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Numerical approach to the ground and excited states of a Bose-Einstein condensed gas
confined in a completely anisotropic trap
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The ground and excited states of a weakly interacting and dilute Bose-Einstein condensed gas, confined
in a completely anisotropic harmonic oscillator potential, are determined at zero temperature within the
Bogoliubov approximation. The numerical calculations employ a computationally efficient procedure based on
a discrete variable representatiddVR) of the Hamiltonian. The DVR is efficient for problems where the
interaction potential may be expressed as a local function of interparticle coordinates. In order to address
condensates that are both very lafgel0° atomg and fully anisotropic, the ground state is found using a
self-consistent field approach. Experience has demonstrated, however, that standard iterative techniques ap-
plied to the solution of the nonlinear partial differential equation for the condensate are nonconvergent. This
limitation is overcome using the method of direct inversion in the iterated subgpdl&®. In addition, the
sparse structure of the DVR enables the efficient application of iterative techniques such as the Davidson
and/or Lanczos methods, to extract the eigenvalues of physical interest. The results are compared with recent
experimental data obtained for Bose-Einstein condensed alkali-metal vapors confined in magnetic traps.
[S1050-294{@9)05803-3

PACS numbe(s): 03.75.Fi, 05.30.Jp, 32.80.Pj

[. INTRODUCTION approximated by a harmonic potential, in which the frequen-
cies (wy,wy,w,) are generally incommensurate. All of the
The experimental achievement of Bose-Einstein condenpublished experimental realizations to date have employed
sation (BEC) in dilute alkali-metal gases confined in mag- traps with either spherical or cylindrical symmetry, which
netic traps[1-4] has generated tremendous interest in theare more conducive to numerical study. The number of ex-
behavior of the inhomogeneous, weakly interacting, and diperimental groups which have obtained BEC of confined
lute Bose gas. At low temperatures, the confined Bose gasedkali-metal gases is steadily rising, howe{/258]. In order to
have been shown to be well described by mean-field linearconsider a range of possible trap geometries, as well as to
response theorigFLRT'’s) based on the Bogoliubdib,6] permit future investigations of any time-dependent proper-
approximation, which assumes that the number of conderties, it is necessary to generalize the numerical calculations
sate atomdN, is a substantial fraction of the total number to allow for complete anisotropy. The purpose of the present
[7-13. The finite-temperature extensions of this theory,paper is to demonstrate that the numerical obstacles may be
such as the Hartree-Fock-Bogoliubov and Popov approximasvercome and to outline a robust and computationally effi-
tions [14,15, also have been successfully applied to theseient procedure within the MFLRT.
systemg 16—22, though the microscopic basis for these ap- The approach taken by us is based on a discrete variable
proaches and their agreement with experiment remain somepproximation(DVR) [26] to the equations governing the
what uncertair22—-24,. statics of the condensate. The DVR has several advantages
The usual approach taken within MFLRT is to first solve over the methods used by others for the current problem.
the (time-independentnonlinear Schrdinger equation for a Most standard techniques discretize the solution to the partial
given number of atoms in the condensate; the resulting wavdifferential equation§PDE’s) for the condensate and excita-
function and chemical potential are then used in the lineartions either in physicalgrid) space or in functioribasis set
ized equations for the quasiparticle excitations in order tespace. Grid-based methofia7] have the advantage that all
obtain the eigenmodes of the system. At finite temperature$ocal interactions between particles have a local representa-
the significant depletion of the condensate requires that thion while the kinetic energy takes on a sparse and typically
procedure be iterated to self-consistency. The magnitudbanded structure. This sparsity is a consequencéypi-
of the nonlinear, or self-energy, term appearing in thecally) low-order finite difference approximations to the de-
Schralinger equation for the ground state is proportional torivatives in the PDE, and is crucial for the implementation of
the condensate density. Thus, a fully three-dimensional soluterative techniquef28,29 developed for large, sparse linear
tion of the nonseparable equation for the condensate presersgstemq30]. The disadvantage of grid methods is that it is
a number of numerical challenges, particularly for large val-often difficult to approximate the derivatives that appear in
ues ofNg. the PDE’s to sufficient accuracy without resorting to high-
The magnetic trap used to confine these gases is wefirder differences or very small step sizes. While an accurate
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representation of the kinetic energy is arguably of minor im-The nonlinearity of the GP equation is due to the mean-field,
portance for the ground state whlg is large, it is crucial —or Hartree, potentia¥,,=g|(r)|?; at long wavelengths, the
for the subsequent determination of excitations. Expansionsoupling constangj~4#2a/M, wherea andM are, respec-
in function spacéoften called spectral and/or pseudospectratively, thes-wave scattering length and the mass of the atom.
methods[31]) are typically superior since it is possible to Only the casea>0 will be considered here. The chemical
“analytically” differentiate the functions without further ap- potentialu fixes the number of atom, in the condensate
proximation. These methods, however, require the evaluatio(the contribution from the excitations is ignored in the
of potential energy matrix elements by quadrature, leading t@ogoliubov approximatioyy ande, are the collective excita-
a nondiagonal and dense matrix representation of local options of the system. Note that the condensate is the zero-
erators. energy solution of the Bogoliubov equationg(r)=ug(r)

The DVR exploits the dual relationship between certain=y,(r); the excitation frequencies are measured with re-
orthogonal polynomials(such as the classical orthogonal spect to the ground-state energy
polynomialg and the points and weights of a Gauss quadra- The confinement due to the magnetic trap is well de-
ture. By using an appropriate set of polynomials as a basiscribed by a completely anisotropic harmonic oscillator po-
for expanding the solution to the PDE, it is possible to main-tential:
tain almost all of the advantages of a grid-based approach as
well as the global convergence of a finite basis set. In the
DVR, any local potential energy operator is diagonal and
therefore easy to compute. The multidimensional kinetic en-
ergy also has a sparse representation because it is a commiibe analysis of the GP and Bogoliubov equations is consid-
ing sum of one-dimensional operators. The sparseness is netably simplified by reexpressing the trap frequencies
as structured as is the case for more traditional approacheand coordinates in terms of the scaled variables
but the expense of generating the kinetic energy matrix eletwy, 0y, ;) = wo(l,e,8) and ,y,z)—do(Xx,y,z), where
ments is mitigated by the iterative method used to solve the,= \Z/Mw, is the characteristic oscillator length in the
PDE: these terms need only be evaluated once. It is als@irection. As a result, the coupling constant beconges
worth noting that the expansion coefficients of the solutions— 44 5,, where we definepo=Nya/d,. The Schrdinger
to the PDE are trivially related to the values of the solutiongperator is then
on the quadrature points that serve as the physical grid. Per-
haps the most important point to stress, though, is that the [ = — V24 3(x2+ a?y?+ B222) + 4w qo?(r).  (6)
solutions of the PDE scale very efficiently with basis set size.
This will become very important for three-dimensional prob-  All energies(including u,e,) are now given in trap units
lems where the size of the various matrices could easily be dswo. With these choices, the condensate and excited-state
large as 100000 by 100 000. wave functions are normalized to unity in the rescaléd

The usual starting point for the theoretical treatment ofmensionlesscoordinates:
the inhomogeneous, weakly interacting, dilute Bose gas at
zero temperature is the time-independent MFLRT in the J dry?(r)=1, @)
Bogoliubov approximation. Since the derivation of the re-
sulting equations may be found in many plaggg], only the
centrg] results are presented he_re. In the _absence of inhomo- J dr[uﬁ(r)—uﬁ(r)]zl. ®)
geneities other than the confining potential, all wave func-
tions may be assumed to be real. In the weakly interacting . . .
and low-density limit relevant to the experiments of interest, In the next section we discuss the numerical methods used
the interatomic interactions may be approximated by a two!© Solve these equations.
body &-function contact potential with a coupling constgnt
Minimizing the grand canonical potential for interacting Il. NUMERICAL METHODS

bosons and then linearizing the resultant equations for the rpe giscrete variable representation is particularly useful
amplitude of the condensatg(r) and the excitationsi(r) o the problem of trapped Bose-condensed atoms. As dis-
andv(r), leads, respectively, to the Gros_s-P|taev$P) cussed in the Introduction, all potential energy operators in
[33,34 for the condensate and the Bogoliubi,6] equa-  the Hamiltonian are local and therefore have a diagonal ma-

M
Vtrap=7(w>2(X2+ w§y2+ wgzz). 5)

tions for the excitations: trix representation, while the kinetic energy still has a fairly
- simple and sparse structure. Since only the low-lying modes
Lp(r)=pip(r), 1) are relevant to the static properties of the weakly interacting
. Bose gas at low temperatures, the sparse Hamiltonian matri-
(L= +Vi)un(r) =Viua(r) = €uun(r), (2)  ces are ideally suited to iterative techniques for the determi-
nation of eigenvalues. Since these methods are dominated by
(L= +Vua(n) —Vaus(n) = —ewn(r), (3)  matrix-vector multiplies, a structured and sparse matrix of-
fers considerable computational savings.
where the nonlinear Schanger operator is written as An important feature of the GP equation is that the inter-

action potential depends nonlinearly on the solution. Thus,
for a given Ny, the lowest eigenvalug. and eigenvector
#(r) must be found self-consistently. In practical terms, a

2

. h?
L —mv2+vt,ap(r)+vH. (4)
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robust iterative method is required. Indeed, as discussed besherew(x) is a non-negative weight function. Moreover, the
low, no solution to the GP equation may be found simply bys-function property(9) of the coordinate eigenfunctions is
straight iteration when the universal scaling paramejer exactly satisfied by Eq(12) at the quadrature points,,
=apB7,=10. Sinceal/d, is typically of order 103—102, since the¢, form a complete set:

only a few thousand atoms in the tradpeveral orders of
magnitude fewer than are experimentally releyavuld be
sufficient to prevent the solution to the GP equation by itera- 2 n(Xk) Pn(Xi )— (14)
tive methods. We have developed a variant of a well-known "= Wi

technique, called direct inversion in the iterative subspace
(DIIS) [35] to render convergent the self-consistency process
for the largeN, of practical interest. DIIS complements al-
ternative numerical approaches, such as the method of steep- Since the coordinate eigenfunctiongx) are defined as
est descent@maginary-time propagationwhich have been 9

; continuous functions oX, it is possible to differentiate and
;g]ccessfully applied to the trapped Bose condendd@s tabulate them using the known properties of thg€x). The

crucial step, of course, is to be able to find the set of basis
. functions and the related generalized quadrature that justify
A. DVR techniques Egs.(11,12.

The basic ideas of a discrete variable representation are While no conditions have thus far been placed on the set
quite old. The earliest applicatiorj89] were designed to ¢n(X), other than orthonormality and completeness, in prac-
simplify the calculation of certain classes of matrix elementdice the requirement that thg(x) satisfy Eq.(9) and Egs.
that appeared in finite basis set, variational calculations. Sutid1,12 limits the basis functions to the classical orthogonal
sequent author26,40—-43 began to use the DVR more di- polynomials. These are defined by a three term recursion
rectly and, in some instances, to view it as the primary rep¥elation of the form
resentation for the problem under consideration. The

N

It should be underlined that the(x) defined by Eq(12)
are highly localized in the vicinity of the quadrature points
ut are not trues functions, since they are finite for x,, .

viewpoint of the current authors is that the DVR follows Bjd;(X)=(X—aj)pj_1(X) = Bj—1¢;—2(X), (15
naturally from a particular choice of a finite basis set, one
that is mathematically linked to Gauss quadratures. with the properties
Let us consider a basis of functionsp,(x), n=1N},
perhaps satisfying some set of boundary conditions over a (dild))=0ij, ¢o(x)=const, (16)

finite or infinite interval, which is complete enough for ex-

panding any unknown function over that interval to sufficientwhere the inner product is defined in Eg3). Since Eq(15)
accuracy. For simplicity we assume that these functions forninay be interpreted as the definition of the coordinate opera-
an orthonormal basis for the space. What we seek is #r x in the polynomial basis, the orthonormal eigenvectors
complementary set of “coordinate eigenfunctions,” of this tridiagonal matrix must diagonalize the coordinate

{ui(x), i=1N}, and a generalized quadrature consisting ofoperatorf44]. It is therefore not a coincidence that the asso-

roots and weight$x, ;w,, k=1N}, such that ciated eigenvalues are the generalized Gauss quadrature
points associated with the original basghg(x). For this set
Ui (X) = 6 k- (9  of N functions there is an associated generalized Gauss

quadrature consisting & points and weights, which assure
We now expand the unknowm (x) in the set of functions us that Eqs(11,12 are satisfiecexactly
dn(X), There are as many ways to define théx) as there are
classical orthogonal polynomials. The most natural choice,
however, is to use the Lagrange interpolating functions,

W)= 2, dn(X){bnluy), (100 which explicitly diagonalize Eq(15). The Lagrange polyno-
n=1 . h .
mials may be defined at the associated Gauss quadrature
and assume it is possible to evaluate the overlap integraP,Olnts by

(én|u;), sufficiently accurately using the generalized quadra-

ture rule so that vi(x)= H —
k=1 Xj Xk

17)
<d’n|ui>:Wi¢n(Xi)r (11)

where the prime denotes exclusion of the pointin the
product. The Gauss-Legendre quadrature pomtare de-
=W; E Dn(X) Pn(X). (120  fined on the interval—1:1]; with the associated weights, one
n=1 obtains the eigenfunctions:

The result(11) follows directly from Eq.(9) and the integra- Ui(X) =0 ()] W, (19)
tion rule for a Gauss quadrature: ' ' g
These polynomials have thesfunction property” by con-

f f dxwix) F(x W (x0)a(X 13 struction, and are normalized so that they form an orthonor-
(flo)= WOOT(x)g(x 2 F w90, (13 mal set under the generaliz&dpoint Gaussian quadrature:
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<Ui|uj>: 5 (19 Thus, the Hamiltonian matrix separates into a sum of dense,
one-dimensional kinetic energy matrices times Kroneaker
This definition ensures that there is an equality between exunctions in the remaining variables, plus a purely diagonal
act integration and integration by quadrature for any inte-matrix associated with the potential terms. While multidi-
grand that may be represented as a polynomial of degremensional expansions of this kiti@3) exist in other coordi-
(2N—1) or smaller. In the present work, both Lagrangenate systemg49-52, the choice of a product basis in
functions as well as a DVR based on a Hermite polynomialCartesian coordinates yields a separable kinetic energy op-
basis are considered. erator which ensures a sparse matrix representation of the
Since theu;(x) diagonalize the coordinate operator, the Hamiltonian in the multidimensional DVR space. The ex-
matrix element of any operat@(x) that is a local function pansion coefficientg;;, found by diagonalization are pro-
of x satisfies portional to the values of the wave function at the appropri-

ate quadrature points.
(Uil O(X)|uj)= 6 ;O(x;). (20

The DVR basis not only considerably simplifies the evalua- B. Iteration and the DIIS method
tion of many matrix elements of the Hamiltonian, but Ieadg The central numerical difficulty in the solution of the GP
to a sparse representation as well. For many large matrix

problems the only practical methods of diagonalization Or_equatlon is the nonlinearity associated with the two-body

o . ; : .. . “interactions. Since the magnitude of the Hartree potential is
matrix inversion require the operation of the Hamiltonian

. o . ) roportional to the number of atoms in the condensate, the
matrix on some known vector. Sparsity is a key ingredient t . . ;
) . ; . self-consistent solution wheN, is large can become prob-
performing this operation efficiently.

While the result(20) is an identity within a particular lematic. Many calculations reported to date have “inverted

Nth-order Gauss quadrature, it is only exact when the pro the search; that is, the value pfis fixed while the wave

uct of u(x), u;(x) and the local operatad(x) is a polyno- function and associated value Mf, are obtained that satisfy
mial of Ide ,recja A—1 or smaller[fS] The resentpfo>r/mal- the appropriate boundary and normalization conditions. Such
ism theref%re is particularl conduc.ive to ?he solution of the® procedure is straightforward in one dimensighough
GP,equation i,n tr?e limit of%argﬁl In this case. the con somewhat less so in tw¢7], since a direct numerical inte-

0- , - . . )
tribution of the kinetic term to the total energy is small. Thegratlon of the GP equation can be implemented. In three

) ... dimensions, a root search procedure may be devised to ac-
square of the condensate wave function may then be ertte(r:]omplish the same thing, but the calculation would be ex-
in the so-called Thomas-Ferr(ifF) approximation: '

tremely time consuming. With the method of steepest de-
200N — (x4 g2y2 1t 3272 scents, the solution of the three-dimensional GP equation
VAD=lure= 20+ @7y B2 Amme, (2D 0 be obtained by imaginary-time propagation. Though

where the normalization conditiof¥) yields the chemical this approach has been shown to yield accurate results for

potential in the TF limit: large numbers of aton[86—38, it is not obvious that time-
dependent techniques should be most suitable for the solu-
u1E= 2 (15aB879)?°=1(159)?", (22)  tion of an eigenproblem.

An elegant andas shown beloywinexpensive method for
in units of Awg. In the TF limit, both the interaction and the solution of the GP equation is to fi¥, and to self-

confining potentials appearing in the Satiirger operatof. consistently solve foy. and y(r). Unfortunately, a direct
Eq. (6) are evidently second-order polynomials. For a finiteit€ration of Eq.(1) does not usually converge to the global
but large number of atoms, however, there is a small expofN€rgy minimum, even for relatively small condensatdg (
nential tail near the boundary of the condensate cloud resule" 10", #~1). Initially, we attempted several simple
ing from the finite kinetic energf#6—48. As shown in Sec. Schemes in order to improve convergence. One approach was
Ill, this exponential behavior may be effectively capturedt© Use the TF approximatiof21) to begin the iteration se-
even when using a comparatively low-order basis. quence. This would seem to be an exceIIent_ starting point
For the present three-dimensional calculation, the conder?hen the condensate is large and the TF solution is a reason-
sate and excited-state wave functions are expanded usif@p!€ approximation. In practice, we have found that the poor
Cartesian coordinates in a product basis of coordinate fund€havior of the TF wave function near the condensate
tions for each dimension; in the condensate case, for exoundary did not, in general, make this a viable procedure.

ample, one writes Even correcting the TF result using a boundary-layer pertur-
bation approach48] did not seem to greatly improve con-
vergence.
lﬁ(f)=ij2k CijUi(X)uj(Y)uy(2). (23 Evidently, a robust numerical process is required that rap-

idly damps out the errors as the iteration sequence proceeds.
ne rather crude approach is to use a linear combination of
e solutions from thei(-1)th andith steps to initiate the
iteration process for thei ¢ 1)th step[53,54); the proper
linear combination may be found by numerical experimenta-
tion. The approach used by the present authors, known as
DIIS [35], is a more systematic version of the above that uses
+ T m6i16knt Tin6i,16jm- (24) the information from all of the previous iterations. The DIIS

The components of the three-dimensional kinetic energ)ﬁ]
Tx,y,zE_%Vi,y,z has the following representation in the
DVR product basis:

(Uit u| TIuUmUn) =T 16 mbin
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method is well known in the quantum chemistry community,dimensionS rather thanS?, they may easily be stored in
where it is used to accelerate the convergence of selfeentral memory even on current workstations as long as the
consistent field calculations. As discussed below, for small tawumber of DIIS iterations does not become too large.

intermediate numbers of atoms fEON,<10°), DIIS is To summarize, only the vectorgr) and¢(r) need to be
found to be at least as computationally efficient as thestored at each iteration step. From these, the scalar products
method of steepest descents. (31) required to set up the set of linear equatid@8) and

DIIS begins by defining an error which characterizes the(29) may be generated. Once threunknownsa; as well as\
convergence of the iteration process. While the eeronay ~ have been found, a new nonlinear potential may be con-
be defined in any number of ways, one that appears to bgtructed from the past guesses,

particularly stable numerically is the commutator: "

e=[H,p], (25) VE“=§1 aVviy, (32)

where p(r,r’) is the density matriXy)(¢|. Evidently, e  anq the next self-consistent field cycle initiated. Furthermore,
vanishes at convergence. Note that both the density matriyy storing and not destroying all previous element8of,

and the error are matrices havig§ elements, wheris the  onjy an additional row and column need be computed at each
dimension of the Hilbert space. The procedure is to expandien, of the iteration. Since the dimensionBofs assumed to

the current expression for the Hamiltonian and error as g small, the additional storage should not be a problem on

linear combination of then previous values most work stations.
m With the TF expression for the condensate wave function
|:|m+1:2 aiﬂi’ (26) as the initial guess, the DIIS algorithm yields a convergent
i=1 solution for significantly larger numbers of atom$Ng(

~10°) than was possible with a direct iterative procedure.
- o As Ng continues to grow, however, the number of DIIS it-
emti=> ae, (27)  erations to achieve convergence increases until eventually
=t the process fails. It appears that small errors in the interme-
diate solution of the GP equation, particularly in the “tail”
region close to the condensate surface, are amplified by the
m nonlinearity of the potential during the iteration process.
> a=1. (289  Combining DIIS with a more realistic initial guess, we have
i=1 been able to achieve convergence for the large humber of
o N ) ) atoms (No~10°) relevant experimentally. Two schemes
Minimizing the squared norm o&™"* with the constraint ysed to improve the starting approximation for the Hartree
(28), one obtainsn+1 linear equations: potential have proved particularly valuable. By slowly in-
creasing the number of atoms, the converged solution for a

subject to the constraint that

% B a—\=0 29) slightly smaller condensate is an excellent choice. Alterna-

= ' tively, one may solve a modified GP equation with an exag-

gerated kinetic energy contribution, then slowly ramp down
where the degree of exaggeratidthis technique is similar in spirit
to simulated annealingA simple modification of the origi-

B =(ele), (30)  nal DIIS procedure was also found to be quite helpful. The

DIIS procedure is broken into cycles with some maximum
andj=1,2,...m. The Lagrange multipliex enforcing the number of iterations allowed per cycle. At the end of each
constraint yields the squared norm of the error. cycle, the DIIS procedure is restarted using the best available

The practical implementation of the DIIS algorithm, espe-solution. By numerical experimentation it was found that
cially for large Hamiltonian matrices, deserves some addionce the root mean square erfor alternatively\/X) is re-
tional comment. Although it appears to be necessary to storguced to 102—10 2, it becomes possible to restart DIIS
the Hamiltonian matrix for each iteration, this is not the caseand to rapidly reduce errors to 18-10"7 with very few
The only part of the Hamiltonian matrix that varies from gdditional iterations.
iteration to iteration is the nonlinear potential, and this ma-
trix is diagonal in the DVR. Inserting Eq30) into Eq. (25),

. . . C. Interpolation of the wave function
the matrix elements8; ; are simply given by: P

As discussed above, in the limit of very largy where
Bi ;= 2(oil o)l ) — 2{ @il ) il @), (31)  the TF theory is believed to be valid, both the interaction and
. N confining potentials are well approximated by low-order
whereg;(r)=Hy(r); it is important to note thaH' is the  polynomials inx,y,z. Since anN-point Gauss quadrature is
Hamiltonian matrix constructed frong; _,(r), the minimal able to integrate a (2—1)th-order function exactly, it
eigenvector of which igy;(r). On each iteration, therefore, it should be possible to capture the essential behavior of the
is only necessary to store the solution vector as well as theondensate wave functigsquaregl using only a very small
vector that represents the operation of the Hamiltonian manumber of quadrature points. One is therefore left with a
trix on the solution vector. Since these objects are both ofomewhat surprising conclusion: when the number of atoms
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becomes very large, the resulting self-consistency problemepresentation of the Hamiltonian is a crucial feature of the
should simplify considerably. A very coarse DVR grid has DVR and the separability of the kinetic energy operator. In
two obvious advantages. The reduced dimension of thaddition, standard iterative procedures return reasonable ap-
Hamiltonian matrix would accelerate the solution of theproximations only to the extremal eigenvalues, in the spirit
eigenproblem at each DIIS iteration. In addition, the fewerof a Rayleigh-Ritz variational method. The GP equatibn
degrees of freedom for spatial variations should enable thgields a positive-definite, real, symmetric, and sparse matrix
self-consistent solution for the condensate to converge witthe lowest eigenvalue of which may be found using variants
fewer DIIS iterations. The crucial unknown is whether theof the well-known Lanczoq55] or Davidson[56] algo-
exponential tail at the condensate boundary, due to the finitéthms.
kinetic energy contribution, varies sufficiently rapidly to in-  The Davidson method, which is widely used by quantum
validate the low-order approximation applicable in the TFchemists, develops a small orthonormal subspace of vectors
limit. which is adequate to describe the eigenpairs of physical in-
Suppose that the gross features of the condensate waterest. The Hamiltonian is projected into thpsdimensional
function could be found using a low-order Gauss quadraturesubspace and the Rayleigh-Ritz variational principle ensures
corresponding to only a few DVR points in each spatial di-that an upper bound to the lowestigenvalues is obtained
rection. The self-consistent solution obtained using such &om the process. Since the computational procedure in the
“coarse grid” would then make an excellent initial guess for application of the Davidson algorithm may be unfamiliar to
a more accurate “fine grid” calculation, if the interpolation some readers, it is summarized as followk. Choose an
between grids could be implemented successfully. By indnitial set of m orthonormal trial vectots , wherem=n. (2)

creasing the number of DVR points in the mesh once oicalculateh; = Hb;, the effect of the Hamiltonian matrix on
perhaps a few times, it should be possible to rapidly conthese vectors(3) Calculate the Hamiltonian matrigb;|h;)
verge the solution of the GP equation for virtually arbitrary from the information generated in steps 1 and4. Solve
numbers of atoms. The interpolated wave function on thgne resultant small eigenvalue problem for the current values
quadra.ture pointsx(,Ym,Z,) associated with the fine grid is 4f the wave functionS\,Ifg“’ and eigenvaluesEg”r by a direct
approximately method.(5) Calculate the residuals,

(X aYvan)%%; Ciji Ui (XU (Ym) Uk(Zn), (33 rq:(an—H)q’cur' (34)

and test for convergence. If all roots are converged stop. If

where the sum is taken over coarse-grid expansion coeffot select the unconverged residuals for further improve-

cients and coordinate eigenfunctions. Since the DVR point§nent.(6) Using the set of residuals solve the equation

corresponding to the two different Gauss quadratures are not _

generally coincident, the values of the coarse-grid coordinate (H-Eg")®@q=ryq, (35

basis functions at the fine grid points must be obtained ex-

plicitly using either Eq(12) or (17). whereH is some approximation to the exddt (7) Schmidt
orthonormalize th&b, to theb; and then append them to the

D. Extraction of eigenvalues and eigenvectors b; to enlarge the vector spad@®) Calculateh;=Hb;, for the

The di . ¢ all the ei | d ei appended vectors and the additional matrix elements needed
e direct extraction of all the eigenvalues and eigenvecs, border(b;|h;). (9) Return to step 4.

tors of Egs.(1-3 becomes computationally impractical for
very large matrices. In three-dimensional systems, a sizeablf(ar
number of basis function&@nd therefore quadrature points Hami
are usually required in order to adequately represent thgulati
wave functions over all space. This is a particularly impor-

tant qonS|derat|or|1 fgr the excgaktjlonhg, r\]thase ra?'d spa’cll uces a quickly converging set of new vectors, and the entire
variations can only be captured by high-order polynomialS,,1ation is dominated by step 2 in the sequence above.

fs a resul, t?e d:)rlrlerllsgn of thlfa .matnces gf"m becom.e Vir)fdthough the DVR has the desirable feature that it produces
arge, even after block diagonalizing according to parity. sparse representation, the matrix is unfortunately far from

full diagonalization of the eigenproblem, using standard and,ein g giagonally dominant. Without an alternative precondi-

widely available routines based on variants of the G|vensﬂ0nmg technique, the calculation can require severaB)

Householder method, pIaces.conS|d¢rat_)le (_jemands on bQIILh‘II cycles which becomes computationally prohibitive.
storage and cpu time. A full diagonalization is not necessary Our approach to the preconditioning problem is based on

since only the lowest eigenvalugd) of the GP equation is . = -
y d # q using a separable approximation ky i.e., a Hamiltonian

required, and it is sufficient to determine merely the lowest h b i f . in th
lying excitations of the Bogoliubov equations at zero tem-hat can be written as a sum of commuting operators in the
three-dimensional space. For simplicity, we have chosen to

perature. S ;
When the matrices are too large to fit in memory, iterative’S€ the bare trap Hamiltonian, but other more complicated

methods must be used in order to extract the relevant Iow(-:hOiCPfS can be made, subject to the separability requirement.
lying states. These techniques require the frequent operatignduation(35) then becomes

of the Hamiltonian on a vector, and are practical only if there 1 o 3

are relatively few nonzero matrix elements. Indeed, a sparse (Ho+Ho+Ho—Eg ) ®g=ryg. (36)

In the original Davidson algorithm, which was designed
diagonally dominant matrices, the approximate
Itonian used in step 6 was the diagonal. Then the cal-
on of the solution to Eq.35) is trivial. For diagonally
ominant matrices, this Jacobi preconditioning method pro-
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In order to solve this equation, we transform to the basis set [ll. RESULTS AND DISCUSSION
that diagonalizes the separable Hamiltonian, recognizing that Th hni di din th . .
the transformation can be written as a product of three one- e techniques discussed in the previous section are par-
dimensional unitary transformations. Thus, the residual vecticularly useful under two circumstances: when the potential
tor on the right-hand side of E¢34) is transformed from the IS cOmpletely anisotropic, and when the number of conden-
DVR to the diagonal representation, an operation that scale3t€ atoms is very large. For illustrative purposes, results are
as the size of the three-dimensional basis set times the onBresented for Bose-condensed sodium atoms confined in
dimensional basis set. This linear scaling with basis set siz&aps with three different geometries, all of which have been
is a consequence of the separable form of the approximafté&alized experimentally. The completely anisotropic trap
Hamiltonian, yet preserves the most desirable features of theonsidered here is a time-orbiting poteni{@OP) trap with
DVR. Once the residual has been transformed to the diaga@ngular frequencies in the natural rafi67] (wy,w,,,)

nal representation, Eq35) is trivially solved and then the = w{(1,1/2,2) wherewy= 354 rad/s; BEC in such a system
solution vector is transformed back to the DVR representahas been recently observed by Kozumizal. [58]. Other
tion. This procedure is analogous to using fast Fourier transgeometries considered are the cigar-shaped loffe-Pritchard
forms (FFT's) to solve multidimensional PDE’s. The FFT is trap of W. Ketterle[59] with cylindrical symmetry and
more eff_|C|ent(but less _generaldue to speql_al <_:haracter of (wx,wy,wz)~w§(1,13.585,13.585)Where w8~33.867r

the Fourier transformation but the separability is a key faCtorrad/s, and the approximately spherical ‘four dimensional

to its properties. By using this separable precqnd|t|o_n|ng,.w otential of L. Hau[4] with w§~87 rad/s. All the calcula-
have been able to reduce the number of Davidson iterations

to manageable size. In addition, the vectors from a previou ons assume as-wave scattering Iength for sodium af
calculation for a smaller condensate are found to be excellert (22+5)a0, Wherea, is the Bohr radiu$60].

trial vectors to initiate the calculation. The result is a robust
procedure that is quite efficient for large matrices.

The matrix associated with the Bogoliubov equations
(2,3, in contrast, is nonsymmetric and has real eigenvalues The solution of the GP equatidf) on the coarse and fine
occurring in positive-negative pairs. This matrix must be ad-grids employed 60 and 180 harmonic oscillator basis func-
dressed using routines such as those based on an Arnoldi géns (Hermite polynomials with a Gaussian prefagtam
a nonsymmetric Davidson approach. Since the low-lying exeach spatial direction, respectively. Coordinates were res-
citations of the Bogoliubov equations are those closest igled through{x,y,z}—{x,y/@,z/ 8}; the nonlinear coeffi-
magnitude to zergrelative to the chemical potentjadnd are  gjent becomegy=4mn=4maBn, in order to ensure the
therefore theleast extremal, it is most convenient to de- proper normalization of the condensate den&ily With this
couple the original equations using the following linear com-cpgice, the condensate cloud becomes almost spherical at
binations: large particle numbers, with an approximate radius given by

the TF expressioRy=(15%)*5, in units of the character-
fa(r)=un(r)+o,(r), (37 istic trap lengthdy= \%A/M w,. DVR points significantly be-
yond the TF radius were ignored. The ground state was as-
gn(H)=un(r)—v,(r). (39) sumed to have totally even parity, so the GP equation was
solved in a single octant. The basis functions were eigen-
functions of a trap with frequencies reduced from their actual
values by a factor of 20, in order to decrease the density of
- . points. The resulting Hilbert spaces for the coarse and fine
(L= p+2vp)(L—w)fa(r)=€fn(r), (39 grids then have dimension 3566 and 18 685, respectively, for
all geometries and condensate numbers; both sizes are con-
whereey=0 corresponds to the ground-state energy relativesiderably reduced from the impractical values of 216 000 and
to the chemical potential. Once the functiohsare found, 5 832000 one naively might have obtained.

A. Condensate

The resulting eigenproblem then becomes

the left eigenvectorg,, may be obtained directly by utilizing In Table I, the chemical potentials obtained numerically
using the coarse grid are given as a function of the number of
qn =20 i indri-
gn(1) = ex XL — ) (1) (40) atomsNy=2% in the condensate for the spherical, cylindri

cal, and anisotropic geometries described above. The TF val-

_ o . _ ues, from Eq(22), are included for comparison. The number
subject to the normalization conditioff|g)=1, obtained of pyis jterations required to yield a convergent solution to
from Eq.(8). While the resulting eigenproblem remains non-the Gp equation increases with the number of atoms; in the
symmetric(since the condensate density does not commutgyjingrical case, DIIS failed to converge foNy=2°
with the operatolL), the dimension of the matrix has been =524 288 and greater. Choosing a finer grid always reduces
reduced by a factor of 2. Furthermore, the eigenvah.ﬁewe the number of DIIS iterations; although increasing the num-
positive-semidefinite and ref). In practice, the composite ber of points yields additional degrees of freedom for the
operator on the left side of Eq39) is never determined Hartree potential, the variations of the condensate density
explicitly; doing so at each DIIS iteration not only would be (particularly in the surface regi¢mare better captured. In the
time consuming, but also would lead to a dense matrixcylindrical case, which has a cigar shape, the coarse grid has
Rather, at each Arnoldi-Davidson iteration the vector is mul-too few DVR points in the two strongly confining directions
tiplied in turn by the two distinct sparse operators. to adequately capture the behavior of the condensate at large



PRA 59 NUMERICAL APPROACH TO THE GROUND AND. .. 2239

TABLE I. The chemical potentialg!S* corresponding to  with the anisotropic case. This trend is expected for the
spherical, cylindrical, and anisotropic geometries, respectively, argpherical trap, where the confinement is extremely weak. In
given in units off: 0> for various numbers of condensate atoms the cylindrical case the condensate is strongly confined, but
No=29. The TF values, from Ed22), are given in parentheses. All  only in the radial direction where the motion of the atoms is
results are converged to three decimal places and were obtaingflore or less frozen but the kinetic energy can be large; there-
using the coarse grid with at least®Basis functions and 3566 fore, the cylindrical trap is effectively loose and one dimen-

DVR points. sional. In contrast, the fully anisotropic trap considered here
S c A is relatively tight in all directions, and the chemical potential

q H M H converges to the TF value more rapidly.

0 1.500 14.085 2207 In the TF limit, most relevant quantities, such as the mean

10 1.825(1.119 17.384(9.393 3.572(2.824 qondensalte radiLETF=(15n)1’5d0_and the chemical poten-

1 2.065(1.477 10.392(12.395 4.345(3.726 tial ure=2(159)?*h w,, are functions of the universal scal-

12 2.435(1.949 22.359(16.355 5.425(4.917) ing pa_rametern:aﬂ(Noa{do). Slml!arly, thg f|r_st—order

13 2.970(2.571) 26.620(21.580 6.904(6.488 correction to the TF phemlcal potentiakg, taking |_nto_ac—

14 37193393  32.682(28.475  8.900(8.560 ?r?)lrj:tt:]hee a"fratgel kinetic e”g@.ﬁ"m a”d.conlt”b“Ft{'?QS

15 4.743(4.477  41.055(37.573  11.572(11.296 ! [he_potentia energiep48], is proportional toRyf

16 6.124(5.007  52.433(49579  15.128(14.004  ~M7F. The fits to the numerical data of\pn=(1

17 7.970(7.799 67.750(65.418 19.847(19.667 — ptel/ w) =yl ute, shown in Fig. 1, are in reasonable agree-

18 10.427(10.285 88.228(86.320 26.096(25.950 ment with this behaviofexcept for the cylindrical case for

o lses1ss)  usdsaniseo) sassasacsy [ STRLAIRES AR, e Rat e
20 17.999(17.907 151.545(150.29 45.275(45.182 terf)tial ’to the TF iimit as a functiog ofy (which is propor- P
21 2370223629  199.313(198.3)  59.693(59.619 tional to the coefficient of the nonlinear term in the GP equa-
tion) would be independent of trap geometry. As shown in
No. Forg> 18, therefore, initial grids were chosen to contain Fig. 1, this is in fact not the case. The data for the cylindrical
case converge far more slowly than those for the other ge-

a larger number of points not exceeding*1®ince more ) . i
points imply a larger eigenproblem at each iteration, Ioracti_ometrles, though the magnitudes of the TF chemical poten-

cal calculations require as coarse a grid as possible. tials for a giveq value 967 are identica(r?ote'that the values
The convergence of the chemical potentials with the numpf Ap shown In the figure for the cylindrical case are re-
ber of condensate atoms is shown in Fig. 1. Both the cylin—duced from_t_he|r actual v_alues by an (_)rder of magmt_ude n

drical and spherical traps give rise to relatively slow conver-o.rder to faC|I|tate_ compansg)nThe Kinetic energy contribu-

gence of the chemical potential to the TF value comparetﬁIon to. the (;hemlcal potentighnd therefore to the total en-
ergy) is evidently strongly dependent on trap geometry.

40 - . . ‘ ‘ Thus, a large nonlinear term in the GP equation does not
necessarily mean that the TF approximation adequately rep-
resents the system.

In order to verify the accuracy of the solution obtained on
the coarse grid, the condensate wave function was interpo-
lated onto a 18 685-point grid derived from a DVR basis
with 180 polynomials in each directignefer to Sec. 11 C for
details on the interpolation techniquérhe solution of the
GP equation was again converged on the fine grid. For small
to intermediate values of the nonlinear coupling; (
=<3000), a single interpolation between the two meshes was
sufficient to yield a solution on the fine grid with only a few
(~10) additional iterations. As; increased, two or more
successive interpolations and reconvergences were generally
required before the solution on the finest grid could be ob-
tained. In all cases, the values of the chemical potential at the
gwo extremes were found to be identical to at least three

3.0

r
k
b
i
|
|
i
.
K

1.0 1

FIG. 1. The percent difference between the numerical and T

X i decimal places.
values for the chemical potential=1- sre/ sexgeiare shown as The condensate wave functions obtained on the coarse
a function of the number of atoms and the universal scaling param-

eter n=aB(Nya/dy) (which is proportional to the nonlinear cou- andlgflne grids are Compared in Fig. 2, f(_)r the paseN@f
pling constanttfor all three trap geometries. The data for the spheri- =2 — 024 288 atoms in the completely anisotropic trap. The
cal (circles, cylindrical (diamonds, and anisotropi¢squarescases ~ coarse-grid condensate profile along a given axis appears
are identical to those given in Table I. The solid, dashed, and dottef@ther crude, particularly in the surface region where the
lines are fits to the data points using the expressibp wave function varies rapidly; for a given basis, convergence
~ YSCAl L ISCAL for the spherical 45=1.5), cylindrical (/° is only obtained at the DVR points. Nevertheless, this wave
=170), and anisotropicy®=4.0) cases, respectively. It is impor- function interpolated is virtually indistinguishable from the
tant to note that in the inset, the values/f. for the cylindrical ~ converged solution on the fine mesh. Asincreases, how-
data are reduced by a factor of 10 in order to facilitate comparisonever, the length of the tail at the surface of the condensate
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FIG. 2. The condensate wave function fidp=2'=524288 7 (=2
atoms in the fully anisotropic trap, normalized to unity, is shown as
simultaneous projections along the positivérightmost curves y FIG. 3. The low-lying excitations of a condensate in the com-

(middle curvey and z (leftmost curves axes. The dashed lines pletely anisotropic trap are given in trap unite, as a function of
—nq H

correspond to the TF approximation. The numerical results obtainefl: Where the number of atonts, =21 The circles correspond to

on the coarse and fine grids are shown as ddtiéidet 0.002) and numerical results; horlz_ontal dashed lines are the predictions of the

solid (offset 0.004) lines, respectively. The interpolated coarse-gridTF theory. The data_ points alqng zero are the ground-state energies

and converged fine-grid wave functions exactly coincide relative to the chemical potentials listed in Table I. The long-dashed

' modes are labeled byiroin), wherel, m, andn are the quantum

o ~numbers of the noninteracting harmonic oscillator states atoryg

shortens. Eventually, the coarse grid will have too few pointsand z, respectively. The unlabeled short-dashed excitations with

in this crucial region to adequately capture the rapid variaenergies just below and abové @, are higher-order modes with

tions. In this case, a large jump in mesh size results in andd parity alongk andy, respectively; the two at higher energies

interpolated wave function that more poorly represents théave totally even paritflower) and odd parity in bothx andy

self-consistent result. (uppey.
B. Excitations tropic case, all the excitation energi@sxcept those for the
The excitations of a condensate in a fully anisotropic har-2dd-parity dipole modesdecrease wittNo [62]. _
monic trap have been completely classifi@d], and have T.he low-lying excitation energies for a completely aniso-
been explicitly obtained in the low-densify62] and TF  tropic trap have been computed numerlcally, and are shown
[63,64 limits. The states are polynomials of ordar=| in Fig. 3. All the calculations were obtained using the

+m+n and are labeled by the total pariB=(—1)'*m*" 3 566-point grid. While small finite-size and coarse-graining
where the quantum numberk h,n) represent the order’ of €ffects are present, as evidenced by the small fluctuations in
the polynomials along thex(y,z) directions in the noninter- the ground-state energy=0, the results closely match the
acting limit. In the strongly interactingor hydrodynamig T.F predictions des_crlbed above. As expected, the odd—parlty
regime, there are four odd- and four even-parity |0W_|yingd|pole modes are mdependgnt of the number of atoms in the
modes with energieg= I+ a?m+ B2 in units of % wg, trap. All the other frequencies depend strongly g, de-
where (,m,n) can be either 0 or 1. The ground state rela_creasing from their noninteracting values in agreement with
tive to the chemical potential, has quantum numbers (O,O,O)perturpatwe calculatlo_nEBZ]. . .
The only states wititN=1 are the odd-parity dipole modes, Wh'le the frequencies of all the Igwest—lymg modes attain
where the center of mass oscillates with the three trap fret—he_'r Iargg-number values o~ 10° in the relatively strong
quencies. FomN=2, there are six quadrupole oscillations anisotropic trap, the convergence to the hydrodynamic limit
with even parity a’nd stationary center of mass. Three Ofslows as the quantum numbers increase and the confinement
these have energies given by the expression above, witfi Weakened. In Fig. 4, the low-lying excitatiows, of the
(I,m,n)=(1,1,0) and cyclic permutations. The other three oose spherical trap are shown as a function of the number of

H —n22__
are the solutions of the secular equation: atoms in the_ Condensate' up MJ_.Z ~4.2x 1.06' In the
hydrodynamic limit, the energies are given by,
3—¢? 1 1 =1+2n(n+1+3/2) [8]. The lowest number-dependent
1 3— €2/ o2 1 modeeg, agrees with its hydrodynamic valu® to less than
=0. (41)  a percent byNy~1CP. The numerical value oéy,, in con-
1 1 3— €21 82

trast, differs from its limiting value of 2 by approximately
2% even when the number of atoms is as large a4@
atoms. Evidently, the magnitude of the excitation energy,
For (a,,8)=(\/§,2), the geometry considered here, Onerelatlve to the ground state, does not alone provide a suf-

ficient indication of its convergence to the hydrodynamic
readily obtainse= \/8t4\/§ and \/5. In the fully aniso- limit. A similar number dependence for the higher-lying ex-
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FIG. 4. Selected low-lying excitations,, of the spherical con-
densate are given in trap unitsoy as a function ofg, where the
number of atom$y=29. The filled and open circles correspond to
numerical results fon=0 andn=1, respectively, while squares
represent,y; horizontal dashedn(=0), long-dashedr(=1), and
dot-dashed rf=2) lines are the results obtained in the hydrody-

namic limit €, = I +2n(n+1+3/2).

citations of a cylindrically symmetric condensate has als
been recently obtaingdb3].

IV. CONCLUSIONS

A numerical procedure is introduced for the investigation

of an interacting Bose gas at zero temperature confined in

completely anisotropic trap. The central feature of the tech-

nique is the use of the discrete variable representdBMR)

to high accuracy by exploiting the underlying polynomial
basis used to define the DVR. Furthermore, the kinetic en-
ergy needs to be evaluated only once.

In the present method the condensate density is deter-
mined self-consistently; for fully three-dimensional systems,
this approach is considerably more efficient than
conventional root-search algorithms. At each iteration, the
ground-state wave function is obtained by iteratively diago-
nalizing the sparse GP Hamiltonian, using either a Lanczos
or Davidson method. Convergence of the self-consistent so-
lution to the GP equation is substantially hastened by em-
ploying DIIS. As the nonlinear coefficient of the GP equa-
tion becomes very large, it often becomes necessary to
employ more sophisticated techniques, including number or
kinetic energy ramping and multigrid interpolation. In gen-
eral, DIIS becomes more expensive as the number of atoms
increases; it is conceivable that an alternative method such as
imaginary-time propagation becomes more efficient than
DIIS in the regimeNy=10°.

The convergence of the chemical potential and the low-
lying collective excitations is investigated as a function of
trap geometry. The chemical potential is found to approach
its Thomas-Fermi value more slowly as the confinement
weakens or the degree of anisotropy becomes more pro-

%hounced:; the convergence does not scale universally with the

magnitude of the nonlinear coefficient. The excitations of a
completely anisotropic condensate have been calculated nu-
merically, and for large numbers of atoms agree with the
Thomas-Fermi prediction$3,64]. For a very weak spheri-

al trap, the collective frequencies converge to their hydro-
ynamic value$8] more slowly.

ACKNOWLEDGMENTS

as the primary basis for the calculations. The DVR combines

the best features of grid and basis-set techniques. All local The authors would like to acknowledge useful discussions
operators are diagonal, so the evaluation of interaction mawith T. Bergeman, C. W. Clark, R. J. Dodd, M. Edwards, A.
trix elements becomes trivial. While the kinetic energy has d.. Fetter, E. Hagley, W. D. Phillips, and E. Tiesinga. This
more dense representation, it may be evaluated analyticallwork was supported by the U.S. Office of Naval Research.

[1] M. H. Andersonet al, Science269, 198(1995; J. R. Ensher
et al, Phys. Rev. Lett77, 4984(1996; D. S. Jinet al, ibid.
78, 764(1997); E. A. Burtet al, ibid. 79, 337 (1997.

[2] K. B. Davis et al, Phys. Rev. Lett75, 3969 (1995; M. R.
Andrewset al, Science273 84 (1996; M.-O. Meweset al,
Phys. Rev. Lett77, 416(1996; M. R. Andrewset al.,, Science
275, 637(1997; M.-O. Meweset al., Phys. Rev. Lett77, 988
(1977; M. R. Andrewset al, ibid. 79, 553 (1997).

[3] C. C. Bradley, C. A. Sackett, and R. G. Hulet, Phys. Rev. Lett.

78, 985(1997.

[4] L. V. Hau et al,, Phys. Rev. A58, R54(1998.

[5] N. N. Bogoliubov, J. PhystMoscow 11, 23 (1947).

[6] A. L. Fetter, Ann. Phys(N.Y.) 70, 67 (1972.

[7] P. A. Ruprechtet al, Phys. Rev. A51, 4704(1995; M. Ed-
wardset al,, ibid. 53, R1950(1996; R. J. Doddet al,, ibid. 54,
661 (1996; P. A. Ruprechtet al, ibid. 54, 4178(1996; M.
Edwardset al, Phys. Rev. Lett77, 1671(1996.

[8] S. Stringari, Phys. Rev. Let?.7, 2360(1996.

[9] F. Dalfovoet al, Phys. Lett. A227, 259 (1997; F. Dalfovo

et al, Phys. Rev. A56, 3840(1997; F. Dalfovo, C. Minniti,
and L. P. Pitaevskiiibid. 56, 4855(1997).

[10] M. Naraschewskkt al, Phys. Rev. A54, 2185(1997); J. I.
Cirac, C. W. Gardiner, M. Naraschewski, and P. Zollbrd.
54, R3714(1996; H. Walllis et al, ibid. 55, 2109(1997; A.
Rohrl et al,, Phys. Rev. Lett78, 4143(1997).

[11] A. Smerzi and S. Fantoni, Phys. Rev. L8 3589(1997.

[12] S. Sinha, Phys. Rev. A5, 4325(1997.

[13] H. Shi and W.-M. Zheng, Phys. Rev. 35, 2930(1997.

[14] V. N. Popov, inFunctional Integrals and Collective Modes
(Cambridge University Press, New York, 198Thap. 6.

[15] A. Griffin, Phys. Rev. B53, 9341(1996.

[16] S. Giorgini, L. P. Pitaevskii, and S. Stringari, Phys. Re\64
R4633(1996); Phys. Rev. Lett78, 3987(1997); J. Low Temp.
Phys.109, 309(1997; L. P. Pitaevskii and S. Stringari, Phys.
Lett. A 235, 398(1997.

[17] A. Griffin, W.-C. Wu, and S. Stringari, Phys. Rev. Le@g,
1838(1997.

[18] D. A. W. Hutchinson, E. Zaremba, and A. Griffin, Phys. Rev.
Lett. 78, 1842(1997).



2242

[19] H. J. Davies and C. S. Adams, Phys. Re\6& R2527(1997).

[20] L. You and M. Holland, Phys. Rev. A3, R1(1996.

[21] H. Shi and W.-M. Zheng, Phys. Rev. 86, 1046(1997; 56,
2984(1997).

[22] R. J. Doddet al, Phys. Rev. A57, R32(1998.

[23] N. P. Proukakis and K. Burnett, J. Res. Natl. Inst. Stand. Tech-

nol. 101, 457 (1996; Philos. Trans. R. Soc. London, Ser. A
355 2235(1997; N. P. Proukakis, K. Burnett, and H. T. C.
Stoof, Phys. Rev. A7, 1230(1998.

[24] H. T. C. Stoof, M. Bijlsma, and M. Houbiers, J. Res. Natl. Inst.

Stand. Technol101, 443 (1996; M. Bijlsma and H. T. C.
Stoof, Phys. Rev. A5, 498 (1997); M. Houbiers, H. T. C.
Stoof, and E. A. Cornellipid. 56, 2041(1997; M. J. Bijlsma
and H. T. C. Stoof, e-print: cond-mat/9807051.

[25] Refer to http://amo.phy.gasou.edu/bec.htfol the latest de-
velopments.

[26] J. C. Light, I. P. Hamilton, and J. V. Lill, J. Chem. Phy2,
1400(1989; S. E. Choi and J. C. Lightbid. 90, 2593(1989.

B. I. SCHNEIDER AND D. L. FEDER

PRA 59

[41] C. C. Marston and G. G. Balint-Kurti, J. Chem. Ph9§, 3571

(1989.

[42] D. E. Manolopoulos and R. E. Wyatt, Chem. Phys. L&§2,
23(1988.

[43] J. T. Muckerman, Chem. Phys. Letfz3 200(1990; F. J. Lin

and J. T. Muckerman, Comput. Phys. Comm&g 538

(1992.

[44] B. I. Schneider, Phys. Rev. B5, 3417(1997.

[45] There are known cases of a DVR basis giving incorrect values
for individual matrix elements of the interaction but still pro-
viding very accurate results for many of the eigenvalues of the
corresponding matrix. See, for example, D. Baye and P.-H.
Heenen, J. Phys. A9, 2041(1986.

[46] F. Dalfovo, L. P. Pitaevskii, and S. Stringari, Phys. Re\64
4213(1996.

[47] E. Lundh, C. J. Pethick, and H. Smith, Phys. Re\5%\ 2126
(1996.

[27] SeeNATO ARW Proceedings on Grid Methods in Atomic and[48] A. L. Fetter and D. L. Feder, Phys. Rev.58, 3185(1998.

Molecular Quantum Mechanicedited by C. CerjariKluwer
Academic, Dordrecht, 1993

[28] See B. N. DattaNumerical Linear Algebra and Applications
(Brooks/Cole, Pacific Grove, CA, 199%or an innovative ap-
proach to learning numerical linear algebra.

[29] B. I. Schneider and L. A. Collins, Comput. Phys. Comm&®).

[49] D. K. Hoffman and D. J. Kouri, J. Phys. Cheri7, 4984
(1993.

[50] G. C. Corey and D. Lemoine, J. Chem. Ph§38.4115(1992.

[51] G. C. Corey, J. W. Tromp, and D. Lemoine,Nlumerical Grid
Methods and Their Applications to Schlinger’'s Equation,
edited by C. CerjariKluwer Academic, Dordrecht, 1993

381 (1989; note: the entire volume was devoted to iterative [52] D. Lemoine, J. Chem. Phy401, 1 (1994).
numerical techniques for the solution of large linear systems.[53] L. You, R. Walsworth, and W. Hoston, Opt. Express293

[30] J. A. George and J. LiuComputer Solution of Large Sparse
Positive Definite Systen@Brentice Hall, Englewood Cliffs, NJ,
1982); I. S. Duff, A. M. Erisman, and J. K. Reidjirect Meth-
ods for Sparse Matrice$Oxford University Press, Oxford,
1986.

[31] D. Gottlieb and S. A. Orsag\umerical Analysis of Spectral
Methods: Theory and ApplicatioiSIAM, Philadelphia, 197

[32] See, for example, A. L. Fetter and J. D. Waleciaantum
Theory of Many-Particle System®icGraw-Hill, San Fran-
cisco, 1971

[33] E. P. Gross, Nuovo Ciment20, 454 (19617).

[34] L. P. Pitaevskii, Zh. Eksp. Teor. FizZl0, 646 (1961 [Sov.
Phys. JETPL3, 451(1961)].

[35] P. Pulay, Chem. Phys. Left3, 393(1980; P. Pulay, J. Com-
put. Chem.3, 556 (1982.

[36] F. Dalfovo and S. Stringari, Phys. Rev.58, 2477(1996.

[37] B. D. Esryet al, Phys. Rev. Lett78, 3594(1997.

[38] P. Chberg and S. Stenholm, e-print: cond-mat/9801237.

[39] A. S. Dickenson and P. R. Certain, J. Chem. P#&.1515
(1969.

[40] D. Kosloff and R. Kosloff, J. Comput. Phy5§2, 35(1983.

(1997; L. You et al, Acta Phys. Pol. A93, 211(1998.

[54] H. Pu and N. P. Bigelow, Phys. Rev. LeB0, 1130(1998.

[55] J. K. Cullum and R. A. Willoughbylanczos Algorithms for
Large Symmetric Eigenvalue Computatidiérkhauser, Bos-
ton, 19835.

[56] E. R. Davidson, J. Comput. Phy&7, 87 (1975; Comput.
Phys. Commun53, 49 (1989; B. Liu, in Numerical Algo-
rithms in Chemistry: Algebraic Methodsdited by C. Moler
and |. Shavitt(Lawrence Berkeley Laboratory, Berkeley, CA,
1978; E. R. Davidson, Comput. Phy3, 519(1993.

[57] There are two natural configurations for the coils in a TOP
trap, resulting in oscillator spring constants either in the ratio
1:1:8(as in the JILA experimenir 1:2:4.

[58] M. Kozumaet al,, Phys. Rev. Lett82, 871(1999.

[59] D. M. Stamper-Kurret al, Phys. Rev. Lett81, 500(1998.

[60] E. Tiesingaet al, J. Res. Natl. Inst. Stand. Techn@D1, 505
(1996.

[61] M. Fliesseret al, Phys. Rev. A56, 4879(1997).

[62] M. Marinescu and A. F. Starace, Phys. Rev5@ 570(1997).

[63] P. Ohberget al, Phys. Rev. A56, R3346(1997).

[64] A. Csorda and R. Graham, e-print: cond-mat/9809002.



