orthogon
polynomials. These are defined by a three term recurs
relation of the form

b jf j~x!5~x2a j !f j 21~x!2b j 21f j 22~x!, ~15!

with the properties

^f i uf j&5d i , j , f0~x!5const, ~16!

where the inner product is defined in Eq.~13!. Since Eq.~15!
may be interpreted as the definition of the coordinate ope
tor x in the polynomial basis, the orthonormal eigenvecto
of this tridiagonal matrix must diagonalize the coordina
operator@44#. It is therefore not a coincidence that the ass
ciated eigenvalues are the generalized Gauss quadr
points associated with the original basisfn(x). For this set
of N functions there is an associated generalized Ga
quadrature consisting ofN points and weights, which assur
us that Eqs.~11,12! are satisfiedexactly.

There are as many ways to define theui(x) as there are
classical orthogonal polynomials. The most natural cho
however, is to use the Lagrange interpolating functio
which explicitly diagonalize Eq.~15!. The Lagrange polyno-
mials may be defined at the associated Gauss quadra
points by

v i~x!5)
k51

N

8
x2xk

xi2xk
, ~17!

where the prime denotes exclusion of the pointxi in the
product. The Gauss-Legendre quadrature pointsxk are de-
fined on the interval@21:1#; with the associated weights, on
obtains the eigenfunctions:

ui~x!5v i~x!/Awi . ~18!

These polynomials have the ‘‘d-function property’’ by con-
struction, and are normalized so that they form an orthon
mal set under the generalizedN-point Gaussian quadrature
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^ui uuj&5d i , j . ~19!

This definition ensures that there is an equality between
act integration and integration by quadrature for any in
grand that may be represented as a polynomial of de
(2N21) or smaller. In the present work, both Lagran
functions as well as a DVR based on a Hermite polynom
basis are considered.

Since theui(x) diagonalize the coordinate operator, t
matrix element of any operatorO(x) that is a local function
of x satisfies

^ui uO~x!uuj&5d i , jO~xi !. ~20!

The DVR basis not only considerably simplifies the evalu
tion of many matrix elements of the Hamiltonian, but lea
to a sparse representation as well. For many large ma
problems the only practical methods of diagonalization
matrix inversion require the operation of the Hamiltoni
matrix on some known vector. Sparsity is a key ingredien
performing this operation efficiently.

While the result~20! is an identity within a particular
Nth-order Gauss quadrature, it is only exact when the pr
uct of ui(x), uj (x) and the local operatorO(x) is a polyno-
mial of degree 2N21 or smaller@45#. The present formal-
ism, therefore, is particularly conducive to the solution of t
GP equation in the limit of largeN0 . In this case, the con
tribution of the kinetic term to the total energy is small. T
square of the condensate wave function may then be wr
in the so-called Thomas-Fermi~TF! approximation:

c2~r !'@mTF2 1
2 ~x21a2y21b2z2!#/4ph0 , ~21!

where the normalization condition~7! yields the chemical
potential in the TF limit:

mTF5 1
2 ~15abh0!2/5[ 1

2 ~15h!2/5, ~22!

in units of \v0 . In the TF limit, both the interaction an
confining potentials appearing in the Schro¨dinger operatorL̂
Eq. ~6! are evidently second-order polynomials. For a fin
but large number of atoms, however, there is a small ex
nential tail near the boundary of the condensate cloud res
ing from the finite kinetic energy@46–48#. As shown in Sec.
III, this exponential behavior may be effectively captur
even when using a comparatively low-order basis.

For the present three-dimensional calculation, the cond
sate and excited-state wave functions are expanded u
Cartesian coordinates in a product basis of coordinate fu
tions for each dimension; in the condensate case, for
ample, one writes

c~r !5(
i , j ,k

ci jkui~x!uj~y!uk~z!. ~23!

The components of the three-dimensional kinetic ene
Tx,y,z[2 1

2 ¹x,y,z
2 has the following representation in th

DVR product basis:

^uiujukuTuulumun&5Ti ,ld j ,mdk,n

1Tj ,md i ,ldk,n1Tk,nd i ,ld j ,m . ~24!
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Thus, the Hamiltonian matrix separates into a sum of den
one-dimensional kinetic energy matrices times Kronecked
functions in the remaining variables, plus a purely diago
matrix associated with the potential terms. While multid
mensional expansions of this kind~23! exist in other coordi-
nate systems@49–52#, the choice of a product basis i
Cartesian coordinates yields a separable kinetic energy
erator which ensures a sparse matrix representation of
Hamiltonian in the multidimensional DVR space. The e
pansion coefficientsci jk found by diagonalization are pro
portional to the values of the wave function at the approp
ate quadrature points.

B. Iteration and the DIIS method

The central numerical difficulty in the solution of the G
equation is the nonlinearity associated with the two-bo
interactions. Since the magnitude of the Hartree potentia
proportional to the number of atoms in the condensate,
self-consistent solution whenN0 is large can become prob
lematic. Many calculations reported to date have ‘‘inverte
the search; that is, the value ofm is fixed while the wave
function and associated value ofN0 are obtained that satisfy
the appropriate boundary and normalization conditions. S
a procedure is straightforward in one dimension~though
somewhat less so in two! @7#, since a direct numerical inte
gration of the GP equation can be implemented. In th
dimensions, a root search procedure may be devised to
complish the same thing, but the calculation would be
tremely time consuming. With the method of steepest
scents, the solution of the three-dimensional GP equa
could be obtained by imaginary-time propagation. Thou
this approach has been shown to yield accurate results
large numbers of atoms@36–38#, it is not obvious that time-
dependent techniques should be most suitable for the s
tion of an eigenproblem.

An elegant and~as shown below! inexpensive method for
the solution of the GP equation is to fixN0 and to self-
consistently solve form and c(r ). Unfortunately, a direct
iteration of Eq.~1! does not usually converge to the glob
energy minimum, even for relatively small condensates (N0
;103, h;1). Initially, we attempted several simpl
schemes in order to improve convergence. One approach
to use the TF approximation~21! to begin the iteration se
quence. This would seem to be an excellent starting p
when the condensate is large and the TF solution is a rea
able approximation. In practice, we have found that the p
behavior of the TF wave function near the condens
boundary did not, in general, make this a viable procedu
Even correcting the TF result using a boundary-layer per
bation approach@48# did not seem to greatly improve con
vergence.

Evidently, a robust numerical process is required that r
idly damps out the errors as the iteration sequence proce
One rather crude approach is to use a linear combinatio
the solutions from the (i 21)th andi th steps to initiate the
iteration process for the (i 11)th step@53,54#; the proper
linear combination may be found by numerical experimen
tion. The approach used by the present authors, known
DIIS @35#, is a more systematic version of the above that u
the information from all of the previous iterations. The DII
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method is well known in the quantum chemistry communi
where it is used to accelerate the convergence of s
consistent field calculations. As discussed below, for sma
intermediate numbers of atoms (103&N0&106), DIIS is
found to be at least as computationally efficient as
method of steepest descents.

DIIS begins by defining an error which characterizes
convergence of the iteration process. While the errorê may
be defined in any number of ways, one that appears to
particularly stable numerically is the commutator:

ê[@Ĥ,r̂ #, ~25!

where r̂(r ,r 8) is the density matrixuc&^cu. Evidently, ê
vanishes at convergence. Note that both the density ma
and the error are matrices havingS2 elements, whereS is the
dimension of the Hilbert space. The procedure is to exp
the current expression for the Hamiltonian and error a
linear combination of them previous values

Ĥm115(
i 51

m

aiĤ
i , ~26!

êm115(
i 51

m

aiê
i , ~27!

subject to the constraint that

(
i 51

m

ai51. ~28!

Minimizing the squared norm ofêm11 with the constraint
~28!, one obtainsm11 linear equations:

(
j 51

m

Bi , jaj2l50, ~29!

where

Bi , j[^êi uêj&, ~30!

and j 51,2, . . . ,m. The Lagrange multiplierl enforcing the
constraint yields the squared norm of the error.

The practical implementation of the DIIS algorithm, esp
cially for large Hamiltonian matrices, deserves some ad
tional comment. Although it appears to be necessary to s
the Hamiltonian matrix for each iteration, this is not the ca
The only part of the Hamiltonian matrix that varies fro
iteration to iteration is the nonlinear potential, and this m
trix is diagonal in the DVR. Inserting Eq.~30! into Eq. ~25!,
the matrix elementsBi , j are simply given by:

Bi , j52^w i uw j&^c i uc j&22^w i uc j&^c i uw j&, ~31!

wherew i(r )[Ĥ ic i(r ); it is important to note thatĤ i is the
Hamiltonian matrix constructed fromc i 21(r ), the minimal
eigenvector of which isc i(r ). On each iteration, therefore,
is only necessary to store the solution vector as well as
vector that represents the operation of the Hamiltonian
trix on the solution vector. Since these objects are both
,
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dimensionS rather thanS2, they may easily be stored in
central memory even on current workstations as long as
number of DIIS iterations does not become too large.

To summarize, only the vectorsc(r ) andw(r ) need to be
stored at each iteration step. From these, the scalar prod
~31! required to set up the set of linear equations~28! and
~29! may be generated. Once them unknownsai as well asl
have been found, a new nonlinear potential may be c
structed from the past guesses,

VH
m115(

i 51

m

aiVH
i , ~32!

and the next self-consistent field cycle initiated. Furthermo
by storing and not destroying all previous elements ofBi , j ,
only an additional row and column need be computed at e
step of the iteration. Since the dimension ofB is assumed to
be small, the additional storage should not be a problem
most work stations.

With the TF expression for the condensate wave funct
as the initial guess, the DIIS algorithm yields a converg
solution for significantly larger numbers of atoms (N0
;105) than was possible with a direct iterative procedu
As N0 continues to grow, however, the number of DIIS
erations to achieve convergence increases until eventu
the process fails. It appears that small errors in the inter
diate solution of the GP equation, particularly in the ‘‘tail
region close to the condensate surface, are amplified by
nonlinearity of the potential during the iteration proces
Combining DIIS with a more realistic initial guess, we ha
been able to achieve convergence for the large numbe
atoms (N0;106) relevant experimentally. Two scheme
used to improve the starting approximation for the Hart
potential have proved particularly valuable. By slowly i
creasing the number of atoms, the converged solution fo
slightly smaller condensate is an excellent choice. Alter
tively, one may solve a modified GP equation with an exa
gerated kinetic energy contribution, then slowly ramp do
the degree of exaggeration~this technique is similar in spirit
to simulated annealing!. A simple modification of the origi-
nal DIIS procedure was also found to be quite helpful. T
DIIS procedure is broken into cycles with some maximu
number of iterations allowed per cycle. At the end of ea
cycle, the DIIS procedure is restarted using the best availa
solution. By numerical experimentation it was found th
once the root mean square error~or alternativelyAl) is re-
duced to 102221023, it becomes possible to restart DII
and to rapidly reduce errors to 102621027 with very few
additional iterations.

C. Interpolation of the wave function

As discussed above, in the limit of very largeN0 where
the TF theory is believed to be valid, both the interaction a
confining potentials are well approximated by low-ord
polynomials inx,y,z. Since anN-point Gauss quadrature i
able to integrate a (2N21)th-order function exactly, it
should be possible to capture the essential behavior of
condensate wave function~squared! using only a very small
number of quadrature points. One is therefore left with
somewhat surprising conclusion: when the number of ato
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becomes very large, the resulting self-consistency prob
should simplify considerably. A very coarse DVR grid h
two obvious advantages. The reduced dimension of
Hamiltonian matrix would accelerate the solution of t
eigenproblem at each DIIS iteration. In addition, the few
degrees of freedom for spatial variations should enable
self-consistent solution for the condensate to converge w
fewer DIIS iterations. The crucial unknown is whether t
exponential tail at the condensate boundary, due to the fi
kinetic energy contribution, varies sufficiently rapidly to in
validate the low-order approximation applicable in the
limit.

Suppose that the gross features of the condensate w
function could be found using a low-order Gauss quadrat
corresponding to only a few DVR points in each spatial
rection. The self-consistent solution obtained using suc
‘‘coarse grid’’ would then make an excellent initial guess f
a more accurate ‘‘fine grid’’ calculation, if the interpolatio
between grids could be implemented successfully. By
creasing the number of DVR points in the mesh once
perhaps a few times, it should be possible to rapidly c
verge the solution of the GP equation for virtually arbitra
numbers of atoms. The interpolated wave function on
quadrature points (xl ,ym ,zn) associated with the fine grid i
approximately

c~xl ,ym ,zn!'(
i jk

ci jkui~xl !uj~ym!uk~zn!, ~33!

where the sum is taken over coarse-grid expansion co
cients and coordinate eigenfunctions. Since the DVR po
corresponding to the two different Gauss quadratures are
generally coincident, the values of the coarse-grid coordin
basis functions at the fine grid points must be obtained
plicitly using either Eq.~12! or ~17!.

D. Extraction of eigenvalues and eigenvectors

The direct extraction of all the eigenvalues and eigenv
tors of Eqs.~1–3! becomes computationally impractical fo
very large matrices. In three-dimensional systems, a size
number of basis functions~and therefore quadrature point!
are usually required in order to adequately represent
wave functions over all space. This is a particularly imp
tant consideration for the excitations, whose rapid spa
variations can only be captured by high-order polynomia
As a result, the dimension of the matrices can become v
large, even after block diagonalizing according to parity.
full diagonalization of the eigenproblem, using standard a
widely available routines based on variants of the Give
Householder method, places considerable demands on
storage and cpu time. A full diagonalization is not necess
since only the lowest eigenvalue (m) of the GP equation is
required, and it is sufficient to determine merely the lowe
lying excitations of the Bogoliubov equations at zero te
perature.

When the matrices are too large to fit in memory, iterat
methods must be used in order to extract the relevant l
lying states. These techniques require the frequent opera
of the Hamiltonian on a vector, and are practical only if the
are relatively few nonzero matrix elements. Indeed, a sp
m
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representation of the Hamiltonian is a crucial feature of
DVR and the separability of the kinetic energy operator.
addition, standard iterative procedures return reasonable
proximations only to the extremal eigenvalues, in the sp
of a Rayleigh-Ritz variational method. The GP equation~1!
yields a positive-definite, real, symmetric, and sparse ma
the lowest eigenvalue of which may be found using varia
of the well-known Lanczos@55# or Davidson @56# algo-
rithms.

The Davidson method, which is widely used by quantu
chemists, develops a small orthonormal subspace of vec
which is adequate to describe the eigenpairs of physical
terest. The Hamiltonian is projected into thisp-dimensional
subspace and the Rayleigh-Ritz variational principle ensu
that an upper bound to the lowestn eigenvalues is obtained
from the process. Since the computational procedure in
application of the Davidson algorithm may be unfamiliar
some readers, it is summarized as follows.~1! Choose an
initial set of m orthonormal trial vectorsbi , wherem>n. ~2!

Calculatehi 5 Ĥbi , the effect of the Hamiltonian matrix on
these vectors.~3! Calculate the Hamiltonian matrix̂bi uhj&
from the information generated in steps 1 and 2.~4! Solve
the resultant small eigenvalue problem for the current val
of the wave functions,Cq

cur and eigenvalues,Eq
cur by a direct

method.~5! Calculate the residuals,

rq5~Eq
cur2Ĥ !Cq

cur, ~34!

and test for convergence. If all roots are converged stop
not select the unconverged residuals for further impro
ment.~6! Using the set of residuals solve the equation

~H̃2Eq
cur!Fq5r q , ~35!

whereH̃ is some approximation to the exactĤ. ~7! Schmidt
orthonormalize theFq to thebi and then append them to th
bi to enlarge the vector space.~8! Calculatehi5Ĥbi , for the
appended vectors and the additional matrix elements nee
to border^bi uhj&. ~9! Return to step 4.

In the original Davidson algorithm, which was design
for diagonally dominant matrices, the approxima
Hamiltonian used in step 6 was the diagonal. Then the
culation of the solution to Eq.~35! is trivial. For diagonally
dominant matrices, this Jacobi preconditioning method p
duces a quickly converging set of new vectors, and the en
calculation is dominated by step 2 in the sequence abo
Although the DVR has the desirable feature that it produ
a sparse representation, the matrix is unfortunately far fr
being diagonally dominant. Without an alternative precon
tioning technique, the calculation can require several (;S)
full cycles which becomes computationally prohibitive.

Our approach to the preconditioning problem is based
using a separable approximation toH̃, i.e., a Hamiltonian
that can be written as a sum of commuting operators in
three-dimensional space. For simplicity, we have chosen
use the bare trap Hamiltonian, but other more complica
choices can be made, subject to the separability requirem
Equation~35! then becomes

~H̃0
11H̃0

21H̃0
32Eq

cur!Fq5rq . ~36!
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In order to solve this equation, we transform to the basis
that diagonalizes the separable Hamiltonian, recognizing
the transformation can be written as a product of three o
dimensional unitary transformations. Thus, the residual v
tor on the right-hand side of Eq.~34! is transformed from the
DVR to the diagonal representation, an operation that sc
as the size of the three-dimensional basis set times the
dimensional basis set. This linear scaling with basis set
is a consequence of the separable form of the approxim
Hamiltonian, yet preserves the most desirable features o
DVR. Once the residual has been transformed to the dia
nal representation, Eq.~35! is trivially solved and then the
solution vector is transformed back to the DVR represen
tion. This procedure is analogous to using fast Fourier tra
forms ~FFT’s! to solve multidimensional PDE’s. The FFT
more efficient~but less general! due to special character o
the Fourier transformation but the separability is a key fac
to its properties. By using this separable preconditioning,
have been able to reduce the number of Davidson iterat
to manageable size. In addition, the vectors from a previ
calculation for a smaller condensate are found to be exce
trial vectors to initiate the calculation. The result is a rob
procedure that is quite efficient for large matrices.

The matrix associated with the Bogoliubov equatio
~2,3!, in contrast, is nonsymmetric and has real eigenval
occurring in positive-negative pairs. This matrix must be a
dressed using routines such as those based on an Arno
a nonsymmetric Davidson approach. Since the low-lying
citations of the Bogoliubov equations are those closes
magnitude to zero~relative to the chemical potential! and are
therefore theleast extremal, it is most convenient to de
couple the original equations using the following linear co
binations:

f n~r ![un~r !1vn~r !, ~37!

gn~r ![un~r !2vn~r !. ~38!

The resulting eigenproblem then becomes

~ L̂2m12VH!~ L̂2m! f n~r !5en
2f n~r !, ~39!

wheree050 corresponds to the ground-state energy rela
to the chemical potential. Once the functionsf n are found,
the left eigenvectorsgn may be obtained directly by utilizing

gn~r !5en
21~ L̂2m! f n~r ! ~40!

subject to the normalization condition̂f ug&51, obtained
from Eq.~8!. While the resulting eigenproblem remains no
symmetric~since the condensate density does not comm
with the operatorL̂), the dimension of the matrix has bee
reduced by a factor of 2. Furthermore, the eigenvaluesen

2 are
positive-semidefinite and real@6#. In practice, the composite
operator on the left side of Eq.~39! is never determined
explicitly; doing so at each DIIS iteration not only would b
time consuming, but also would lead to a dense mat
Rather, at each Arnoldi-Davidson iteration the vector is m
tiplied in turn by the two distinct sparse operators.
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III. RESULTS AND DISCUSSION

The techniques discussed in the previous section are
ticularly useful under two circumstances: when the poten
is completely anisotropic, and when the number of cond
sate atoms is very large. For illustrative purposes, results
presented for Bose-condensed sodium atoms confine
traps with three different geometries, all of which have be
realized experimentally. The completely anisotropic tr
considered here is a time-orbiting potential~TOP! trap with
angular frequencies in the natural ratio@57# (vx ,vy ,vz)
5v0

A(1,A2,2) wherev0
A5354p rad/s; BEC in such a system

has been recently observed by Kozumaet al. @58#. Other
geometries considered are the cigar-shaped Ioffe-Pritch
trap of W. Ketterle @59# with cylindrical symmetry and
(vx ,vy ,vz)'v0

C(1,13.585,13.585),where v0
C'33.86p

rad/s, and the approximately spherical ‘four dimension
potential of L. Hau@4# with v0

S'87 rad/s. All the calcula-
tions assume ans-wave scattering length for sodium ofa
5(5265)a0 , wherea0 is the Bohr radius@60#.

A. Condensate

The solution of the GP equation~1! on the coarse and fine
grids employed 60 and 180 harmonic oscillator basis fu
tions ~Hermite polynomials with a Gaussian prefactor! in
each spatial direction, respectively. Coordinates were
caled through$x,y,z%→$x,y/a,z/b%; the nonlinear coeffi-
cient becomesg54ph54pabh0 in order to ensure the
proper normalization of the condensate density~7!. With this
choice, the condensate cloud becomes almost spheric
large particle numbers, with an approximate radius given
the TF expressionRTF5(15h)1/5, in units of the character-
istic trap lengthd05A\/Mv0. DVR points significantly be-
yond the TF radius were ignored. The ground state was
sumed to have totally even parity, so the GP equation w
solved in a single octant. The basis functions were eig
functions of a trap with frequencies reduced from their act
values by a factor of 20, in order to decrease the density
points. The resulting Hilbert spaces for the coarse and
grids then have dimension 3 566 and 18 685, respectively
all geometries and condensate numbers; both sizes are
siderably reduced from the impractical values of 216 000 a
5 832 000 one naively might have obtained.

In Table I, the chemical potentials obtained numerica
using the coarse grid are given as a function of the numbe
atomsN052q in the condensate for the spherical, cylind
cal, and anisotropic geometries described above. The TF
ues, from Eq.~22!, are included for comparison. The numb
of DIIS iterations required to yield a convergent solution
the GP equation increases with the number of atoms; in
cylindrical case, DIIS failed to converge forN05219

5524 288 and greater. Choosing a finer grid always redu
the number of DIIS iterations; although increasing the nu
ber of points yields additional degrees of freedom for t
Hartree potential, the variations of the condensate den
~particularly in the surface region! are better captured. In th
cylindrical case, which has a cigar shape, the coarse grid
too few DVR points in the two strongly confining direction
to adequately capture the behavior of the condensate at l
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N0 . Forq.18, therefore, initial grids were chosen to conta
a larger number of points not exceeding 104. Since more
points imply a larger eigenproblem at each iteration, pra
cal calculations require as coarse a grid as possible.

The convergence of the chemical potentials with the nu
ber of condensate atoms is shown in Fig. 1. Both the cy
drical and spherical traps give rise to relatively slow conv
gence of the chemical potential to the TF value compa

FIG. 1. The percent difference between the numerical and
values for the chemical potentialDm512mTF /mexactare shown as
a function of the number of atoms and the universal scaling par
eter h5ab(N0a/d0) ~which is proportional to the nonlinear cou
pling constant! for all three trap geometries. The data for the sphe
cal ~circles!, cylindrical ~diamonds!, and anisotropic~squares! cases
are identical to those given in Table I. The solid, dashed, and do
lines are fits to the data points using the expressionDm
'g$S,C,A%/m$S,C,A% for the spherical (gS51.5), cylindrical (gC

5170), and anisotropic (gA54.0) cases, respectively. It is impo
tant to note that in the inset, the values ofDm for the cylindrical
data are reduced by a factor of 10 in order to facilitate comparis

TABLE I. The chemical potentialsm$S,C,A% corresponding to
spherical, cylindrical, and anisotropic geometries, respectively,
given in units of\v0

$S,C,A% for various numbers of condensate atom
N0[2q. The TF values, from Eq.~22!, are given in parentheses. A
results are converged to three decimal places and were obta
using the coarse grid with at least 603 basis functions and 3566
DVR points.

q mS mC mA

0 1.500 14.085 2.207
10 1.825~1.119! 17.384~9.393! 3.572~2.824!
11 2.065~1.477! 19.392~12.395! 4.345~3.726!
12 2.435~1.949! 22.359~16.355! 5.425~4.917!
13 2.970~2.571! 26.620~21.580! 6.904~6.488!
14 3.719~3.393! 32.682~28.475! 8.900~8.560!
15 4.743~4.477! 41.055~37.573! 11.572~11.296!
16 6.124~5.907! 52.433~49.578! 15.128~14.904!
17 7.970~7.795! 67.750~65.418! 19.847~19.667!
18 10.427~10.285! 88.228~86.320! 26.096~25.950!
19 13.685~13.571! 115.453~113.900! 34.358~34.241!
20 17.999~17.907! 151.545~150.29! 45.275~45.182!
21 23.702~23.628! 199.313~198.31! 59.693~59.618!
i-

-
-
-
d

with the anisotropic case. This trend is expected for
spherical trap, where the confinement is extremely weak
the cylindrical case the condensate is strongly confined,
only in the radial direction where the motion of the atoms
more or less frozen but the kinetic energy can be large; th
fore, the cylindrical trap is effectively loose and one dime
sional. In contrast, the fully anisotropic trap considered h
is relatively tight in all directions, and the chemical potent
converges to the TF value more rapidly.

In the TF limit, most relevant quantities, such as the me
condensate radiusRTF5(15h)1/5d0 and the chemical poten
tial mTF5 1

2 (15h)2/5\v0 , are functions of the universal sca
ing parameterh5ab(N0a/d0). Similarly, the first-order
correction to the TF chemical potentialmTF , taking into ac-
count the average kinetic energy@46,47# and contributions
from the potential energies@48#, is proportional toRTF

22

;mTF
21 . The fits to the numerical data ofDm[(1

2mTF /m)'g/mTF , shown in Fig. 1, are in reasonable agre
ment with this behavior~except for the cylindrical case fo
very small numbers of atomsN0&104). One might naively
expect, therefore, that the convergence of the chemical
tential to the TF limit as a function ofh ~which is propor-
tional to the coefficient of the nonlinear term in the GP equ
tion! would be independent of trap geometry. As shown
Fig. 1, this is in fact not the case. The data for the cylindri
case converge far more slowly than those for the other
ometries, though the magnitudes of the TF chemical pot
tials for a given value ofh are identical~note that the values
of Dm shown in the figure for the cylindrical case are r
duced from their actual values by an order of magnitude
order to facilitate comparison!. The kinetic energy contribu-
tion to the chemical potential~and therefore to the total en
ergy! is evidently strongly dependent on trap geomet
Thus, a large nonlinear term in the GP equation does
necessarily mean that the TF approximation adequately
resents the system.

In order to verify the accuracy of the solution obtained
the coarse grid, the condensate wave function was inte
lated onto a 18 685-point grid derived from a DVR bas
with 180 polynomials in each direction~refer to Sec. II C for
details on the interpolation technique!. The solution of the
GP equation was again converged on the fine grid. For sm
to intermediate values of the nonlinear coupling (h
&3000), a single interpolation between the two meshes
sufficient to yield a solution on the fine grid with only a fe
(;10) additional iterations. Ash increased, two or more
successive interpolations and reconvergences were gene
required before the solution on the finest grid could be
tained. In all cases, the values of the chemical potential at
two extremes were found to be identical to at least th
decimal places.

The condensate wave functions obtained on the co
and fine grids are compared in Fig. 2, for the case ofN0
52195524 288 atoms in the completely anisotropic trap. T
coarse-grid condensate profile along a given axis app
rather crude, particularly in the surface region where
wave function varies rapidly; for a given basis, convergen
is only obtained at the DVR points. Nevertheless, this wa
function interpolated is virtually indistinguishable from th
converged solution on the fine mesh. Ash increases, how-
ever, the length of the tail at the surface of the condens
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2240 PRA 59B. I. SCHNEIDER AND D. L. FEDER
shortens. Eventually, the coarse grid will have too few poi
in this crucial region to adequately capture the rapid va
tions. In this case, a large jump in mesh size results in
interpolated wave function that more poorly represents
self-consistent result.

B. Excitations

The excitations of a condensate in a fully anisotropic h
monic trap have been completely classified@61#, and have
been explicitly obtained in the low-density@62# and TF
@63,64# limits. The states are polynomials of orderN5 l
1m1n and are labeled by the total parityP5(21)l 1m1n,
where the quantum numbers (l ,m,n) represent the order o
the polynomials along the (x,y,z) directions in the noninter-
acting limit. In the strongly interacting~or hydrodynamic!
regime, there are four odd- and four even-parity low-lyi
modes with energiese5Al 1a2m1b2n in units of \v0 ,
where (l ,m,n) can be either 0 or 1. The ground state, re
tive to the chemical potential, has quantum numbers (0,0
The only states withN51 are the odd-parity dipole mode
where the center of mass oscillates with the three trap
quencies. ForN52, there are six quadrupole oscillation
with even parity and stationary center of mass. Three
these have energies given by the expression above,
( l ,m,n)5(1,1,0) and cyclic permutations. The other thr
are the solutions of the secular equation:

U32e2 1 1

1 32e2/a2 1

1 1 32e2/b2U50. ~41!

For (a,b)5(A2,2), the geometry considered here, o

readily obtainse5A864A2 and A5. In the fully aniso-

FIG. 2. The condensate wave function forN052195524 288
atoms in the fully anisotropic trap, normalized to unity, is shown

simultaneous projections along the positivex̂ ~rightmost curves!, ŷ

~middle curves!, and ẑ ~leftmost curves! axes. The dashed line
correspond to the TF approximation. The numerical results obta
on the coarse and fine grids are shown as dotted~offset 0.002) and
solid ~offset 0.004) lines, respectively. The interpolated coarse-g
and converged fine-grid wave functions exactly coincide.
s
-
n
e

-

-
).

e-

f
ith

tropic case, all the excitation energies~except those for the
odd-parity dipole modes! decrease withN0 @62#.

The low-lying excitation energies for a completely anis
tropic trap have been computed numerically, and are sho
in Fig. 3. All the calculations were obtained using th
3 566-point grid. While small finite-size and coarse-graini
effects are present, as evidenced by the small fluctuation
the ground-state energye50, the results closely match th
TF predictions described above. As expected, the odd-pa
dipole modes are independent of the number of atoms in
trap. All the other frequencies depend strongly onN0 , de-
creasing from their noninteracting values in agreement w
perturbative calculations@62#.

While the frequencies of all the lowest-lying modes atta
their large-number values byN0;106 in the relatively strong
anisotropic trap, the convergence to the hydrodynamic li
slows as the quantum numbers increase and the confine
is weakened. In Fig. 4, the low-lying excitationsenl of the
loose spherical trap are shown as a function of the numbe
atoms in the condensate, up toN05222'4.23106. In the
hydrodynamic limit, the energies are given byenl

5Al 12n(n1 l 13/2) @8#. The lowest number-dependen
modee02 agrees with its hydrodynamic valueA2 to less than
a percent byN0'106. The numerical value ofe04, in con-
trast, differs from its limiting value of 2 by approximatel
2% even when the number of atoms is as large as 43106

atoms. Evidently, the magnitude of the excitation ener
relative to the ground statem, does not alone provide a su
ficient indication of its convergence to the hydrodynam
limit. A similar number dependence for the higher-lying e

s

d

d

FIG. 3. The low-lying excitations of a condensate in the co
pletely anisotropic trap are given in trap units\v0 as a function of
q, where the number of atomsN052q. The circles correspond to
numerical results; horizontal dashed lines are the predictions of
TF theory. The data points along zero are the ground-state ene
relative to the chemical potentials listed in Table I. The long-das
modes are labeled by (lmn), where l , m, andn are the quantum
numbers of the noninteracting harmonic oscillator states alongx, y,
and z, respectively. The unlabeled short-dashed excitations w
energies just below and above 2\v0 are higher-order modes with
odd parity alongx and y, respectively; the two at higher energie
have totally even parity~lower! and odd parity in bothx and y
~upper!.
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citations of a cylindrically symmetric condensate has a
been recently obtained@53#.

IV. CONCLUSIONS

A numerical procedure is introduced for the investigati
of an interacting Bose gas at zero temperature confined
completely anisotropic trap. The central feature of the te
nique is the use of the discrete variable representation~DVR!
as the primary basis for the calculations. The DVR combi
the best features of grid and basis-set techniques. All lo
operators are diagonal, so the evaluation of interaction
trix elements becomes trivial. While the kinetic energy ha
more dense representation, it may be evaluated analytic

FIG. 4. Selected low-lying excitationsenl of the spherical con-
densate are given in trap units\v0 as a function ofq, where the
number of atomsN052q. The filled and open circles correspond
numerical results forn50 and n51, respectively, while square
represente20; horizontal dashed (n50), long-dashed (n51), and
dot-dashed (n52) lines are the results obtained in the hydrod
namic limit enl5Al 12n(n1 l 13/2).
et
o

a
-

s
al
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lly

to high accuracy by exploiting the underlying polynomi
basis used to define the DVR. Furthermore, the kinetic
ergy needs to be evaluated only once.

In the present method the condensate density is de
mined self-consistently; for fully three-dimensional system
this approach is considerably more efficient th
conventional root-search algorithms. At each iteration,
ground-state wave function is obtained by iteratively diag
nalizing the sparse GP Hamiltonian, using either a Lanc
or Davidson method. Convergence of the self-consistent
lution to the GP equation is substantially hastened by e
ploying DIIS. As the nonlinear coefficient of the GP equ
tion becomes very large, it often becomes necessary
employ more sophisticated techniques, including numbe
kinetic energy ramping and multigrid interpolation. In ge
eral, DIIS becomes more expensive as the number of at
increases; it is conceivable that an alternative method suc
imaginary-time propagation becomes more efficient th
DIIS in the regimeN0*106.

The convergence of the chemical potential and the lo
lying collective excitations is investigated as a function
trap geometry. The chemical potential is found to approa
its Thomas-Fermi value more slowly as the confinem
weakens or the degree of anisotropy becomes more
nounced; the convergence does not scale universally with
magnitude of the nonlinear coefficient. The excitations o
completely anisotropic condensate have been calculated
merically, and for large numbers of atoms agree with
Thomas-Fermi predictions@63,64#. For a very weak spheri-
cal trap, the collective frequencies converge to their hyd
dynamic values@8# more slowly.
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