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Barrier resonances in Bose-Einstein condensation

Juan J. G. Ripoll and Vı´ctor M. Pérez-Garcı´a
Departamento de Matema´ticas, Escuela Te´cnica Superior de Ingenieros Industriales, Universidad de Castilla-La Mancha,

13071 Ciudad Real, Spain
~Received 27 July 1998; revised manuscript received 24 September 1998!

We study the dynamics of the mean field model of a Bose-Einstein condensed atom cloud in a parametrically
forced trap by using analytical and numerical techniques. The dynamics is related to a classical Mathieu
oscillator in a singular potential. It is found that there are wide resonances which can strongly affect the
dynamics even when dissipation is present. Different geometries of the forcing are discussed as well as the
implications of our results.@S1050-2947~99!04703-4#

PACS number~s!: 03.75.Fi, 42.25.Bs, 45.05.1x
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I. INTRODUCTION

The recent experimental realization of Bose-Einstein c
densation~BEC! in ultracold atomic gases@1,2# has triggered
the theoretical exploration of the properties of Bose gas
Specifically there has been great interest in the developm
of applications which make use of the properties of this n
state of matter. Perhaps the recent development of the
called atom laser@3# is the best example of the interest
these applications.

The current model used to describe a system with
fixed mean numberN of weakly interacting bosons, trappe
in a parabolic potentialV(rW), is the following nonlinear
Schrödinger equation~NLSE! @which in this context is called
the Gross-Pitaevskii equation~GPE!#:

i\
]c

]t
52

\2

2m
¹2c1V~rW,t !c1U0ucu2c, ~1!

which is valid when the particle density and temperature
the condensate are small enough. HereU054p\2a/m char-
acterizes the interaction and is defined in terms of
ground-state scattering lengtha. The normalization forc is
N5* ucu2 d3rW, and the trapping potential is given by

V~rW,t !5
1

2
mn2@lx

2~ t !x21ly
2~ t !y21lz

2~ t !z2#. ~2!

The lh ,(h5x,y,z) are, as usual, functions that descri
the anisotropies of the trap@4#. In real experiments with sta
tionary systems they are constants and the geometry o
trap imposes usually the conditionlx5ly51. lz5nz /n is
the quotient between the frequency along thez directionnz
and the radial onen r[n.

At this point we want to emphasize here that our analy
is not restricted to the stationary case. Instead it focuse
situations in whichlh are periodic sinusoidal functions o
the time. To be more precise, we will adopt the notation

l i~ t !5l i ,0@11e i cos~v i t !# ~3!

with i 5x,y,z.
In its original derivation, Eq.~1! was supposed to b

strictly valid in theT50 and low-density limits. Recent the
PRA 591050-2947/99/59~3!/2220~12!/$15.00
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oretical work extends the applicability of the GPE to t
high-density limit@5,6#. On the other hand, linearized stab
ity analysis based on perturbative expansions on 1/N seems
to indicate that the validity of the equation is restricted to t
cases in which no exponential separation of nearby or
appears as it happens, for example, in chaotic pulsation
the atom cloud@7,8#.

A lot of work has concentrated on the analysis of t
resonance structure when a periodic time-dependent pe
bation is applied to the magnetic field, mainly because of
availability of experimental data@9#. The theoretical ad-
vances include both semiclassical analysis of Eq.~1! in the
hydrodynamic limit @10#, variational methods@11,12#, and
numerical simulations@13,14#. Recent research based on E
~1! also includes the study of the different problems us
tools from nonlinear science@15–17# and the analysis of its
multicomponent extensions@18,19#.

The variational approach provides us with very simp
equations for the evolution of the widths of the Gauss
atom cloud together with a simple picture of the movem
of the condensate@12#. However, those equations were in
tially derived for the static field case and only applied to t
analysis of the normal modes and frequencies of the cond
sate motion in the weak perturbation regime. Similar eq
tions are found using various scaling arguments@20,21,7# or
moment theory@18#.

Evolution of the condensate in a time-dependent trap
been addressed in many different ways. There are pa
where the GPE is solved numerically, either by watching
time evolution of a suitable initial condition@13,14# or by
using a linear expansion in normal modes@14#. And there are
other works@20,7# where the authors derive a set of ordina
differential equations using scaling arguments plus
Thomas-Fermi approximation. Among all the papers t
treat time-dependent potentials, the one which is close
what we present here is@7#. In that work the authors study
the excitations of condensed and noncondensed clouds u
a periodic parametric perturbation and find that the cond
sate is depleted and that chaotic evolution occurs. We
comment more on this in Sec. VII.

It is our intention in this paper to explore the behavior
the condensate under periodic perturbations of the
strength using analytical and numerical tools. Analytic
techniques include exact results and a variational anal
2220 ©1999 The American Physical Society
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PRA 59 2221BARRIER RESONANCES IN BOSE-EINSTEIN CONDENSATION
extended to situations with a time-dependent potential. C
parison of the results of both methods will allow us to st
rigorously and derive a simple model for the resonant beh
ior and to qualitatively predict the evolution of the syste
under other conditions~less symmetry, dissipation regime
noncondensed corrections, etc!. Other conclusions as well a
experimental implications will be found in the course of t
analysis.

Our plan is as follows. In Sec. II we obtain a set of exa
equations for the evolution of the center of mass of the c
densate. The result is found to be three uncoupled Math
equations. We show that a complete perturbative analys
possible and obtain the resonance structure for the cent
mass. In Sec. III we introduce the time-dependent variatio
model for the time-dependent GP equation. In Sec. IV
solve the GPE numerically in the radially symmetric ca
We show the resonance structure for the condensate in
regimes — small and large amplitude oscillations. Next
turn to the variational equations for the widths and show t
numerical simulations agree qualitatively with the preced
picture. Finally, we use those ordinary differential equatio
to predict the locations of the resonances in a simple mo
that connects the linear and the nonlinear cases using
from Sec. II. This is the main result of our paper. In Sec.
we consider the possibility of extending the analysis to
multidimensional case and study the effect of the coupl
between the different variational parameters. The resul
predictions are found to agree with a posterior set of
simulations of the GPE equation. In Sec. VI we comment
the effect of losses. We show that these resonances are
persistent nature and show how evolution may be subs
tially altered due to the effect of losses. Finally in Sec. V
we discuss the experimental implications of our results
summarize our conclusions.

Note that, unless otherwise stated, all magnitudes ar
adimensional units. To adimensionalize these figures,
have employed the change of variables that is introduce
Sec. III:

II. EXACT ANALYTICAL RESULTS

A. Variational form of the GP equation

It can be proved that every solution of Eq.~1! is a station-
ary point of an action corresponding, up to a divergence
the Lagrangian density

L5
i\

2 S c
]c*

]t
2c*

]c

]t D1
\2

2m
u¹cu21V~r !ucu21U0ucu4,

~4!

where the asterisk denotes complex conjugation. That is
stead of working with the nonlinear Schro¨dinger equation
~NLSE! we can treat the action,

S5E Ld3rdt5E
t i

t f
L~ t !dt, ~5!

and study its invariance properties and extrema, which ar
turn solutions of Eq.~1!.
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For instance, from the invariance of Eq.~4! under global
phase transformations, one can assure the conservation o
norm of the wave function

N5E ucu2d3r , ~6!

which in this context is interpreted as the number of partic
in the Bose condensed state. We can also define ano
quantity,

E5E H \2

2m
u¹cu21V~r ,t !c1

U0ucu4

2 J d3r , ~7!

that can be thought of as the energy, and whose time ev
tion is simply

dE

dt
5E dV

dt
ucu2d3r . ~8!

Thus, when the potential is not time dependent, the energ
another conserved quantity. And when the potential has
form ~2!, the evolution of energy can be easily connected
that of the mean square radii of the cloud

dE

dt
5

1

2
mn2 (

h5x,y,z

dlh

dt
^h2&. ~9!

Equations~6! and ~9! are also useful to test the stability o
the numerical scheme we will use to simulate Eq.~1!.

B. Newton’s equations for the center of mass in a general GPE

Let us consider the following function:

c~rW !5f~rW2rW0!, ~10!

wheref is a solution of Eq.~1!. Substituting it in Eq.~4! and
calculating the averaged Lagrangian, we obtain

L5E Ld3r 5L free@f#1Lcm@f,rW0#. ~11!

The Lagrangian has been split into two parts: one,
‘‘free’’ contribution L free, which depends only onf,

L free@f#5E i\

2
~f] tf* 2f* ] tf!d3r

1E \2

2m
u¹fu2d3r 1E U0

2
ufu4d3r , ~12!

and another one,Lcm, that includes both the potential an
the displacementrW0 ,

Lcm@f,rW0#5E $V~rW1rW0!uf~rW !u22 i\f* ¹frẆ0%d
3r .

~13!

If we impose that the action be stationary for somerW0(t),
i.e., if we use Lagrange’s equations~27!, we get
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d

dt
^2 i\¹&52 K ]

]r i
V~rW1rW0!L . ~14!

Here the brackets denote, as usual, the mean value o
operator over the unperturbed wave function,f,^A&
5*f* (rW)Af(rW)d3r .

As a final step let us use thatf is a solution of the GPE
Then Eq.~14! must be satisfied at least forrW050,

d

dt
^2 i\¹&52 K ]

]r i
V~rW !L . ~15!

It is now easy to prove the relation between the me
value of the moment operator,i\¹, and the speed of the
center of mass. We start from

d

dt
^rW&5E rWS f*

]

]t
f1f

]

]t
f* Dd3r . ~16!

Next we replace the time derivatives with spatial ones us
Eq. ~1! and its complex conjugate,

d

dt
^rW&5

1

i\E rWS f*
2\2

2m
¹2f2f

2\2

2m
¹2f* Dd3r ,

~17!

and finally integrate this expression to obtain

d

dt
^rW&5^2 i\¹&. ~18!

Equations~15! and ~18! are the quantum equivalent o
Newton’s second law and are exact for functionsf that sat-
isfy the GPE, in fact these equations coincide with the o
appearing in the linear Schro¨dinger equation.

C. The condensate in a harmonic trap.
Mathieu equations for the center of mass

In our setup V(rW) is a harmonic potential with trap
strengths of the form of Eq.~3!. Thus, Eqs.~15! become a se
of three decoupled ordinary differential equations~ODE’s!,

d2

dt2
^x&52

1

2
mv2lx

2~ t !^x&, ~19a!

d2

dt2
^y&52

1

2
mv2lx

2~ t !^y&, ~19b!

d2

dt2
^z&52

1

2
mv2lx

2~ t !^z&. ~19c!

After a change of scale, all of the preceding equations
equivalent to a model one that we will write as

ẍ1@11e cos~vt !#x50. ~20!

This equation is known as Mathieu’s equation. It is a w
known problem which appears frequently in the study
an

n

g

s

re

l
f

parametrically forced oscillators and where one can obta
lot of information by analytical means@22–25#.

First, Floquet’s theory for linear ODE with periodic time
dependent coefficients@23# shows that Eq.~20! has an infi-
nite set of instability regions in the parameter space. T
limits of these zones can be found and have the sh
of wedges that start on the points (vmin ,emin)
5(2,0),(1,0),(2/3,0),. . . , andthey widen ase is increased
up from zero. Inside this region at least one branch oscilla
with an exponentially increasing amplitude.

Either with an asymptotic method or by making use of t
singular perturbation theory, we can also locate those re
nances and study the evolution of the system around th
For a perturbation frequency close enough to the first re
nance, that is, foruv22u5o(1), anasymptotic method@22#
yields up to first order

s56A e2

4v2
2d2, ~21a!

r .cest cos~vt/21u0!. ~21b!

Here we see that for some values ofd ande the exponents
is a positive real number and the amplitude of the osci
tions grows unlimitedly. Also, the strength of the resonan
is maximum for a value of

dmax5211A12
e2

4
.2e21O~e4!. ~22!

A second-order Taylor expansion in Eq.~21! lays the follow-
ing limits:

uv22u<
e

2
1

e2

32
. ~23!

The treatment of other resonances is more difficult as t
are caused by higher-order terms—at least of second ord
the v51 case. In practice this means that they have
smaller region of influence and that they are not so stro
One has to choose large values ofe, initial conditions (x,ẋ)
not too close to the equilibrium point, and an excellent n
merical integration method, in order to find real instabilitie
However, if one concentrates not just on looking for exp
nential divergences but on efficient pumping, it will be eas
observed that on top of these subharmonics there are p
of the energy gain speed@See Fig. 4~b!#.

Finally, we wish to point out that these resonances are
a peculiarly persistent nature: as we will show in Sec.
they resist even the presence of dissipation. This has a
ous and inmediate consequence which is that feeding
condensate in a resonant regime can result in a large am
tude oscillation of the center of mass. On the other hand
we will outline later in Sec. VI, a measure of this effect c
give us some insight into the losses effects, as well as
additional terms that could be added to Eq.~1! so as to better
model the condensate.
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III. VARIATIONAL EQUATIONS FOR THE TIME-
DEPENDENT GP EQUATION WITH A PERIODIC

PARAMETRIC PERTURBATION

Although the center of mass of the wave packet satis
very simple equations, it does not happen the same to o
parameters such as the width. Only in the two-dimensio
case is it possible to apply moment techniques and find a
lytically its time evolution @26,27#, but in the fully three-
dimensional problem no exact results have been derived
using the moment technique.

To simplify the problem, we restrict the shape of the fun
tion c to a convenient family of trial functions and study th
time evolution of the parameters that define that family.
natural choice, which corresponds to the exact solution in
linear limit (U050) and provided quite good results in o
previous works@11,12#, is a three-dimensional Gaussian-lik
function with sixteen free parameters,

c~x,y,z,t !5A )
h5x,y,z

expH 2@h2h0#2

2wh
2

1 ihah1 ih2bhJ .

~24!

For a matter of convenience and ease of interpretation
will make a change here of parameters, fromA andA* to N
~the norm of the wave function! andf ~its global phase!:

A5
N

p3/2wxwywz

eif. ~25!

The rest of the parameters arewh ~width!, ah ~slope!, bh
~square root of the curvature radius!, andh0 ~center of the
cloud!.

This trial function must now be placed in Eq.~5! to obtain
an averaged Lagrangian per particle,

L

N
5

1

NE2`

1`

Ld3r 5\ḟ1(
h

H wh
2

2
1h0

2J
3H \ḃh1

2\2

m
bh

21
1

2
mn2lh

2~ t !J
1(

h
H \ȧh1

\2

m
2ahbhJ

1
\2

m(
h

H 1

2wh
2

1ah
2J

1
U0

4A2

N

p3/2wxwywz

. ~26!

The evolution of the parameters is ruled by the cor
sponding set of Lagrange equations

d

dtS ]L

]q̇ j
D 5

]L

]qj
, ~27!

which give us equations for the conservation of the norm
s
er

al
a-

et

-

e

e

-

dN

dt
50; ~28!

the movement of the center of mass,

ḧ01mn2lh~ t !h050; ~29!

the evolution of slope and curvature,

bh5
mẇh

2\wh
, ~30a!

ah5
m

\
ḣ022bhh0 ; ~30b!

and finally the evolution of the widths,

ẅx1n2lx
2~ t !wx5

\2

m2

1

wx
3

1
U0

2A2m

N

p3/2wx
2wywz

,

~31a!

ẅy1n2ly
2~ t !wy5

\2

m2

1

wy
3

1
U0

2A2m

N

p3/2wxwy
2wz

,

~31b!

ẅz1n2lz
2~ t !wz5

\2

m2

1

wz
3

1
U0

2A2m

N

p3/2wxwywz
2

.

~31c!

As one can see, the introduction of a time-dependent po
tial does not affect the form of the equations, which rem
the same as those of@12#.

Let us introduce the constantsP5A2/pNa/a0 ~strength
of the atom-atom interaction! and a05A\/(mn) ~harmonic
potential length scale!, as well as a set of rescaled variabl
for time, t5nt, and the widths,wh5a0vh , (h5x,y,z).
This leads us to

v̈x1lx
2~ t !vx5

1

vx
3

1
P

vx
2vyvz

, ~32a!

v̈y1ly
2~ t !vy5

1

vy
3

1
P

vxvy
2vz

, ~32b!

v̈z1lz
2~ t !vz5

1

vz
3

1
P

vxvyvz
2

. ~32c!

This set of rescaled variables and units is the one that we
use throughout the paper, unless otherwise stated.

IV. ANALYSIS OF THE RADIALLY SYMMETRIC CASE

A. The equations

In this section we will analyze the case in which the tr
has the same strength on all directions, that is,

V~x,y,z!5
1

2
mn2l2~ t !~x21y21z2! ~33!
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and the solutions are supposed to be radially symmetric. T
high degree of symmetry simplifies the equations consid
ably. First, the variational model for the widths of the co
densate~31a! reduces to a single ODE for the radial wid
v(t)

v̈52l2~ t !v1
1

v3
1

P

v4
. ~34!

Second, the following change of function:

c~r ,t !5A
u~r !

r
, ~35!

with the constraints

u~r !→0, r→0, ~36a!

E
0

`

u~r !dr51, ~36b!

uAu254pN, ~36c!

transforms Eq.~1! into the one-dimensional PDE,

i\] tu52
\2

2m
] r

2u1H 1

2
mn2l2~ t !r 214p

U0N

4p

uuu2

r 2 J u.

~37!

This is the equation that we have actually solved num
cally.

B. Numerical study of the equations

The numerical solution of Eqs.~34! and ~37! is not a
trivial job. We can see without much effort that both equ
tions are stiff@28# when the width of the cloud becomes ve
small, due to the presence of strong singular potentials. T
we need numerical methods that account for the nonline
ties and are stable enough to be trusted when close
resonance.

To solve Eq.~34! we have used an adaptive step s
Runge-Kutta-Fehlberg method, a Dormand-Prince pair@28#,
the ODE Suite ofMATLAB @29#, and finally Vazquez’s con-

FIG. 1. Radially symmetric condensate withP59.2 as de-
scribed by the variational equations. Phase space picture for d
ent small to large amplitude oscillations.
is
r-

i-

-

s,
ri-

a

servative scheme@30#—a finite differences scheme that co
serves a discretized version of the energy and is uncondit
ally stable. All of them gave the same accurate results ab
the frequencies and amplitude of the oscillations, the regi
of divergence, etc.

To solve Eq.~37! we have utilized a modification of a
second-order accurate finite difference scheme develope
@31#. This new scheme is time reversible, conserves
norm, and has a discrete analog for Eq.~8! which provides
enhanced stability@32#. On the other hand, even using th
best methods, we face another important difficulty, nam
the finite size of either the spatial grid~in finite differences
schemes! or the momentum space~in spectral or pseudospec
tral methods!. This size effect becomes particularly impo
tant in the case of parametrical perturbations and impos
severe limit on the time for which simulations may b
trusted.

Using all this computational machinery we have achiev
several important results. First we have checked our p
grams with low amplitude oscillations. In the PDE we im
posed a Gaussian initial condition of widthv0 and used this
same value as an initial condition for Eq.~34!. By this pro-
cedure we obtained the linearized excitation frequencies
the condensate, concluding that there is a significant coi
dence of both models as was shown in@12#. In the large
amplitude simulations we found a surprising result which
that the variational model still follows the evolution of th
PDE with 90% accuracy even in situations in which the co
densate remains no longer Gaussian but gains an impo
contribution from the first and second modes. Another c

r-

FIG. 2. Radially symmetric condensate withP59.2 and initial
condition v51.6, subject to a periodic perturbation. Evolution
the width in the variational model~dashed lines! and in the GPE
~solid line! when the perturbation is~a! (e50.15, v54.00) and~b!
(e50.2, v54.00). ~c! Instability region for the variational mode
in the parameter space around the main resonance.
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firmed fact is that the width of the condensate develops
tough bounces against the ‘‘origin’’@Fig. 1~a! and 1~b!#, with
its excitation frequency deviating from the linearized pred
tions of @12# and approaching those of the harmonic trap

We have also simulated the system with a periodic tim
dependent perturbation of the form

l2~ t !511e cos~vt !. ~38!

Using the variational equation Eq.~34!, we have scanned th
parameter space (v,e). We have found one region where th
radial width diverges exponentially@Fig. 2~a!# and causes
most numerical methods to fail after a finite time, and tw
more where the width grows almost exponentially up to
point where the simulation cannot account for this grow
All of these zones have the form of wedges, with a peak
(vmin ,emin), and a growing width ase is increased. The
most important resonance stands onvmin52.04 @see Fig.
2~b!#. The other ones are weaker and rest onvmin
51.02,0.68. We have studied a wide range of setups
found that these frequencies change no more than 0.5%
pending on the initial conditions and the nonlinearity. On t
other hand, the lowest perturbation amplitude for which
resonance exists,emin , does exhibit a strong dependence
the initial conditions. Indeed, around the weaker resonan
instability is never reached for points close to the minimu
of the potential. However, as we already pointed out in S
II, this is probably a numerical effect.

In order to study the location of the resonances we h
also made some plots of the efficiency of the energy abs
tion process against the perturbation frequency for differ
values of the perturbation amplitude for the variational s
tem and the partial differential equation@Figs. 3~a!, 3~b!,
4~a!, 4~b!#. The way we have measured ‘‘efficiency’’ is b
letting the system evolve for a fixed time and then comput
the maximum value of the mean square radius of the clo
For the sake of simplicity and to approach the experime
setups, we have used an equilibrium state of the static G
as an initial condition.

In a rather complete inspection of the parameter sp
using the efficiency plots, we have found that, though
resonance regions cannot be precisely delimited becaus
the dependence on the initial data, they do exist and beh
much like the variational model predicted. As we see in Fi
4 and 3, there are two important features in the respons
the condensate. The main one is the width of the resona
and the dependence of that width on the strength of the
turbation. The second important feature is the change of
frequency for which the perturbation is most efficient. Th
peak is centered on the frequency of the linearized mo
only for very small perturbation amplitudes, and switches
the trap natural frequencies very quickly as the amplitud
made stronger — of about 10% or so. For even stron
amplitudes the optimal frequency decreases slowly.

Another consequence of this work is that the respons
the cloud is stronger in the PDE than in the variational s
plification. For instance, it is possible to find@see Fig. 2~a!#
perturbation amplitudes that do not cause a signific
growth in Eq.~34! but make the cloud width increase qui
linearly in the PDE. We have also studied the case in wh
an exponential growth of the width is present in both E
st
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~34! and ~37!, and we have seen that the growth is quali
tively similar though there is a tendency in the exact mo
to exhibit slightly larger amplitude motion. These discrepa
cies are originated by high modes which are not presen
the variational treatment. In fact, even though an import
part of the cloud remains close to the origin, it is observ
that for long times a long tail appears which is hard to a
preciate but is responsible for the growth of the mean squ
width ~and the presence of higher order modes!.

C. Analysis of the Mathieu equation with a singular potential

In this subsection we will develop a simplified model th
explains why resonances appear in the perturbed GPE e
tion. This model makes use of the variational equations
the cloud width butdoes not care for the actual shape of th
variational ansatz. The reason for this is that both the a
proximate model and the exact one agree for short times,
response of the latter being always stronger.

Let us limit ourselves to Eq.~34!. In the preceding sub-
section we said that this system is very stiff and that
origin acts as an elastic wall. In view of this, it is intuitivel
appealing to replace the singular but differentiable poten
1/v31P/v4 with a discontinuous bounce condition on th
origin, i.e., an impact oscillator. Numerical simulations co
firm that this approximation is good for large amplitude o
cillations. Also, the connection between soft singular pot
tials and impact oscillators has been widely studied and th
kinds of models have found ample application in real-l
situations in the fields of physics and engineering~See
@24,25# for many references!.

FIG. 3. Radially symmetric condensate withP59.2. Plot of the
maximum amplitude of oscillations for the GPE after 40 time un
The initial condition corresponds to a Gaussian of widthv51.6.
Each line corresponds to a different value ofe, from 0.05 to 0.3 in
steps of 0.05. The frequency range covers~a! the main resonance
and ~b! the second important one.
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Since the variational model is a lossless one, our bou
ary condition must be elastic. We replace Eq.~34! with the
following one:

v̈1l2~ t !v50,

lim
t→tc

2

~v,v̇ !5~01,Vc!⇔ lim
t→tc

1

~v,v̇ !5~01,2Vc!, ~39!

where tc denotes any isolated instance when the sys
bounces against thev50 singularity.

Let us show that this equation is in turn equivalent to
elastic oscillatorwithoutbarrier conditions. We introduce th
change of variables

v5uuu, ~40!

whereu is an unrestricted real number and satisfies the
lowing one-dimensional harmonic oscillator equation:

ü1l2~ t !u50. ~41!

It is now easy to prove that every solution of Eq.~41! pro-
vides a solution of Eq.~39!, and vice versa, from every so
lution of Eq. ~39! it is possible to construct a solution of Eq
~41!, unique up to a sign.

So, what do we have now? We have proved that for la
amplitude motion Eq.~34! behaves as Mathieu’s equatio
This implies that in the regime of medium to large amplitu
oscillations, or in a situation of large amplitude perturb
tions, Eq.~34! will have instability regions that are more o

FIG. 4. Radially symmetric condensate withP59.2. Plot of the
maximum amplitude of oscillations for the variational model af

40 time units. Initial conditions arev51.6, v̇50. Each line corre-
sponds to a different value ofe, from 0.05 to 0.3 in steps of 0.05
The frequency range covers~a! the main resonance and~b! the
second important one.
d-

m

n

l-

e

-

less centered on Mathieu’s frequenciesv52,1,1/3, . . . .
This prediction is indeed confirmed by the numerical sim
lations: the main resonance is capable of causing an e
nential divergence, while the other ones are harder to tr
down but do appear in plots of pumping ‘‘efficiency.’’

Another important but minor result of this equivalence
that these resonance regions must become wider and m
on to smaller frequencies as the perturbation amplitude
increased. This result is also obtained in the numerical sim
lations. Indeed, from the graphs we can estimate how fast
optimal frequency decreases ase grows, and we will see tha
the order of magnitude corresponds to that of Eq.~22!.

Summing up, what we have seen here is that for l
amplitude oscillations the condensate moves in an effec
potential that is parabolic. Thus, the frequency that exc
the condensate most efficiently in a parametric way is
one that results from the linearization of Eq.~34!. On the
other hand, when we start to consider large amplitude os
lations, we find that the harmonic trap gains importance o
the details of the well. It is in this situation that the instabili
arises, and it happens for perturbations that oscillate acc
ing to multiples of the frequency of the trap.

Even more, higher modes are little influenced by the n
linearity, just because they are more spread and the valu
uc(r ,t)u2 is smaller. As a consequence, the energies of th
modes come even closer to those of the linear harmonic
cillator, resulting in the fact that the response of the GPE
stronger than what the variational model, limited to a Gau
ian shape, predicts.

V. ANALYSIS OF THE NONSYMMETRIC CASE

After finishing the study of the radially symmetric prob
lem, it seems a natural step to proceed with the nonsymm
ric one. However, this step is not simple for several reaso
the main one being that the simulation of a full thre
dimensional GPE is a very expensive work in computatio
terms. Thus, it would be unwise to directly attack the f
problem without gaining some insight into what is to b
expected from the simulations by cheaper means.

In our case the cheapest available tool is the variatio
model. We have seen that it describes rather well the beh
ior of a radially symmetric condensate. And, as we poin
out before, there are exact analytical studies@26,27# where
the moment method reduces exactly thetwo-dimensional
GPE to a set of ODE which are similar to the ones we ha

A. Predictions of the variational model

When we remove the radial symmetry in the variation
equations, we are left with two to three coordinates, and
perturbation can bear many different forms. However, try
to follow the experimental setups@33#, we should once more
take a sinusoidal time dependence for everylh(t) coeffi-
cient, as in Eq.~3!. This choice accounts both for them50
mode (ex5ey , ez50) and the m52 perturbations (ex
52ey , ez50) from the JILA experiment@33#. In the latter
case the potential is a parabolic one, with fixed frequenc
on a rotating frame. However, for our trial function@Eq. ~1!#
it behaves just as a potential of the form of Eq.~2!.

Substituting our effective perturbation frequencies in
Eq. ~32a!, we get a set of three coupled Mathieu equatio

r
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with a potential that is singular on thevx50, vy50, and
vz50 planes. The singularities are at least as strong as 1v3,
and the numerical simulations again confirm that they ac
elastic walls, so we now proceed with a change of variab
formally equivalent to that of Eq.~40!:

wh5uuhu, ~42a!

üh52lh
2~ t !uh , ~42b!

for h5x,y,z.
Now the situation is a bit more complex. The first ne

feature is the existence of several sets of instability regio
Due to having threea priori different constantsl0h , the
three oscillators in Eq.~42a! are not equivalent and we ma
get three sets of resonances in the (eh ,v) space, each one
containing the instability regions that start on the frequenc

vh,min

l0h
52,1,2/3, . . . . ~43!

Numerical simulations of the variational equations for t
m50 type excitation confirm this prediction with a relativ
accuracy around 0.5% in the frequencies. The results s
again that, opposite to the pure Mathieu equation, th
‘‘wedges’’ rest on a nonzero value of the perturbation a
plitude emin,h . In Fig. 5 we see the evolution of the conde
sate width with parameters close to the main resonance
gion.

Another new feature is the possibility of coupling b
tween the widths of the condensate. This coupling is s
both in them50 andm52 excitations setups. In the firs
one, the perturbed width feeds the unperturbed one. Figu
demonstrates that efficiency is not very high. In them52
case two widths are associated with the same trap freq
cies and the perturbations are of equal magnitude and o
site sense. The explanation is that both widths block e
other, eliminating the resonance and leaving just a boun
‘‘movement’’ of small amplitude.

As a side note, we must say that the variational mo
itself predicts the lack of resonances in them52 setup. We
already pointed out that the JILAm52 perturbation corre-
sponds to a situation in which the potential of the trap

FIG. 5. Evolution of a cylindrically symmetric condensa
~variational model,P59.2) under a sinusoidal perturbation (v,e)
5(2.04,0.1) of only the radial strength of the trap. Both~a! the
radial v r and ~b! the axialvz widths are plotted.
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rotated while maintaining its shape. It can be easily prov
that if we chooseany family of trial functions with enough
degrees of freedom for a general rotation, the variatio
solution will always stick to the potential and rotate at t
same speed. This also implies that the trial function~24! is
not suitable for describing the condensate when this kind
perturbation is applied.

B. Numerical study of the three-dimensional GPE

To perform the simulation of the full GPE, we have us
a Fourier pseudospectral method, using typically a grid
1083 collocation points and integrating in time with
second-order, symmetrized split step method@34,35#.

Our numerical study is based on anO„(Dt)2
… scheme

which behaves extremely well for long time runs. Howev
as in the radial PDE, no matter how accurate the schem
there is a limit in the time during which simulations can
trusted and this limit is imposed by the growth rate of t
condensate width and the size of the grid. This limit is es
cially important for them50 perturbation, where the con
densate develops a large tail in the unperturbed direct
and this tail breaks the simulation after a certain time. T
more asymmetric the trap is, the sooner this effect com
out. In our simulations the grid was a box of 1083 equally
spaced points whose sides measured from 20 to 40 le
units, depending on the symmetry and intensity of the tr
This allowed us to track the condensate for about 12 peri
in truly resonant setups, and for many more in nonreson
ones.

We have applied the algorithm to many different pro
lems. First, we checked our programs against stationary
radially symmetric problems. Second, we introduced tim
dependent traps and reproduced the calculations of Sec
In both cases we got the expected results.

The third set of experiments consisted in a resonant tim
dependent radially symmetric trap applied to several sligh
asymmetric Gaussian wave packets. The initial asymm
was slight enough to treat it as a weak perturbation and
saw that it departed little from the symmetric case, i.e.,
modes with higher energy or angular moments break
exponential growth.

The fourth and probably most important group of simu
tions consisted in the study of them50 perturbation from
the JILA @33# experiment. Here we confirmed the predictio
of the preceding subsection, that is, we obtained at least
resonance region that the variational model predicts.

We also observed that the response of the condensa
modeled by the GPE is stronger and exhibits a slightly m
intense growth rate than what the variational model predi
This and other similar results from the radial case~Sec. IV!
favor the theory of a cooperative staircase effect, where
higher modes contribute to the energy absorption proc
without interfering in the evolution of the width. Figures
and 7 show just two examples of the kind of evolution th
has been seen for this perturbation model on the reso
regions.

The reason for this cooperative effect seems to lay in
energy level structure of the GPE equation. We have stud
the evolution of the correlation of a condensate wave aga
its initial data. In all cases the initial data were a displac
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and deformed Gaussian cloud, while the environment co
sponded to a stationary trap. In the linear case it is eas
show that the spectrum of the correlation must reveal a s
set of the eigenvalues of the Hamiltonian, and indeed tha
what we got. In a nonlinear context it is not clear what t
frequencies of the correlation mean—they may or may
be eigenvalues of the GPE—but at least we know that t
must rule the energy absorption process somehow. Wha
merical experiments show is that for an extensive family
initial conditions these generalized ‘‘spectra’’ can be a
proximated by the formulaEn5vn1E0 , whereE0 depends
on the nonlinearity and the level spacing is a regular, h
monic one.

This picture of equally spaced levels is intuitively appe
ing to explain the existence of such strong resonances.
one side we have the fact that, in any other system, a c
tinuous parametric perturbation would become bounded
the higher state becomes populated. This is probably w
one would first think when facing this system. On the oth
side we see that due to being equally spaced these hi

FIG. 6. Evolution of a condensate in a spherically symme
trap (P59.2) subject to anm50 cylindrical perturbation (v r ,e r)
5(2.00,0.15). Both the radial widthv r ~solid linea! and the axial
width vz ~dashed line! are plotted.

FIG. 7. Evolution of a condensate in a cylindrically symmet
trap (P59.2, l r51, lz52) subject to anm50 perturbation
(v r ,e r)5(2.00,0.15). Both the radial widthv r ~solid line! and the
axial vz width ~dashed line! are plotted.
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energy states are themselves sensitive to the same res
frequency and offer no resistance to the particle promot
process. In the end, this is more or less what happens in
variational equations, considered from the point of view
classical mechanics.

However, it is not relevant for the existence of resonan
whether they cause a sustained growth or not. What is c
firmed without any doubt is that the perturbations that
most efficient in the variational model are also the most
ficient in the full GPE.

VI. ANALYSIS OF THE EFFECT OF LOSSES

We now want to show the effect of a dissipative term
the variational equations. This term will be introduced in
phenomenological way so as to model the damping of
oscillations of the condensate in regimes where the num
of noncondensed particles is small. We will choose a visc
damping term that models well the behavior of the cond
sate in the experiments@33#. This choice introduces a signifi
cant loss of energy in the oscillations while preserving
number of condensed particles. Using this term, we will s
that the resonance regions of the pure Mathieu equation
sist.

Let us see what Eq.~20! looks like once we add damping

ẍ1@11e cos~vt !#x1g ẋ50. ~44!

A simple change of variablesx(t)5r(t)e2gt makes this new
term disappear, transforming it back to a Mathieu equati

r̈1@12g21e cos~vt !#r50. ~45!

With the introduction of the damping, we are shifting th
resonances to lower values, given by

v

n~g!
52,1,2/3, . . . , ~46!

wheren2(g)512g2 is the new effective frequency for th
trap. We can approximately solve Eq.~45! around the first
resonance, obtaining

x~ t !.ce~s2g!t cosS vt

2
1u0D , ~47!

wherel is given by Eq.~21a!.
This shows that the resonance regions in the param

space are constrained to values of (v,e) for which the
strength of the resonance,l, is larger than the strength of th
dissipative term. The new regions have a larger, nonz
value ofemin , and are typically thinner, but do not disappe
unlessg is very large.

This effect is reproduced in the variational model wh
we introduce similar viscous damping terms. For instan
taking the data from the JILA experiment@33#, we can esti-
mate a condensate lifetime of about 110 ms and a value fg
of 0.15 in natural units of the condensate. Such damp
makes theemin value rise from 0.09 to 0.18 for theP59.2
case. Thus, the instability should not be appreciated un
the perturbation amplitude exceeds 20%.

c
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An interesting effect of damping is that the evolution o
continuously perturbed condensate outside the instability
gions becomes more ordered than in the undamped m
since the motion is constrained to a limit cyclesynchronized
to the frequency of the parametric perturbation, and with a
size that depends only on the perturbation paramet
(v,e). In Fig. 8 we show the different limit cycles that ap
pear under periodic perturbations. The largest one is alw
the one with its frequency on top of the peak of the re
nance as shown by Fig. 3 and the size of the limit cy
decreases as the frequency is detuned from this value.

Finally we wish to point out that the appearance of a lim
cycle opens the door to a wide family of phenomena, fr
chaotic motion to bifurcation theory@36,37#. This limit cycle
would exist under a great variety of dissipative terms, an
not exclusive of linear damping. Also, the dependence of
limit cycle on the damping constant can be useful from
experimental viewpoint to separate the condensed and
condensed clouds, as will be pointed out in the final sect

VII. CONCLUSION AND DISCUSSION

In this work we have analyzed the resonant dynamics
the parametrically forced time-dependent GPE using ex
analytical techniques, approximate time-dependent va
tional techniques, and numerical simulations. All the resu
point to the existence of various resonant behaviors ass
ated with the same parameter regions concerning the mo
of the center of mass and the width oscillations of the wa
packet. The role played by the nonlinearity is to provide
strong repulsive term at the origin which acts as a barr
which depending on the dimensionality and the symmetry
the external forcing could be stronger than the repulsive t
related to the linear dispersion~kinetic energy term!.

We have developed a simplified version of the variatio
equations for the spherically symmetric condensate under
riodic sinusoidal change of the trapping potential. Th
model is based on an impact oscillator, i.e., a harmonic
cillator with an elastic barrier condition which allows us
find explicit solutions. When applied to the parametrica
perturbed condensate, our model predicts that medium
large oscillations approach the harmonic trap frequenc

FIG. 8. Phase space picture for the width of a radially symm
ric condensate subject to damping plus a periodic perturbation.
nonlinearity isP59.2, the dampingg50.15. The perturbation ha
in all casese50.1, while the frequencies are, from the outer cyc
to the inner one,v52.15,2.4,3.0,4.0.
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not the ones resulting from the linearization of the variatio
equations. The model also predicts that the response o
condensate to an external perturbation is ruled by the
monic trap frequencies. In the case of a sinusoidal parame
perturbation it accurately predicts the existence of a fam
of resonances on multiples of the trap natural frequencie

In the end, what we get from this work is a precise pictu
of the resonances for a wide family of equations that inclu
Eq. ~1! and the harmonic oscillator. In this description for th
radially symmetric case we have one base frequency tha
essentially the same for both equations~linear and nonlinear!
and which corresponds to the energy separation between
ground state and the first excited state of the harmonic os
lator up to high precision. The invariance of this base f
quency has been checked for a nonlinearity constant go
from P59.2—the JILA @33# experiment—to 20 times this
value. It differs from the predictions of@38#, where formulas
regarding theP→0 andP→` are derived. Also, there is a
whole set of subharmonics of this frequency, all of which a
capable of exciting the cloud quite efficiently. At least thr
of them have been found, both with significant respons
These subharmonics are not predicted in@38#.

We have also found that for this kind of parametric dri
the resonances are wide. The width grows with the stren
of the interaction and decreases with the effect of dissipat
Both facts can be checked in the experiments by forcing
system for a longer time than what it is currently done.

These predictions are exact in the linear limit,U050, and
have been confirmed with simulations coming both from
exact variational model and the GPE. The discretization
the GPE has also allowed us to scan the parameters sp
studying the efficiency of the perturbation process. In t
study we have only found peaks centered on Mathieu’s
quencies.

For the general case with more than one degree of f
dom ~axial and nonsymmetric cases! we obtain a set of two
to three decoupled pure Mathieu equations. We have sh
that, due to having more than one frequency, the predic
Mathieu resonances do exist in a larger number. On the o
hand, we have also seen that some of these resonances
disappear due to the locking of ‘‘equivalent’’ variables, a
effect that our decoupled equations do not account for.

This resonance scheme for the nonsymmetric case
been confirmed with accurate simulations of the full GPE
the m50 perturbation. An analysis of the correlation of
state against its initial data shows that both the linear and
nonlinear problems exhibit a spectral structure which
likely to present such behavior.

Finally, damping has been shown to limit the effect of t
parametric perturbation. Once more we have proved
only frequencies close to the Mathieu resonance regions
excite the condensate as a whole in an efficient way, cau
the appearance of a stable limit cycle. All other frequenc
are inefficient in the sense that the system staysextremely
close to the equilibrium configuration, which acts as a foc

A main conclusion of this work is that for this set o
resonances to exist, one only needs a singularity that
vents collapse. The variational method showed that the
netic terms in the evolution equations guarantee a 1/x3 sin-
gularity as far as we impose a repulsive interaction betw
the atoms in the cloud. This is the reason why we say that

t-
he
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have a family of systems that behave much the same.
immediate result of this is that the response of the nonc
densed atoms under the parametrical perturbation will
qualitatively similar to that of the condensed ones, with
only difference being that the former are subject to a m
intense dissipation. But as we already saw in Sec. VI,
dissipation can be enough to distinguish both kinds of flui
while the condensed part might suffer an exponential grow
the uncondensed part might develop low amplitude boun
oscillations.

We have also demonstrated that these resonances sho
in the movement of the center of mass as well, causing
initial displacement of the center of mass to be exponenti
amplified while the perturbation works. Opposite to o
models for the widths, this is an exact prediction based so
on the GPE, and it shows that the parametrical perturba
may also have a disturbing effect in the experiments. On
other hand, a measure of this effect can give us informa
about the intensity of dissipation and collision effects.

All of the preceding statements are based solely on
GPE. In a few words, they include the existence of resona
regions both for the widths and the center of mass, the sh
and the location of those regions, and its intensity as a p
sible measure of damping. The failure of any predicti
an
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should be interpreted as a failure of the GPE to describe
condensate. Thus we proposesimpleexperiments to perform
a quantitative study of the regimes for which the GPE pro
erly describes the Bose-Einstein condensates in ti
dependent traps.

Finally, we must mention that throughout this work w
have concentrated on regular motion regions in the par
eter space. These regions can be ‘‘safely’’ reached in
experiments. There are many other cases where chaos
pears in the variational equations and complex behavio
seen in the numerical simulations of Eq.~1!. Although the
study of those disordered regions could be interesting fr
the nonlinear science point of view, they seem not to be
interest for Bose-Einstein condensation since the expone
separation of nearby orbits which is characteristic of chao
behavior has been shown to induce instabilities and take
system out of the regime where it can be described using
mean field GP equation@7,8#.

ACKNOWLEDGMENT

This work has been supported in part by the Spanish M
istry of Education and Culture under Grants No. PB95-03
No. PB96-0534, and No. AP97-08930807.
k,

.

A

-

se
@1# M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wiem
and E.A. Cornell, Science269, 198~1995!; K.B. Davis, M.-O.
Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.
Kurn, and W. Ketterle, Phys. Rev. Lett.75, 3969~1995!.

@2# C.C. Bradley, C.A. Sackett, , and R.G. Hulet, Phys. Rev. L
75, 1687~1995!.

@3# M.-O. Mewes, M.R. Andrews, D.M. Kurn, D.S. Durfee, C.G
Townsend, and W. Ketterle, Phys. Rev. Lett.78, 582 ~1997!.

@4# F. Dalfovo and S. Stringari, Phys. Rev. A53, 2477~1996!.
@5# C.W. Gardiner, Phys. Rev. A56, 1414~1997!.
@6# K. Ziegler and A. Shukla, Phys. Rev. A56, 1438~1997!.
@7# Y. Castin and R. Dum, Phys. Rev. Lett.79 3553 ~1997!.
@8# Y. Castin and R. Dum, Phys. Rev. A57 3008 ~1998!.
@9# D.S. Jin, J.R. Ensher, M.R. Matthews, C.E. Wieman, and E

Cornell, Phys. Rev. Lett.77, 420 ~1996!; M.-O. Mewes, M.R.
Andrews, N.J. Van Drutten, D.M. Kurn, C.G. Towsend, a
W. Ketterle, ibid. 77, 988 ~1996!; D.S. Jin, M.R. Mathews,
J.R. Ensher, C.E. Wiemann, and E.A. Cornell,ibid. 78, 764
~1997!.

@10# S. Stringari, Phys. Rev. Lett.77, 2360~1996!
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@15# V.M. Pérez-Garcı´a, H. Michinel, and H. Herrero, Phys. Rev.

57, 3837 ~1998!; T. Tsurumi, and M. Wadati, J. Phys. So
Jpn.67, 1 ~1998!.

@16# T. Tsurumi and M. Wadati, J. Phys. Soc. Jpn.66, 3031~1997!;
,

t.

.

.

66, 3035~1997!; 67, 1197~1998!.
@17# S.A. Morgan, R. Ballagh, and K. Burnett, Phys. Rev. A55,

4338 ~1997!; D.S. Rokshar, Phys. Rev. Lett.79 2164 ~1997!
C.A. Sackett, H.T.C. Stoof, and R.G. Hulet,ibid. 80, 2031
~1998!; R. Dum, A. Sanpera, K.-A. Suominem, H. Brewczy
M. Kus, K. Rzazewski, and M. Lewenstein,ibid. 80, 3899
~1998!; B. Jackson, J.F. McCann, and C.S. Adams,80, 3903
~1998!.

@18# T. Busch, J.I. Cirac, V.M. Pe´rez-Garcı´a, and P. Zoller, Phys
Rev. A 56, 2978~1997!.

@19# H. Pu and N.P. Bigelow, Phys. Rev. Lett.80 1134 ~1998!; H.
Pu and N.P. Bigelow,ibid. 80, 1130~1998!; R. Graham and D.
Walls, Phys. Rev. A57, 484 ~1998!; B.D. Esry and C.H.
Greene,ibid. 57, 1265~1998!.

@20# Y. Kagan, E.L. Shurkov, and G.V. Shlyapnikov, Phys. Rev.
55, R18 ~1997!.

@21# Y. Castin and R. Dum, Phys. Rev. Lett.77, 5315~1997!.
@22# N. N. Bogoliuvov and V. A. Mitropolsky,Asymptotic Methods

in the Theory of Nonlinear Oscillations~Hindustan Publishing
Corp., New Delhi, 1961!.

@23# D. W. Jordan and P. Smith,Nonlinear Ordinary Differential
Equations~Oxford Appl. Math. & Computing Science, Ox
ford, 1987!.

@24# Nonlinearity and Chaos in Engineering Dynamics, edited by J.
M. T. Thompson and S. R. Bishop~John Wiley and Sons, New
York, 1994!.

@25# J. M. T. Thompson and H. B. Stewart,Nonlinear Dynamics
and Chaos~John Wiley and Sons, New York, 1986!.

@26# M.A. Porras, J. Alda, and E. Bernabeu, Appl. Opt.32, 5885
~1993!; M. A. Porras, Ph.D. thesis, Universidad Compluten
~unpublished!.
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