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Schrödinger wave functions in strong periodic potentials with applications to atom optics
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When an atom diffracts in intense standing light, the periodic potential can be too strong for known solutions
of the Schro¨dinger equation. We present general solutions of Schro¨dinger’s equation in strong sinusoidal
media, thus generalizing dynamical diffraction theory. The solutions exhibit rich generalizations of the pen-
dellösung phenomena.@S1050-2947~99!01203-2#

PACS number~s!: 03.75.Be
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I. INTRODUCTION

The quantum mechanics of particle propagation in s
tially periodic media has a rich history going back to t
1920s. A standard example of such a system is the diff
tion of particles in crystal lattices@1–3#. It exhibits several
fascinating features of quantum mechanics. Namely, it ill
trates the wave nature of the Schro¨dinger amplitude and re
veals that this amplitude can extend coherently over ma
scopic distances. These features enable us, for instanc
construct matter wave interferometers. The basic ma
wave effects were demonstrated long ago for electrons, l
for neutrons, and recently for atoms. While for electrons a
neutrons the periodic medium is usually in the form of
crystal lattice, for atoms the periodic medium is often re
ized in the form of a standing light wave@4#. It might seem
that such a change in experimental realization does
present much that is fundamentally new and does not cal
a new theoretical analysis: One simply applies to the ato
the relevant solutions of the Schro¨dinger equation previously
developed for electrons and/or neutrons. However, we
that the potential that a standing light wave presents to
atom is sufficiently different in strength and other significa
ways that the needed solutions do not exist in the literat

Let us take a look at the potential experienced by an a
in a standing light wave@5#

V~x,z!5
d2E2~x,z!

\~D1 ig/2!
, ~1!

wherex andz are spatial coordinates on the scattering pla
of the atom,E(x,z) is the electric field intensity,d is the
dipole matrix element of the atom,D is the detuning between
the light and the atomic transition, andg is the damping
constant of the atom for the unobserved levels. We cons
an idealized scheme of a three-level atom. The atom has
ground and excited levels. The third level is the decay le
of the excited state. Due to the structure of Eq.~1!, we can
prepare the medium in various forms. We can make the
tential V(x,z) real, imaginary, or generally complex by tun
ing the light frequency relative to the transition frequency
the atom. We can tailor the periodic medium into an alm
arbitrary geometric configuration with the proper optics. A
special example of geometry we mention the problem of
PRA 591050-2947/99/59~3!/2190~13!/$15.00
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edge of the light beam. By a suitable arrangement, the e
of the light crystal can be made sharp~as we are accustome
to with ordinary crystals! or it can be made soft, enabling a
adiabatic penetration of the atom wave into the periodic m
dium. The potential can be modulated in time, thereby op
ing the door to many time-dependent phenomena. Mos
the listed features are very difficult or impossible to real
with ordinary crystals and thereby make the system of
atom wave and light crystal a unique and in a sense supe
system.

A significant additional difference between the potent
encountered by an atom in a light crystal and the poten
encountered by a neutron in an ordinary crystal is
strength. As we shall see below, the crucial dimensionle
parameter in Bragg diffraction isq, the ratio of the height of
the potential peaks to the transverse~i.e., perpendicular to
the lattice plane! kinetic energy of the particle. For Brag
diffracting neutronsq.1025; for Bragg diffracting atoms in
light crystals Eq.~1! reveals thatq can be adjusted continu
ously from zero to 10 or more by simply using brighter ligh
The existing solutions of Schro¨dinger’s equation used to de
scribe neutron diffraction in crystals are valid only forq
!1 and hence, in general, are inapplicable to atoms in lig

In the present paper we address theoretically the prob
of strong potentials. To simplify the discussion, we restr
our attention to time-stationary real potentials with a sim
sinusioidal spatial profile~e.g., a standing off-resonance ligh
wave for atoms!. The analysis of time-dependent and com
plex potentials, for both small and largeq, will be given
elsewhere. To deal with the large-q values, we go beyond the
two-beam ‘‘dynamical’’ diffraction long employed in neu
tron ~and x-ray! diffraction @6–8# and reformulate the dif-
fraction theory in terms of Mathieu functions@3,9,10#. The
Mathieu function approach acknowledges the multiple-be
nature of diffraction right from the beginning and permits
systematic treatment of the problem for arbitrary power
the light beam.

The paper is organized as follows. In Sec. II we review,
background, the small-q wave functions long employed in
dynamical diffraction theory. In Sec. III we show that sep
ration of the two-dimensional Schro¨dinger equation for arbi-
trary q leads rigorously to a one-dimensional Mathieu equ
tion and we note the physical meaning of the dimensionl
parameters appearing in the Mathieu equation. In Sec. IV
2190 ©1999 The American Physical Society
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PRA 59 2191SCHRÖDINGER WAVE FUNCTIONS IN STRONG . . .
consider solutions known as Mathieu functions of integ
order, note that physically these solutions apply when a p
ticle is incident on the medium at a Bragg angle, and sh
that for smallq these wave functions reduce to the we
known on-Bragg dynamical diffraction solutions. In Sec.
we present the wave functions for variousq values and illu-
mination conditions and note that the wave functions impl
rich generalization of the elementary pendello¨sung phenom-
ena of dynamical diffraction theory. In Sec. VI we consid
the asymptotic behavior of the solutions for largeq, find that
the wave functions become concentrated in the valleys of
medium, and note that, in this limit, the probability structu
becomes, to some extent, independent of the incident a
~channeling!. Section VII discusses some of the properties
the far field emerging from the medium after a certain de
is traversed by the wave. In Sec. VIII we describe the w
still to be done on this topic: soft edges that admit adiab
entry into the medium, off-Bragg illumination, imaginar
and complex potentials, and time-dependent potentials.

Figure 1 sets the stage for the discussion. The planz
50 is the entrance surface of the medium; the regionz,0
has zero potential and the regionz.0 is the periodic me-
dium with a potential given by

V~x!5V012V1 cosGx. ~2!

Here thex axis is along the entrance surface,G[2p/d, with
d being the spacing of the potential peaks, andV0 andV1 are
constants. Thus the surfaces of constant potential are pl
perpendicular to both the plane of the figure and the entra
surface, i.e., a situation called the Laue case in crystal
fraction. In addition to satisfying Schro¨dinger’s equation
within the potential of Eq.~2!, the wave function we see
must also satisfy boundary conditions at the entrance surf
We will assume that the incident particle has massm and
energyE and that the incident wave function is simply
plane wave whose wave vector has magnitudek, lies on the
x-z plane, and has a negative-x component at or very close t
2G/2. Thez component of the incident wave vector is th

kz5Fk22S G

2 D 2G1/2

. ~3!

In short, the plane-wave illumination in Fig. 1 is from th
lower right at the Bragg angle.

FIG. 1. Stage~the coordinates, the position of the medium, a
the medium’s entrance surfacez50! and orientation and spacingd
of the planes of the periodic potential.
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Since V0 and V1 are zero forz,0 and constant forz
.0, the medium has an abrupt or sharp edge. To descri
gentle or soft-edged medium one would have to letV0 and
V1 be functions ofz. We will not consider soft edges here
Also note that for atoms in standing light~built by an ideal
single wave!, we have from Eq.~1!

V052V1 . ~4!

II. BACKGROUND

As background for the large-q wave functions, let us re-
call the two small-q wave functionsC1 and C2 used as
base states in dynamical diffraction. These each have
factored form

C6~x,z,t !5c6~x!eiK z
6ze2 iEt/\, ~5!

but, as indicated, theirx-axis wave functionsc1(x) and
c2(x) and theirz-axis wave numbersKz

1 and Kz
2 are dis-

tinct. Specifically, the states, normalized over one poten
periodd, are

c6~x!5S G

4p D 1/2

~eiGx/26e2 iGx/2! ~6!

and theirz-axis wave numbers are

Kz
6[Fk22S 2m

\2 D ~V06V1!2S G

2 D 2G1/2

. ~7!

Note that for positiveV0 and V1 and for V1,V0 both Kz
1

andKz
2 are less than the incidentkz given by Eq.~3!, i.e., the

particle must losez momentum climbing into the positive
potential medium. Note also that while thec6(x) wave
functions are each an equal-weight superposition of left-
right-running Bragg waves,c1(x) is a cosine with maxi-
mum probability for the particle to be at the peaks of t
potential~2! andc2(x) is a sine with maximum probability
at the valleys of the potential. Consequently,c1(x) experi-
ences more potential thanc2(x), which explains why
c1(x) is associated with a smaller value ofKz than is
c2(x). In fact, it has been noted@8# that the valuesKz

1 and
Kz

2 given in Eq.~7! can be derived from the general ener
constraint

Kz
65Fk22S 2m

\2 D ^V&62S G

2 D 2G1/2

, ~8!

where^V&6 is the expectation value of the potential~2! for
the statec6(x).

The two complete base statesC(x,z,t) of Eq. ~6! are a
sufficient basis to match at the boundaryz50 any perfect
Bragg illumination of the medium. By perfect Bragg illum
nation of the medium we mean a plane wave withkx either
1G/2 or 2G/2 or an arbitrary superposition of both of the
waves. For example, if the illumination is the single Bra
plane wave mentioned above, which approaches the entr
surface from the lower right in Fig. 1 withx momentum
2\G/2, then the resulting wave function in the medium i
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2192 PRA 59M. HORNE, I. JEX, AND A. ZEILINGER
C total~x,z,t !5
1

&
@C1~x,z,t !2C2~x,z,t !#, ~9!

the minus sign removing the unwanted right-going waves
z50 and thereby matching the incident left-going wave. B
cause of the different values ofKz

1 andKz
2 , a beating effect

occurs with increasing depthz in the medium so that, eve
though the particle definitely had negative-x momentum at
z50, it will definitely have positive-x momentum at a depth
D/2, where

D[2p~Kz
22Kz

1!21, ~10!

and will return to negative-x motion atD, etc. The depthD is
known as the pendello¨sung length and the oscillations of th
direction of propagation are known as pendello¨sung oscilla-
tions. Figure 2 shows the probability distributio
uC total(x,z,t)u2 of the total state over two potential periods
the x direction, i.e., there is a potential peak at the cente
the horizontal axis and one at each edge of the figure
over 11

2 pendellösung depthsD in the z direction ~D51250
of the arbitrary vertical units!. As the particle enters atz
50 going left, the intensity is uniform across the entran
surface. In the medium the amplitude splits into two wav
having different wave numbers~see Fig. 3!. Due to their
mutual beating, the probability density piles up on the le
hand side of each channel atz5D/4 and then it is uniform
again at depthD/2. However, now the particle is propagatin
to the upper right, i.e., it has been turned by Bragg diffr
tion. The statesc1 andc2 are called, respectively,cb and
ca by x-ray crystal diffractionists andc2 andc1 by neutron
crystal diffractionists.

The base statesC6 out of which the total state of Eq.~9!
is constructed are not exact solutions of Schro¨dinger’s equa-

FIG. 2. Probability density plotuC(x,z)u2 of the in-medium
field for q50.1. The horizontal axis covers two potential perio
with potential hills located in the center and on the edges. T
vertical axis is the depthz. The white~black! areas indicate a sig
nificant increase~decrease! of the initial constant probability distri-
bution, while the thin gray areas indicate as almost constant p
ability.
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tion in the potential~2!, but as we shall see they are approx
mate solutions when the potentialV1 is small compared to
the x-axis kinetic energy\2(G/2)2/2m of a particle obeying
the first-order Bragg condition. For use below let us intr
duce the dimensionless ratio of these energies as the pa
eterq,

q[
8mV1

\2G2
. ~11!

III. FROM SCHRÖ DINGER TO MATHIEU

To find the base wave functions for largeq, consider the
two-dimensional Schro¨dinger equation in the potential~2!,

i\
]C

]t
1

\2

2m
¹2C2V0C22V1 cos~Gx!C50. ~12!

We seek factored base states just as in Eq.~5!, i.e.,

C~x,z,t !5c~x!eiK zze2 iEt/\, ~13!

except that for largeq, c(x) andKz are no longer given by
Eqs. ~6! and ~7! and, as we shall see, in general, more th
two base states will be needed at largeq. Insertion of Eq.
~13! into Eq. ~12! and introduction of a dimensionless coo
dinateGx/2→x leads to the equation

d2c

dx2
1@a22q cos~2x!#c50 ~14!

for the x-axis wave function, where the new dimensionle
parametera is defined as

a[
4

G2 F S 2m

\2 D ~E2V0!2Kz
2G . ~15!

Equation~14! is the standard form of the Mathieu equatio
and its solutions are known as Mathieu functions.

In Sec. IV we consider integer-order Mathieu functio
since they are the base states needed to develop wave
tions generated by perfect Bragg illumination. They delive
sufficient set of functions so that at the entrance we
perfectly match any incoming Bragg illumination. Befo
considering these functions let us first emphasize the wa

e

b-

FIG. 3. Depth dependence of the intensity for the left goi
~thick line! and right going~thin line! waves. The two intensities ar
sinusoidal and mutually out of phase byp.
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PRA 59 2193SCHRÖDINGER WAVE FUNCTIONS IN STRONG . . .
mechanical significance of the Mathieu parametera. Con-
sider a periodic Schro¨dinger probability amplitudec that
obeys the Mathieu equation. Multiply Eq.~14! by c* and
integrate over whatever period has been chosen for nor
ization, say,p. ~Note that in the dimensionless coordina
the period of the potential isp; the base state functions i
Sec. IV are all periodic over eitherp or 2p, but their squares
are periodic overp, like the potential.! Use the normalization
and solve fora to obtain

a52qE
0

p

c* cos~2x!c dx2E
0

p

c*
d2c

dx2
dx. ~16!

The first term is the expectation value of the sinusoidal p
of the potential and the second term~including the minus
sign! is the expectation value of the kinetic energy in thex
direction, both terms in a dimensionless format. Equat
~16! implies that any specificc that obeys Eq.~14! must be
accompanied by a specific or characteristic value of the
rametera. SinceKz is the only free parameter in Eq.~15!
defininga ~G, E, andV0 are assumed given and fixed!, each
specific solution will be associated with a specific value
Kz . In short, the detailed shape of anx-axis base state wil
fix the associatedz-axis momentum, the same behavior se
earlier in Eq.~8! for the small-q base states. Equating Eq
~15! and ~16! and solving forKz , one obtains the general
zation of Eq.~8! for base states of arbitraryq.

Two comments are in order about this section. First
should be noted that the argument given here, from
Schrödinger equation~12! through Eqs.~15! and ~16! to a
generalization of Eq.~8!, constitutes a rigorous derivation o
a previous conjecture@8# that the longitudinal wave numbe
is determined by the transverse wave function via ene
expectation values. However, the current argument does
immediately yield a related conjecture@8# that the correct
transverse wave function yields an extremum for
potential-energy expectation value. Second, curiou
enough for largeE andq'1, the pendello¨ssung length is of
the order of the Talbot distance@11#.

IV. MATHIEU FUNCTIONS OF INTEGER ORDER

For each integern>0 their exist two integer-orde
Mathieu functions: one even inx denoted cen(x,q) and one
odd in x denoted sen(x,q). Each is real and has periodp or
2p. The even@odd# one cen (x,q) @sen(x,q)# can be ex-
panded as a Fourier cosine@sine# expansion with real coef
ficients and with the lead term being cos(nx)@sin(nx)#. There
is also a zeroth-order Mathieu function ce0(x,q) that is even
and periodic and has a lead Fourier term of a constant
lowed by cos(2x). In all the Fourier expansions of the integ
Mathieu functions only alternate terms appear@9#:

ce2n~x,q!5(
r 50

`

A2r
~2n!~q!cos~2rx ! @a2n~q!#, ~17!

se2n11~x,q!5(
r 50

`

B2r 11
~2n11!~q!sin@~2r 11!x# @b2n11~q!#,

~18!
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ce2n11~x,q!5(
r 50

`

A2r 11
~2n11!~q!cos@~2r 11!x# @a2n11~q!#,

~19!

se2n12~x,q!5(
r 50

`

B2r 12
~2n12!~q!sin@~2r 12!x# @b2n12~q!#.

~20!

As anticipated in Sec. III, each integer-order Mathieu fun
tion is a solution of the Mathieu equation~14! only if the
parametera has the appropriate characteristic value. T
standard notation for these values is shown in the squ
brackets next to the Fourier expansion of each function~17!–
~20!. As indicated, both the expansion coefficients and
characteristic values areq dependent.

For sufficiently smallq the Fourier coefficients can b
expressed as power series inq. For ce1(x,q) and se1(x,q)
one finds@9#

ce1~x,q!5cosx2
q

8
cos 3x1q2

3@ 1
192 cos 5x2 1

64 cos 3x2 1
128 cosx#1O~q3!,

~21!

se1~x,q!5sinx2
q

8
sin 3x1q2

3@ 1
192 sin 5x1 1

64 sin 3x2 1
128 sinx#1O~q3!.

~22!

To zeroth order inq, ce1(x,q) is cosx and se1(x) is sinx and
hence we recover the dynamical diffraction base statec6(x)
of Eq. ~6!, but here unnormalized.

For sufficiently smallq the characteristic constants can
expressed as power series ofq. For ce1(x,q) and se1(q,x)
these are, respectively@9#,

a1~q!511q2
q2

8
2

q3

64
1¯ , ~23!

b1~q!512q2
q2

8
1

q3

64
1¯ . ~24!

To first order inq, when Eq.~15! for a and Eq.~11! for q are
inserted into Eq.~23!, the expression of Eq.~7! for Kz

1 is
recovered. Similarly, Eq.~24! to first order inq yields the
value of Kz

2 . Thus the complete dynamical diffractio
theory is contained in two Mathieu functions to zeroth ord
in q and in their characteristic values to first order inq.

For large q neither the expansion coefficients nor th
characteristic values can be determined from such power
ries and so one has to resort to standard numerical techni
@9#, which we will do shortly. These numerical techniqu
adopt the normalization for the Mathieu functions

1

p E
0

2p

cen
2~q,x!5

1

p E
0

2p

sen
2~q,x!51. ~25!
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2194 PRA 59M. HORNE, I. JEX, AND A. ZEILINGER
The normalization condition can be rewritten using the
pansion coefficients as

2@A0
~2n!#21(

r 51

`

@A2r
~2n!#251, ~26!

(
r 50

`

@B2r 11
~2n11!#25(

r 50

`

@A2r 11
~2n11!#25(

r 50

`

@B2r 12
~2n12!#251.

~27!

The factor 2 for the lead coefficient in the ce2n Mathieu
functions comes from the constant term that is presen
those expansions. Because of this the lowest Mathieu fu
tion ce0(q,x) is positive everywhere. It is important to no
that the Mathieu functions for a givenq are orthogonal:

E
0

2p

sem~q,x!cen~q,x!50, ~28!

1

p E
0

2p

sem~q,x!sen~q,x!5
1

p E
0

2p

cem~q,x!cen~q,x!5dmn .

~29!

The techniques for calculating both the expansion coe
cients and the characteristic values at arbitraryq are de-
scribed in detail in@9# and are now available on commerci
mathematical software. Figure 4 shows the characteristic
ues associated with the lowest-order Mathieu functions a
function of q. Figures 5 and 6 show the lowest-order fun
tions over two potential periods and for variousq values.
Several features deserve comments. First, at zeroq the char-
acteristic value for both the spatially even and spatially o
functions of ordern is n2. This is because, with no potentia

FIG. 4. Characteristic values for the lowest-order Mathieu fu
tions as a function ofq.
-

in
c-

-

l-
a

-

d

the characteristic value is just thex-axis kinetic energy and
since only the lead term in the functions, i.e., cos(nx) or
sin(nx), is present atq50, the~dimensionless! kinetic energy
is simply n2. Second, with increasingq the characteristic
value for the spatially odd function stays below that for t
spatially even function of the same order. This is because
spatially even function ‘‘sees’’ the potential more.

Third, with q sufficiently in excess of 1, the characterist
values of ce0 and se1 ~and ce1 and se2, etc.! asymptotically
converge, indicating that these two functions tend toward
same energy expectation value. Since for largeq the poten-
tial energy dominates the kinetic, the convergence of th
characteristic values actually indicates that the two functi
have the same expectation value for the potential, i.e.,
squares of the functions must have the same shape.
graphs of ce0 and se1 at q524 confirm this and a similar
convergence can be seen in the pairs of functions in Fig
Note that for the higher-order pairs the convergence does
fully develop until larger-q values are achieved because
their greater kinetic energy.

Fourth, while the functions of even ordern50,2,4,... have
periodp and those of odd ordern51,3,5,... have period 2p,
the squares of all the functions have periodp, the same as
the potential. Fifth, for all the functions there is a gene
tendency, with increasingq, for the probability density to be
pushed off the potential peaks and into the valleys, i.e.,
herent quantum-mechanical channeling. To see this in
graphs, it is important to remember that the period of
potential isp, in the dimensionless coordinate, and thus
domain of the graphs is two periods of the potential, i.
there is a potential peak at the center and at each edge o
graph. Finally, as the probability density gets more localiz
in the valleys with increasingq, higher-order components ar
required in the Fourier expansions of the functions.

V. TOTAL WAVE FUNCTION

The Mathieu functions of integer order will now be use
to develop the total wave functionC(x,z) produced in a
medium of arbitraryq by an atom incident under Bragg con
ditions. Under Bragg conditions this functionC at the en-
trance surface will have the same periodp as the potential.
For a givenq the corresponding integer-order Mathieu fun
tions are mutually orthogonal and form a complete set
expanding any function that shares the periodicity of the m
dium. Thus the incident function can be decomposed

C~x,0!5(
n

@cncen~q,x!1dnsen~q,x!#, ~30!

where the expansion coefficients are

cn5
1

p E
0

2p

cen~q,x!C~x,0!dx, ~31!

dn5
1

p E
0

2p

sen~q,x!C~x,0!dx. ~32!

Since each Mathieu function is linked to a specific char
teristic constantan@bn# and hence, via Eq.~15!, to a specific
wave numberKz , the complete in-medium functionC(x,z)

-
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FIG. 5. Mathieu functions ce0 ~left! and se1 ~right! over two periods of the potential andq50.1, 1, 3, 6, 12, 24, withq increasing from
bottom to top. Note that a potential hill is on each of the edges and in the center.
p
nc
is obtained by multiplying each Mathieu function by the a
propriatez-dependent exponential. Thus the total wave fu
tion in the medium is

C~x,z!5 (
n50

`

cncen~q,x!exp~ iK 1
nz!

1 (
n50

`

dnsen~q,x!exp~ iK 2
nz!, ~33!
-
-
where from Eq.~15!

K1
n5A2m

\2 ~E2V0!2
G2

4
an~q!, ~34!

K2
n5A2m

\2 ~E2V0!2
G2

4
bn~q!. ~35!
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FIG. 6. Mathieu functions ce1 ~left! and se2 ~right! over two periods of the potential andq50.1, 1, 3, 6, 12, 24, withq increasing from
bottom to top. Note that a potential hill is on each of the edges and in the center.
th
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Note that, although each term factors into functions ofx and
z, the complete wave function does not factor, just as in
small-q solution ~9!. To prepare a factorizable in-medium
wave function, i.e., a single Mathieu function times a sin
z-axis exponential, one would need to illuminate the entra
surface with a coherent superposition of plane wa
exp(6ix), exp(62ix), exp(63ix),..., with appropriate ampli-
tudes and phases.

Consider as the first example the left-going and perf
e

e
s

t

Bragg incident wave discussed in Secs. I and II. The wav
x dependence in the dimensionless coordinate is simply

C~x,0!5exp~2 ix !5cosx2 i sinx. ~36!

Figure 7 displays, for increasing-q values, the probability
densityC(x,z) of the in-medium wave function~33! for this
illumination. The given plots call for several commen
First, for smallq the typical pattern of Bragg diffraction ca
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be seen. Whenq increases the frequencies of the oscillati
become larger, i.e., the pendello¨sung length becomes short
~note the change in thez scale!. Second, the probability den
sity becomes more modulated due to the appearance o
ditional frequencies. This is due to the excitation of ad
tional in-medium states@apart form the lowest ce1(q,x) and
se1(q,x)#. Formally speaking, the overlap between the in
dent wave and the lowest state is not sufficient to guara
satisfaction of the boundary condition at the entrance s
face. Third, the plots become more localized in the vall
This is a direct consequence to the properties of the
medium states discussed in Sec. IV. Fourth, in the cas
large q the distribution becomes almost symmetrical alo
the x axis about the minimum of the potential. The initi
asymmetric illumination is remembered only as a slight z
zag motion in the valley.

As a second example consider two-wave illumination
the two waves have zero phase at the potential peaks
gives

C~x,0!5 1
2 @exp~ ix !1exp~2 ix !#5cosx. ~37!

However, if the two waves are in phase at the potential v
leys then the incident field is

C~x,0!5
1

2i
@exp~ ix !2exp~2 ix !#5sinx. ~38!

FIG. 7. In-medium density plots for left-going Bragg illumina
tion and increasingq. The plots are paired from top to bottomq
5$0.1,6%, $1, 12%, and$3, 24%.
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Such standing wave states have actually been produced a
third grating of existing interferometers@12#. Figure 8
shows, for increasingq, the in-medium probability density
for the cosine illumination. Similarly, Fig. 9 displays th
probability density for sine illumination. In both cases w
deal with symmetric initial conditions~of the initial probabil-
ity density! with respect to thez axes~at the pointx50!.
This symmetry is preserved for all the in-medium dens
plots irrespective ofq. In the small-q case both incident
waves excite only one of the in-medium states and we exp
no modulation of the probability density as the wave pe
etrates the medium, i.e., no pendello¨sung behavior. With an
increase ofq the scales inz change, i.e., the frequencie
increase again.

For the incident cosine wave the probability density
pushed off the potential hills into the valleys asq increases.
There is, however, always a zero probability line along
center of the valley due to the structure of the odd cosine
Mathieu functions. For largeq the probability is concentrated
in peaks. We will focus on this effect in Sec. VI.

From the beginning the incident sine wave is alrea
quite localized in the valleys and hence the modulation w
increasingq does not go through such a dramatic change
the cosine wave. Formally, this is to be explained by
overlap with the in-medium states. The spread over
medium states for a sine wave is weaker than for the co
wave and hence a less spectacular modulation has to be
pected.

FIG. 8. In-medium density plots for cosine illumination for in
creasingq. The plots are paired from top to bottomq5$0.1,6%,
$1, 12%, and$3, 24%.
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Finally, as the last example, consider a single plane-w
incident normal to the entrance face of the medium. Then
unnormalized incidentx function is

C~x,0!5const. ~39!

Figure 10 shows, for increasingq, the in-medium probability
density. As in the previous case, the in-medium probabi
density is strictly symmetric about the center of the valle
Even though the incident wave is spread evenly over
whole period of the potential, with increasingq, the probabil-
ity in the medium is again focused into the valley. A furth
increase inq leads to additional structures, which will b
considered in the next section.

VI. LARGE- q LIMIT

In Sec. IV we pointed out that, for largeq, adjacent co-
sinelike and sinelike base states acquire the same shap~up
to a sign!; that this shared shape has a distinctive numbe
peaks~dependent on the order of the function!, and that the
peaks are located in the valley of the potential~channeling!.
In addition, as the functions converge in shape with incre
ing shape, their characteristic constants and hence their a
ciatedKz wave numbers also converge. As a consequenc
these convergences, some regularities in the in-med
probability densities should develop. Figure 11 shows
densities atq550 for the four previously considered illum

FIG. 9. In-medium density plots for sine illumination for in
creasingq. The plots are paired from top to bottomq5 $0.1, 6%,$1,
12%, and$3, 24%.
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FIG. 10. In-medium density plots for normal illumination fo
increasingq, with q56, 12, 24 from top to bottom.

FIG. 11. In-medium density plots for the high-q regime (q
550). The plots are paired from top~normal, sine illumination! to
bottom~cosine, left-going Bragg illumination!, and each spans only
one period of the potential.
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nations. Along the bottom of each valley, there is a seque
of dominant peaks equally spaced in depth and these p
are interconnected via a net of additional but less pronoun
concentrations of probability. One might attempt to und
stand some of these patterns via classical mechanics. H
ever, in this section we will give the simple wave mechan
behind these patterns.

Let us choose as an example the normal incidence illu
nation. For normal incidence the wave function can be w
ten as the sum of only even, i.e., ce2n , Mathieu functions and
hence the probability density as

uC~x,z!u25U(
n50

`

c2nce2n~q,x!exp~ iK 1
2nz!U2

. ~40!

This equation can be rewritten as

uC~x,z!u25 (
n50

`

c2n
2 ce2n

2 ~q,x!

12(
n50

`

c2nc2mce2m~q,x!ce2n~q,x!

3cos@~K1
2n2K1

2m!z# ~41!

or

uC~x,z!u25F~x!12(
n50

`

c2nc2mce2m~q,x!ce2n~q,x!

3cos@~K1
2n2K1

2m!z#, ~42!

where thez-independent part was summed into the funct
F(x). For q550, the expansion coefficientsc2n are given in
Table I for reference. To understand the structure of
probability distribution as shown in Fig. 11 we first look
the form of the Mathieu functions for largeq. In Sec. IV
@Eqs.~21! and~22!# we gave the unnormalized expansion f
the lowest Mathieu functions. In general, the leading ter
are always cos(nx) and sin(nx) ~n is the order of the Mathieu
function! and the size of the remainder depends on the va
of q andn. Whenq increases the lower-order functions d
part significantly from the cosinelike or sinelike behavior.
Fig. 12 we show the first eight even-order ce2n Mathieu
functions forq550. The lower-order functions are nonze
only in the middle of the plotted interval, i.e., in the regio
corresponding to the valley of the medium. The higher-or
Mathieu functions still do not depart dramatically from th

TABLE I. Expansion coefficient for normal incidence andq
550.

n cn

0 0.5542
1 0.4136
2 0.3859
3 0.3993
4 0.4244
5 0.1811
6 0.0200
ce
ks

ed
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w-
s
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e
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cosine shape. However, for a givenq the high-order func-
tions are not needed as their overlap with the incident w
is negligible; we find that aboutAq Mathieu functions are
needed to match the incident wave. The functionF(x) is a
weighted sum of the squared Mathieu functions and is sho
in Fig. 13 for all the mentioned illuminations. The function
F(x) can be understood as the complete probability den
averaged over largez. For normal incidence it shows a cen
tral peak and symmetrically spaced side peaks coming f
the higher-order Mathieu functions. The complete pattern
uC(x,z)u2 comes from the additionalz-dependent sum in Eq
~42!. At the entrance (z50) the probability distribution is
constant and equals one. As we proceed into the medium

FIG. 12. Mathieu functions ce2n n50 – 7 over one period of the
potential andq550. The valuen increases from top to bottom an
from left to right. Note that a potential hill is at each of the edg
and a valley is in the center.

FIG. 13. Plots of the functionF(x) for the four illuminations
considered in Fig. 11.
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distribution is modulated. The modulation is controlled
the phases defined by the product of the depthz and the
wave-number differencesK1

2m2K1
2n .

For largeq the characteristic constantsan(q),bn(q) can
be approximated as@9#

a2n~q!'22q1~8n12!Aq, ~43!

a2n11~q!'22q1~8n16!Aq, ~44!

b2n11~q!'22q1~8n12!Aq, ~45!

b2n12~q!'22q1~8n16!Aq. ~46!

From these relations we infer that the distance between
lowest levels becomes an integer multiple of the basic
tance 8Aq,

a2m~q!2a2n~q!'~m2n!8Aq. ~47!

In our present case the basic frequency is associated
the differenceK1

02K1
2 as determined by the lowest chara

teristic valuesa0 anda2 ~which are both negative for larg
q!. Therefore, the first significant change should come a
depthz, where

~K1
02K1

2!z5p, ~48!

which can be rewritten in the form

z5
8pAE

a2~q!2a0~q!

A2m

\G2 . ~49!

At this depth the significant terms to be added toF(x) are
(n>0)

2c2nc2n12ce2n~x,q!ce2n12~x,q!. ~50!

These pairs of functions ce2n ,ce2n12 have a peak atp/2 but
with opposite sign, so they add to the central peak ofF(x) as
we have a minus sign in front of the term coming from t
phase. The side peaks come with the same sign and ha
be subtracted from the functionF(x). In addition to these
terms, we must add the combinations

c2nc2n14ce2n~x,q!ce2n14~x,q!, ~51!

as they have an accumulated phase of 2p. Other terms can be
neglected due to the small value of their expansion coe
cients. As a consequence of the periodicity, we expect
other dominant peak after an additional accumulatedp
shift. In this way we are able to explain the appearance of
dominant peaks and their periodicity.

The next significant phase change occurs at

~K1
02K1

2!z52p. ~52!

The central peaks of the Mathieu functions ce0(x,q) and
ce2(x,q) have opposite signs and have to be subtracted f
F(x). The two side peaks of ce2(x,q) have the same sign a
ce0(q,x) and are added toF(x). Including also the other
combinations of terms, we explain the line of four min
he
-

ith

a

to

-
n-

e

m

peaks between the two dominant peaks. The additional
structure can be explained via similar arguments.

In this analysis we assumed that the differences of
separation constants are exactly commensurate. Howe
this assumption is only approximately valid; the wave nu
bers are definitely incommensurate and hence patterns
be smeared out as we go deeper. However, with an additi
increase ofq we should expect the appearance of additio
peaks and also that the resolution of the peaks improves

VII. OUTGOING PLANE-WAVE INTENSITIES

A directly measurable quantity in Bragg diffraction e
periments is the relative intensity distribution of the vario
outgoing plane waves. After traversing a certain depth in
medium the various plane waves are released at the back
surface and, due to their diverging momenta, the vari
plane waves will spatially separate at a sufficient dista
from the exit surface. The probability of releasing the co
ponent exp(6inx) at a depthz in the medium is given by

P~n!5 1
4U (

m50

`

cm~q!An
~m!~q!exp@ iK 1

m~q!z#

2 (
m50

`

dm~q!An
~m!~q!exp@ iK 2

m~q!z#U2

, ~53!

P~2n!5 1
4U (

m50

`

cm~q!An
~m!~q!exp@ iK 1

m~q!z#

1 (
m50

`

dm~q!An
~m!~q!exp@ iK 2

m~q!z#U2

, ~54!

where cm(q) and dm(q) are coefficients defined by th
boundary condition, i.e., the expansion coefficients in E
~30!. Am

(n)(q),Bm
(n)(q) are the overlap coefficients betwee

the base states and the exponentials exp(6inx), i.e., the fou-
rier coefficients. For the probabilities the normalization co
dition holds

(
n

`

@P~n!1P~2n!#51. ~55!

The intensities of the components vary with changingq
and increasing depth. We plot two samples for the com
nent intensities in Fig. 14 and two more in Fig. 15. Figure
is for normal incidence and Fig. 15 is for the left-going pla
wave impinging at a Bragg angle. In the case of norm
incidence only one setP(2n) is displayed due to the sym
metry P(2n)5P(22n).

For very smallq the normal incoming wave has a larg
overlap only with the zeroth-order base state function a
hence the intensityP(0) is almost unity at all depths. Fo
increasedq additional base states are excited and as a c
sequence additional diffraction orders appear. As a rule
thumb we have found that for a givenq aboutAq orders will
be significantly excited. For highq we see an interesting
behavior. The incoming zeroth-order component excite
sequence of peaks in the higher orders and is at a ce
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depth exhausted. However, at a greater depth it revives
then generates another sequence.

In the case of Bragg illumination and a smallq the incom-
ing wave excites only two in-medium base states: cos
and sine states associated with different wave numbersK1,2

1 .
The outgoing plane-wave intensities then follow the eq
tions

P~21!5 1
2 $11cos@~K1

12K2
1!z#% ~56!

and

P~1!512P~21!5 1
2 $12cos@~K1

12K2
1!z#%. ~57!

These two functions were shown above in Fig. 3. Wheq
increases the total intensity spreads over several orders.
though the structures become more involved, several typ
features can be observed. First, with increasing order
maximum intensity decreases. Second, the higher orders

FIG. 14. ~a! Intensities ofP(2n) for a normal incident wave and
q512. The corresponding in-medium probability density is giv
in the center plot of Fig. 10. Due to the symmetry of the diffracti
orders, only the positive orders are displayed. Higher-order diffr
tion components oscillate less frequently.~b! Intensities ofP(2n)
for a normal incident wave andq550.
nd

e

-

en
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e
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come significantly different from zero always for a larg
depth than the lower orders. Third, the first few oscillatio
of the initially excited order are copied~with a shift! by the
higher-order terms. Fourth, the period of the oscillations
the higher-order intensities is longer than for the lower
ders. This behavior can be understood by looking at the fo
of Eqs.~53! and ~54!.

Finally, we should mention also that for largeq, symmet-
ric pairs of higher-order waves~i.e., n and 2n! start to os-
cillate in phase. This is in contrast with the lowest pairs
symmetric waves, which oscillate with a phase shift ofp/2
~recall Fig. 3!.

VIII. CONCLUSIONS

The base states introduced in Sec. IV and the total w
functions found in Sec. V solve the problem posed in t
Introduction: Find the Schro¨dinger wave function generate
in a medium with strong sinusoidal potential when the m
dium has a sharp boundary and is illuminated by a per
Bragg plane wave or normally incident wave of defin

-

FIG. 15. ~a! Intensities ofP(2n11) for the on Bragg incident
wave andq512. The corresponding in-medium probability dens
is given in the right center plot of Fig. 7. The dominant peaks
the orders21 and11 are the remains of the original pendello¨sung
from Fig. 2. ~b! Intensities ofP(2n11) for q550.
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energy. The wave functions are built by superposition
products of integer-order Mathieu functions inx and com-
plex exponentials inz with wave numbers characteristic o
each Mathieu function. Each term in the superposition i
rigorous solution of the Schro¨dinger equation in the periodi
medium and the superpositions rigorously match the incid
plane wave at the boundary. When the potential is weak
wave functions reduce to the familiar perfect Bragg wa
functions of dynamical diffraction theory. Using these fun
tions we are able to predict the behavior of the matter w
in the medium and the intensities of the various plane wa
released after depthz in the medium.

Several extensions are called for. First, in current exp
ments with atoms impinging on standing light, the incide
radiation is not a single perfect Bragg plane wave but ty
cally is a mixture of many plane waves whose directio
span a substantial fraction of the mean Bragg angle. Such
Bragg waves can be handled via the same technique
above, but one must use fractional-order Mathieu functi
@9,10#. These functions have characteristic-value curves
s
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lie in the so-called stable regions of the characteristic va
chart of Fig. 4. Second, the sharp-edged boundary may
apply. In general, a soft-edged boundary calls for
z-dependentq. Third, if the detuning of the light is smal
~or zero!, the potential is complex~or imaginary! and hence
at least partially absorbing@13#. Mathieu functions do exist
for complexq @10#. Fourth, the potential can be made tim
dependent@14#. Theoretical consideration of these situatio
will be presented elsewhere. However, it seems clear tha
these extensions the products of Mathieu functions and c
acteristic exponentials inz will play a central role since thes
are the base states in a sinusoidal medium.

ACKNOWLEDGMENTS

This work was supported by the National Science Fo
dation under Grant No. PH97-22614, the Austrian Scie
Foundation ~FWF! under Project No. S 6504, and th
Austrian-Czech Cooperation Agreement~Aktion! under
Project No. 18p2/1998.
ed-
ys.

be

er,

er,
@1# P. M. Morse, Phys. Rev.35, 1310~1930!.
@2# M. V. Laue, Phys. Rev.37, 53 ~1931!.
@3# L. Brillouin and M. Parodi,Propagation des Ondes Dans le

Millieux Périodiques~Masson and Dunod, Paris, 1956!.
@4# P. J. Martin, B. G. Oldaker, A. H. Miklich, and D. E. Pritchar

Phys. Rev. Lett.60, 515 ~1988!.
@5# D. O. Chudesnikov and V. P. Yakovlev, Laser Phys.1, 110

~1991!.
@6# H. Rauch and D. Petrascheck, inNeutron Diffraction, edited

by H. Dachs~Springer, Berlin, 1978!.
@7# J. Arthur and M. A. Horne, Phys. Rev. B32, 5747~1985!.
@8# M. A. Horne, K. D. Finkelstein, C. G. Shull, A. Zeilinger, an

H. J. Bernstein, Physica B151, 189 ~1988!.
@9# N. W. McLachlan,Theory and Application of Mathieu Func
tions ~Dover, New York, 1964!.
@10# J. Meixner and F. W. Scha¨fke, Mathieusche Funktionen und
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