PHYSICAL REVIEW A VOLUME 59, NUMBER 3 MARCH 1999
Barrier resonances in Bose-Einstein condensation
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We study the dynamics of the mean field model of a Bose-Einstein condensed atom cloud in a parametrically
forced trap by using analytical and numerical techniques. The dynamics is related to a classical Mathieu
oscillator in a singular potential. It is found that there are wide resonances which can strongly affect the
dynamics even when dissipation is present. Different geometries of the forcing are discussed as well as the
implications of our resultd.S1050-29479)04703-4

PACS numbe(s): 03.75.Fi, 42.25.Bs, 45.05x

I. INTRODUCTION oretical work extends the applicability of the GPE to the

The recent experimental realization of Bose-Einstein con-h'gh'denSIty limit[5,6]. On the other hand, linearized stabil-

densation(BEC) in ultracold atomic gasd4,2] has triggered ity.an.alysis based on .p(-arturbative exp_ans.ions ‘N.‘*fems

the theoretical exploration of the properties of Bose gase§9 |nd|c.ate thgt the validity of t_he equatlo!q is restricted to th.e

Specifically there has been great interest in the developme&@Ses in which no exponential separation of nearby orbits
of applications which make use of the properties of this new?PPears as it happens, for example, in chaotic pulsations of
state of matter. Perhaps the recent development of the s&1€ atom cloud?7,8].

called atom lasef3] is the best example of the interest of A 10t of work has concentrated on the analysis of the
these applications. resonance structure when a periodic time-dependent pertur-

The current model used to describe a system with Jation is applied to the magnetic field, mainly because of the

fixed mean numbeN of weakly interacting bosons, trapped availability of experimental datd9]. The theoretical ad-
. . . S . . vances include both semiclassical analysis of @g.in the
in a parabolic potentiaM(r), is the following nonlinear

e . S : hydrodynamic limit[10], variational method$11,12, and
Schralinger equatiorfNLSE) [which in this context is called . . .
the Gross-Pitaevskii equatidGPE]: numerical simulation§13,14]. Recent research based on Eq.

(1) also includes the study of the different problems using
P 2 tools from nonlinear sciendd5—-17 and the analysis of its
oY h + . ,
ih—=—=—V2y+V(r,t)y+ Ul ¥|?y, (1)  multicomponent extensiorf48,19.
at 2m The variational approach provides us with very simple
L . . ) equations for the evolution of the widths of the Gaussian
which is valid when the particle density and tzemperature obtom cloud together with a simple picture of the movement
the condensate are small enough. Hege=4m%°a/m char- ot the condensatfl2]. However, those equations were ini-
acterizes the interaction and is defined in terms of thgjg)y derived for the static field case and only applied to the
ground-state scattering lengéh The normalization foRy is  gnalysis of the normal modes and frequencies of the conden-
N=[||> d*r, and the trapping potential is given by sate motion in the weak perturbation regime. Similar equa-
tions are found using various scaling argumd2®,21,7 or
moment theon|18].
Evolution of the condensate in a time-dependent trap has
been addressed in many different ways. There are papers
The X, ,(7=x,y,2) are, as usual, functions that describe where the GPE is solved numerically, either by watching the
the anisotropies of the trd@]. In real experiments with sta- time evolution of a suitable initial conditiofl3,14 or by
tionary systems they are constants and the geometry of thgsing a linear expansion in normal modéd]. And there are
trap imposes usually the condition=A,=1. A\,=v,/vis  other workg20,7] where the authors derive a set of ordinary
the quotient between the frequency along thdirection»,  differential equations using scaling arguments plus the
and the radial one, =v. Thomas-Fermi approximation. Among all the papers that
At this point we want to emphasize here that our analysidreat time-dependent potentials, the one which is closer to
is not restricted to the stationary case. Instead it focuses onhat we present here [§]. In that work the authors study
situations in which\ , are periodic sinusoidal functions of the excitations of condensed and noncondensed clouds under
the time. To be more precise, we will adopt the notation  a periodic parametric perturbation and find that the conden-
sate is depleted and that chaotic evolution occurs. We will
Ni(t)=Njd1+e€cogwit)] (3 comment more on this in Sec. VII.
It is our intention in this paper to explore the behavior of
with i=x,y,z. the condensate under periodic perturbations of the trap
In its original derivation, Eq.(1) was supposed to be strength using analytical and numerical tools. Analytical
strictly valid in theT=0 and low-density limits. Recent the- techniques include exact results and a variational analysis

V(r,t)= %mvz[)\i(t)x2+ NOY2ENIDZZ (2
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extended to situations with a time-dependent potential. Com- For instance, from the invariance of E¢) under global
parison of the results of both methods will allow us to statephase transformations, one can assure the conservation of the
rigorously and derive a simple model for the resonant behawaorm of the wave function
ior and to qualitatively predict the evolution of the system
under other conditionfless symmetry, dissipation regimes, N= 243
noncondensed corrections, et®ther conclusions as well as = | lol*d’r,
experimental implications will be found in the course of the
analysis. which in this context is interpreted as the number of particles

Our plan is as follows. In Sec. Il we obtain a set of exactin the Bose condensed state. We can also define another
equations for the evolution of the center of mass of the congquantity,
densate. The result is found to be three uncoupled Mathieu

. . L. 2 4

equations. We show that a complete perturbative analysis is E:j [ﬁ—|V¢|2+V( F) gt o|¢| }
possible and obtain the resonance structure for the center of
mass. In Sec. Il we introduce the time-dependent variational
model for the time-dependent GP equation. In Sec. IV wehat can be thought of as the energy, and whose time evolu-
solve the GPE numerically in the radially symmetric casetion is simply
We show the resonance structure for the condensate in all
regimes — small and large amplitude oscillations. Next we dE dav
turn to the variational equations for the widths and show that at f dt
numerical simulations agree qualitatively with the preceding
picture. Finally, we use those ordinary differential equationsthus, when the potential is not time dependent, the energy is
to predict the locations of the resonances in a simple modeinother conserved quantity. And when the potential has the
that connects the linear and the nonlinear cases using toofgrm (2), the evolution of energy can be easily connected to
from Sec. II. This is the main result of our paper. In Sec. Vthat of the mean square radii of the cloud
we consider the possibility of extending the analysis to the
multidimensional case and study the effect of the coupling de 1 )
between the different variational parameters. The resulting dar 5 mv dt —(7%). C)
predictions are found to agree with a posterior set of 3D s
simulations of the GPE equation. In Sec. VI we comment o
the effect of losses. We show that these resonances are o
persistent nature and show how evolution may be substan-
tially altered due to the effect of losses. Finally in Sec. VII
we discuss the experimental implications of our results an

(6)

)

yl*dr. ®

guations(6) and (9) are also useful to test the stability of
numerical scheme we will use to simulate EL.

& Newton's equations for the center of mass in a general GPE

summarize our conclusions. Let us consider the following function:
Note that, unless otherwise stated, all magnitudes are in ) L
adimensional units. To adimensionalize these figures, we P(r)=¢(r—ry), (10
have employed the change of variables that is introduced in
Sec. Il whereg is a solution of Eq(1). Substituting it in Eq(4) and

calculating the averaged Lagrangian, we obtain

II. EXACT ANALYTICAL RESULTS R
= f Edsr:Lfree{d’]'l'Lcn{stro]- (11)

A. Variational form of the GP equation

It can be proved that every solution of @) is a station- The Lagrangian has been split into two parts: one, the

ary point of an action corresponding, up to a divergence, tesaa” contribution Lee, Which depends only o,
the Lagrangian density

£=%(w‘w _Ww)ﬁ_wpw(r|¢|Z+UO|¢|4 Lired ¢1= f 5 ($0d* = d* ad)dr
4

+f—ﬁ2 |V¢|2d3r+J—U0|¢|4d3r (12)
2m 2 '
where the asterisk denotes complex conjugation. That is, in-

stead of working with the nonlinear Schilinger equation and another ond,,,, that includes both the potential and
(NLSE) we can treat the action, the displacement,,

s:f £d3rdt=fth(t)dt, 5) Lcn{¢,Fo]=J [V(F+To)| ¢~ 1+ V rohd®r.
(13

and study its invariance properties and extrema, which are in If we impose that the action be stationary for sorgét),
turn solutions of Eq(1). i.e., if we use Lagrange’s equatiof7), we get
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parametrically forced oscillators and where one can obtain a
lot of information by analytical mear[22-25.
First, Floquet's theory for linear ODE with periodic time-

Here the brackets denote, as usual, the mean value of &¢Pendent coefficien{®23] shows that Eq(20) has an infi-

operator over the unperturbed wave functiog,{A)
=[ ¢* (NAH(r)dr.

As a final step let us use thdht is a solution of the GPE.
Then Eq.(14) must be satisfied at least fog=0,

d . .
&(—th)—— (9_I'|V(r) . (15)

nite set of instability regions in the parameter space. The
limits of these zones can be found and have the shape
of wedges that start on the points o, €min)
=(2,0),(1,0),(2/3,0), . ., andthey widen as is increased
up from zero. Inside this region at least one branch oscillates
with an exponentially increasing amplitude.

Either with an asymptotic method or by making use of the
singular perturbation theory, we can also locate those reso-
nances and study the evolution of the system around them.

It is now easy to prove the relation between the meanror a perturbation frequency close enough to the first reso-
value of the moment operator2V, and the speed of the pance, that is, fofw—2|=0(1), anasymptotic methofi22]

center of mass. We start from

d - N *(9 Jd N 3
G0 [ o 2orone|or a9

yields up to first order

2
o= \/—6 - &,
4w?

(219

Next we replace the time derivatives with spatial ones using

Eg. (1) and its complex conjugate,
d *_11* *_hzvz _ﬁzvz * | g3
qi\n=m | 1| ¢" 5 Vié—d5 Ve |dT,
(17)

and finally integrate this expression to obtain

%{F}=(—iﬁv>. (18)

Equations(15) and (18) are the quantum equivalent of

Newton’s second law and are exact for functiaghshat sat-

r=ce’ cog wt/2+ 6y). (21b

Here we see that for some valuesd®énd e the exponentr

is a positive real number and the amplitude of the oscilla-
tions grows unlimitedly. Also, the strength of the resonance
is maximum for a value of

€
Sma=— 1+ \/1— Z=—62+0(e4).

A second-order Taylor expansion in Eg1) lays the follow-

(22

isfy the GPE, in fact these equations coincide with the ONefg limits:

appearing in the linear Schdimger equation.

C. The condensate in a harmonic trap.
Mathieu equations for the center of mass

In our setupV(F) is a harmonic potential with trap

strengths of the form of Eq3). Thus, Egs(15) become a set
of three decoupled ordinary differential equatid@DE's),

d? 1 X
E<X>: - gmwz?\x(tﬂx)y (199
d? 1 )
@(WI - Emwz?\x(t)W), (19b)
d? 1 )
@<Z>: - Emwz)\x(t)(z>. (190

(23

The treatment of other resonances is more difficult as they
are caused by higher-order terms—at least of second order in
the w=1 case. In practice this means that they have a
smaller region of influence and that they are not so strong.

One has to choose large valueseofinitial conditions Q(,i()
not too close to the equilibrium point, and an excellent nu-
merical integration method, in order to find real instabilities.
However, if one concentrates not just on looking for expo-
nential divergences but on efficient pumping, it will be easily
observed that on top of these subharmonics there are peaks
of the energy gain sped&ee Fig. 4b)].

Finally, we wish to point out that these resonances are of
a peculiarly persistent nature: as we will show in Sec. VI,
they resist even the presence of dissipation. This has a seri-

After a change of scale, all of the preceding equations areus and inmediate consequence which is that feeding the

equivalent to a model one that we will write as

X+[1+ ecoq wt)]x=0. (20)

condensate in a resonant regime can result in a large ampli-
tude oscillation of the center of mass. On the other hand, as
we will outline later in Sec. VI, a measure of this effect can

give us some insight into the losses effects, as well as any

This equation is known as Mathieu’s equation. It is a welladditional terms that could be added to Eh.so as to better
known problem which appears frequently in the study ofmodel the condensate.
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Ill. VARIATIONAL EQUATIONS FOR THE TIME- dN
DEPENDENT GP EQUATION WITH A PERIODIC EZO; (28)
PARAMETRIC PERTURBATION
Although the center of mass of the wave packet satisfie’® movement of the center of mass,
very simple equations, it does not happen the same to other . ) o
parameters such as the width. Only in the two-dimensional 7o+ MYoN (1) 70=0; (29
case is it possible to apply moment techniques and find ang; .
lytically its time evolution[26,27], but in the fully three- Fhe evolution of slope and curvature,
dimensional problem no exact results have been derived yet mw
using the moment technique. 377:_’7, (309
To simplify the problem, we restrict the shape of the func- 2hw,
tion ¢ to a convenient family of trial functions and study the
time evolution of the parameters that define that family. A _m. 2 . 30b
natural choice, which corresponds to the exact solution in the =g 0 Bono; (30
linear limit (Ug=0) and provided quite good results in our i ) .
previous workg 11,17, is a three-dimensional Gaussian-like @nd finally the evolution of the widths,
function with sixteen free parameters, ’
L, hT 1 Ug N
—[ 57— 10]? Wy )\X(t)wx_ﬁ v?+2\/§m 7Pwwyw,’
P(X,y,z,t)=A H exp ———— — tina,+ti 7]2,8,7 . X Y (319
7=X.y,Z 2w,
(24 22 A1 U N
wy+ v Wy=— — ,
For a matter of convenience and ease of interpretation we Y Y m2 wy 2\2m 773’2\NXW§WZ
will make a change here of parameters, frérand A* to N (31b
(the norm of the wave functiorand ¢ (its global phase
VN0 h? 1 . Yo N
W,+ vAS(DW,=— — .
A= Leiqﬁ. (25) m? w3 2y2m 73, w,w?
AN W W, (319

The rest of the parameters ang, (width), «,, (slope, 8,
(square root of the curvature radiuand 7, (center of the
cloud).

This trial function must now be placed in E@) to obtain
an averaged Lagrangian per particle,

L 1+ . 2
-z 3
NN Ld h¢+2ﬂ

W

7 2
—+

> T 70

o2k 1 L,
X ﬁﬂn'f‘?ﬁ”"r‘zmv )\W(t)

N
ﬁa,]-i-EZa,?ﬁ,]]

Uo N

B — 26
4.2 AN W W, 28

As one can see, the introduction of a time-dependent poten-
tial does not affect the form of the equations, which remain
the same as those ft2].

Let us introduce the constanBs= \2/mNa/a, (strength
of the atom-atom interactiorand ag= V%/(mv) (harmonic
potential length scajeas well as a set of rescaled variables
for time, 7=»t, and the widthsw,=agv,, (7=X,Y,2).
This leads us to

. 2 1
Ux+)\x(t)vx:_+

: (323
vy vivy,
. ) 1 P
vy+)\y(t)vy=—3+ I (32b
vy VO,
. 5 1
UZ+)\Z(t)UZ=—3+ 7 (320

Uy UyUyU;

This set of rescaled variables and units is the one that we will
use throughout the paper, unless otherwise stated.

The evolution of the parameters is ruled by the corre- IV. ANALYSIS OF THE RADIALLY SYMMETRIC CASE

sponding set of Lagrange equations

aL

df o) o

which give us equations for the conservation of the norm,

A. The equations

In this section we will analyze the case in which the trap
has the same strength on all directions, that is,

V(X,y,2)= %mvz)\z(t)(x2+y2+zz) (33
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dv
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v 10 Unstable

w
FIG. 1. Radially symmetric condensate with=9.2 as de- 81
scribed by the variational equations. Phase space picture for differ-

ent small to large amplitude oscillations.
g |

and the solutions are supposed to be radially symmetric. This 4
high degree of symmetry simplifies the equations consider- 2.
ably. First, the variational model for the widths of the con- LI
densate(319 reduces to a single ODE for the radial width 0 T T T T
v(t) 0 1 2 3 4 5 6 7 8 9 10
t
. ) 1
v=—A(Dv+ ; + F' (34 FIG. 2. Radially symmetric condensate with=9.2 and initial

conditionv=1.6, subject to a periodic perturbation. Evolution of
the width in the variational moddgdashed linesand in the GPE
(solid line) when the perturbation i®) (e=0.15, w=4.00) andb)
u(r) (e=0.2, ®=4.00). (c) Instability region for the variational model
zp(r,t)=AT, (35 in the parameter space around the main resonance.

Second, the following change of function:

servative schemfgB0]—a finite differences scheme that con-

serves a discretized version of the energy and is uncondition-
u(r)y—0, r—o, (36a ally stable. All of them gave the same accurate results about

the frequencies and amplitude of the oscillations, the regions

with the constraints

o0 of divergence, etc.
fo u(r)dr=1, (36b) To solve Eq.(37) we have utilized a modification of a
second-order accurate finite difference scheme developed in
|A|2= 47N (360) [31]. This new scheme is time reversible, conserves the
' norm, and has a discrete analog for E8). which provides
transforms Eq(1) into the one-dimensional PDE, enhanced stability32]. On the other hand, even using the
best methods, we face another important difficulty, namely
_ 52 ) 1 UoN |ul? the finite size of either the spatial griéh finite differences
ifou=—5—du+ Emvz)\z(t)r2+4w? —(u schemeyor the momentum spad spectral or pseudospec-
r tral methodg This size effect becomes particularly impor-
(3 tant in the case of parametrical perturbations and imposes a

severe limit on the time for which simulations may be
trusted.

Using all this computational machinery we have achieved
several important results. First we have checked our pro-
grams with low amplitude oscillations. In the PDE we im-

The numerical solution of Eq934) and (37) is not a posed a Gaussian initial condition of widtl® and used this
trivial job. We can see without much effort that both equa-same value as an initial condition for E@4). By this pro-
tions are stiff 28] when the width of the cloud becomes very cedure we obtained the linearized excitation frequencies of
small, due to the presence of strong singular potentials. Thushe condensate, concluding that there is a significant coinci-
we need numerical methods that account for the nonlinearidence of both models as was shown[i2]. In the large
ties and are stable enough to be trusted when close to @mplitude simulations we found a surprising result which is
resonance. that the variational model still follows the evolution of the

To solve Eq.(34) we have used an adaptive step sizePDE with 90% accuracy even in situations in which the con-
Runge-Kutta-Fehlberg method, a Dormand-Prince [g28t, densate remains no longer Gaussian but gains an important
the ODE Suite ofvAaTLAB [29], and finally Vazquez’'s con- contribution from the first and second modes. Another con-

This is the equation that we have actually solved numeri
cally.

B. Numerical study of the equations
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firmed fact is that the width of the condensate develops fast 14
tough bounces against the “origirfFig. 1(a) and Xb)], with b (a)
its excitation frequency deviating from the linearized predic- ]
tions of[12] and approaching those of the harmonic trap. 10/
We have also simulated the system with a periodic time-

dependent perturbation of the form e 8

M2(t)=1+ e cog wt). (38) 6

4-"/’_\

Using the variational equation E(B4), we have scanned the 2 === e
parameter spaceye). We have found one region where the 1.94 202 210 218 2.9
radial width diverges exponentialljFig. 2(a)] and causes 3.8

(b)

most numerical methods to fail after a finite time, and two
more where the width grows almost exponentially up to a

point where the simulation cannot account for this growth. 3.2
All of these zones have the form of wedges, with a peak at
(@min,€min), and a growing width ag is increased. The €
most important resonance stands op,;,=2.04 [see Fig. 2 6

2(b)]. The other ones are weaker and rest an,,
=1.02,0.68. We have studied a wide range of setups and
found that these frequencies change no more than 0.5% de- 20 .
pending on the initial conditions and the nonlinearity. On the ) 094 102 110 118 196
other hand, the lowest perturbation amplitude for which the ' ) ) ' )
resonance existg,,, does exhibit a strong dependence on W
the initial conditions. Indeed, around the weaker resonances, r|G, 3. Radially symmetric condensate wir=9.2. Plot of the
instability is never reached for points close to the minimummaximum amplitude of oscillations for the GPE after 40 time units.
of the potential. However, as we already pointed out in Secthe initial condition corresponds to a Gaussian of width 1.6.
I, this is probably a numerical effect. Each line corresponds to a different valueepffrom 0.05 to 0.3 in

In order to study the location of the resonances we haveteps of 0.05. The frequency range covésthe main resonance
also made some plots of the efficiency of the energy absorpand (b) the second important one.

tion process against the perturbation frequency for differen ) )
values of the perturbation amplitude for the variational sys—E34) and(37), and we have seen that the growth is qualita-

tem and the partial differential equatidfigs. 3a), 3(b), tively similar though there is a tendency in the exact model
4(a), 4b)]. The way we have measured “efficiency” is by to exhibit slightly larger amplitude motion. These discrepan-

letting the system evolve for a fixed time and then computing'€S &re originated by high modes which are not present in

the maximum value of the mean square radius of the clou he variational treatment. In fact, even though an important
art of the cloud remains close to the origin, it is observed

For the sake of simplicity and to approach the experimental . ; 0
setups, we have used an equilibrium state of the static GPfat for long times a long tail appears which is hard to ap-
as an initial condition. preciate but is responsible for the growth of the mean square
In a rather complete inspection of the parameter spac¥idth (@nd the presence of higher order modes
using the efficiency plots, we have found that, though the ) _ _ ) ) .
resonance regions cannot be precisely delimited because & Analysis of the Mathieu equation with a singular potential
the dependence on the initial data, they do exist and behave In this subsection we will develop a simplified model that
much like the variational model predicted. As we see in Figsexplains why resonances appear in the perturbed GPE equa-
4 and 3, there are two important features in the response afon. This model makes use of the variational equations for
the condensate. The main one is the width of the resonanceise cloud width butloes not care for the actual shape of the
and the dependence of that width on the strength of the pexariational ansatz The reason for this is that both the ap-
turbation. The second important feature is the change of thproximate model and the exact one agree for short times, the
frequency for which the perturbation is most efficient. Thisresponse of the latter being always stronger.
peak is centered on the frequency of the linearized model Let us limit ourselves to Eq34). In the preceding sub-
only for very small perturbation amplitudes, and switches tosection we said that this system is very stiff and that the
the trap natural frequencies very quickly as the amplitude isrigin acts as an elastic wall. In view of this, it is intuitively
made stronger — of about 10% or so. For even strongeappealing to replace the singular but differentiable potential
amplitudes the optimal frequency decreases slowly. 13+ P/v* with a discontinuous bounce condition on the
Another consequence of this work is that the response dfrigin, i.e., an impact oscillator. Numerical simulations con-
the cloud is stronger in the PDE than in the variational sim-firm that this approximation is good for large amplitude os-
plification. For instance, it is possible to fifidee Fig. 28]  cillations. Also, the connection between soft singular poten-
perturbation amplitudes that do not cause a significantials and impact oscillators has been widely studied and these
growth in Eq.(34) but make the cloud width increase quite kinds of models have found ample application in real-life
linearly in the PDE. We have also studied the case in whiclsituations in the fields of physics and engineeri(@ge
an exponential growth of the width is present in both Eqs|[24,25 for many references

§
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11 less centered on Mathieu's frequencies=2,1,1/3... .

(a) This prediction is indeed confirmed by the numerical simu-

9 lations: the main resonance is capable of causing an expo-
nential divergence, while the other ones are harder to track

€ 7 down but do appear in plots of pumping “efficiency.”

5 Another important but minor result of this equivalence is
that these resonance regions must become wider and move
on to smaller frequencies as the perturbation amplitude is

*‘_’v__’_,/,/\,,_\ increased. This result is also obtained in the numerical simu-

1 . . : : : : lations. Indeed, from the graphs we can estimate how fast the
optimal frequency decreasesagrows, and we will see that

1.7 18 19 20 21 22 23 24 .
the order of magnitude corresponds to that of &2).

2.5 (b) Summing up, what we have seen here is that for low
amplitude oscillations the condensate moves in an effective
23 potential that is parabolic. Thus, the frequency that excites

£ the condensate most efficiently in a parametric way is the
2.1 one that results from the linearization of E@4). On the
other hand, when we start to consider large amplitude oscil-
1.9 M/—\____’ lations, we find that the harmonic trap gains importance over
w___/\_i_

the details of the well. It is in this situation that the instability
17 arises, and it happens for perturbations that oscillate accord-
) '10 118 ) I26 ing to multiples pf the frequency qf thg trap.
) ’ ) Even more, higher modes are little influenced by the non-
W linearity, just because they are more spread and the value of
FIG. 4. Radially symmetric condensate wih=9.2. Plot of the | #(r,t)|? is smaller. As a consequence, the energies of these
maximum amplitude of oscillations for the variational model after modes come even closer to those of the linear harmonic os-
40 time units. Initial conditions are=1.6, v =0. Each line corre-  Cillator, resulting in the fact that the response of the GPE is
sponds to a different value @ from 0.05 to 0.3 in steps of 0.05. Stronger than what the variational model, limited to a Gauss-
The frequency range covefs) the main resonance arith) the  ian shape, predicts.
second important one.

0.94 1.02

V. ANALYSIS OF THE NONSYMMETRIC CASE
Since the variational model is a lossless one, our bound-
ary condition must be elastic. We replace E8f@) with the
following one:

After finishing the study of the radially symmetric prob-
lem, it seems a natural step to proceed with the nhonsymmet-
ric one. However, this step is not simple for several reasons,

v+ A2(t)v=0, the main one being that the simulation of a full three-

dimensional GPE is a very expensive work in computational

; N ; N0+ _ terms. Thus, it would be unwise to directly attack the full

t“:?,(v’v) © ’VC)@JLT(U’U) (07,=Vo), (39 problem without gaining some insight into what is to be
¢ ¢ expected from the simulations by cheaper means.

where t. denotes any isolated instance when the system In our case the cheapest available tool is the variational
bounce; against the=0 singularity. model. We have seen that it describes rather well the behav-

Let us show that this equation is in turn equivalent to anior of a radially symmetric condensate. And, as we pointed

elastic oscillatomwithoutbarrier conditions. We introduce the °OUt before, there are exact analytical studj@é,.Zﬂ Where
change of variables the moment method reduces exactly ttveo-dimensional

GPE to a set of ODE which are similar to the ones we have.
v=|ul, (40

. ) o A. Predictions of the variational model
whereu is an unrestricted real number and satisfies the fol-

lowing one-dimensional harmonic oscillator equation: When we remove the radial symmetry in the variational
equations, we are left with two to three coordinates, and the
u+A2(tyu=0. (41  perturbation can bear many different forms. However, trying

to follow the experimental setu83], we should once more

It is now easy to prove that every solution of H41) pro- take a sinusoidal time dependence for eviryt) coeffi-
vides a solution of Eq(39), and vice versa, from every so- cient, as in Eq(3). This choice accounts both for time=0
lution of Eq.(39) it is possible to construct a solution of Eq. mode (=¢€,, €,=0) and them=2 perturbations &
(41), unigue up to a sign. =—¢,, €,=0) from the JILA experimen33]. In the latter

So, what do we have now? We have proved that for largease the potential is a parabolic one, with fixed frequencies
amplitude motion Eq(34) behaves as Mathieu’s equation. on a rotating frame. However, for our trial functipq. (1)]
This implies that in the regime of medium to large amplitudeit behaves just as a potential of the form of E2).
oscillations, or in a situation of large amplitude perturba- Substituting our effective perturbation frequencies into
tions, Eq.(34) will have instability regions that are more or Eg. (323, we get a set of three coupled Mathieu equations
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G rotated while maintaining its shape. It can be easily proved
P that if we chooseny family of trial functions with enough

UZW\/V\JWWWW degrees of freedom for a general rotation, the variational
v ,
r

solution will always stick to the potential and rotate at the
same speed. This also implies that the trial funcii24) is
10} (b) not suitable for describing the condensate when this kind of
perturbation is applied.

B. Numerical study of the three-dimensional GPE

To perform the simulation of the full GPE, we have used

10 20 30 40 50 60 70 R0 a Fourier pseudospectral method, using typically a grid of
t 108® collocation points and integrating in time with a

second-order, symmetrized split step methdd,35.

Our numerical study is based on &@Y(At)?) scheme
which behaves extremely well for long time runs. However,
as in the radial PDE, no matter how accurate the scheme is,
there is a limit in the time during which simulations can be
with a potential that is singular on the,=0, v,=0, and trusted and this limit is imposed by the growth rate of the

v,=0 planes. The singularities are at least as strongus 1/ condensate width and the size of the grid. This limit is espe-

and the numerical simulations again confirm that they act a§/ally important for them=0 perturbation, where the con-
ensate develops a large tail in the unperturbed direction,

elastic walls, so we now proceed with a change of variable D . : o
formally equivalent to that of Eq40): and this tail breaks the simulation after a certain time. The
more asymmetric the trap is, the sooner this effect comes

FIG. 5. Evolution of a cylindrically symmetric condensate
(variational modelP=9.2) under a sinusoidal perturbatiom,)
=(2.04,0.1) of only the radial strength of the trap. Bd#) the
radialv, and(b) the axialv, widths are plotted.

w,=|u,l, (429  out. In our simulations the grid was a box of £08qually
spaced points whose sides measured from 20 to 40 length
u,=—\2(tu,, (42p)  units, depending on the symmetry and intensity of the trap.
7 K This allowed us to track the condensate for about 12 periods
for n=x,y,z. in truly resonant setups, and for many more in nonresonant

Now the situation is a bit more complex. The first new ones.
feature is the existence of several sets of instability regions. We have applied the algorithm to many different prob-
Due to having threea priori different constants\,, the lems. First, we checked our programs against stationary and
three oscillators in Eq424 are not equivalent and we may radially symmetric problems. Second, we introduced time-
get three sets of resonances in theg (w) space, each one dependent traps and reproduced the calculations of Sec. IV.
containing the instability regions that start on the frequencie$n both cases we got the expected results.

The third set of experiments consisted in a resonant time-
dependent radially symmetric trap applied to several slightly
asymmetric Gaussian wave packets. The initial asymmetry
was slight enough to treat it as a weak perturbation and we
Numerical simulations of the variational equations for thesaw that it departed little from the symmetric case, i.e., no
m=0 type excitation confirm this prediction with a relative modes with higher energy or angular moments break the
accuracy around 0.5% in the frequencies. The results showxponential growth.
again that, opposite to the pure Mathieu equation, these The fourth and probably most important group of simula-
“wedges” rest on a nonzero value of the perturbation am-tions consisted in the study of tha=0 perturbation from
plitude €, , - In Fig. 5 we see the evolution of the conden- the JILA[33] experiment. Here we confirmed the predictions
sate width with parameters close to the main resonance ref the preceding subsection, that is, we obtained at least one
gion. resonance region that the variational model predicts.

Another new feature is the possibility of coupling be- We also observed that the response of the condensate as
tween the widths of the condensate. This coupling is seemodeled by the GPE is stronger and exhibits a slightly more
both in them=0 andm=2 excitations setups. In the first intense growth rate than what the variational model predicts.
one, the perturbed width feeds the unperturbed one. Figure Bhis and other similar results from the radial c4Sec. 1\)
demonstrates that efficiency is not very high. In the-2 favor the theory of a cooperative staircase effect, where the
case two widths are associated with the same trap frequeigher modes contribute to the energy absorption process
cies and the perturbations are of equal magnitude and oppevithout interfering in the evolution of the width. Figures 6
site sense. The explanation is that both widths block eachnd 7 show just two examples of the kind of evolution that
other, eliminating the resonance and leaving just a boundellas been seen for this perturbation model on the resonant
“movement” of small amplitude. regions.

As a side note, we must say that the variational model The reason for this cooperative effect seems to lay in the
itself predicts the lack of resonances in the-2 setup. We  energy level structure of the GPE equation. We have studied
already pointed out that the JILA=2 perturbation corre- the evolution of the correlation of a condensate wave against
sponds to a situation in which the potential of the trap isits initial data. In all cases the initial data were a displaced

o
—2M_212/3.... (43)
Noy
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29 energy states are themselves sensitive to the same resonant
frequency and offer no resistance to the particle promotion
2.5 process. In the end, this is more or less what happens in the
variational equations, considered from the point of view of
2.1 classical mechanics.
However, it is not relevant for the existence of resonances
1.7 whether they cause a sustained growth or not. What is con-
(% firmed without any doubt is that the perturbations that are
1.3 most efficient in the variational model are also the most ef-
ficient in the full GPE.
0.9
0.5 VI. ANALYSIS OF THE EFFECT OF LOSSES
0 4 8 12 16 20 24 28 32 We now want to show the effect of a dissipative term in
t the variational equations. This term will be introduced in a

phenomenological way so as to model the damping of the
FIG. 6. Evolution of a condensate in a spherically symmetricoscillations of the condensate in regimes where the number
trap (P=9.2) subject to am=0 cylindrical perturbation &, ,¢;)  of noncondensed particles is small. We will choose a viscous
=(2.00,0.15). Both the radial width, (solid lineg and the axial  damping term that models well the behavior of the conden-
width v, (dashed lingare plotted. sate in the experimenf83]. This choice introduces a signifi-
cant loss of energy in the oscillations while preserving the
and deformed Gaussian cloud, while the environment correaumber of condensed particles. Using this term, we will see
sponded to a stationary trap. In the linear case it is easy tthat the resonance regions of the pure Mathieu equation per-
show that the spectrum of the correlation must reveal a sulsist.
set of the eigenvalues of the Hamiltonian, and indeed that is Let us see what Eq20) looks like once we add damping:
what we got. In a nonlinear context it is not clear what the _
frequencies of the correlation mean—they may or may not X+[1+ e coq wt)]x+ yx=0. (44
be eigenvalues of the GPE—but at least we know that they
must rule the energy absorption process somehow. What né simple change of variablegt) = p(t)e~ ”* makes this new
merical experiments show is that for an extensive family ofterm disappear, transforming it back to a Mathieu equation
initial conditions these generalized ‘“spectra” can be ap-

proximated by the formul&,= wn+ E,, whereE, depends p+[1—¥*+ecogwt)]p=0. (45)
on the nonlinearity and the level spacing is a regular, har-
monic one. With the introduction of the damping, we are shifting the

This picture of equally spaced levels is intuitively appeal-resonances to lower values, given by
ing to explain the existence of such strong resonances. On
one side we have the fact that, in any other system, a con-
tinuous parametric perturbation would become bounded as W=2’1v2/3 R (46)
the higher state becomes populated. This is probably what
one would first think when faCing this SyStem. On the Otherwhere VZ(’}/)Z 1— ’}/2 is the new effective frequency for the

side we see that due to being equally spaced these highgép' We can approximately solve E@5) around the first
resonance, obtaining

2.7

1 ot
23 | x(t)=ce "~ M cos<?+00 , (47)
1.9 1 where\ is given by Eq.(213.

v ] This shows that the resonance regions in the parameter
L5 1 space are constrained to values @,€) for which the
114 strength of the resonanc, is larger than the strength of the

: dissipative term. The new regions have a larger, nonzero,
07 4t value OfE_minv and are typically thinner, but do not disappear
. unlessy is very large.
0.3 - ' I S This effect is reproduced in the variational model when
0 4 8 12 16 20 24 28 32 36 40 we introduce similar viscous damping terms. For instance,
¢ taking the data from the JILA experimef83], we can esti-

mate a condensate lifetime of about 110 ms and a valug for
FIG. 7. Evolution of a condensate in a cylindrically symmetric Of 0.15 in natural units of the condensate. Such damping
trap (P=9.2, \,=1, \,=2) subject to anm=0 perturbation Makes theeny;, V§|Ue rise from 0.09 to 0.18 for thE=9.2
(w, ,€;)=(2.00,0.15). Both the radial width, (solid line) and the ~ case. Thus, the instability should not be appreciated unless
axial v, width (dashed lingare plotted. the perturbation amplitude exceeds 20%.
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1.3 not the ones resulting from the linearization of the variational

0.9] equations. The model also predicts that the response of the

) condensate to an external perturbation is ruled by the har-

d’U 051 monic trap frequencies. In the case of a sinusoidal parametric
% o1l perturbation it accurately predicts the existence of a family

of resonances on multiples of the trap natural frequencies.
In the end, what we get from this work is a precise picture
of the resonances for a wide family of equations that include
Eg. (1) and the harmonic oscillator. In this description for the
radially symmetric case we have one base frequency that is
12 13 114 1"5 1i6 1:7 1i8 119 2i0 2i1 29 essentially the same for both equatidlisear and nonlinear
v and which correspond; to thg energy separation betv_veen t_he
ground state and the first excited state of the harmonic oscil-
FIG. 8. Phase space picture for the width of a radially symmetlator up to high precision. The invariance of this base fre-
ric condensate subject to damping plus a periodic perturbation. Thguency has been checked for a nonlinearity constant going
nonlinearity isP=9.2, the dampingy=0.15. The perturbation has from P=9.2—the JILA[33] experiment—to 20 times this
in all casese=0.1, while the frequencies are, from the outer cycle value. It differs from the predictions $88], where formulas
to the inner onew=2.15,2.4,3.0,4.0. regarding the®P—0 andP—o are derived. Also, there is a
whole set of subharmonics of this frequency, all of which are
An interesting effect of damping is that the evolution of a capable of exciting the cloud quite efficiently. At least three
continuously perturbed condensate outside the instability resf them have been found, both with significant responses.
gions becomes more ordered than in the undamped modenese subharmonics are not predicted3s].
since the motion is constrained to a limit cyslgnchronized We have also found that for this kind of parametric drive
to the frequency of the parametric perturbatiaand with a  the resonances are wide. The width grows with the strength
size that depends only on the perturbation parametersf the interaction and decreases with the effect of dissipation.
(w,€). In Fig. 8 we show the different limit cycles that ap- Both facts can be checked in the experiments by forcing the
pear under periodic perturbations. The largest one is alwaysystem for a longer time than what it is currently done.
the one with its frequency on top of the peak of the reso- These predictions are exact in the linear lindy=0, and
nance as shown by Fig. 3 and the size of the limit cyclehave been confirmed with simulations coming both from the
decreases as the frequency is detuned from this value.  exact variational model and the GPE. The discretization of
Finally we wish to point out that the appearance of a limitthe GPE has also allowed us to scan the parameters space,
cycle opens the door to a wide family of phenomena, fromstudying the efficiency of the perturbation process. In this
chaotic motion to bifurcation theofy86,37]. This limit cycle  study we have only found peaks centered on Mathieu’s fre-
would exist under a great variety of dissipative terms, and igjuencies.
not exclusive of linear damping. Also, the dependence of the For the general case with more than one degree of free-
limit cycle on the damping constant can be useful from thedom (axial and nonsymmetric cagese obtain a set of two
experimental viewpoint to separate the condensed and note three decoupled pure Mathieu equations. We have shown
condensed clouds, as will be pointed out in the final sectionthat, due to having more than one frequency, the predicted
Mathieu resonances do exist in a larger number. On the other
VIl. CONCLUSION AND DISCUSSION hgnd, we have also seen Fhat some qf these resonances may
disappear due to the locking of “equivalent” variables, an
In this work we have analyzed the resonant dynamics o&ffect that our decoupled equations do not account for.
the parametrically forced time-dependent GPE using exact This resonance scheme for the nonsymmetric case has
analytical techniques, approximate time-dependent variabeen confirmed with accurate simulations of the full GPE for
tional techniques, and numerical simulations. All the resultshe m=0 perturbation. An analysis of the correlation of a
point to the existence of various resonant behaviors assocstate against its initial data shows that both the linear and the
ated with the same parameter regions concerning the motiamonlinear problems exhibit a spectral structure which is
of the center of mass and the width oscillations of the wavdikely to present such behavior.
packet. The role played by the nonlinearity is to provide a Finally, damping has been shown to limit the effect of the
strong repulsive term at the origin which acts as a barrierparametric perturbation. Once more we have proved that
which depending on the dimensionality and the symmetry obnly frequencies close to the Mathieu resonance regions do
the external forcing could be stronger than the repulsive ternexcite the condensate as a whole in an efficient way, causing
related to the linear dispersidkinetic energy term the appearance of a stable limit cycle. All other frequencies
We have developed a simplified version of the variationalare inefficient in the sense that the system stxtsemely
equations for the spherically symmetric condensate under pelose to the equilibrium configuration, which acts as a focus.
riodic sinusoidal change of the trapping potential. This A main conclusion of this work is that for this set of
model is based on an impact oscillator, i.e., a harmonic osresonances to exist, one only needs a singularity that pre-
cillator with an elastic barrier condition which allows us to vents collapse. The variational method showed that the ki-
find explicit solutions. When applied to the parametrically netic terms in the evolution equations guaranteexd &in-
perturbed condensate, our model predicts that medium tgularity as far as we impose a repulsive interaction between
large oscillations approach the harmonic trap frequencieghe atoms in the cloud. This is the reason why we say that we

—0.34
-0.7

-1.1 T
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have a family of systems that behave much the same. Ashould be interpreted as a failure of the GPE to describe the
immediate result of this is that the response of the nonconeondensate. Thus we propasepleexperiments to perform
densed atoms under the parametrical perturbation will ba quantitative study of the regimes for which the GPE prop-
qualitatively similar to that of the condensed ones, with theerly describes the Bose-Einstein condensates in time-
only difference being that the former are subject to a moralependent traps.

intense dissipation. But as we already saw in Sec. VI, this Finally, we must mention that throughout this work we
dissipation can be enough to distinguish both kinds of fluidshave concentrated on regular motion regions in the param-
while the condensed part might suffer an exponential growtheter space. These regions can be “safely” reached in the
the uncondensed part might develop low amplitude boundedxperiments. There are many other cases where chaos ap-
oscillations. pears in the variational equations and complex behavior is

We have also demonstrated that these resonances show sgen in the numerical simulations of Ed). Although the
in the movement of the center of mass as well, causing angtudy of those disordered regions could be interesting from
initial displacement of the center of mass to be exponentiallthe nonlinear science point of view, they seem not to be of
amplified while the perturbation works. Opposite to ourinterest for Bose-Einstein condensation since the exponential
models for the widths, this is an exact prediction based solelgeparation of nearby orbits which is characteristic of chaotic
on the GPE, and it shows that the parametrical perturbatiobehavior has been shown to induce instabilities and take the
may also have a disturbing effect in the experiments. On thaystem out of the regime where it can be described using the
other hand, a measure of this effect can give us informatiomean field GP equatiofv,8].
about the intensity of dissipation and collision effects.

All of the preceding statements are based solely on the
GPE. In a few words, they include the existence of resonance
regions both for the widths and the center of mass, the shape This work has been supported in part by the Spanish Min-
and the location of those regions, and its intensity as a posstry of Education and Culture under Grants No. PB95-0389,
sible measure of damping. The failure of any predictionNo. PB96-0534, and No. AP97-08930807.
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