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Schrodinger wave functions in strong periodic potentials with applications to atom optics
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When an atom diffracts in intense standing light, the periodic potential can be too strong for known solutions
of the Schrdinger equation. We present general solutions of Stihger's equation in strong sinusoidal
media, thus generalizing dynamical diffraction theory. The solutions exhibit rich generalizations of the pen-
dellosung phenomendS1050-294{09)01203-2

PACS numbdps): 03.75.Be

I. INTRODUCTION edge of the light beam. By a suitable arrangement, the edge
of the light crystal can be made shdgs we are accustomed
The quantum mechanics of particle propagation in spato with ordinary crystalsor it can be made soft, enabling an
tially periodic media has a rich history going back to theadiabatic penetration of the atom wave into the periodic me-
1920s. A standard example of such a system is the diffracdium. The potential can be modulated in time, thereby open-
tion of particles in crystal latticegl-3]. It exhibits several ing the door to many time-dependent phenomena. Most of
fascinating features of quantum mechanics. Namely, it illusthe listed features are very difficult or impossible to realize
trates the wave nature of the Sctiimger amplitude and re- with ordinary crystals and thereby make the system of the
veals that this amplitude can extend coherently over macraatom wave and light crystal a unique and in a sense superior
scopic distances. These features enable us, for instance, §9stem.
construct matter wave interferometers. The basic matter A significant additional difference between the potential
wave effects were demonstrated long ago for electrons, latefncountered by an atom in a light crystal and the potential
for neutrons, and recently for atoms. While for electrons andgncountered by a neutron in an ordinary crystal is the
neutrons the periodic medium is usually in the form of astrength As we shall see below, the crucial dimensionless
crystal lattice, for atoms the periodic medium is often real-parameter in Bragg diffraction i, the ratio of the height of
ized in the form of a standing light wayé]. It might seem  the potential peaks to the transverge., perpendicular to
that such a change in experimental realization does nahe lattice plangkinetic energy of the particle. For Bragg
present much that is fundamentally new and does not call fogiffracting neutronsy=10"°; for Bragg diffracting atoms in
a new theoretical analysis: One simply applies to the atomfght crystals Eq(1) reveals thay can be adjusted continu-
the relevant solutions of the Scluiager equation previously ously from zero to 10 or more by simply using brighter light.
developed for electrons and/or neutrons. However, we findhe existing solutions of Schadinger’s equation used to de-
that the potential that a standing light wave presents to agcribe neutron diffraction in crystals are valid only fqr
atom is sufficiently different in strength and other significant<1 and hence, in general, are inapplicable to atoms in light.
ways that the needed solutions do not exist in the literature. |n the present paper we address theoretically the problem
Let us take a look at the potential experienced by an atongf strong potentials. To simplify the discussion, we restrict

in a standing light wavés] our attention to time-stationary real potentials with a simple
- sinusioidal spatial profilée.g., a standing off-resonance light
V(x,2)= d°E*(x,2) (1) wave for atomps The analysis of time-dependent and com-
' h(A+iyl2)’ plex potentials, for both small and largg will be given

elsewhere. To deal with the largpvalues, we go beyond the
wherex andz are spatial coordinates on the scattering planawo-beam “dynamical” diffraction long employed in neu-
of the atom,E(x,z) is the electric field intensityd is the  tron (and x-ray diffraction [6—8] and reformulate the dif-
dipole matrix element of the atom, is the detuning between fraction theory in terms of Mathieu functiori8,9,10. The
the light and the atomic transition, angis the damping Mathieu function approach acknowledges the multiple-beam
constant of the atom for the unobserved levels. We considarature of diffraction right from the beginning and permits a
an idealized scheme of a three-level atom. The atom has ttgystematic treatment of the problem for arbitrary power of
ground and excited levels. The third level is the decay levethe light beam.
of the excited state. Due to the structure of Eb, we can The paper is organized as follows. In Sec. Il we review, as
prepare the medium in various forms. We can make the pobackground, the smafj-wave functions long employed in
tential V(x,z) real, imaginary, or generally complex by tun- dynamical diffraction theory. In Sec. Il we show that sepa-
ing the light frequency relative to the transition frequency ofration of the two-dimensional Schiinger equation for arbi-
the atom. We can tailor the periodic medium into an almostrary g leads rigorously to a one-dimensional Mathieu equa-
arbitrary geometric configuration with the proper optics. As ation and we note the physical meaning of the dimensionless
special example of geometry we mention the problem of thgparameters appearing in the Mathieu equation. In Sec. IV we
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z Since Vy and V; are zero forz<0 and constant for

>0, the medium has an abrupt or sharp edge. To describe a
gentle or soft-edged medium one would have toMgtand

V, be functions ofz. We will not consider soft edges here.
Also note that for atoms in standing ligttuilt by an ideal
single wave, we have from Eq(1)

|

Spacing d

Medium

X Vo=2V;. (4

Entrance surface —j Il. BACKGROUND

FIG. 1. Stagdthe coordinates, the position of the medium, and  As background for the largg-wave functions, let us re-
the medium’s entrance surfaze- 0) and orientation and spaciny  call the two smallg wave functions? ™ and ¥~ used as
of the planes of the periodic potential. base states in dynamical diffraction. These each have the

factored form

consider solutions known as Mathieu functions of integer .
order, note that physically these solutions apply when a par- PE(x,z,t)= ¢~ (x)e'Kz 2o BV (5
ticle is incident on the medium at a Bragg angle, and show
that for smallg these wave functions reduce to the well- but, as indicated, theik-axis wave functionsy*(x) and
known on-Bragg dynamical diffraction solutions. In Sec. V ¢~ (x) and theirz-axis wave number&; andK, are dis-
we present the wave functions for variogiwalues and illu-  tinct. Specifically, the states, normalized over one potential
mination conditions and note that the wave functions imply aperiodd, are
rich generalization of the elementary pendsling phenom-
ena of dynamical diffraction theory. In Sec. VI we consider .
the asymptotic behavior of the solutions for lagdind that Y (x)= (E
the wave functions become concentrated in the valleys of the
medium, and note that, in this limit, the probability structure gng theirz-axis wave numbers are
becomes, to some extent, independent of the incident angle
(channeling. Section VII discusses some of the properties of .
the far field emerging from the medium after a certain depth K;=
is traversed by the wave. In Sec. VIII we describe the work

still to be done on this topic: soft edges that admit adiabatiq\Iote that for positiveV, andV, and forV,;<V, both K
0 1 1 0 z

entry into the medium, off-Bragg illumination, imaginary - o . .
and complex potentials, and time-dependent potentials. andKZ are less than the incidekj given bY Eq(3), i.e., _the
particle must los& momentum climbing into the positive-

Figure 1 sets the stage for the discussion. The plane _ . . +
g g P potential medium. Note also that while thg=(x) wave

=0 is the entrance surface of the medium; the regierd . ) .

has zero potential and the regiam 0 is the periodic me- functions are each an equal-Xvelght superposition of left- and

dium with a potential given by rlght-runnlng'll_%ragg Waves://'(x) is a cosine with maxi-
mum probability for the particle to be at the peaks of the

potential(2) and ¢~ (x) is a sine with maximum probability

at the valleys of the potential. Consequently,(x) experi-

o _ ences more potential thag™ (x), which explains why

d being the spacing of the potential peaks, &gcandV, are % (X). In fact, it has been note@] that the valueX; and
constants. Thus the surfaces of constant potential are plangs- given in Eq.(7) can be derived from the general energy
perpendicular to both the plane of the figure and the entranc@énstraint
surface, i.e., a situation called the Laue case in crystal dif-
fraction. In addition to satisfying Schdinger's equation G\2]v2
within the potential of Eq(2), the wave function we seek K;= E) } , (8)
where(V)~ is the expectation value of the potent{@) for
the statey™(x).
The two complete base statdqx,z,t) of Eq. (6) are a

must also satisfy boundary conditions at the entrance surface.
sufficient basis to match at the boundary 0 any perfect

We will assume that the incident particle has massnd
energyE and that the incident wave function is simply a

Bragg illumination of the medium. By perfect Bragg illumi-
211/2 nation of the medium we mean a plane wave wiheither
e (5]

1/2 ) )
(ellezi eflGx/Z) (6)

, [2m) 21112
K=\ 72 (Vo—Vl)_(f - 0

V(X)=Vy+ 2V, cosGx. (2

o

plane wave whose wave vector has magnitkdées on the

x-z plane, and has a negatixesomponent at or very close to
G (3) + G/2 or — G/2 or an arbitrary superposition of both of these
2 waves. For example, if the illumination is the single Bragg

—G/2. Thez component of the incident wave vector is then

plane wave mentioned above, which approaches the entrance
In short, the plane-wave illumination in Fig. 1 is from the surface from the lower right in Fig. 1 witk momentum
lower right at the Bragg angle. —#G/2, then the resulting wave function in the medium is
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FIG. 3. Depth dependence of the intensity for the left going

(thick line) and right goingthin line) waves. The two intensities are

250
sinusoidal and mutually out of phase hy

tion in the potential2), but as we shall see they are approxi-
mate solutions when the potentid} is small compared to
X the x-axis kinetic energy:%(G/2)?/2m of a particle obeying
the first-order Bragg condition. For use below let us intro-

FIG. 2. Probability density plof¥ 2 of the in-medi : . . -
robability density plof¥ (x,2)|" of the in-medium duce the dimensionless ratio of these energies as the param-

field for g=0.1. The horizontal axis covers two potential periods i
with potential hills located in the center and on the edges. Théera.
vertical axis is the deptl. The white(black) areas indicate a sig-

nificant increasédecreaskof the initial constant probability distri- q= 8mV, (11)

bution, while the thin gray areas indicate as almost constant prob- h2G2°

ability.

L ll. FROM SCHRO DINGER TO MATHIEU
WV iotal X, Z, 1) = ‘E[‘I’Jr(X,Z,t)—‘I’_(X,Z,t)], 9 To find the base wave functions for largeconsider the
two-dimensional Schiinger equation in the potentié),

the minus sign removing the unwanted right-going waves at PNEER T

z=0 and thereby matching the incident left-going wave. Be- i% - + 2—V2\I}—V0\I} —2V,cogGX)¥=0. (12
m

cause of the different values &f; andK, , a beating effect

occurs with increasing depthin the medium so that, even
though the particle definitely had negativanomentum at

z=0, it will definitely have positive« momentum at a depth W (x,2,t) = i(x)eiKZe IEVA (13)
A/2, where

We seek factored base states just as in(Bg.i.e.,

B i1 except that for large, #(x) andK, are no longer given by
A=2m(K, —K;) ™% (10) Egs.(6) and(7) and, as we shall see, in general, more than
two base states will be needed at laggelnsertion of Eq.
(13) into Eqg.(12) and introduction of a dimensionless coor-
dinateGx/2—x leads to the equation

and will return to negative-motion atA, etc. The depth is
known as the pendelming length and the oscillations of the
direction of propagation are known as pendsling oscilla-

tions. Figure 2 shows the probability distribution 42y
| W om(X,Z,t) |2 of the total state over two potential periods in — +[a—2qcog2x)]=0 (14
the x direction, i.e., there is a potential peak at the center of x?

the horizontal axis and one at each edge of the figure and ] ) . .
over 1 pendellsung depths\ in the z direction (A = 1250 for the x-axis wave function, where the new dimensionless
of the arbitrary vertical units As the particle enters a  Parameter is defined as

=0 going left, the intensity is uniform across the entrance

surface. In the medium the amplitude splits into two waves 4

having different wave numbergee Fig. 3. Due to their G2

mutual beating, the probability density piles up on the left-

hand side of each channel z&A/4 and then it is uniform Equation(14) is the standard form of the Mathieu equation

again at deptk\/2. However, now the particle is propagating and its solutions are known as Mathieu functions.

to the upper right, i.e., it has been turned by Bragg diffrac- In Sec. IV we consider integer-order Mathieu functions

tion. The stateg)™ andy~ are called, respectively/” and  since they are the base states needed to develop wave func-

Y* by x-ray crystal diffractionists an¢t, and ¢, by neutron  tions generated by perfect Bragg illumination. They deliver a

crystal diffractionists. sufficient set of functions so that at the entrance we can
The base state® = out of which the total state of E9) perfectly match any incoming Bragg illumination. Before

is constructed are not exact solutions of Sdimger's equa- considering these functions let us first emphasize the wave-

(E—Vo)—KZ|. (15)

m
2
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mechanical significance of the Mathieu parameteiCon- *
sider a periodic Schinger probability amplitudey that  cey,.1(x,q)= >, A2V Y (q)cog (2r+1)x] [asms1(a)],
obeys the Mathieu equation. Multiply E¢l4) by ¢* and r=0
integrate over whatever period has been chosen for normal- (19
ization, say,m. (Note that in the dimensionless coordinate, "
the period of the potential is; the base state functions in _ n+2 .
Sec. IV are all periodic over either or 2, but their squares S%+2(X’Q)_zo BL 52 (@)sin (2r +2)x]  [ban2(a)].
are periodic overr, like the potentia). Use the normalization (20)
and solve fora to obtain
As anticipated in Sec. lll, each integer-order Mathieu func-
- T d%y tion is a solution of the Mathieu equatiqd4) only if the
azqu y* cos{2x)z//dx—f z,/;*—zdx. (16 parametera has the appropriate characteristic value. The
0 0 dx standard notation for these values is shown in the square
brackets next to the Fourier expansion of each fundtlahm—
The first term is the expectation value of the sinusoidal part20). As indicated, both the expansion coefficients and the
of the potential and the second terimcluding the minus  characteristic values agdependent.
sign) is the expectation value of the kinetic energy in the  For sufficiently smallq the Fourier coefficients can be

direction, both terms in a dimensionless format. Equatiorbxpressed as power Seriesanor Cq(X,q) and S@(X,q)
(16) implies that any specifig that obeys Eq(14) must be  gne finds[9]

accompanied by a specific or characteristic value of the pa-

rametera. SincekK, is the only free parameter in E(L5) q

defininga (G, E, andV, are assumed given and fixe@gach ce(X,q) = Ccosx— gCOS x+q?
specific solution will be associated with a specific value of

K. In short, the detailed shape of araxis base state will X[ 135 COS 5X— & c0s X — 15 cosx]+ O(g3),
fix the associated-axis momentum, the same behavior seen
earlier in Eq.(8) for the smallg base states. Equating Eqgs. (21)

(15) and (16) and solving forK,, one obtains the generali-
zation of Eq.(8) for base states of arbitraxy.

Two comments are in order about this section. First, it
should be noted that the argument given here, from the
Schralinger equation12) through Eqgs.(15) and (16) to a X [ 155 Sin 5x+ & sin 3x— 135 sinx]+ O(q®).
generalization of Eq(8), constitutes a rigorous derivation of 22)
a previous conjecturf8] that the longitudinal wave number

is determined by the transverse wave function via energyt, seroth order irg, cey(x,q) is cosx and sg(x) is sinx and
expectation values. However, the current argument does NBence we recover 7the dy,namical diffraction base steitéx)
immediately yield a related conjectuf8] that the correct of Eq. (6), but here unnormalized

transverse wave function yields an extremum for the " g o ficiently smalk the characteristic constants can be

potential-energy expectation value. Second, curiousl)é ressed as power series mfEor ¢ and s
enough for largeE andq~1, the pendellssung length is of tr:((fse are resp?e(;lt\gve[ﬁ] 1es® a(x.q) &(d.)

the order of the Talbot distan¢é1].

sg(X,q) =sinx— gsin 3x+0?

2 3

9~ q
IV. MATHIEU FUNCTIONS OF INTEGER ORDER a(@=1+a-5 — g2+ (23
For each integern=0 their exist two integer-order s 3
Mathieu functions: one even xdenoted cgx,q) and one by(q)=1—q— q_+ q_+_” (24)
odd inx denoted sg€x,q). Each is real and has periatior ! 8 64 '

27. The even[odd] one cg (x,q) [sg(x,q)] can be ex-
panded as a Fourier cosipging| expansion with real coef- To first order ing, when Eq.(15) for aand Eq.(11) for q are
ficients and with the lead term being cog(sin(x)]. There inserted into Eq(23), the expression of Eq7) for K; is
is also a zeroth-order Mathieu functionye,q) that is even recovered. Similarly, Eq(24) to first order inq yields the
and periodic and has a lead Fourier term of a constant folvalue of K, . Thus the complete dynamical diffraction
lowed by cos(R). In all the Fourier expansions of the integer theory is contained in two Mathieu functions to zeroth order
Mathieu functions only alternate terms appgaj in g and in their characteristic values to first orderin
For large g neither the expansion coefficients nor the
* characteristic values can be determined from such power se-
cen(x,a)= 2, AZV(q)cog2rx) [ax(a)], (17  ries and so one has to resort to standard numerical techniques
r=0 [9], which we will do shortly. These numerical techniques
adopt the normalization for the Mathieu functions

sen+1(6a) = 2 BELT(@si(2r +1)x] - [bznea(@)],

1 (2n 1 (2n
(18 EJO Ceﬁ(q’X)ZEJo sfax=1 @
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2 the characteristic value is just thxeaxis kinetic energy and,
since only the lead term in the functions, i.e., cod(or
sin(nx), is present atj= 0, the(dimensionlesskinetic energy

is simply n2. Second, with increasing the characteristic
value for the spatially odd function stays below that for the
spatially even function of the same order. This is because the
spatially even function “sees” the potential more.

bs (ses)

25

G4 (C€4)

b (se0) Third, with g sufficiently in excess of 1, the characteristic
16 1 — :
values of cg and sg (and cg and seg, etc) asymptotically
s (ces) converge, indicating that these two functions tend toward the
9 same energy expectation value. Since for laggle poten-
4 o (o) by (se3) tial energy dominates the kinetic, the convergence of these

characteristic values actually indicates that the two functions
have the same expectation value for the potential, i.e., the
squares of the functions must have the same shape. The
graphs of cg and se at q=24 confirm this and a similar
convergence can be seen in the pairs of functions in Fig. 6.
Note that for the higher-order pairs the convergence does not
fully develop until largerg values are achieved because of
their greater kinetic energy.
Fourth, while the functions of even orde0,2,4,... have
period 7 and those of odd order=1,3,5,... have period2
the squares of all the functions have perindthe same as
the potential. Fifth, for all the functions there is a general
FIG. 4. Characteristic values for the lowest-order Mathieu func-tendency, with increasing, for the probability density to be
tions as a function of}. pushed off the potential peaks and into the valleys, i.e., co-
herent quantum-mechanical channeling. To see this in the
The normalization condition can be rewritten using the ex-graphs, it is important to remember that the period of the
pansion coefficients as potential is7, in the dimensionless coordinate, and thus the
domain of the graphs is two periods of the potential, i.e.,
(22 ” (2ma2_ there is a potential peak at th_e_ center_and at each edge _of the
2[A ] 21 [Az1°=1, (26) graph. Finally, as the probability density gets more localized
"~ in the valleys with increasing, higher-order components are
required in the Fourier expansions of the functions.

a; (cer)

2n+1 2n+1 2n+2
2, [BETLVTP= 2 [AGYY)P= 2, (B85S 2= 1.

2
@0 The Mathieu functions of integer order will now be used
The factor 2 for the lead coefficient in the,geMathieu to develop the total wave functioW (x,z) produced in a
functions comes from the constant term that is present imedium of arbitraryg by an atom incident under Bragg con-
those expansions. Because of this the lowest Mathieu funditions. Under Bragg conditions this functioh at the en-
tion cey(q,x) is positive everywhere. It is important to note trance surface will have the same periads the potential.
that the Mathieu functions for a givemnare orthogonal: For a givenq the corresponding integer-order Mathieu func-
tions are mutually orthogonal and form a complete set for
2m expanding any function that shares the periodicity of the me-
fo Sen(d.x)ce(q,x) =0, (28 gium. Thus the incident function can be decomposed

V. TOTAL WAVE FUNCTION

1 (2n 1 (2n =
;f sen(q,X)S%(q,x)=—f CEn(,X)C&,(T,X) = S V(0= [ence( ) +drsa(@0]. (30
0 m™Jo

29 \where the expansion coefficients are

The techniques for calculating both the expansion coeffi- 1 (2
cients and the characteristic values at arbitrgnare de- cnz—f ce,(q,X)¥(x,0)dx, (3D
scribed in detail if9] and are now available on commercial mJo
mathematical software. Figure 4 shows the characteristic val- 1 2
ues associated with the lowest-order Mathieu functions as a d f se(q,X)¥(x,0)dx. 32)

function of q. Figures 5 and 6 show the lowest-order func- "o

tions over two potential periods and for variogsvalues.

Several features deserve comments. First, at @géhe char-  Since each Mathieu function is linked to a specific charac-
acteristic value for both the spatially even and spatially odderistic constang,[b,] and hence, via Eq15), to a specific
functions of orden is n2. This is because, with no potential, wave numbekK,, the complete in-medium functiod (x,z)
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FIG. 5. Mathieu functions ¢g(left) and seg (right) over two periods of the potential ang=0.1, 1, 3, 6, 12, 24, witly increasing from
bottom to top. Note that a potential hill is on each of the edges and in the center.

is obtained by multiplying each Mathieu function by the ap-where from Eq.(15)
propriatez-dependent exponential. Thus the total wave func-
tion in the medium is

S Ki= \/z—m(E—V - o (34)
W(x,2)= 2 cqoe(d,X)exp(iKiz) 17 NV 32 o)~ 7 (),

©

n 2m G?
+n§=‘,0 dnse&(q,x)exp(iK 32), (33 K)= \/?(E—VO)— — ba(@). (35
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FIG. 6. Mathieu functions ge(left) and se (right) over two periods of the potential ang=0.1, 1, 3, 6, 12, 24, witly increasing from
bottom to top. Note that a potential hill is on each of the edges and in the center.

Note that, although each term factors into functions@ahd  Bragg incident wave discussed in Secs. | and Il. The wave's

z, the complete wave function does not factor, just as in thex dependence in the dimensionless coordinate is simply

smallqg solution (9). To prepare a factorizable in-medium

wave function, i.e., a single Mathieu function times a single T (x,0)=exp(—ix)=cosx—i sinx. (36)

z-axis exponential, one would need to illuminate the entrance

surface with a coherent superposition of plane wavedigure 7 displays, for increasing-values, the probability

exp(xix), exp(2ix), exp(3ix),..., with appropriate ampli- densityW(x,z) of the in-medium wave functio(B83) for this

tudes and phases. illumination. The given plots call for several comments.
Consider as the first example the left-going and perfecFirst, for smallq the typical pattern of Bragg diffraction can
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FIG. 7. In-medium density plots for left-going Bragg illumina-

tion and increasing;. The plots are paired from top to bottogn FIG. 8. In-medium density plots for cosine illumination for in-
={0.1,6}, {1, 12, and{3, 24. creasingq. The plots are paired from top to bottoq={0.1,6},

{1, 12, and{3, 24.

be seen. When increases the frequencies of the oscillationSuch standing wave states have actually been produced at the
become larger, i.e., the pendallmg length becomes shorter third grating of existing interferometerfl2]. Figure 8
(note the change in thescalg. Second, the probability den- shows, for increasing, the in-medium probability density
sity becomes more modulated due to the appearance of afbr the cosine illumination. Similarly, Fig. 9 displays the
ditional frequencies. This is due to the excitation of addi-probability density for sine illumination. In both cases we
tional in-medium statefapart form the lowest géq,x) and  deal with symmetric initial condition®f the initial probabil-
sa(qg,x)]. Formally speaking, the overlap between the inci-ity density with respect to thez axes(at the pointx=0).

dent wave and the lowest state is not sufficient to guarante€his symmetry is preserved for all the in-medium density
satisfaction of the boundary condition at the entrance surplots irrespective ofg. In the smallg case both incident
face. Third, the plots become more localized in the valleywaves excite only one of the in-medium states and we expect
This is a direct consequence to the properties of the inno modulation of the probability density as the wave pen-
medium states discussed in Sec. IV. Fourth, in the case d@trates the medium, i.e., no pendsliog behavior. With an
large g the distribution becomes almost symmetrical alongincrease ofg the scales inz change, i.e., the frequencies
the x axis about the minimum of the potential. The initial increase again.

asymmetric illumination is remembered only as a slight zig- For the incident cosine wave the probability density is
zag motion in the valley. pushed off the potential hills into the valleys @éncreases.

As a second example consider two-wave illumination. IfThere is, however, always a zero probability line along the
the two waves have zero phase at the potential peaks th@enter of the valley due to the structure of the odd cosinelike
gives Mathieu functions. For largeg the probability is concentrated

in peaks. We will focus on this effect in Sec. VI.

W(x,0) = 3[exp(ix) +exp( —ix)]= cosx. (37) From the beginning the incident sine wave is already
quite localized in the valleys and hence the modulation with
increasingg does not go through such a dramatic change as
the cosine wave. Formally, this is to be explained by the
overlap with the in-medium states. The spread over in-
medium states for a sine wave is weaker than for the cosine
W (x,0)= i.[exp(ix)—exp(—ix)]zsinx. (3g) wave and hence a less spectacular modulation has to be ex-
2i pected.

However, if the two waves are in phase at the potential val
leys then the incident field is
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FIG. 9. In-medium density plots for sine illumination for in- <
creasinggy. The plots are paired from top to bottag {0.1, 6},{1,
12}, and{3, 24. FIG. 10. In-medium density plots for normal illumination for
increasingg, with q=6, 12, 24 from top to bottom.
Finally, as the last example, consider a single plane-wave
incident normal to the entrance face of the medium. Then the

unnormalized incident function is

15 15

¥ (x,0)=const. (39
125 12 .5
Figure 10 shows, for increasingy the in-medium probability 10 10
density. As in the previous case, the in-medium probability , - 75
density is strictly symmetric about the center of the valley. 5 .
Even though the incident wave is spread evenly over the
whole period of the potential, with increasingthe probabil- 23 25
ity in the medlum is again chused into the valley. A fl_thher St i il:: 5k o S B L L5 o E
increase inq leads to additional structures, which will be
considered in the next section.
15 15
VI. LARGE- q LIMIT 12.5 12.5
In Sec. IV we pointed out that, for largg adjacent co- 1o 10
sinelike and sinelike base states acquire the same shppe * 7-5 o 45
to a sign; that this shared shape has a distinctive number of 5 5
peaks(dependent on the order of the functipand that the 2.5 2.5
peaks are located in the valley of the potent@ianneling. § o
In addition, as the functions converge in shape with increas- 0051152253 00.511.522.53
ing shape, their characteristic constants and hence their assc X X

ciatedK, wave numbers also converge. As a consequence of

th lariti in the i di FIG. 11. In-medium density plots for the highregime @
€se€ convergences, some reguiarties in he in-medium 50). The plots are paired from tdpormal, sine illuminatiopto

pmb?‘*?”“y densities should deve_lop. Figure. 11 Sh_OWS ,th%ottom(cosine, left-going Bragg illuminationand each spans only
densities atj=>50 for the four previously considered illumi- o period of the potential.
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nations. Along the bottom of each valley, there is a sequence
of dominant peaks equally spaced in depth and these peaks ; ¢
are interconnected via a net of additional but less pronounced
concentrations of probability. One might attempt to under- -0.5
stand some of these patterns via classical mechanics. How- -1
ever, in this section we will give the simple wave mechanics
behind these patterns.

Let us choose as an example the normal incidence illumi-
nation. For normal incidence the wave function can be writ-
ten as the sum of only even, i.e.,ge Mathieu functions and
hence the probability density as

-0.5
-1
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Ty o

-1
FIG. 12. Mathieu functions gg n=0-7 over one period of the

1

0.5

-0.5
-1

oo 2
¥ (x,2)|%= go CanCeon(0,X)eXHiK2"2)| .

(40 potential andy=50. The valuen increases from top to bottom and
from left to right. Note that a potential hill is at each of the edges
This equation can be rewritten as and a valley is in the center.
2 cosine shape. However, for a giventhe high-order func-
|\P(X’Z)|2:nzo CanCEn(0:X) tions are ngt needed as their ogerﬁin; with gche incident wave
is negligible; we find that aboutlq Mathieu functions are
- needed to match the incident wave. The functiefx) is a
+2r§o C2nComCem(4,X)Cen(q,X) weighted sum of the squared Mathieu functions and is shown
in Fig. 13 for all the mentioned illuminations. The functions
xco{(Ki“— Kim)z] (41) F(x) can be understood as the complete probability density

averaged over large For normal incidence it shows a cen-
tral peak and symmetrically spaced side peaks coming from
the higher-order Mathieu functions. The complete pattern of

| W (x,2)|? comes from the additionatdependent sum in Eq.
(42). At the entrance £=0) the probability distribution is
constant and equals one. As we proceed into the medium the

or

o)

W (x,2)|>=F(x)+ 220 CanCamC8m(d,X)Cosn(,X)

X cog (K2"—K2M)z], (42)

where thez-independent part was summed into the function
F(x). Forg=50, the expansion coefficients,, are given in
Table | for reference. To understand the structure of the
probability distribution as shown in Fig. 11 we first look at
the form of the Mathieu functions for largg In Sec. IV
[Egs.(21) and(22)] we gave the unnormalized expansion for
the lowest Mathieu functions. In general, the leading terms |
are always cosX) and sin@X) (n is the order of the Mathieu  o.
function) and the size of the remainder depends on the value8~
of g andn. Whenq increases the lower-order functions de- o.
part significantly from the cosinelike or sinelike behavior. In 9-
Fig. 12 we show the first eight even-order,géviathieu
functions forg=50. The lower-order functions are nonzero
only in the middle of the plotted interval, i.e., in the region
corresponding to the valley of the medium. The higher-order
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FIG. 13. Plots of the functiorr(x) for the four illuminations
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distribution is modulated. The modulation is controlled by peaks between the two dominant peaks. The additional fine
the phases defined by the product of the depthnd the structure can be explained via similar arguments.

wave-number differenceé2™—K2". In this analysis we assumed that the differences of the
For largeq the characteristic constan#s(q),b,(q) can  separation constants are exactly commensurate. However,
be approximated 9] this assumption is only approximately valid; the wave num-
bers are definitely incommensurate and hence patterns will
an(q)=~—2q+(8n+2) \/a (43 be smeared out as we go deeper. However, with an additional
increase ofj we should expect the appearance of additional
asn+1(0)~—2q+(8n+6)./q, (44)  peaks and also that the resolution of the peaks improves.
ban+1(9)~—2q+(8n+2)a, (45) VIl. OUTGOING PLANE-WAVE INTENSITIES
Bans (q)~ — 20+ (8n+6)q (46) A directly measurable quantity in Bragg diffraction ex-
n .

periments is the relative intensity distribution of the various
From these relations we infer that the distance between thUtgoing plane waves. After traversing a certain depth in the
lowest levels becomes an integer multiple of the basic disedium the various plane waves are released at the back exit
tance 8/q, surface and, due to their diverging momenta, the various
plane waves will spatially separate at a sufficient distance
Aom(q) — asn(9) ~ (M—n)8T. (47)  from the exit surface. The probability of releasing the com-
ponent expfinx) at a deptte in the medium is given by
In our present case the basic frequency is associated with

the differencek?—K? as determined by the lowest charac- A< - -
teristic valuesa, anda, (which are both negative for large P(n)=3 mZ:O Cm(AAR () exdiK1(g)z]
g). Therefore, the first significant change should come at a
depthz, where o 2
= 2 du(@AM(@exdiK(a)z]| , (53
(KO—K2)z=, (48) m=0
which can be rewritten in the form ”
P(—m=% 2 cn(@A™(@)exdiKT(q)z]
877\/E \/ﬁ 49) m=0
2T ay (@) —ag(q) RGZ" - 2
A4 2l + 3 du@AM(@extiki)2] (54

At this depth the significant terms to be addedrix) are

(n=0) - '
where ¢c,(q) and d,(q) are coefficients defined by the

— ConCona 2C&N(X,q) CM4 2(X, ) . (500  boundary condition, i.e., the expansion coefficients in Eq.
(30. AM(q),B{M(q) are the overlap coefficients between
These pairs of functions gg,ce,,. » have a peak at/2 but  the base states and the exponentials £¥pf), i.e., the fou-
with opposite sign, so they add to the central peak(©f) as  rier coefficients. For the probabilities the normalization con-
we have a minus sign in front of the term coming from thedition holds
phase. The side peaks come with the same sign and have to

be subtracted from the functioR(x). In addition to these *
terms, we must add the combinations ; [P(n)+P(—=n)]=1. (55)
C2nC2n+4C82n(X,C])CeZn+4(X,CI), (51)

The intensities of the components vary with changing
as they have an accumulated phasemfQther terms can be and increasing depth. We plot two samples for the compo-
neglected due to the small value of their expansion coeffinent intensities in Fig. 14 and two more in Fig. 15. Figure 14
cients. As a consequence of the periodicity, we expect anis for normal incidence and Fig. 15 is for the left-going plane
other dominant peak after an additional accumulated 2 Wave impinging at a Bragg angle. In the case of normal
shift. In this way we are able to explain the appearance of thécidence only one se®(2n) is displayed due to the sym-

dominant peaks and their periodicity. metry P(2n) =P(—2n).
The next significant phase change occurs at For very smallg the normal incoming wave has a large
overlap only with the zeroth-order base state function and
(K9-K2)z=27. (52  hence the intensity(0) is almost unity at all depths. For

increasedy additional base states are excited and as a con-
The central peaks of the Mathieu functionsy(ceq) and  sequence additional diffraction orders appear. As a rule of
ce(x,q) have opposite signs and have to be subtracted fronthumb we have found that for a giverabout+/q orders will
F(x). The two side peaks of ¢ex,q) have the same sign as be significantly excited. For higlq we see an interesting
ce(g,x) and are added t&(x). Including also the other behavior. The incoming zeroth-order component excites a
combinations of terms, we explain the line of four minor sequence of peaks in the higher orders and is at a certain
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14 45 (b) FIG. 15. (a) Intensities ofP(2n+1) for the on Bragg incident

N o wave andg=12. The corresponding in-medium probability density
FIG. 14. (@) Intensities ofP(2n) for a normal incident wave and  is given in the right center plot of Fig. 7. The dominant peaks for

g=12. The corresponding in-medium probability density is giventhe orders-1 and+1 are the remains of the original pendsiimg
in the center plot of Fig. 10. Due to the symmetry of the diffraction from Fig. 2. (b) Intensities ofP(2n+ 1) for gq=>50.

orders, only the positive orders are displayed. Higher-order diffrac-

tion components oscillate less frequenily) Intensities ofP(2n)  come significantly different from zero always for a larger
for a normal incident wave ang=50. depth than the lower orders. Third, the first few oscillations
. . of the initially excited order are copie@vith a shifj by the
;jhepth exhautsted. Ht?lwever, at a greater depth it revives a gher-order terms. Fourth, the period of the oscillations of
€n generates another sequence. the higher-order intensities is longer than for the lower or-

. In the case_of Bragg iIIum_ination_and a smalhe in.com- ._ders. This behavior can be understood by looking at the form
ing wave excites only two in-medium base states: cosine Egs. (53 and (54)

and sine states associated with different wave numbégs

X , " Finally, we should mention also that for largesymmet-
The outgoing plane-wave intensities then follow the equa

Tic pairs of higher-order wave@.e., n and —n) start to os-

tions cillate in phase. This is in contrast with the lowest pairs of
1 1 1 symmetric waves, which oscillate with a phase shiftmé2
P(=1)=3{1+cod(Ki—K3)z]} (56 (oall Fig, 3.
and

VIIl. CONCLUSIONS
P(1)=1-P(-1)=3{1-cod(Ki-K3)z]}. (57

The base states introduced in Sec. IV and the total wave
These two functions were shown above in Fig. 3. Wigen functions found in Sec. V solve the problem posed in the
increases the total intensity spreads over several orders. Evémroduction: Find the Schdinger wave function generated
though the structures become more involved, several typicah a medium with strong sinusoidal potential when the me-
features can be observed. First, with increasing order thdium has a sharp boundary and is illuminated by a perfect
maximum intensity decreases. Second, the higher orders bBragg plane wave or normally incident wave of definite
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energy. The wave functions are built by superposition oflie in the so-called stable regions of the characteristic value
products of integer-order Mathieu functionsxnand com- chart of Fig. 4. Second, the sharp-edged boundary may not
plex exponentials ire with wave numbers characteristic of apply. In general, a soft-edged boundary calls for a
each Mathieu function. Each term in the superposition is @-dependenty. Third, if the detuning of the light is small
rigorous solution of the Schdinger equation in the periodic (or zerg, the potential is complegor imaginary and hence
medium and the superpositions rigorously match the incidenat least partially absorbingl3]. Mathieu functions do exist
plane wave at the boundary. When the potential is weak théor complexq [10]. Fourth, the potential can be made time
wave functions reduce to the familiar perfect Bragg wavedependenf14]. Theoretical consideration of these situations
functions of dynamical diffraction theory. Using these func-will be presented elsewhere. However, it seems clear that in
tions we are able to predict the behavior of the matter wavehese extensions the products of Mathieu functions and char-
in the medium and the intensities of the various plane waveacteristic exponentials inwill play a central role since these

released after depthin the medium. are the base states in a sinusoidal medium.
Several extensions are called for. First, in current experi-
ments with atoms impinging on standing light, the incident ACKNOWLEDGMENTS
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