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Vortex stabilization in Bose-Einstein condensate of alkali-metal atom gas
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Department of Physics, Okayama University, Okayama 700-8530, Japan
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A gquantized vortex in Bose-Einstein condensati®EC) of an alkali-metal atom gas is known to be
unstable intrinsically at zero temperature. We examine two stabilization mechanisms of a vortex theoretically.
(i) The finite temperature effect is shown to stabilize a vorf@xAn additional pinning potential, which may
be produced by a focused laser beam at the vortex center, is also shown to stabilize it even at zero temperature.
The mean-field calculation for BEC confined by a harmonic potential is employed. The detailed properties of
a stable vortex are given, such as the spatial profiles of the condensate and noncondensate, the particle current
density around the core, the whole excitation spectrum, and their temperature dependence.
[S1050-294{@9)01503-4

PACS numbg(s): 03.75.Fi, 05.30.Jp, 67.40.Vs

l. INTRODUCTION physically by Rokhsaf21], who shows that the vortex is

always unstable against the translational mode with zero en-

Many-body dilute Bose systems have been the focus ii€rgy. Thus the vortex core in a cylindrically symmetric har-
condensed-matter physics since the experimental realizatidROnic trap spirals out towards the outside of a system where

of Bose-Einstein condensatigiBEC) in alkali-metal atom theT(r:]onder_lsate densn); ;?_IOW' <t e the stabilit
gases at ultralow temperaturgs-3]. There are many recent € main purpose ot this paper IS 1o examine the stability
. ' .._of a quantized vortex, which is directly related to the ques-
theoretical and experimental works devoted to the eIu0|dat~

. . . ion of superfluidity of the present BEC systems. This insta-
tion of BEC[4,5]. Experimental works are mainly conducted pjjiry can be expressed numerically either by comparing the

for dilute Bose systems, whose atom number is typicallffree energy of systems with and without a vortesability)
~O(10°) for *Na and ®’Rb. Gases are confined magneti- or by checking whether or not an eigenstate with a negative
cally in a harmonic trap. The BEC transition temperatureseigenvalue exists in a system with vorticésetastability.
are in a range 0O(uK). The experimental forefront is rap- The latter is far more serious than the former and is dis-
idly extending; one can tune the particle-particle interactioncussed in this paper as “stability.”
constant by utilizing the so-called Feshbach resonance phe- In the present paper, which follows our previous papers
nomeng[6] or one can confine a system purely optically so[19,27 based on the same formalism and numerical proce-
that several atomic hyperfine substates are simultaneousjure, we show that the intrinsic instability of a quantized
condensed, giving rise to an opportunity to explore BECvortex can be remedied either by raising the temperdfure
with internal degrees of freedofii—9]. Several proposals of by introducing the pinning potential at the center of a cylin-
experimental methods to realize a vortex state have beedrically symmetric rectilinear vortex line, which prevents the
made theoretically5,10,11. This paper concerns the vortex vortex from spiraling out. The latter method for the vortex
states in a somewhat different way. stabilization has been pointed out by several authibis
As for the earlier theoretical developments, the micro-whose experimental feasibility seems to be quite high since it
scopic theoretical work on BEC started with Bogoliubov may be easy to realize a desired pinning potential by sending
[12] long ago and has been followed by important progressa focused laser beam to the vortex center. Here we provide
such as by Grodd 3], Pitaevskii[14], lordanskii[15], Fetter  microscopic self-consistent calculations within the Popov ap-
[16], and Popo\17]. These mean-field theories are particu- proximation (PA), yielding detailed properties of a stable
larly suited for treating the present gaseous BEC systemgortex, beyond Gross-Pitaevskii theory which treats only the
trapped optically or magnetically in a restricted geometry.condensate component. This enables us to discuss the vortex
Therefore, the current theoretical stud[@8] mainly focus at finite temperatures. A comparative study of various ap-
on examining these mean-field theories to extract the spati@roximations, including the PA, is presented in Rf9].
structures of the condensate and noncondensate and lowhe PA is a gapless approximation and is believed to be
lying collective modes. The agreement between these meareliable at low temperatures. As for the improvement of the
field theories and experiments is fairly gofl. Popov approximation, Hutchinsoet al. proposed a theory
Previously we have demonstrated that the Bogoliubov apf23].
proximation of the mean-field theory cannot sustain a stable Various spatial structures of the quantized vortex in rotat-
vortex [19]. This somewhat unexpected result, which hading BEC systems are investigated based on this scheme of
been suggested by Doad al.[20], is now clearly explained stabilization. This investigation is important since the micro-
scopic understanding of the vortex based on the self-
consistent picture has been lacking so far, except for a few
*Electronic address: tomoya@mp.okayama-u.ac.jp attempts[24—-24 for present BEC systems. Several points
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are worth exploiting(i) the spatial profiles of the condensate _
and noncondensatéi) the dispersion relation of the excita- H=J dr
tion spectrum of the system, arii) the low-lying excita-

1
¢>*<r)(h<r)¢><r)+§g|¢><r)l2 (1)

tions localized around a vortex core, which is known as the + a}*(r){h(r)+g|¢(r)|2}¢(r)+H.c.
Kelvin mode[27]. These features may be directly observable R R
and should be compared with those in vortices in a super- + g7 (r){h(r)+2g|(r)|?}i(r)

conductor where extensive studies have been comfzigd

The arrangement of this paper is as follows. In Sec. Il we + Q&T(r)(}‘r(r)(ﬁ(r)(ﬁ(r)jL 91}(r)<}(r)¢*(r)¢*(r)
recapitulate the Popov approximation, which is one of the 2 2
various types of mean-field theoriésee, for example, Refs.
[19,29) due originally to Bogoliuboy12]. We explain our
numerical procedure to solve a self-consistent equation T PR
within the PA. In Sec. IIl the physical origin of stabilization +o (DY PP, 4
is discussed and the detailed calculations for a stable vortex
at finite temperatures are shown. We also compare the calyhereh(r)=—#%2V2/2m+V(r)— u is the one-body Hamil-
culated vortex systems to the vortex state in type-ll supertonian. Let us introduce the variational parameter: The non-
conductors. The pinning potential is introduced to yield acondensate densitp(r)=(#'¢) and is approximated as
stable vortex in Sec. IV, where the strength and width of the{b’r«}fb~21}p and ' 3t b~ a3t .
potential are critically examined for the vortex stabilization.
We devote Sec. V to a discussion and conclusion.

+9d (NP P ¢* (1) + gt (N (1) g(r) p(r)

ThenH is rewritten as

N 1
H=f dr[¢*(r)[h<r)¢<r)+ §g|¢<r>|2} (1)
II. FORMULATION AND NUMERICAL PROCEDURE

A. Mean-field approximation + fﬂ(r){h(r)+g|¢(r)|2+ 2gp(r)}é(r)+H.c.
We start with the following Hamiltonian, in which Bose + ¢ (D{h(r)+29[|¢(r)|*+p(r)]}¢(r)
particles interact with a two-body potential: 9. )
+ 50 (NN G p(r)+H.c.. )
h2v2
~ N s
H_J dr¥7(r) 2m V() = [ ¥(r) In order to diagonalize this Hamiltonian, the Bogoliubov

transformation is employed, namefy(r) is written in terms
+ QJ dr U1 BT r)y¥(r), (1)  of the creation and annihilation operatofg and 773 and the
2 noncondensate wave functiong(r) anduv(r) as

. o . VIR t
where the chemical potentia is introduced to fix the par- ‘ﬂ(r)—% [ug(r) mq—vg (1) 4], (6)
ticle number andv(r) is the confining potential. The two-
body mtdertactt;oné(betwe()an a_?hatogn'at and or:g;trz IIS whereq denotes a set of the quantum numbers. This leads to
assumed to bgs(r;—r,), with g being a positive(repul- . : ~ + »
sive) constant proportional to thewave scattering lengta, ¢ diagonalized formH=Eq+ 284777 . The condition
namely,g=4%2a/m (m is the particle mags that the first-order term ig/(r) vanish yields

In order to describe the Bose condensation, we assume h(r)+g| |2+2 ~0 )
that the field operatoﬁf is decomposed into [h(r)+glé(r) 9p(1)]h(r)=0.

When p(r) is made zero, it reduces to the commonly used
Gross-Pitaevskii equation

(r)=(r)+4(r), 2)
[h(r)+g|a(r)[*1¢(r)=0, ®)
where the ground-state average is given by which is a nonlinear Schdinger type equation.
The condition that the Hamiltonian be diagonalized gives
rise to the following set of eigenvalue equations €Q(r)
(W (r))= (). (3)  andvg(r) with the eigenvalue:
[h(r)+2g{]¢(N)[?+ p(1)}1uqg(r) = g?(r)vg(r) = equy(r),
The ¢ number ¢(r) corresponds to the condensate wave 9)
function andy(r) is aq number describing the nonconden- [h(r)+29{|¢>(r)|2+p(r)}]vq(r)—g¢* Z(r)uq(r)

sate. Substituting the above decompositidnin Eq. (1), we
obtain =—gqq(r). (10
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The chemical potentighk is contained inh on the left-hand
side of Egs.(9) and (10). Therefore,u corresponds to the
origin of the energy for each eigenvaleg.

The eigenfunctionsiy(r) anduvy(r) must satisfy the nor-
malization condition

f [up (Nug(r)—vg(rvg(r)]dr=24, 4 11

This also means thatjug|?dr is larger thanf|v4|?dr for an
arbitrary g. The variational parametes(r) is determined
self-consistently by

P(r):<<A//T%AZ’>:§ [|uq(r)|2f(8q)+|Uq(r)|2{f(8q)+1}]v
(12)

wheref(e) is the Bose distribution function. Equatiofig)
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where ¢(r) is a real function andv is the winding number.
w=0 corresponds to the non-vortex case awd 1 to the
vortex case. Thev=2 case is not considered here because
this state is energetically too unstable. The noncondensate
densityp(r) is a real function, depending only anthat is,
p(r,0,2)=p(r). It is also seen from Eqg9) and (10) that

the phases ofiy(r) andvq(r) are written as

17

Uq(r) = Ugq(r)e'd2e! et W)e,

vg(r)=vg(r)e'dZe! e W0, (18
The set of the quantum numbegsn Eq. (6) is described by
(a,,94,9,), whereq,=1,23...,9,=0,21,£2,..., and
4,=0,x27x/L,x47/L, Note that only u(r)(qﬁ
=—1) andv(r)(qe= 1) are nonvanishing at=0.

By following the method by Gygi and Schbr [31], the
functionsug(r) andvy(r) are expanded in terms of

and (9)—(12) constitute a complete set of the self-consistent

equations for the PA. The iterative calculations of these

equations yield a convergent self-consistent solution.
If the noncondensate componei(tr) is neglected in this

set of equations, the resulting set of the equations yields th
so-called Bogoliubov approximation. This was extensively

discussed analytically by Pitaevskii4], lordanskii[15], and
Fetter[16].

The expectation value of the particle number density is

given as

(n(r))y=|#(r)|2+p(r), (13)

that is, the total density consists of the condensate @t

and the noncondensate palfr). The particle current den-
sity is calculated as

j(r 2m|{¢* NVe(r)—¢(r)Ve*(r)}

t t
2m|<¢ (N-Vgr)=Vgir)-ir). (14
The local density of states is calculated as
NN =2 {ug(D)[*+log([?}8(eq=E). (19

This quantity was observed directly by scanning tunneling

microscopy for a vortex in superconduct¢8g].

B. Vortex description

We now consider a cylindrically symmetric system that is

characterized by the radil® and the height.. We use the

cylindrical coordinater =(r, #,z). We impose the boundary

conditions that all the wave functions vanish at the wall

=R, which is taken far enough from the vortex center at

=0 and the periodic boundary condition along thaxis.

When a vortex line passes through the center of the cylinder,

the condensate wave functiah(r) is expressed as

#(r,0,2)=¢p(r)e"’, (16)

J2 T
eV(n=—"—"7"-3 ( “J—) (19

O St MR
Ug(r)=2) ¢q'¢g eulr), (20
0g(N) =20 dg'¢g)-u(r), (2D

where J,(r) is the Bessel function ofth order anda!"
denotesth zero ofJ,. The eigenvalue problem of Eq®)
and(10) are reduced to diagonalizing the matrix

q
c?
Aij(dp+w,0y,) Bi j(dg,W) :
(1)
B/j(ap.W)  —A;(a—w.q,)/ | Y
d(2)
q
o
e
=gq dgl) (22
d(2)

for eachq, andq,, where

12 ([ a2
Zm{( R

R . .
+ [ veagerepelielnar, 23
0

|J(qu) +q§ 5|J_/~"5i,j
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R . . - - -
Bij(dg,W)= JO 9870y el —ur dr. (24) 200nK 2

The following symmetry relation should be noted:

(c,d,e) for que(d,c,—e) for —q,. (25) o0 0 051
05
We determined the signs a@f, and ¢ by the normalization
condition (11). 0
It is not self-evidenta priori that Eq.(22) gives real ei- (a) 0 25 ,adiug [um] e 10

genvalues because the Hamiltonian matrix in &%) is not

symmetric. However, these eigenvalues can be proved to be
real (positive or negativein a way similar to that of Fetter 0.6
[16]. The circulating current density,(r) in Eq. (14) is ex- _
pressed as o4 ]
. . . k=) 900n
(D=1 (O +iFm), (26) =
0.2 1
i how wd_\
Jn= A, (27) 0 200K —
0 25 5 7.5 10
(b) radius [um]
. h gyt w
J (=2 = [ug(n)[*f(eq) 2
q 200nK
qy—W &15
- lvOPf(eq)+1][, (29 &
Z 1 900RK
where the total current consists of the condensate component NE‘
jB(r) and the noncondensat§(r). =205
C. Calculated system 0 0 25 5 7.5 10
(© radius [pm)

We have performed self-consistent calculations of a gas
of Na atoms trapped radially by a harmonic potentidt) FIG. 1. (a) Condensate densitys(r)|? at variousT. The total
=im(2mv,)%r%. We use the following parametersn particle number of the condensatg(r)|? decreases aEincreases.
=3.81x10 2% kg, the scattering strength=2.75 nm, and  The inset shows the profile bf(r)|? at smallr. (b) Noncondensate
the radial trapping frequency, =200 Hz. The area density densityp(r), which increases with increasifig The characteristic
per unit length along the axis is chosen to be,=2 length scale near the center corresponds to the core radig$?dh
x10* um™!, so that the peak density will be (&.(c) Total density|¢(r)|>+p(r). Each figure shows the densi-
0(10%° m~3%). The system size is set ®=20 um andL ties atT=200, 500, 700, and 900 nK.
=10 pm.

We have employed the energy cutoff method to calculate
Egs.(12) and(28) where the calculation terminates when thehow the vortex state at finit¢ can become stabilized and
obtained eigenvalues exceeds abouhi80 This method examine fundamental properties of a stable vortex.
treats~80 000 eigenfunctions, although it is its lowest two
modes, namely, the condensate state and the lowest core 10 spatial structures of a condensate and a noncondensate

calized statdLCLS), that play a significant role. ] ]
The spatial profiles of the condensate and noncondensate

densities for several temperatures are shown in Figsahd
1(b), respectively. It is seen from Fig(d that the conden-
sate | ¢(r)|? vanishes and changes quadraticalpropor-

The isolated single quantized vortex is unstable withintional tor?) near the vortex center=0, which is in contrast
certain mean-field approximatioj49,21] in a nonrotating to the linear behaviorproportional tor) in the Gross-
system. When the lowest excitation eigenvalue of the systerRitaevskii theory(8). This unique shape dfp(r)|? reflects
becomes lower than the energy of the condensate, the whotke rounded shape of thegg(r) term in Eq.(7). [This p(r)
calculation based on the assumption that the energy for this depicted in Fig. (b).]
condensate is lowe§l9] is invalidated. This means that the  This feature differs also from the superconducting case
vortex is unstable. where the pair potential changes lineafl®8]. As T in-

In the finiteT calculations shown below the quantized creases, the core radius increases, as seen from the inset. The
vortex becomes stable in the BEC systems confined by aondensate is pushed outward and converted into the non-
harmonic potential above a certain temperature. We analyzeondensate. Thus the total particle number of the condensate

lll. STABLE QUANTIZED VORTEX AT FINITE
TEMPERATURES
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FIG. 3. Wave functionsu(r) (qyg=—1 and q,=0) at T
20 M =200 nK. The radial guantum numbey varies from 1 to 5. Each
P ’ u(r) has nodé) whose number is equal tg, . These states are
= 15 r N . MO localized at the core. The vertical axis is in arbitrary units.
c . - - - . /
S . - * 7 . . . . . . . P
glors o o ¢ This dispersion relation is predicted by PitaevgRidl] in a
= e vt . spatially uniform system with density,,;, except near the
S5t s core within the BA, at the long-wavelength limit as
. . g 7
* 2
O 1 Lay= G <1
= = — = <3
01 2 3 4 5 6 7 8 S(qr P qu) 2m nq g ) (Qqunl )5
(b) a, [27/L] zouni
- (29)

FIG. 2. Dispersion relations of the eigenvalueg at T
=200 nK. (a) Along q,. The solid diamonds are states wigh
=0. The lowest solid diamond at eagl corresponds tg, =1, the

which is called the Kelvin mode, where

second lowest tg, =2, and so on(b) Eigenvalues along,. Only £= fi (30)
—_ H : : : uni—  —-
theq, 1 states are plotted. The solid curve is explained in the rmnumg

text below Eq.(30). The dashed curve denotdSz(Zm)qﬁ.

decreases monotonically @sincreases. The dispersion relation of the corresponding modes wijth

In Fig. b) the spatial variation of the noncondensate= —1 i shown in Fig. &) as the lowest edge. We have
density p(r) is displayed. Reflecting the core structure, thelfi€d to fit this prediction(29) with our result by substituting
noncondensate fraction accumulates at the vortex center. THETOUSNun in &uni of Eq. (30). The solid curve in Fig. @)

core radius grows a3 increases, as seen from Figby, ~ SNOWSNyy=0.Inyeq The fitting is rather satisfactory.
which will be analyzed in more detail shortly. The spatial profiles of the eigenfunctions with=—1

The overall feature of the spatial change of the total den&"® dep.icted in F_ig. 3. There is no rapid spatigl oscillat_ion.in
sity consisting of the condensate and noncondensat&ese .elgenfunctlo_ns correspondlng. to the Frle_del oscillation
|p(r)|2+p(r) is shown in Fig. {c). As T increases, the S€eNn in t_he _Ferml systeni81,32. It is also noticed that a
spatial profile tends to distribute uniformly and the maxi-?'OW oscillation of the condensat_e near the vortex Cz?re seen
mum position of the density from the core also increasesin Several Monte Carlo computatiof3] for superfluid*He
indicating that the effective core radius expands. The totalS absent here. The present weakly interacting case differs
density does not vanish anywhere inside the confined poteffom that in the strongly interacting system in several re-
tial even at the vortex core. It is also interesting to notice theSPECts.
existence of a focal point near the center that does not move
asT changes. C. Vortex stabilization at finite T

o We discuss the origin of vortex stabilization. Let us start
B. Excitation spectra with the particle number densitiég(r)|? (condensateand
In Figs. 2a) and 2b) we display the dispersion relations p(r) (noncondensajén Fig. 1. Itis the eigenstates that com-
of the eigenvalues along, andq,, respectively. The exci- pose the whole system. The wave functigir) with the
tation modes are not symmetric about theaxis because of ~€energyu corresponds to the condensate fraction and the non-
the presence of the circulation. However, at the higher enecondensate densigy(r) is composed of the eigenstates with
gies the distribution of these eigenmodes become symmetrithe eigenvalues and the wave functiensuy(r), andv4(r).
The modes characterized lojy=0 are shown as solid dia- The eigenstate witle,=0 that equalsu corresponds to the
monds in Fig. 2a). The lowest eigenmode gj=—1 isvery ~ condensate.
important in the understanding of the mechanism of vortex The states with the angular momentum indgyx= —1,
stabilization. whose relative motion to the circulating current of the con-
The modes with ¢, ,q,)=(1,—1) and variousy, includ-  densate is at rest in the laboratory frapgg+w in Eq. (17)
ing the LCLS correspond to the so-called Kelvin modeis equal to zer are likely to have the lowest eigenvalue
known in classical vortex. In Fig.(B) we display the disper- among various states. It is the eigenstate(q,,q,.q,)
sion relations of the eigenvalues witjy=—1 alongq,. =(1,—1,0) whose eigenvalue becomes negative and leads to
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FIG. 4. Effective potentiaVx(r) at temperature$ =200, 500, FIG. 5. Eigenvalues of the selected lowest modes as a function
700, and 900 nK. We subtract the chemical potenti&ilom Vggu(r) of T. The number of each line denoteg. All of the lines are
at eactr. eigenvalues withg, =1 andg,=0, except the line labeled<1),

with g=(2,—1,0). Solid linesg,<0; dotted linesg,>0; dashed

line, q,=0. While the dipole mode wittg,=1 is exceptionally
almostT independent and fixed to= 1, coinciding with the trapped
frequency, other modes with,>0 (q,<0) tend to increaséde-
creasgwith increasingT. The eigenvalues with largg, , which are

. . . not shown here, generally increase. This is because these wave
tions in Fig. 3. We can see that the lowest mode functions generally lie at a large radius and the effective potential

=(=1,0,1) is strongly localized at=0. Let us call this 1) there increases with increasifig See the large radius side
state the lowest core localized state. The vortex state igt Fig. 4.

(metgstable as long as the LCLS exists with a positive ei-
genvalue. Now the question is why the energy of the LCLS

the vortex instability. The spatial profiles of the eigenfunc-
tionsq=(1-5,-1,0) are depicted in Fig. 3. We can see that
these states are localized near the care ). Solid dia-
monds atg,=—1 in Fig. 2a) correspond to the wave func-

is positive at finiteT, as shown in Fig. @). This mecha}nism of thé-dependent stabilization is based
We define the effective potential on the PA. It introduces the noncondensate densfty as
an effective potential ignoring the anomalous average),
Ver(1)=V(r)+2g[| 4(r)|?+ p(r)], (31)  which describes the interaction effects between the conden-

sate and the noncondensate. An improvement of the PA to-

whose combination appears in the eigenvalue equati@ns wards this direction has been attempted by Hutchiretoal.
and(10). The eigenvalues of various modes are estimated b§23]-
integratingVe«(r) with each of the wave functions over the  Itis also obvious that large enouda(r) near the center
spatial volume. Of course the LCLS is not an exception. Thds decisive in stabilizing the vortex, irrespective of the origin
shape ofV«(r) near the corer(~0) determines the eigen- coming from eithegp(r) or V(r). The deformation o¥(r)
values of the LCLS. As seen from Fig. ¥,4(r) at the also stabilizes the vortex state. This stabilization mechanism
vortex center is pushed upward Asncreases. This is why depends neither on the PA nor on the interaction between
the LCLS has a positive eigenvalue. Although the vortexo(r) and ¢(r). This deformation ofV(r) is discussed in
stability seems to increases wilh the determination of the Sec. IV and the rest of this section is devoted to the various
stability conditions is a complex problem and is discussed irproperties of thel-stabilized system that has been obtained.
Sec. llID. The increase of .«(r) near the core is caused by
the contribution from the noncondensate). ThusVeq(r), -
and especially the termgp(r) in Eq. (31), works as an D. Stability
effective pinning potential that prevents the vortex from As mentioned before, the determination of the stability
moving outward. Now let us consider why the non- conditions is a complex problem. It is natural to consider the
condensatg(r) has a peak at the core. eigenvalues >0 for the LCLS and large enoug¥i.«(r) at

The noncondensate densjiyr) is composed of the wave r=0 as possible conditions for the stability. What makes the
functionsu(r) anduv(r), as seen in Eq(12). Note that only matter complicated is the relation of these two conditions.
u(r) (gp=-1) andov(r) (gs=1) are nonvanishing at Expressed more explicitly,
=0, as mentioned before. The localizationpgf) at smallr
mainly comes from the LCLS terrpg=(1,—1,0)] in Eq. Ver(0)=guLcLs(0)|*f(sLcLs)
(12). Figure 3 again shows that the(r)|? coefficient of this
term is strongly localized at=0 and Fig. 2a) shows that
the f(&) coefficient has a huge value because the eigenvalue u(gy=-—1)'s and v(gy=1)'s]. (32
¢ is very small. Note thaf(¢) is the Bose distribution func-
tion and lim._,of (¢) = + . The LCLS, whose eigenvalue is
approaching zero from above, itself forms a pinning potentialThe T dependence of the selected lowest modes are dis-
to keep the eigenvalue positive combined with the Bose displayed in Fig. 5. As anticipated from tHedependence of the
tribution function. We can see the wave functions and thdowest mode, which gradually decreases on lowefinghe
eigenvalues in Fig. 7, which displays the local density ofwhole calculation breaks down when this mode becomes
states defined by E@15). This may be helpful to understand negative from above. However, this lowering process of
the dominance of the LCLS ip(r) at smallr. with T will not proceed smoothly because the Bose distribu-

+[other contributions from
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N [arb. unit]

200 400 T6[%?< | 800 1000 radius [ um] E [trap unif]

FIG. 6. T dependences of's for various definitions. Both¢ 1070
(solid line) andgpeak(lower dashed lingare defi_ned in the te_xt. The FIG. 7. Local density of stateN(r,E) with the lower-energy
upper dashed line denotes §,gy. The dotted line labeled; isthe  gige (0<E<7 in trap unitg at T=200 nK. The states distinctively
peak radius of 4(r). localized near the core correspond to the angular momermgym

=—1. The sharp peak on the lefow-energy side is the LCLS.
tion function at smalle could make the pinning part of some too-high peaks around the core are cut at a certain value of
Ver(r) very large. WhenT =0, the effective potential at the N(r E).
center
Gennes theory in their mathematical structures, which is
_ 2 widely used to treat various spatially nonuniform supercon-
VEﬁ(o)_gq (gzl) |Uq(o)| (33 ductors having an interface or a vortgx,32.
We also note that in superconductdi¢r,E) is directly
is not likely to become large enough, although we cannofbserved using scanning tunneling microscfg@ and ana-
exclude its possibility completely. lyzed theoretically within the similar theoretical framework
We 0n|y point out that these prob|ems are open and Sha[|31,32,34 quite SUCCGSSfU”y. The characteristic core radius
not discuss them further in this paper. We failed to determinds estimated as the coherence lengt®.5 um, which is
the self-consistent density profilggr) and|(r)|? for T contrasted with a few angstroms in superflfile. Thus

<200 nK, which is the lowest temperature we can reach. there is a good chance to investigate the detailed core struc-
ture of the present BEC systems.

E. Core radius ) ) )
G. Circulating current density

Figures 1a)—1(c) show that the core radius increasesTas (1) (2) . .
increases. We define here the core radius by the distance The total current density;*(r) +j5™(r) defined in Eq.
from the center wheré max|¢(r)|?]=|4()|%. The T depen- (26) is shown in inset of Fig. 8. The noncondensate contri-
dence of thig is exhibited in Fig. 6. The core radigT) is  butionj{?(r) and itsq, components are depicted in the main
seen to beT-dependent and decrease Bss lowered. We panel of Fig. 8. In the immediate vicinity of the core
defineépea=fi/\2Mnyead, Wheren,e,=max|¢(r)?] is the j$?(r) is governed by thaj,=0 and thegq,=—2 compo-
peak density of the condensate. This resembles the classidagnts. The positivénegativg g,'s give rise to the positive
definition[16] of the coherence length,,; in Eq. (30) for a  (negative contribution toj,(r), except for theq,=—1,
uniform system. The core radiug is almost equal to which has positive contribution. Thei(r)|? term is domi-
1.5,ca as seen in Fig. 6. nant in mosty, of Eq. (28). This is why positive(negative

The total current density{(r)+j{?(r) defined in Eq. dy's give the positive(negativg contribution. Since we are
(26) is shown in inset of Fig. 8. The distance from the vortextreating systems witv=1, the @,+w)/r coefficients of the
center at which the current amplitude takes a maximum i$u(r)|* terms become zero and the(r)|* terms with posi-
another measure of the vortex core radius. This quagfity tive sign become relevant wheyy=—1. This is why the
shown in Fig. 6 also decreases upon lowering

60

0.6 @
F. Local density of states —
(2] /

The local density of stateN(r,E) given by Eq.(15) is °g0'4
shown in Fig. 7. The states witfy=—1 are seen to localize e;o.z '
at the vortex center, giving rise to several prominent peaks in =
the local density of states. g o0 »

These features around the core may be observable and 02 [k {{]6:_2
should be compared with those in vortices in a supercon- ¥
ductor where extensive studies have been compiis]. 0 22 ius [um]S 75
This is particularly true for the localized excitations near a
vortex core studied by Caroét al. [36,37. These core ex- FIG. 8. Noncondensate contributigff’(r) of the particle cur-

citations are now recognized to be decisive in the underrent density a =200 nK. Each component wittp,=0,+1,—2 is
standing of the fundamental properties of the vortex. Theshown separately. The inset shows the total current depgity
Popov theory corresponds to the so-called Bogoliubov—de=j{P(r)+j@(r).
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FIG. 9. Various properties of a vortex system stabilized by the
pinning potential in Eq(34). Vy=5 (trap units)f;=1 um, and  pinning potential.Vy=50 (trap units)ip,=1 um, andT=0 K.
T=0 K. (a) Total particle number densityb) Dispersion relations (a) Total particle number densityb) Dispersion relations of the
of the eigenvalues alongq,. Solid diamonds are eigenvalues with eigenvalues alongq,. Solid diamonds are eigenvalues@f=0.
g,=0. (c) Wave functionsu(r) (q,=1-5, qy=—1, andq,=0). (c) Wave functionau(r) (q,=1-5,q,=—1, andq,=0). The ver-
The vertical axis is in arbitrary units. tical axis is in arbitrary units.

FIG. 10. Various properties of a vortex system stabilized by the

q,=— 1 component gives a positive, not negative, contribu- We have done _self-consstent calpulatlons'l'ato in the
tion. The net result gives a finite contribution to superfluidPresence of the pinning potential using the same method as
flow from the noncondensate. in Sec. lll. The self-consistent solution for th =5 trap
units andro=1 wm and the other parameters, which are the
same as before, is depicted in Fig&)9-9(c). It is seen from
these figures that the vortex is stable because the LCLS is
now all positive, as shown in Fig.(§), allowing the fully

It is now clear that the introduction of a pinning potential self-consistent solution. We note that the eigenfunctifn
at the vortex center stabilizes the quantized vortex even dtg,=1) shown in Fig. @) still has a large amplitude at
T=0. Here we explicitly demonstrate it by a model pinning =0. The condensate is pushed outward because of the pin-
potential described by ning potential and its initial rise at the vortex core is steep
[Fig. 9@]. The noncondensate fraction is vanishingly small
in this example af =0.

In a larger pinning potential\{(;=50 trap units and
in addition to the harmonic potential. This pinning potential =1 wm) exemplified in Fig. 10 the condensate is pushed
may be realized by focusing a laser beam on the vortex cerfarther outward and the vortex center is empty spiddg.
ter. Since we are imposing the periodic boundary conditiorl0(a)]. It resembles a ring-shaped BEC systems that has been
along thez axis, topologically the system is equivalent to a considered theoreticall}21,35. The wave functions of the
toroidal geometry if the system lengthis large enough. statesq=(1-5,-1,0) in Fig. 1Qb) are squeezed at smaill

IV. VORTEX STABILIZATION BY THE PINNING
POTENTIAL AT T=0

292
Vpinnin& r)=Vee r2r (34)
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by the pinning potential. There is no LCLS. This deforma- The condensates(r)|? behaves proportionally & near the
tion of u(r) directly lifts the eigenvalue of the lowest eigen- vortex core and the noncondensate has a peak at the(itpre.
state atg,=—1 in Fig. 10b) to stabilize further the vortex The characteristic length or the core radius is well described
state. The overall distribution of the excitation spectrum isby a formulaf/\2mnye,g, With npe.cbeing the peak density
almost symmetric about thg, axis[Fig. 10b)]. All the cor-  of the condensatdiii) The particle density is nonvanishing
responding eigenfunctions withy= — 1 vanish ar =0 [Fig.  everywhere inside a system even at the core center when a
10(c)], which is contrasted with those in Figs. 3 an@)9 system isT stabilized.(iv) The local density of states exhib-
its large peak structures at the core center for the low-energy
V. CONCLUSION AND DISCUSSION side and the peaks indicate the existence of the LCLS and
. ) " . other core localized states. These characteristics may be di-
~ We have investigated the stability conditions of a vortexyectly observed once the quantized vortex is realized in the
in BEC systems by performing microscopic self-consstentmesem BEC systems.
calculations based on the Popov approximation. It is demon- \ye hope that the vortex state in BEC of an alkali-metal
strated that the BEC systems confined in a harmonic potensiom gas should come true experimentally. If realized, we
tial at finite temperatures sustain the stable vortex. This i%ay have a chance to unify theories of the present dilute
contrasted with the cases in the absence of the pinning pggc systems and the strongly interacting superfliide
tential where th_e same calculation yields_ an ur_1§table Vorte)éystems. We also hope that the precise and detailed analysis
as shown previously19,21. The vortex instability comes  of the vortex core structure should be possible because an
from the negative eigenvalue of the lowest core localized,gyantage here is that the length scale of the core radius is

state. Therefore, physically it is possible to lift this energy by, ,ch larger than those in superflutéie or superconductors.
increasing the effective potential experienced by this quasi-

particle. This can be realized by raisifigor introducing an ACKNOWLEDGMENTS
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