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Vortex stabilization in Bose-Einstein condensate of alkali-metal atom gas

Tomoya Isoshima* and Kazushige Machida
Department of Physics, Okayama University, Okayama 700-8530, Japan

~Received 15 July 1998!

A quantized vortex in Bose-Einstein condensation~BEC! of an alkali-metal atom gas is known to be
unstable intrinsically at zero temperature. We examine two stabilization mechanisms of a vortex theoretically.
~i! The finite temperature effect is shown to stabilize a vortex.~ii ! An additional pinning potential, which may
be produced by a focused laser beam at the vortex center, is also shown to stabilize it even at zero temperature.
The mean-field calculation for BEC confined by a harmonic potential is employed. The detailed properties of
a stable vortex are given, such as the spatial profiles of the condensate and noncondensate, the particle current
density around the core, the whole excitation spectrum, and their temperature dependence.
@S1050-2947~99!01503-6#

PACS number~s!: 03.75.Fi, 05.30.Jp, 67.40.Vs
ti

t
ida
d
ll

ti-
re
-
io
ph
so
u
C

f
e
x

ro
ov
s

u
em
ry

at
lo

ea

ap
b
ad

en-
r-
ere

ility
s-

ta-
the

tive

is-

ers
ce-
ed

in-
e
x

e it
ing

vide
ap-
le
the
ortex
ap-

be
he

at-
e of
o-
elf-
few
ts
I. INTRODUCTION

Many-body dilute Bose systems have been the focus
condensed-matter physics since the experimental realiza
of Bose-Einstein condensation~BEC! in alkali-metal atom
gases at ultralow temperatures@1–3#. There are many recen
theoretical and experimental works devoted to the eluc
tion of BEC @4,5#. Experimental works are mainly conducte
for dilute Bose systems, whose atom number is typica
;O(106) for 23Na and 87Rb. Gases are confined magne
cally in a harmonic trap. The BEC transition temperatu
are in a range ofO(mK). The experimental forefront is rap
idly extending; one can tune the particle-particle interact
constant by utilizing the so-called Feshbach resonance
nomena@6# or one can confine a system purely optically
that several atomic hyperfine substates are simultaneo
condensed, giving rise to an opportunity to explore BE
with internal degrees of freedom@7–9#. Several proposals o
experimental methods to realize a vortex state have b
made theoretically@5,10,11#. This paper concerns the vorte
states in a somewhat different way.

As for the earlier theoretical developments, the mic
scopic theoretical work on BEC started with Bogoliub
@12# long ago and has been followed by important progre
such as by Gross@13#, Pitaevskii@14#, Iordanskii@15#, Fetter
@16#, and Popov@17#. These mean-field theories are partic
larly suited for treating the present gaseous BEC syst
trapped optically or magnetically in a restricted geomet
Therefore, the current theoretical studies@18# mainly focus
on examining these mean-field theories to extract the sp
structures of the condensate and noncondensate and
lying collective modes. The agreement between these m
field theories and experiments is fairly good@5#.

Previously we have demonstrated that the Bogoliubov
proximation of the mean-field theory cannot sustain a sta
vortex @19#. This somewhat unexpected result, which h
been suggested by Doddet al. @20#, is now clearly explained
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physically by Rokhsar@21#, who shows that the vortex is
always unstable against the translational mode with zero
ergy. Thus the vortex core in a cylindrically symmetric ha
monic trap spirals out towards the outside of a system wh
the condensate density is low.

The main purpose of this paper is to examine the stab
of a quantized vortex, which is directly related to the que
tion of superfluidity of the present BEC systems. This ins
bility can be expressed numerically either by comparing
free energy of systems with and without a vortex~stability!
or by checking whether or not an eigenstate with a nega
eigenvalue exists in a system with vortices~metastability!.
The latter is far more serious than the former and is d
cussed in this paper as ‘‘stability.’’

In the present paper, which follows our previous pap
@19,22# based on the same formalism and numerical pro
dure, we show that the intrinsic instability of a quantiz
vortex can be remedied either by raising the temperatureT or
by introducing the pinning potential at the center of a cyl
drically symmetric rectilinear vortex line, which prevents th
vortex from spiraling out. The latter method for the vorte
stabilization has been pointed out by several authors@5#,
whose experimental feasibility seems to be quite high sinc
may be easy to realize a desired pinning potential by send
a focused laser beam to the vortex center. Here we pro
microscopic self-consistent calculations within the Popov
proximation ~PA!, yielding detailed properties of a stab
vortex, beyond Gross-Pitaevskii theory which treats only
condensate component. This enables us to discuss the v
at finite temperatures. A comparative study of various
proximations, including the PA, is presented in Ref.@19#.
The PA is a gapless approximation and is believed to
reliable at low temperatures. As for the improvement of t
Popov approximation, Hutchinsonet al. proposed a theory
@23#.

Various spatial structures of the quantized vortex in rot
ing BEC systems are investigated based on this schem
stabilization. This investigation is important since the micr
scopic understanding of the vortex based on the s
consistent picture has been lacking so far, except for a
attempts@24–26# for present BEC systems. Several poin
2203 ©1999 The American Physical Society
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2204 PRA 59TOMOYA ISOSHIMA AND KAZUSHIGE MACHIDA
are worth exploiting:~i! the spatial profiles of the condensa
and noncondensate,~ii ! the dispersion relation of the excita
tion spectrum of the system, and~iii ! the low-lying excita-
tions localized around a vortex core, which is known as
Kelvin mode@27#. These features may be directly observa
and should be compared with those in vortices in a sup
conductor where extensive studies have been compiled@28#.

The arrangement of this paper is as follows. In Sec. II
recapitulate the Popov approximation, which is one of
various types of mean-field theories~see, for example, Refs
@19,29#! due originally to Bogoliubov@12#. We explain our
numerical procedure to solve a self-consistent equa
within the PA. In Sec. III the physical origin of stabilizatio
is discussed and the detailed calculations for a stable vo
at finite temperatures are shown. We also compare the
culated vortex systems to the vortex state in type-II sup
conductors. The pinning potential is introduced to yield
stable vortex in Sec. IV, where the strength and width of
potential are critically examined for the vortex stabilizatio
We devote Sec. V to a discussion and conclusion.

II. FORMULATION AND NUMERICAL PROCEDURE

A. Mean-field approximation

We start with the following Hamiltonian, in which Bos
particles interact with a two-body potential:

Ĥ5E dr Ĉ†~r !S 2
\2¹2

2m
1V~r !2m D Ĉ~r !

1
g

2E dr Ĉ†~r !Ĉ†~r !Ĉ~r !Ĉ~r !, ~1!

where the chemical potentialm is introduced to fix the par-
ticle number andV(r ) is the confining potential. The two
body interaction between an atom atr1 and one atr2 is
assumed to begd(r12r2), with g being a positive~repul-
sive! constant proportional to thes-wave scattering lengtha,
namely,g54p\2a/m (m is the particle mass!.

In order to describe the Bose condensation, we ass
that the field operatorĈ is decomposed into

Ĉ~r !5f~r !1ĉ~r !, ~2!

where the ground-state average is given by

^Ĉ~r !&5f~r !. ~3!

The c number f(r ) corresponds to the condensate wa
function andĉ(r ) is a q number describing the nonconde
sate. Substituting the above decomposition~2! in Eq. ~1!, we
obtain
e
e
r-

e
e

n

ex
al-
r-

e
.

e

Ĥ5E dr Ff* ~r !H h~r !f~r !1
1

2
guf~r !u2J f~r !

1ĉ†~r !$h~r !1guf~r !u2%f~r !1H.c.

1ĉ†~r !$h~r !12guf~r !u2%ĉ~r !

1
g

2
ĉ†~r !ĉ†~r !f~r !f~r !1

g

2
ĉ~r !ĉ~r !f* ~r !f* ~r !

1gĉ†~r !ĉ~r !ĉ~r !f* ~r !1gĉ†~r !ĉ†~r !ĉ~r !f~r !

1
g

2
ĉ†~r !ĉ†~r !ĉ~r !ĉ~r !G , ~4!

whereh(r )[2\2¹2/2m1V(r )2m is the one-body Hamil-
tonian. Let us introduce the variational parameter: The n
condensate densityr(r )5^ĉ†ĉ& and is approximated a
ĉ†ĉĉ;2ĉr and ĉ†ĉ†ĉĉ;4ĉ†ĉr.

Then Ĥ is rewritten as

Ĥ5E dr Ff* ~r !H h~r !f~r !1
1

2
guf~r !u2J f~r !

1ĉ†~r !$h~r !1guf~r !u212gr~r !%f~r !1H.c.

1ĉ†~r !$h~r !12g@ uf~r !u21r~r !#%ĉ~r !

1
g

2
ĉ†~r !ĉ†~r !f~r !f~r !1H.c.G . ~5!

In order to diagonalize this Hamiltonian, the Bogoliubo
transformation is employed, namely,ĉ(r ) is written in terms
of the creation and annihilation operatorshq andhq

† and the
noncondensate wave functionsuq(r ) andvq(r ) as

ĉ~r !5(
q

@uq~r !hq2vq* ~r !hq
†#, ~6!

whereq denotes a set of the quantum numbers. This lead
the diagonalized formĤ5E01(q«qhq

†hq . The condition

that the first-order term inĉ(r ) vanish yields

@h~r !1guf~r !u212gr~r !#f~r !50. ~7!

When r(r ) is made zero, it reduces to the commonly us
Gross-Pitaevskii equation

@h~r !1guf~r !u2#f~r !50, ~8!

which is a nonlinear Schro¨dinger type equation.
The condition that the Hamiltonian be diagonalized giv

rise to the following set of eigenvalue equations foruq(r )
andvq(r ) with the eigenvalue«q :

@h~r !12g$uf~r !u21r~r !%#uq~r !2gf2~r !vq~r !5«quq~r !,

~9!

@h~r !12g$uf~r !u21r~r !%#vq~r !2gf* 2~r !uq~r !

52«qvq~r !. ~10!
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The chemical potentialm is contained inh on the left-hand
side of Eqs.~9! and ~10!. Therefore,m corresponds to the
origin of the energy for each eigenvalue«q .

The eigenfunctionsuq(r ) andvq(r ) must satisfy the nor-
malization condition

E @up* ~r !uq~r !2vp* ~r !vq~r !#dr5dp,q . ~11!

This also means that* uuqu2dr is larger than* uvqu2dr for an
arbitrary q. The variational parameterr(r ) is determined
self-consistently by

r~r !5^ĉ†ĉ&5(
q

@ uuq~r !u2f ~«q!1uvq~r !u2$ f ~«q!11%#,

~12!

where f («) is the Bose distribution function. Equations~7!
and ~9!–~12! constitute a complete set of the self-consist
equations for the PA. The iterative calculations of the
equations yield a convergent self-consistent solution.

If the noncondensate componentr(r ) is neglected in this
set of equations, the resulting set of the equations yields
so-called Bogoliubov approximation. This was extensiv
discussed analytically by Pitaevskii@14#, Iordanskii@15#, and
Fetter@16#.

The expectation value of the particle number density
given as

^n̂~r !&5uf~r !u21r~r !, ~13!

that is, the total density consists of the condensate partf(r )
and the noncondensate partr(r ). The particle current den
sity is calculated as

j ~r !5
\

2mi
$f* ~r !“f~r !2f~r !“f* ~r !%

1
\

2mi
^ĉ†~r !•“ĉ~r !2“ĉ†~r !•ĉ~r !&. ~14!

The local density of states is calculated as

N~E,r !5(
q

$uuq~r !u21uvq~r !u2%d~«q2E!. ~15!

This quantity was observed directly by scanning tunnel
microscopy for a vortex in superconductors@30#.

B. Vortex description

We now consider a cylindrically symmetric system that
characterized by the radiusR and the heightL. We use the
cylindrical coordinater5(r ,u,z). We impose the boundar
conditions that all the wave functions vanish at the walr
5R, which is taken far enough from the vortex center ar
50 and the periodic boundary condition along thez axis.
When a vortex line passes through the center of the cylin
the condensate wave functionf(r ) is expressed as

f~r ,u,z!5f~r !eiwu, ~16!
t
e

he
y

s

g

r,

wheref(r ) is a real function andw is the winding number.
w50 corresponds to the non-vortex case andw51 to the
vortex case. Thew>2 case is not considered here becau
this state is energetically too unstable. The nonconden
densityr(r ) is a real function, depending only onr, that is,
r(r ,u,z)5r(r ). It is also seen from Eqs.~9! and ~10! that
the phases ofuq(r ) andvq(r ) are written as

uq~r !5uq~r !eiqzzei ~qu1w!u, ~17!

vq~r !5vq~r !eiqzzei ~qu2w!u. ~18!

The set of the quantum numbersq in Eq. ~6! is described by
(qr ,qu ,qz), where qr51,2,3, . . . ,qu50,61,62, . . . , and
qz50,62p/L,64p/L, . . . . Note that only u(r )(qu
521) andv(r )(qu51) are nonvanishing atr 50.

By following the method by Gygi and Schlu¨ter @31#, the
functionsuq(r ) andvq(r ) are expanded in terms of

wn
~ i !~r ![

A2

Junu11~a unu
~ i !!

JunuS a unu
~ i !

r

RD ~19!

as

uq~r !5(
i

cq
~ i !wqu1w

~ i ! ~r !, ~20!

vq~r !5(
i

dq
~ i !wqu2w

~ i ! ~r !, ~21!

where Jn(r ) is the Bessel function ofnth order andan
( i )

denotesi th zero ofJn . The eigenvalue problem of Eqs.~9!
and ~10! are reduced to diagonalizing the matrix

S Ai , j~qu1w,qz! 2Bi , j~qu ,w!

Bi , j
T ~qu ,w! 2Ai , j~qu2w,qz!

D S cq
~1!

cq
~2!

A

dq
~1!

dq
~2!

A

D
5«qS cq

~1!

cq
~2!

A

dq
~1!

dq
~2!

A

D ~22!

for eachqu andqz , where

Ai , j~n,qz!5
\2

2mH S an
~ j !

R D 2

1qz
2J d i , j2md i , j

1E
0

R

@V12g~f21r!#wn
~ i !wn

~ j !r dr , ~23!
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Bi , j~qu ,w!5E
0

R

gf2wqu1w
~ i ! wqu2w

~ j ! r dr . ~24!

The following symmetry relation should be noted:

~c,d,«! for qu⇔~d,c,2«! for 2qu . ~25!

We determined the signs ofqu and « by the normalization
condition ~11!.

It is not self-evidenta priori that Eq.~22! gives real ei-
genvalues because the Hamiltonian matrix in Eq.~22! is not
symmetric. However, these eigenvalues can be proved t
real ~positive or negative! in a way similar to that of Fette
@16#. The circulating current densityj u(r ) in Eq. ~14! is ex-
pressed as

j u~r !5 j u
~1!~r !1 j u

~2!~r !, ~26!

j u
~1!~r !5

\

m

w

r
f2~r !, ~27!

j u
~2!~r !5

\

m(
q

H qu1w

r
uuq~r !u2f ~«q!

2
qu2w

r
uvq~r !u2@ f ~«q!11#J , ~28!

where the total current consists of the condensate compo
j u
(1)(r ) and the noncondensatej u

(2)(r ).

C. Calculated system

We have performed self-consistent calculations of a
of Na atoms trapped radially by a harmonic potentialV(r )
5 1

2 m(2pn r)
2r 2. We use the following parameters:m

53.81310226 kg, the scattering strengtha52.75 nm, and
the radial trapping frequencyn r5200 Hz. The area densit
per unit length along thez axis is chosen to benz52
3104 mm21, so that the peak density will b
O(1020 m23). The system size is set toR520 mm andL
510 mm.

We have employed the energy cutoff method to calcu
Eqs.~12! and~28! where the calculation terminates when t
obtained eigenvalues exceeds about 80hn r . This method
treats;80 000 eigenfunctions, although it is its lowest tw
modes, namely, the condensate state and the lowest cor
calized state~LCLS!, that play a significant role.

III. STABLE QUANTIZED VORTEX AT FINITE
TEMPERATURES

The isolated single quantized vortex is unstable wit
certain mean-field approximations@19,21# in a nonrotating
system. When the lowest excitation eigenvalue of the sys
becomes lower than the energy of the condensate, the w
calculation based on the assumption that the energy for
condensate is lowest@19# is invalidated. This means that th
vortex is unstable.

In the finite-T calculations shown below the quantize
vortex becomes stable in the BEC systems confined b
harmonic potential above a certain temperature. We ana
be

nt

s

e

lo-

m
ole
he

a
ze

how the vortex state at finiteT can become stabilized an
examine fundamental properties of a stable vortex.

A. Spatial structures of a condensate and a noncondensate

The spatial profiles of the condensate and nonconden
densities for several temperatures are shown in Figs. 1~a! and
1~b!, respectively. It is seen from Fig. 1~a! that the conden-
sate uf(r )u2 vanishes and changes quadratically~propor-
tional to r 2) near the vortex centerr 50, which is in contrast
to the linear behavior~proportional to r ) in the Gross-
Pitaevskii theory~8!. This unique shape ofuf(r )u2 reflects
the rounded shape of the 2gr(r ) term in Eq.~7!. @This r(r )
is depicted in Fig. 1~b!.#

This feature differs also from the superconducting ca
where the pair potential changes linearly@28#. As T in-
creases, the core radius increases, as seen from the inse
condensate is pushed outward and converted into the
condensate. Thus the total particle number of the conden

FIG. 1. ~a! Condensate densityuf(r )u2 at variousT. The total
particle number of the condensateuf(r )u2 decreases asT increases.
The inset shows the profile ofuf(r )u2 at smallr. ~b! Noncondensate
densityr(r ), which increases with increasingT. The characteristic
length scale near the center corresponds to the core radius ofufu2 in
~a!. ~c! Total densityuf(r )u21r(r ). Each figure shows the dens
ties atT5200, 500, 700, and 900 nK.
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decreases monotonically asT increases.
In Fig. 1~b! the spatial variation of the noncondensa

densityr(r ) is displayed. Reflecting the core structure, t
noncondensate fraction accumulates at the vortex center.
core radius grows asT increases, as seen from Fig. 1~b!,
which will be analyzed in more detail shortly.

The overall feature of the spatial change of the total d
sity consisting of the condensate and nonconden
uf(r )u21r(r ) is shown in Fig. 1~c!. As T increases, the
spatial profile tends to distribute uniformly and the ma
mum position of the density from the core also increas
indicating that the effective core radius expands. The to
density does not vanish anywhere inside the confined po
tial even at the vortex core. It is also interesting to notice
existence of a focal point near the center that does not m
asT changes.

B. Excitation spectra

In Figs. 2~a! and 2~b! we display the dispersion relation
of the eigenvalues alongqu andqz , respectively. The exci-
tation modes are not symmetric about thequ axis because o
the presence of the circulation. However, at the higher e
gies the distribution of these eigenmodes become symme
The modes characterized byqz50 are shown as solid dia
monds in Fig. 2~a!. The lowest eigenmode atqu521 is very
important in the understanding of the mechanism of vor
stabilization.

The modes with (qr ,qu)5(1,21) and variousqz includ-
ing the LCLS correspond to the so-called Kelvin mo
known in classical vortex. In Fig. 2~b! we display the disper-
sion relations of the eigenvalues withqu521 along qz .

FIG. 2. Dispersion relations of the eigenvalues«q at T
5200 nK. ~a! Along qu . The solid diamonds are states withqz

50. The lowest solid diamond at eachqu corresponds toqr51, the
second lowest toqr52, and so on.~b! Eigenvalues alongqz . Only
the qu521 states are plotted. The solid curve is explained in
text below Eq.~30!. The dashed curve denotes (\2/2m)qz

2 .
he

-
te

s,
al
n-
e
ve

r-
ic.

x

This dispersion relation is predicted by Pitaevskii@14# in a
spatially uniform system with densitynuni , except near the
core within the BA, at the long-wavelength limit as

«~qr51,qu521,qz!5
\2qz

2

2m
ln

1

qzjuni
~qzjuni!1!,

~29!

which is called the Kelvin mode, where

juni[
\

A2mnunig
. ~30!

The dispersion relation of the corresponding modes withqu
521 is shown in Fig. 2~b! as the lowest edge. We hav
tried to fit this prediction~29! with our result by substituting
variousnuni in juni of Eq. ~30!. The solid curve in Fig. 2~b!
showsnuni50.1npeak. The fitting is rather satisfactory.

The spatial profiles of the eigenfunctions withqu521
are depicted in Fig. 3. There is no rapid spatial oscillation
these eigenfunctions corresponding to the Friedel oscilla
seen in the Fermi systems@31,32#. It is also noticed that a
slow oscillation of the condensate near the vortex core s
in several Monte Carlo computations@33# for superfluid4He
is absent here. The present weakly interacting case dif
from that in the strongly interacting system in several
spects.

C. Vortex stabilization at finite T

We discuss the origin of vortex stabilization. Let us st
with the particle number densitiesuf(r )u2 ~condensate! and
r(r ) ~noncondensate! in Fig. 1. It is the eigenstates that com
pose the whole system. The wave functionf(r ) with the
energym corresponds to the condensate fraction and the n
condensate densityr(r ) is composed of the eigenstates wi
the eigenvalues and the wave functions«q ,uq(r ), andvq(r ).
The eigenstate with«q50 that equalsm corresponds to the
condensate.

The states with the angular momentum indexqu521,
whose relative motion to the circulating current of the co
densate is at rest in the laboratory frame@qu1w in Eq. ~17!
is equal to zero#, are likely to have the lowest eigenvalu
among various states. It is the eigenstateq[(qr ,qu ,qz)
5(1,21,0) whose eigenvalue becomes negative and lead

e

FIG. 3. Wave functionsu(r ) (qu521 and qz50) at T
5200 nK. The radial quantum numberqr varies from 1 to 5. Each
u(r ) has node~s! whose number is equal toqr . These states are
localized at the core. The vertical axis is in arbitrary units.



c
a

-

e
ei
LS

b
e
h
-

te

i
y

m
n-

al
-
s
tia
di
th
o
d

d

en-
to-

in

ism
een

ous
d.

ity
the

the
ns.

dis-

es
f
u-

on

wave
tial
e

2208 PRA 59TOMOYA ISOSHIMA AND KAZUSHIGE MACHIDA
the vortex instability. The spatial profiles of the eigenfun
tionsq5(1 –5,21,0) are depicted in Fig. 3. We can see th
these states are localized near the core (r 50). Solid dia-
monds atqu521 in Fig. 2~a! correspond to the wave func
tions in Fig. 3. We can see that the lowest modeq
5(21,0,1) is strongly localized atr 50. Let us call this
state the lowest core localized state. The vortex stat
~meta!stable as long as the LCLS exists with a positive
genvalue. Now the question is why the energy of the LC
is positive at finiteT, as shown in Fig. 2~a!.

We define the effective potential

Veff~r ![V~r !12g@ uf~r !u21r~r !#, ~31!

whose combination appears in the eigenvalue equations~9!
and~10!. The eigenvalues of various modes are estimated
integratingVeff(r ) with each of the wave functions over th
spatial volume. Of course the LCLS is not an exception. T
shape ofVeff(r ) near the core (r;0) determines the eigen
values of the LCLS. As seen from Fig. 4,Veff(r ) at the
vortex center is pushed upward asT increases. This is why
the LCLS has a positive eigenvalue. Although the vor
stability seems to increases withT, the determination of the
stability conditions is a complex problem and is discussed
Sec. III D. The increase ofVeff(r ) near the core is caused b
the contribution from the noncondensater(r ). ThusVeff(r ),
and especially the term 2gr(r ) in Eq. ~31!, works as an
effective pinning potential that prevents the vortex fro
moving outward. Now let us consider why the no
condensater(r ) has a peak at the core.

The noncondensate densityr(r ) is composed of the wave
functionsu(r ) andv(r ), as seen in Eq.~12!. Note that only
u(r ) (qu521) and v(r ) (qu51) are nonvanishing atr
50, as mentioned before. The localization ofr(r ) at smallr
mainly comes from the LCLS term@q5(1,21,0)# in Eq.
~12!. Figure 3 again shows that theuu(r )u2 coefficient of this
term is strongly localized atr 50 and Fig. 2~a! shows that
the f («) coefficient has a huge value because the eigenv
« is very small. Note thatf («) is the Bose distribution func
tion and lim«→0f («)51`. The LCLS, whose eigenvalue i
approaching zero from above, itself forms a pinning poten
to keep the eigenvalue positive combined with the Bose
tribution function. We can see the wave functions and
eigenvalues in Fig. 7, which displays the local density
states defined by Eq.~15!. This may be helpful to understan
the dominance of the LCLS inr(r ) at smallr.

FIG. 4. Effective potentialVeff(r ) at temperaturesT5200, 500,
700, and 900 nK. We subtract the chemical potentialm from Veff(r )
at eachT.
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This mechanism of theT-dependent stabilization is base
on the PA. It introduces the noncondensate densityr(r ) as
an effective potential ignoring the anomalous average^cc&,
which describes the interaction effects between the cond
sate and the noncondensate. An improvement of the PA
wards this direction has been attempted by Hutchinsonet al.
@23#.

It is also obvious that large enoughVeff(r ) near the center
is decisive in stabilizing the vortex, irrespective of the orig
coming from eithergr(r ) or V(r ). The deformation ofV(r )
also stabilizes the vortex state. This stabilization mechan
depends neither on the PA nor on the interaction betw
r(r ) and f(r ). This deformation ofV(r ) is discussed in
Sec. IV and the rest of this section is devoted to the vari
properties of theT-stabilized system that has been obtaine

D. Stability

As mentioned before, the determination of the stabil
conditions is a complex problem. It is natural to consider
eigenvalue«.0 for the LCLS and large enoughVeff(r ) at
r 50 as possible conditions for the stability. What makes
matter complicated is the relation of these two conditio
Expressed more explicitly,

Veff~0!5guuLCLS~0!u2f ~«LCLS!

1@other contributions from

u~qu521!’s and v~qu51!’s#. ~32!

The T dependence of the selected lowest modes are
played in Fig. 5. As anticipated from theT dependence of the
lowest mode, which gradually decreases on loweringT, the
whole calculation breaks down when this mode becom
negative from above. However, this lowering process o«
with T will not proceed smoothly because the Bose distrib

FIG. 5. Eigenvalues« of the selected lowest modes as a functi
of T. The number of each line denotesqu . All of the lines are
eigenvalues withqr51 andqz50, except the line labeled (21),
with q5(2,21,0). Solid lines,qu,0; dotted lines,qu.0; dashed
line, qu50. While the dipole mode withqu51 is exceptionally
almostT independent and fixed to«51, coinciding with the trapped
frequency, other modes withqu.0 (qu<0) tend to increase~de-
crease! with increasingT. The eigenvalues with largequ , which are
not shown here, generally increase. This is because these
functions generally lie at a large radius and the effective poten
Veff(r ) there increases with increasingT. See the large radius sid
of Fig. 4.
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tion function at small« could make the pinning part o
Veff(r ) very large. WhenT50, the effective potential at the
center

Veff~0!5g (
q ~qu51!

uvq~0!u2 ~33!

is not likely to become large enough, although we can
exclude its possibility completely.

We only point out that these problems are open and s
not discuss them further in this paper. We failed to determ
the self-consistent density profilesr(r ) and uf(r )u2 for T
,200 nK, which is the lowest temperature we can reac

E. Core radius

Figures 1~a!–1~c! show that the core radius increases aT
increases. We define here the core radius by the distanj
from the center where12 max@uf(r)u2#5uf(j)u2. The T depen-
dence of thisj is exhibited in Fig. 6. The core radiusj(T) is
seen to beT-dependent and decrease asT is lowered. We
definejpeak[\/A2mnpeakg, wherenpeak[max@uf(r)u2# is the
peak density of the condensate. This resembles the clas
definition @16# of the coherence lengthjuni in Eq. ~30! for a
uniform system. The core radiusj is almost equal to
1.5jpeak, as seen in Fig. 6.

The total current densityj u
(1)(r )1 j u

(2)(r ) defined in Eq.
~26! is shown in inset of Fig. 8. The distance from the vort
center at which the current amplitude takes a maximum
another measure of the vortex core radius. This quantityj j
shown in Fig. 6 also decreases upon loweringT.

F. Local density of states

The local density of statesN(r ,E) given by Eq.~15! is
shown in Fig. 7. The states withqu521 are seen to localize
at the vortex center, giving rise to several prominent peak
the local density of states.

These features around the core may be observable
should be compared with those in vortices in a superc
ductor where extensive studies have been compiled@28#.
This is particularly true for the localized excitations nea
vortex core studied by Caroliet al. @36,37#. These core ex-
citations are now recognized to be decisive in the und
standing of the fundamental properties of the vortex. T
Popov theory corresponds to the so-called Bogoliubov

FIG. 6. T dependences ofj’s for various definitions. Bothj
~solid line! andjpeak~lower dashed line! are defined in the text. The
upper dashed line denotes 1.5jpeak. The dotted line labeledj j is the
peak radius ofj u(r ).
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Gennes theory in their mathematical structures, which
widely used to treat various spatially nonuniform superco
ductors having an interface or a vortex@31,32#.

We also note that in superconductorsN(r ,E) is directly
observed using scanning tunneling microscope@30# and ana-
lyzed theoretically within the similar theoretical framewo
@31,32,34# quite successfully. The characteristic core rad
is estimated as the coherence length;0.5 mm, which is
contrasted with a few angstroms in superfluid4He. Thus
there is a good chance to investigate the detailed core s
ture of the present BEC systems.

G. Circulating current density

The total current densityj u
(1)(r )1 j u

(2)(r ) defined in Eq.
~26! is shown in inset of Fig. 8. The noncondensate con
bution j u

(2)(r ) and itsqu components are depicted in the ma
panel of Fig. 8. In the immediate vicinity of the cor
j u
(2)(r ) is governed by thequ50 and thequ522 compo-

nents. The positive~negative! qu’s give rise to the positive
~negative! contribution to j u(r ), except for thequ521,
which has positive contribution. Theuu(r )u2 term is domi-
nant in mostqu of Eq. ~28!. This is why positive~negative!
qu’s give the positive~negative! contribution. Since we are
treating systems withw51, the (qu1w)/r coefficients of the
uu(r )u2 terms become zero and theuv(r )u2 terms with posi-
tive sign become relevant whenqu521. This is why the

FIG. 7. Local density of statesN(r ,E) with the lower-energy
side (0,E,7 in trap units! at T5200 nK. The states distinctively
localized near the core correspond to the angular momentumqu

521. The sharp peak on the left~low-energy! side is the LCLS.
Some too-high peaks around the core are cut at a certain valu
N(r ,E).

FIG. 8. Noncondensate contributionj u
(2)(r ) of the particle cur-

rent density atT5200 nK. Each component withqu50,61,22 is
shown separately. The inset shows the total current densityj u(r )
[ j u

(1)(r )1 j u
(2)(r ).
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qu521 component gives a positive, not negative, contrib
tion. The net result gives a finite contribution to superflu
flow from the noncondensate.

IV. VORTEX STABILIZATION BY THE PINNING
POTENTIAL AT T50

It is now clear that the introduction of a pinning potent
at the vortex center stabilizes the quantized vortex eve
T50. Here we explicitly demonstrate it by a model pinnin
potential described by

Vpinning~r !5V0e2r 2/2r 0
2

~34!

in addition to the harmonic potential. This pinning potent
may be realized by focusing a laser beam on the vortex c
ter. Since we are imposing the periodic boundary condit
along thez axis, topologically the system is equivalent to
toroidal geometry if the system lengthL is large enough.

FIG. 9. Various properties of a vortex system stabilized by
pinning potential in Eq.~34!. V055 (trap units),r 051 mm, and
T50 K. ~a! Total particle number density.~b! Dispersion relations
of the eigenvalues« alongqu . Solid diamonds are eigenvalues wi
qz50. ~c! Wave functionsu(r ) (qr51 –5, qu521, and qz50).
The vertical axis is in arbitrary units.
-

at

l
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We have done self-consistent calculations atT50 in the
presence of the pinning potential using the same metho
in Sec. III. The self-consistent solution for theV055 trap
units andr 051 mm and the other parameters, which are t
same as before, is depicted in Figs. 9~a!–9~c!. It is seen from
these figures that the vortex is stable because the LCL
now all positive, as shown in Fig. 9~b!, allowing the fully
self-consistent solution. We note that the eigenfunctionu(r )
(qr51) shown in Fig. 9~c! still has a large amplitude atr
50. The condensate is pushed outward because of the
ning potential and its initial rise at the vortex core is ste
@Fig. 9~a!#. The noncondensate fraction is vanishingly sm
in this example atT50.

In a larger pinning potential (V0550 trap units andr 0
51 mm) exemplified in Fig. 10 the condensate is push
farther outward and the vortex center is empty space@Fig.
10~a!#. It resembles a ring-shaped BEC systems that has b
considered theoretically@21,35#. The wave functions of the
statesq5(1 –5,21,0) in Fig. 10~b! are squeezed at smallr

e FIG. 10. Various properties of a vortex system stabilized by
pinning potential.V0550 (trap units),r 051 mm, and T50 K.
~a! Total particle number density.~b! Dispersion relations of the
eigenvalues« alongqu . Solid diamonds are eigenvalues ofqz50.
~c! Wave functionsu(r ) (qr51 –5,qu521, andqz50). The ver-
tical axis is in arbitrary units.
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by the pinning potential. There is no LCLS. This deform
tion of u(r ) directly lifts the eigenvalue of the lowest eige
state atqu521 in Fig. 10~b! to stabilize further the vortex
state. The overall distribution of the excitation spectrum
almost symmetric about thequ axis @Fig. 10~b!#. All the cor-
responding eigenfunctions withqu521 vanish atr 50 @Fig.
10~c!#, which is contrasted with those in Figs. 3 and 9~c!.

V. CONCLUSION AND DISCUSSION

We have investigated the stability conditions of a vort
in BEC systems by performing microscopic self-consist
calculations based on the Popov approximation. It is dem
strated that the BEC systems confined in a harmonic po
tial at finite temperatures sustain the stable vortex. Thi
contrasted with the cases in the absence of the pinning
tential where the same calculation yields an unstable vor
as shown previously@19,21#. The vortex instability comes
from the negative eigenvalue of the lowest core localiz
state. Therefore, physically it is possible to lift this energy
increasing the effective potential experienced by this qu
particle. This can be realized by raisingT or introducing an
external pinning potential. In the former case the LCLS its
acts as the effective pinning potential, amplified through
Bose distribution function. The presence of the noncond
sate in the Popov theory enables thisT-dependent mecha
nism.

The detailed vortex properties are analyzed for the sta
vortex. Several eminent features are worth mentioning.~i!
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The condensateuf(r )u2 behaves proportionally tor 2 near the
vortex core and the noncondensate has a peak at the cor~ii !
The characteristic length or the core radius is well descri
by a formula\/A2mnpeakg, with npeakbeing the peak density
of the condensate.~iii ! The particle density is nonvanishin
everywhere inside a system even at the core center wh
system isT stabilized.~iv! The local density of states exhib
its large peak structures at the core center for the low-ene
side and the peaks indicate the existence of the LCLS
other core localized states. These characteristics may b
rectly observed once the quantized vortex is realized in
present BEC systems.

We hope that the vortex state in BEC of an alkali-me
atom gas should come true experimentally. If realized,
may have a chance to unify theories of the present di
BEC systems and the strongly interacting superfluid4He
systems. We also hope that the precise and detailed ana
of the vortex core structure should be possible because
advantage here is that the length scale of the core radiu
much larger than those in superfluid4He or superconductors
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